2009年杭州市中考数学真题及答案
珍藏初中数学09年浙江省各市中考
1.(2009浙江衢州)如图,已知点A(-4,8)和点B(2,n)在抛物线2y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ+QB 最短,求出点Q 的坐标;(2)平移抛物线2yax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C(-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C+CB ′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.2(2009浙江杭州)已知平行于x 轴的直线)0(aa y 与函数x y 和函数xy1的图象分别交于点A 和点B ,又有定点P (2,0).(1)若0a,且tan ∠POB=91,求线段AB 的长;(2)在过A ,B 两点且顶点在直线x y 上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式;(3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y的图象,求点P 到直线AB 的距离.得分评卷人4 x2 2A8 -2 O-2-4 y 6 B C D-443.(2009年浙江温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),(0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒.(1)求∠ABC 的度数;(2)当t 为何值时,AB ∥DF ;(3)设四边形AEFD 的面积为S .①求S 关于t 的函数关系式;②若一抛物线y=x 2+mx 经过动点E ,当S<23时,求m 的取值范围(写出答案即可).4(2009年浙江湖州)已知抛物线22y xx a (0a )与y 轴相交于点A ,顶点为M .直线12yxa 分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M N ,,,;(2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y xx a (0a)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.第(2)题xy BC ODAMN N ′xy BCOAM N备用图(第4题)5(2009浙江义乌).已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。
浙江省杭州市中考数学试题分类解析 专题11 圆
浙江省杭州市中考数学试题分类解析 专题11 圆一、选择题1. (2002年浙江杭州3分)过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为【 】. (A )3cm (B )5cm(C )2cm(D )3cm【答案】B 。
【考点】垂径定理,勾股定理。
【分析】⊙O 内一点M 的最长的弦是过点M 的直径;最短的弦是过点M 垂直于过点M 的直径的弦。
如图,AB 是最长的弦,CD 是最短的弦,连接OC 。
∵AB=6cm,CD=4cm ;∴OC=OA=3cm,CM=2cm 。
∴2222OM OC CM 325=-=-=(cm )。
故选B 。
2. (2003年浙江杭州3分)如图,点C 为⊙O 的弦AB 上的一点,点P 为⊙O 上一点,且OC⊥CP,则 有【 】(A )OC 2=CA•CB (B )OC 2=PA•PB (C )PC 2=PA•PB (D )PC 2=CA•CB【答案】D。
【考点】垂径定理,相交弦定理。
【分析】延长PC交圆于D,连接OP,OD。
根据相交弦定理,得CP•CD=CA•CB。
∵OP=OD,OC⊥PC,∴PC=CD。
∴PC2=CA•CB。
故选D。
3. (2004年浙江杭州3分)如图,三个半径为3的圆两两外切,且ΔABC的每一边都与其中的两个圆相切,那么ΔABC的周长是【】(A)12+63(B)18+63(C)18+123(D)12+123【答案】B。
【考点】相切圆的性质,等边三角形、矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。
【分析】∵三圆两两相切,∴外切的△ABC为等边三角形(证明略)。
如图,连接 BO 2,CO 3,分别过点O 1,O 2作BC 的垂线,垂足为D ,E 。
∴BO 2平分∠ABC,∠O 2BC =30° 。
∵O 2D⊥BD ,∴22O D 3tan O BC tan30BD 3∠︒===。
∵O 2D=3,∴2O D 3BD 33333===。
2009年中考数学试题分类汇编之27 猜想、探索规律型
2009年中考试题专题之27--------猜想、探索规律型一、选择题---1.(2009年四川省内江市)如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( ) A .60米 B .100米 C .90米 D .120米 【答案】C.2.(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。
A 、12+nB 、12-nC 、n 2D 、2+n【关键词】探索规律型【答案】A3.(2009年江苏省)下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数 B .第11个数 C .第12个数 D .第13个数【答案】A4.(2009年孝感)对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++ 的值是 A .20092008B .20082009C .20102009D .20092010【答案】DO20o20o5.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n【答案】D .6.(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31【答案】C二、填空题1.(2009年四川省内江市)把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
2009年浙江省金华市中考数学试题(word版含答案)
浙江省2009年初中毕业生学业考试(金华卷) 数 学 试 题 卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为100分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.下列四个数中,比-2小的数是( ▲ )A .2B .-3C .0D .-1.5 2.抛物线2(2)3y x =-+的对称轴是( ▲ )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =3 3.要把分式方程122x x=+化为整式方程,方程两边可同时乘以( ▲ )A .24x +B .xC .2x +D .(2)x x + 4.一个几何体及它的主视图和俯视图如图所示,那么它的左视图 正确的是( ▲ )5.下列运用平方差公式计算,错误..的是( ▲ ) A .()()22a b a b a b +-=- B . ()()2111x x x +-=-C .()()2212121x x x +-=-D .()()22a b a b a b-+--=-6.不等式组的解⎨⎧->2x 在数轴上表示正确的是( ▲ )7.如图,把一块直角三角板的直角顶点放在直尺的一边上, 如果∠1=32o,那么∠2的度数是( ▲ )A .32oB .58oC .68oD .60o8.在北京奥运会上,我国健儿奋力拼搏,共获得了100枚奖牌, 其中游泳6枚,射击8枚,球类21枚,举重9枚,体操13枚等. 数据6,8,21,9,13的中位数是( ▲ )D-2 CA B俯视图主视图A B C DA .8B .21C .9D .139.从2,-2,1,-1四个数中任取2个数求和,其和为0的概率是( ▲ )A .16B .14C .13D .1210.小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t (秒),骑车的路程为s (米),则s 关于t 的函数图像大致是( ▲ )卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.因式分解: x 2+x= ▲ .12.一商场开展“家电下乡”活动,某品牌彩电三天的销量分别是 6,10,14(单位:台),该品牌彩电这三天的日平均销量是 ▲ 台. 13.如图,⊙O 是正△ABC 的外接圆,点D 是弧AC 上一点,则∠BDC 的度数是 ▲ .14.在直角坐标系中,已知点A (3,2).作点A 关于y 轴的对称点为A 1, 作点A 1关于原点的对称点为A 2, 作点A 2关于x 轴的对称点为A 3, 作点A 3关于y 轴的对称点为A 4,…按此规律,则点A 8的坐标 为 ▲ .15.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一 个大正方形.如果小正方形的面积为4,大正方形的面积为100,直 角三角形中较小的锐角为α,则tan α的值等于 ▲ .16.如图,在第一象限内作射线OC ,与x 轴的夹角为30o ,在射线 OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2 (x >0) 上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与 △AOH 全等,则符合条件的点A 的坐标是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:020091)---- .18.(本题6分)如图,已知点B ,F ,C ,E 在同一直线上,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE .请你添加一个条件,使AC=DF (不再添加其它线段,不再标注或使用其他字母),并给出证明.添加的条件是: ▲ .证明:EDCFαt t tAB C D如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB =20°)时最为合适,已知货车车厢底部到地面的距离AB =1.5m,木板超出车厢部分AD =0.5m,请求出木板CD 的长度 (参考数据:sin20°≈0.3420, cos 20°≈0.9397,精确到0.1m ).20.(本题8分)如图,有一块半圆形钢板,直径AB =20cm ,计划将此钢 板切割成下底为AB 的等腰梯形,上底CD 的端点在圆周上, 且CD =10cm .(1)求梯形ABCD 面积; (2)求图中阴影部分的面积.21.(本题8分)如图,已知矩形OABC 的两边OA ,OC 分别在x 轴,y 轴的 正半轴上,且点B (4,3),反比例函数y = kx 图象与BC 交于点D ,与AB 交于点E ,其中D (1,3).(1)求反比例函数的解析式及E 点的坐标;(2)若矩形OABC 对角线的交点为F ,请判断点F 是否在此反比例 函数的图象上,并说明理由.22.(本题10分)某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级....一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明: 组中值为190次的组别为 180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是 ▲ ,组中值为110次一组的频率为 ▲ ; (2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?A BCD 图1 图2八年级其余班级....一分钟跳绳次数的扇形统计图 75% 八(1)班一分钟跳绳次数的频数分布直方图 图1 图2在平面直角坐标系中,O 为坐标原点.(1)已知点A (3,1),连结OA ,平移线段OA ,使点O 落在点B .设点A 落在点C ,作如下探究:探究一:若点B 的坐标为(1,2),请在图1中作出平移后的像,则点C 的坐标是 ▲ ;连结AC ,BO ,请判断O ,A ,C ,B 四点构成的图形的形状,并说明理由;探究二:若点B 的坐标为(6,2),按探究一的方法,判断O ,A ,B ,C 四点构成的图形的形状.(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑..喔!) (2)通过上面的探究,请直接回答下列问题:①若已知三点A (a ,b ),B (c ,d ),C (a +c ,b +d ),顺次连结O ,A ,C ,B ,请判断所得到的图形的形状;②在①的条件下,如果所得到的图形是菱形或者是正方形,请选择一种情况,写出a ,b ,c ,d 应满足的关系式.24.(本题12分)如图,在平面直角坐标系中,点A (0,6),点B 是x 轴上的一个动点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90o ,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(t ,0). (1)当t =4时,求直线AB 的解析式;(2)当t >0时,用含t 的代数式表示点C 的坐标及△ABC 的面积; (3)是否存在点B ,使△ABD 为等腰三角形?若存在,请求出所有符合条件的点B 的坐标;若不存在,请说明理由.图1·y OA x备用图浙江省2009年初中毕业生学业水平考试(金华卷)数学试卷参考答案及评分标准一、二、11.x (x +1); 12.10; 13.60°; 14.(3,-2); 15.34; 16. (3,3) , (133,13) , (23,2) , (233,23).(每个1分) 三、解答题(本题有8小题,共66分) 17.(本题6分)20091)---=2009-1-1…………………………………5分(写对一个2分,两个4分,三个5分) =2007…………………………………………1分 18. (本题6分)添加的条件例举:BC =EF ,∠A =∠D ,∠ACB =∠DFE ,BF =CE 等.……2分(写出一个即可) 证明例举(以添加条件BC=EF 为例):∵ AB ⊥BE ,DE ⊥BE , ∴∠ABC =∠DEF =90°.………………………………………………………………1分∵BC =EF ,AB =DE,∴△ABC ≌△DEF(SAS ). ………………………………………………………2分∴AC =DF .……………………………………………………………………………1分 19. (本题6分)由题意可知:AB ⊥BC∴在Rt △ABC 中, sin ∠ACB = ABAC……………………………………………2分 ∴AC =AB sin ∠ACB = 1.5sin20° = 1.50.3420≈4.39m ………………………………3分∴CD = AC +AD = 4.39+0.5 = 4.89 ≈ 4.9m答:木板的长度约为4.9m .……………………………………………1分 20.(本题8分)(1)连结OC ,OD ,过点O 作OE ⊥CD 于点E .………………1分 ∵OE ⊥CD ,∴CE =DE =5, ……………………………………1分 ∴OE=53, ………………2分 ∴S 梯形ABCD =12(AB +CD ) OE =753(cm 2).……………………1分(2) ∵S 扇形= 16×100·π= 503π (cm 2) …………………………………………………………1分S △OC D =12·OE ·CD = 253 (cm 2) ………………………………………………………1分∴S 阴影= S 扇形-S △OCD = (503π-253) cm 2A∴阴影部分的面积为(503-253) cm2.……………………………………1分21.(本题8分)(1)把D (1,3)代入y= kx得3=k1∴k=3∴ y= 3x…………………………………………………2分当x=4时,y= 34∴E(4,34)……………………………2分(2)点F在反比例函数的图象上.…………………1分理由如下:连结AC,OB交于点F,过F作FH⊥x轴于H.∵四边形OABC是矩形∴OF=FB= 12 OB又∵∠FHO=∠BAO=Rt∠, ∠FOH=∠BOA ∴△OFH∽△OBA∴OHOA=FHBA=OFOB=12∴OH=2, FH= 3 2∴F(2,32)……………………………………………………2分当x=2时,y= 3x=32∴点F在反比例函数y= 3x的图象上.…………………………1分22.(本题10分)(1)50,0.16 ………………………………………………4分(2)组中值为130次一组的频数为12人,图略………………………………………2分(3)设八年级同学人数有x人,则可得不等式:42+0.91(x-50)≥0.9x …………………………………………3分解得x≥350答:八年级同学人数至少有350人. …………………………1分23.(本题10分)(1)探究一:C (4,3),……………………………………………………1分图正确得2分,图略…………………………………………2分四边形OACB为平行四边形,………………………………1分理由如下:由平移可知,OA∥BC,且OA=BC,所以四边形OACB为平行四边形.…………………………2分探究二:线段…………………………………………………………1分(2)①平行四边形或线段………………………………………2分②菱形:a 2+b 2=c 2+d 2 (a =-c ,b =-d 除外)正方形:a =d 且b =-c 或b =c 且a =-d ……………………………1分 (写出菱形需满足的条件或写出正方形需满足的条件其中一种即可给分) 24.(本题12分) 解:(1)当t =4时,B (4,0)设直线AB 的解析式为y = kx +b . 把 A (0,6),B (4,0) 代入得:⎩⎨⎧b =64k +b =0, 解得:⎩⎨⎧k =-32b =6,∴直线AB 的解析式为:y =-32x +6.………………………………………4分(2) 过点C 作CE ⊥x 轴于点E 由∠AOB =∠CEB =90°,∠ABO =∠BCE ,得△AOB ∽△BEC . ∴12B EC E B C A OB OA B===,∴BE = 12AO =3,CE = 12= t 2,∴点C 的坐标为(t +3,t2).…………………………………………………………2分方法一: S梯形AOEC= 12O E ·(AO +EC )= 12(t +3)(6+t 2)=14t 2+154+9, S △ AOB = 12AO ·OB = 12×6·t =3t ,S △ BEC = 12BE ·CE = 12×3×t 2= 34,∴S △ ABC = S梯形AOEC- S △ AOB -S △ BEC=14t 2+154t +9-3t -34t = 14t 2+9. 方法二:∵AB ⊥BC ,AB =2BC ,∴S △ ABC = 12AB ·BC = BC 2.在R t △ABC 中,BC 2= CE 2+ BE 2= 14t 2+9,即S △ ABC = 14t 2+9.…………………………………………………………2分(3)存在,理由如下: ①当t ≥0时. Ⅰ.若AD =BD . 又∵BD ∥y 轴∴∠OAB =∠ABD ,∠BAD =∠ABD , ∴∠OAB =∠BAD . 又∵∠AOB =∠ABC ,∴△ABO ∽△ACB , ∴12O BB C A OA B==,∴t 6 = 12, ∴t =3,即B (3,0). Ⅱ.若AB =AD .延长AB 与CE 交于点G , 又∵BD ∥CG ∴AG =AC过点A 画AH ⊥CG 于H . ∴CH =HG =12 CG由△AOB ∽△GEB , 得GE BE =AO OB , ∴GE =18t. 又∵HE =AO =6,CE =t2∴18t +6=12 ×(t 2+18t ) ∴t 2-24t -36=0解得:t =12±6 5. 因为 t ≥0,所以t =12+65,即B(12+65,0). Ⅲ.由已知条件可知,当0≤t <12时,∠ADB 为钝角,故BD ≠ AB . 当t ≥12时,BD ≤CE <BC<AB . ∴当t ≥0时,不存在BD =AB 的情况.②当-3≤t <0时,如图,∠DAB 是钝角.设AD =AB , 过点C 分别作CE ⊥x 轴,CF ⊥y 轴于点E ,点F . 可求得点C 的坐标为(t +3,t 2),∴CF =OE =t +3,AF =6-t2,由BD ∥y 轴,AB =AD 得, ∠BAO =∠ABD ,∠F AC =∠BDA ,∠ABD =∠ADB ∴∠BAO =∠F AC , 又∵∠AOB =∠AFC =90°, ∴△AOB ∽△AFC , ∴B O A OC FA F= ,∴6362t t t -=+-, ∴t 2-24t -36=0解得:t =12±6 5.因为-3≤t <0,所以t =12-65,即B (12-65,0).③当t <-3时,如图,∠ABD 是钝角.设AB =BD , 过点C 分别作CE ⊥x 轴,CF ⊥y 轴于点E ,点F , 可求得点C 的坐标为(t +3,t 2),∴CF = -(t +3),AF =6-t2,∵AB =BD , ∴∠D =∠BAD . 又∵BD ∥y 轴, ∴∠D =∠CAF ,∴∠BAC =∠CAF . 又∵∠ABC =∠AFC =90°,AC =AC , ∴△ABC ≌△AFC , ∴AF =AB ,CF =BC ,∴AF =2CF ,即6-t 2=-2(t +3),解得:t =-8,即B (-8,0).综上所述,存在点B 使△ABD 为等腰三角形,此时点B 坐标为:B 1 (3,0),B 2 (12+65,0),B 3 (12-65,0),B 4(-8,0). ………………………4分。
浙江省杭州市中考数学真题试题(含解析)
浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·tanx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。
浙江省义乌市2009年中考数学试卷(含答案).doc
7 18
B.
3 4
C.
11 18
D.
23 36
Ⅱ 试卷 试卷Ⅱ
说明:本卷共有 2 大题,14 小题,共 90 分。答题请用 0.5 毫米及以上的黑色签字笔书 写在“答题纸”的对应位置上。 二、填空题(本题有 6 小题) ,每小题 4 分,共 24 分) 11.化简
a 2 + 2a 的结果是 a
#
.
12.不等式组
.年
.月
(1) abc
#
. 0 (填“ > ”或“ < ”); # .
(1)a 的取值范围是
三、解答题(本题有 8 小题,第 17~19 题每题 6 分,第 20、 21 题每题 8 分,第 22、 23 题 每题 10 分,第 24 题 12 分,共 66 分) 17.(1) 计算 ( −2) 2 + tan 45。− 2 cos 60。;
24.已知点 A、B 分别是 x 轴、 y 轴上的动点,点 C、D 是某个函数图像上的点,当四边形 ABCD(A、B、C、D 各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方 形。例如:如图,正方形 ABCD 是一次函数 y = x + 1图像的其中一个伴侣正方形。 (1)若某函数是一次函数 y = x + 1,求它的图像的所有伴侣正方形的边长;
浙江省 2009 年初中毕业生学业考试(义乌卷)
数
考生须知:
学 试
题
卷
1.全卷共 4 页,有 3 大题,24 小题。满分为 120 分。考试时间 120 分钟. 2.本卷答案必须做在答题纸的对应位置上,做在试卷上无效。 3.请考生将姓名、准考生号填写在答题纸的对应位置上,并认真核准条形 码的姓名、准考证号。 4.作图时,可先使用 2B 铅笔,确定后必须使用 0.5 毫米及以上的黑色签字 笔涂黑。 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! ⎛ b 4ac − b 2 ⎞ 参考公式:二次函数 y = ax 2 + bx + c 图像的顶点坐标是 ⎜ − , 4a ⎟ ⎝ 2a ⎠
2009年浙江省杭州市萧山市衙前九年级数学中考模拟试卷
2009年中考模拟试卷 数学卷考度时间:100分钟 本卷满分120分一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1、在实数23-,0,22,π,9中,无理数有( )(原创)2、3月4日我校七年级4个小组参加植树活动,平均每组植树10株,已知第一、二、四小组分别植树9、12、8,则第四小组植树树为 (B ) (原创)3、下面选项中既是中心对称图形又是轴对称图形的是(D ) (原创) A.等边三角形 B.等腰梯形 C .平行四边形 D .菱形4、已知⎩⎨⎧==21y x 是方程☆3x y -=的解,则☆所表示的数是( )。
A .5B .-5C .2D .15、如图所示,已知EF 是梯形ABCD 的中位线,AB=8,BC=6,DC=2,∠ABC 平分线交EF 于G ,则EG 长( ) (原创)A. 1B .26、下列事件是必然发生事件的是 (C )(原创)A. 明天一定会下雨B. 今年夏季日平均气温会达到35℃C. 在只装有5个红球的袋中摸出1球,是红球;D. 农历十五的晚上一定能看到圆月. 7、下面左图所示的几何体的俯视图是( )8、实数a,b,c 满足a 2+ab +ac <0,那么一元二次方程ax 2+bx +c =0( )(原创)C.没有实数根D.条件不足,不能确定根的情况9、如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D 、C 、E 。
若半圆O 的半径为2,梯形的腰AB 为5,则该梯形与半圆的面积之比( )(2008年某某市试题改编)π:4:A B :π:5 C :π:6 D :π:710.已知:△ABC 中,∠ACB =90°,AC =BC,D 为BC 中点,CF ⊥AD. 下列结论:①∠ADF =45°②∠ADC =∠BDF ③AF =2BF ④CF =2DFA .B .C .D .正确的有: (原创) ( )A 1个B 2个C 3个D 4个二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
2009杭州中考真题及答案
2009年浙江省杭州市各类高中招生文化考试英语试卷考生须知:1、本试卷满分120分,考试时间100分钟。
2、答题前,在答题纸上写姓名和准考证号。
3、必须在答题纸的对应答题位置上答题,写在其他地方无效。
1至60小题在答题纸上涂黑作答,答题方式详见答题纸上的说明。
4、做听力题时,先将答案划在试卷上。
录音内容结束后,你将有一分钟的时间将试卷上的答案转涂到答题纸上。
5、考试结束后,试题卷和答题纸一并上交。
试题卷I. 听力部分(25分)一、听短对话,回答问题(共5小题,计5分)听下面5段对话。
每段对话后有一个小题。
从题中所给的A、B、C三个选项中选出最佳选项,并标在试题的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man think of the sweater?A. It’s too short.B. It’s very cheap.C. It’s expensive.2. Which is Allen’s phone number?A. 56568890.B. 56268890.C. 26268890.3. Why did Tom get up this morning?A. To do sports.B. To catch a train.C. To walk the dog.4. Where can the woman chemistry books?A. On the first floor.B. On the second floor.C. On the third floor.5. What would the woman speaker like to see in their school?A. More books.B. More libraries.C. More clubs.二、听较长对话,回答问题(共5小题,计10分)听下面一段对话,回答第6和第7两个小题。
2009年浙江省杭州市中考数学试题及参考答案
2009年浙江省杭州市中考数学试题及参考答案
2012年05月23日亲,很高兴访问《2009年浙江省杭州市中考数学试题及参考答案》一文,也欢迎您访问店铺()的高考频道,为您精心准备了2011高考数学日常练习的相关模拟考试试题内容!同时,我们正在加紧建设高考频道,我们全体编辑的努力全是为了您,希望您能在本次高考中能获得好的名次,以及考上满意的大学,也希望我们准备的《2009年浙江省杭州市中考数学试题及参考答案》内容能帮助到您。
在即将到来的高考上助您一臂之力!加油,童鞋!
【店铺提供正确答案】。
2009年浙江省湖州市中考数学试题(word版含答案)
浙江省2009年初中毕业生学业考试(湖州市)数 学 试 卷友情提示:一、全卷分卷Ⅰ与卷Ⅱ两部分,考试时间为100分钟.二、第四题为自选题,供考生选做,本题分数计入本学科的总分,但考生所得总分最多为120分.三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 四、请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.卷Ⅰ一、选择题:(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.下列各数中,最大的数是( ) A .1-B .0C .1D2.4的算术平方根是( ) A .2 B .2- C .2± D .163.如图是由4个大小相同的小立方块搭成的几何体,其主视图是( )A .B .C .D .4.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( )A .40.2110-⨯ B .42.110-⨯C .52.110-⨯D .62110-⨯5.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )A .sin 2A =B .1tan 2A =C .cos B =D .tan B = BCA(第5题)6.下列图形中,不是中心对称图形的是( )A .B .C .D .7.已知1O ⊙与2O ⊙外切,它们的半径分别为2和3,则圆心距12O O 的长是( ) A .12O O =1 B .12O O =5 C .1<12O O <5 D .12O O >5 8.在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球 各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球, 两次摸球所有可能的结果如图所示,则摸出的两个球中,一个是红球, 一个是黑球的概率是( ) A .19 B .29C .13 D .499.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙 种糖果30千克混合成的什锦糖果的单价应定为( ) A .11元/千克 B .11.5元/千克C .12元/千克D .12.5元/千克10.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )11.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( ) A .1∶3B .2∶3C 2D 312.已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A .6 B .7 C .8 D .9第一次第二次红红 黄 黑 黄红黄黄 黑红 黄 黑(第8题) (第12题)(第11题) DC E F A B第(10)题B A O A. B.C. D.卷Ⅱ二、填空题:(本题有6小题,每小题4分,共24分) 13.计算:|3|2--= . 14.分解因式:34a a -= .15.如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .16.如图,已知矩形ABCD ,将B C D △沿对角线BD 折叠,记点C 的对应点为C ′,若ADC ∠′=20°,则BDC ∠的度数为 _.17.已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”) 18.如图,已知Rt ABC △,1D 是斜边AB 的中点, 过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).三、解答题:(本题有6个小题,共60分)19.(本题有2小题,每小题5分,共10分) (1)计算:()02cos 602009π--°(2)解方程:22333x x x-+=-- 20.(本小题8分)(第16题)D BCAE 1 E 2 E 3D 4D 1D 2D 3(第18题)(第15题) CABS 1S 2如图:已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥, 垂足分别为E F ,. (1) 求证:BED CFD △≌△;(2)若90A ∠=°,求证:四边形DFAE 是正方形.21.(本小题10分)某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表和扇形统计图.(1)试直接写出x y m n ,,,的值;(2)求表示得分为C 等的扇形的圆心角的度数;(3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A 等和B 等的人数共有多少人?22.(本小题10分)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1) 若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.23.(本小题10分) 如图,在平面直角坐标系中,直线l ∶y =28x --分别与x 轴,y 轴相交于A B ,两点,点()0P k ,是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作P ⊙.(第20题)D CB E A F(1)连结PA ,若PA PB =,试判断P ⊙与x 轴的位置关系,并说明理由;(2)当k 为何值时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?24.(本小题12分) 已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ; (2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.四、自选题:(本题5分)请注意:本题为自选题,供考生选做,自选题得分将计入本学科总分,但考试总分最多为120分.25.若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点.(1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°,3,4,则PB 的值为第(2)题备用图 (第24题) (第23题)________;(2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′. 求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++.浙江省2009年初中毕业生学业考试(湖州市)数学试题参考答案与评分标准一、选择题(每小题3分,共36分)二、填空题(每小题4分,共24分)13.1 14.()()22a a a +- 15.2π 16.55° 17.> 18.()211n +三、解答题(共60分) 19.(本题有2小题,每小题5分,共10分) (1)解:原式=12132⨯-+……………3分 =3.……………2分(2)解:去分母得:()2332x x -+-=-……………2分化简得25x =,解得52x =,……………2分 经检验,52x =是原方程的根. ……………1分 ∴原方程的根是52x =.20.(本小题8分)(1)DE AB DF AC ⊥,⊥,90BED CFD ∴∠=∠=°,……………1分 AB AC = ,B C ∴∠=∠,……………1分 D 是BC 的中点,BD CD ∴=,……………1分BED CFD ∴△≌△.……………1分 (2) DE AB DF AC ⊥,⊥, 90AED AFD ∴∠=∠=°, 90A ∠= °,∴四边形DFAE 为矩形. ……………2分BED CFD △≌△, DE DF ∴=,∴四边形DFAE 为正方形.……………2分21.(本小题10分)(1)120.240.02x y m n =,=1,=,=.……………4分(2)C 等扇形的圆心角的度数为:()0.080.0236036+⨯=︒°.……………3分(3)达到A 等和B 等的人数为:()0.140.240.30.16200168+++⨯=人.……………3分22.(本小题10分)(1) 设家庭轿车拥有量的年平均增长率为x ,则:()2641100x +=,……………2分解得:11254x ==%,294x =-(不合题意,舍去),……………2分 ()100125%125∴+=.……………1分答:该小区到2009年底家庭轿车将达到125辆.……………1分(2) 设该小区可建室内车位a 个,露天车位b 个,则:0.50.1152 2.5a b a b a +=⎧⎨⎩①≤≤②……………2分 由①得:b =150-5a 代入②得:20a 150≤≤7, a 是正整数,a ∴=20或21,当20a =时50b =,当21a =时45b =.……………2分∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.23.(本小题10分)第(1)题第(2)题解:(1)P ⊙与x 轴相切.……………1分直线28y x =--与x 轴交于()40A -,,与y 轴交于()0B ,-8,48OA OB ∴==,,由题意,8OP k PB PA k =-∴==+,. 在Rt AOP △中,()222483k k k +=+∴=-,,……………2分 OP ∴等于P ⊙的半径,P ∴⊙与x 轴相切. ……………1分(2)设P ⊙与直线l 交于C D ,两点,连结PC PD ,. 当圆心P 在线段OB 上时,作PE CD ⊥于E . PCD △为正三角形,133222DE CD PD PE ∴===∴=,,90AOB PEB ABO PBE AOB PEB ∠=∠=∠=∠∴ °,,△∽△,AO PE AB PB ∴=,2PB PB =∴=,2分80822PO BO BP P ⎛⎫∴=-=-∴- ⎪ ⎪⎝⎭,,8k ∴=-.……………2分 当圆心P 在线段OB延长线上时,同理可得08P ⎛⎫ ⎪ ⎪⎝⎭,,8k ∴=,……………2分 ∴当82k =-或82k =--时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.24.(本小题12分)第(2)题备用图(1)()411133M a N a a ⎛⎫--⎪⎝⎭,,,.……………4分(2)由题意得点N 与点N ′关于y 轴对称,N '∴4133a a ⎛⎫-- ⎪⎝⎭,,将N ′的坐标代入22y x x a =-+得21168393a a a a -=++, 10a ∴=(不合题意,舍去),294a =-.……………2分 334N ⎛⎫∴- ⎪⎝⎭,,∴点N 到y 轴的距离为3.904A ⎛⎫- ⎪⎝⎭ ,,N '334⎛⎫ ⎪⎝⎭,,∴直线AN '的解析式为94y x =-, 它与x 轴的交点为904D ⎛⎫∴ ⎪⎝⎭,,点D 到y 轴的距离为94. 1919918932222416ACN ACD ADCN S S S ∴=+=⨯⨯+⨯⨯=△△四边形.……………2分(3)当点P 在y 轴的左侧时,若ACPN 是平行四边形,则PN 平行且等于AC ,∴把N 向上平移2a -个单位得到P ,坐标为4733a a ⎛⎫- ⎪⎝⎭,,代入抛物线的解析式, 得:27168393a a a a -=-+ 10a ∴=(不舍题意,舍去),238a =-, 12P ⎛⎫∴- ⎪⎝⎭7,8.……………2分当点P 在y 轴的右侧时,若APCN 是平行四边形,则AC 与PN 互相平分,OA OC OP ON ∴==,.P ∴ 与N 关于原点对称,4133P a a ⎛⎫∴- ⎪⎝⎭,,将P 点坐标代入抛物线解析式得:21168393a a a a =++, 10a ∴=(不合题意,舍去),2158a =-,5528P ⎛⎫∴- ⎪⎝⎭,.……………2分∴存在这样的点11728P ⎛⎫- ⎪⎝⎭,或25528P ⎛⎫- ⎪⎝⎭,,能使得以P A C N ,,,为顶点的四边形是平行四边形.四、自选题(本题5分) 25.(1)……………2分(2)证明:在BB '上取点P ,使120BPC ∠=°, 连结AP ,再在PB '上截取PE PC =,连结CE . 120BPC ∠= °, 60EPC ∴∠=°,PCE ∴△为正三角形,……………1分 60PC CE PCE CEB '∴=∠=∠,°,=120°,ACB ' △为正三角形,AC B '∴=C ACB '∠,=60°,PCA ACE ACE ECB '∴∠+∠=∠+∠=60°, PCA ECB '∴∠=∠′, ACP B '∴△≌△CE .APC B '∴∠=∠120CE PA EB '==°,, 120APB APC BPC ∴∠=∠=∠=°, P ∴为ABC △的费马点,BB '∴过ABC △的费马点P ,且BB '=EB '+PB PE PA PB PC +=++.……………2分B 第(25)题B '。
2009年中考数学试题参考答案
2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
浙江省绍兴2009年中考数学试题及答案
浙江省2009年初中毕业生学业考试绍兴市试卷数 学考生须知:1.全卷分试卷Ⅰ(选择题)、试卷Ⅱ(非选择题)和答题卡三部分.全卷满分150分,考试时间120分钟.2.答题前,先用钢笔或圆珠笔在试卷Ⅱ规定位置上填写县(市、区)、学校、姓名、准考证号;在答题卡规定栏中写上姓名和准考证号,然后用铅笔把答题卡上准考证号和学科名称对应的括号或方框涂黑涂满.3.答题时,将试卷Ⅰ的答案用铅笔在答题卡上对应的选项位置涂黑涂满,试卷Ⅱ的答案或解答过程直接做在试卷上.参考公式:二次函数2y ax bx c =++图象的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,试卷Ⅰ(选择题,共40分)请将本卷的答案,用铅笔在答题卡上对应的选项位置涂黑涂满.一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.下列运算正确的是( )A .2a +a =3aB .2a -a =1C .2a ·a =32a D .2a ÷a =a 2.甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( ) A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米3.平面直角坐标系中有四个点:M (16)-,,N (24),,P (61)--,,Q (32)-,,其中在反比例函数y =6x图象上的是( ) A .M 点 B .N 点 C .P 点 D .Q 点4.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“15cm ”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 5.如图是一个几何体的三视图,则该几何体是( )(第4题图)(第10题图)A .正方体B .圆锥C .圆柱D .球6.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58° 7.跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的( )A .平均数B .众数C .中位数D .方差8.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .35 B .310 C .425 D .9259.如图,在平面直角坐标系中,P ⊙与x 轴相切于原点O ,平行于y 轴的直线交P ⊙于M ,N 两点.若点M 的坐标是(21-,),则点N 的坐标是( )A .(24)-,B. (2 4.5)-,C.(25)-,D.(2 5.5)-, 10.如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y ax =,(1)y a x =+,(2)y a x =+相交,其中0a >.则图中阴影部分的面积是( )A .12.5B .25C .12.5aD .25a主视图俯视图 左视图 (第5题图)P(第6题图)(第9题图)试卷Ⅱ(非选择题,共110分)请将答案或解答过程用钢笔或圆珠笔写在本卷上.二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上) 11.因式分解:32x xy -=___________.12.如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB 向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________. 13.当x =代数式23x x -+_____________.14.如图是绍兴市行政区域图,若上虞市区所在地用坐标表示为(12),,诸暨市区所在地用坐标表示为(52)--,,那么嵊州市区所在地用坐标可表示为______________.15.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为__________°(只需写出0°~90°的角度).16.李老师从油条的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB ,对折后(点A 与B 重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB 上的14,34均变成12,12变成1,等).那么在线段AB 上(除A ,B )的点中,在第二次操作后,恰好被拉到与1重合的点所对应的数之和是____________.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小(第12题图)(第15题图)(第14题图)A B (第16题图)题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:11(14sin 602-⎛⎫--+ ⎪⎝⎭°;(2)化简:2414a ⎛⎫+ ⎪-⎝⎭·2a a+.18.在黑板报的设计中,小敏遇到了如下的问题:在如图中,直线l 与AB 垂直,要作ABC △关于l 的轴对称图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的其余部分,保留作图痕迹,并写出相应的作法. 作法:(1)以B 为圆心,BA 为半径作弧,与AB 的延长线交于点P ;就是所要作的轴对称图形.19.如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°. (1)求DBC ∠的度数; (2)求证:BD CE =.(第18题图) l P B A CA B C E D (第19题图)20.京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面AB 的坡角由45°减至30°.已知原坡面的长为6cm (BD 所在地面为水平面)(1)改造后的台阶坡面会缩短多少? (2)改造后的台阶高度会降低多少?(精确到0.1m1.41 1.73≈≈)21.为了积极应对全球金融危机,某市采取宏观经济政策,启动了新一轮投资计划.该计划分民生工程,基础建设,企业技改,重点工程等四个项目,有关部门就投资计划分项目情况和民生工程项目分类情况分别绘制了如下的统计图.根据以上统计图,解答下列问题:(1)求投资计划中的企业技改项目投资占总投资的百分比;(2)如果交通设施投资占民生工程项目投资的25%,比食品卫生多投资850万元.计算交通设施和文化娱乐各投资多少万元?并据此补全图2.30% 46% 基础建设企业技改投资计划分项目情况统计图 (第21题图1) 民生工程项目分类情况统计图 (单位:万元) 0 1000 900 800 700 600 500 400 300 200 100 投资额食品卫生学校医院交通设施文化娱乐旅游景点体育场馆(第21题图2) 类别 DB C A (第20题图) A BC(第23题图1) (第23题图2) 22.若从矩形一边上的点到对边的视角是直角,则称该点为直角点.例如,如图的矩形ABCD 中,点M 在CD 边上,连AM ,90BM AMB ∠=,°,则点M 为直角点.(1)若矩形ABCD 一边CD 上的直角点M 为中点,问该矩形的邻边具有何种数量关系?并说明理由;(2)若点M N ,分别为矩形ABCD 边CD ,AB上的直角点,且4AB BC ==,MN 的长.23.如图1的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)如图2,《思维游戏》这本书的长为21cm ,宽为15cm ,厚为1cm ,现有一张面积为875cm2的矩形纸包好了这本书,展开后如图1所示.求折叠进去的宽度;(2)若有一张长为60cm ,宽为50cm 的矩形包书纸,包2本如图2中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1所示.问折叠进去的宽度最大是多少?24.定义一种变换:平移抛物线1F 得到抛物线2F ,使2F 经过1F 的顶点A .设2F 的对称轴分别交12F F ,于点D B ,,点C 是点A 关于直线BD 的对称点.(1)如图1,若1F :2y x =,经过变换后,得到2F :2y x bx =+,点C 的坐标为(20),,则①b 的值等于______________;②四边形ABCD 为( )A .平行四边形B .矩形C .菱形D .正方形(2)如图2,若1F :2y ax c =+,经过变换后,点B 的坐标为(21)c -,,求ABD △的面积;DB CA M(第22题图)(3)如图3,若1F :2127333y x x =-+,经过变换后,AC =P 是直线AC 上的动点,求点P 到点D 的距离和到直线AD 的距离之和的最小值.浙江省2009年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题(本大题有10小题,满分40分) 1.A 2.B 3. C 4.C 5.C 6.B 7.C 8.D 9. A 10. A 二、填空题(本大题有6小题,满分30分)11.()()x x y x y +- 12.相交 13.2 14.(0,3-) 15.50 16.1 三、解答题(本大题有8小题,满分共80分) 17.解:(1) 原式=-2341322⨯++-=-32321+-=-1; (2)原式a a a a 2422+⋅-=a a a a a 2)2)(2(2+⋅-+=2-=a a . 18.(2)分别以B ,P 为圆心,BC ,AC 为半径作弧,两弧交于点Q ; (3)连结BQ ,PQ . △BPQ .19.(1)解: △ABD 为等腰直角三角形, ∴ ∠DBA =45°, 又 AC AB =,,40︒=∠BAC∴ ∠ABC =70°,∴ ∠DBC =115°.(2)证明: ∵△ABD 和ACE △均为等腰直角三角形,(第24题图1) (第24题图2) (第24题图3)(第18题图)lPBACQABC ED(第19题图)∴ CAE BAD ∠=∠=90°,AE AC AD AB ==,,,AC AB = 又 AE ,AC AD AB ===∴ ABD ACE ∴△≌△,CE BD =∴20.解:(1) 在Rt ABC △中,6AB =,6sin 45BC ∴==°在Rt BCD △中,cos30BCBD ==°.1.11214.1626≈≈-=-∴BD AB即台阶坡面会缩短1.1m .(2) 23==BC AC,sin 30CD BD ==°.8.17907.1623≈≈-=-=∴CD AC AD 即台阶高度会降低.8.1m21.解:(1) 企业技改投资占总投资的百分比为1-46%-30%-14%=10%.(2) 由图2知,食品卫生投资为150万元, 故交通设施投资共150+850=1000万元,因此民生工程总投资为1000÷25%=4000万元,从而文化娱乐的投资为4000-(150+410+1000+400+1040)=1000万元.22.解:(1)AB =2AD .理由如下: ∵ 直角点M 为CD 边的中点, ∴ MD =MC , 又 ∵ ,BC AD = ,∠=∠=∠Rt C D∴ADM BCM △≌△,∴ .BMC AMD ∠=∠∵,∠=∠Rt AMB ∴,900=∠+∠BMC AMD ∴ ,450=∠=∠BMC AMD ∴,450=∠=∠AMD DAM ∴.DM AD = ∴AB =2AD . (2)如图2所示, 作AB MH ⊥于点H ,连结,MN ∵ 090=∠AMB ,∴ AMD ∠+BMC ∠=90°, ∵AMD ∠+DAM ∠=90°, BMC ,DAM ∠=∠∴ 又 ∵ ,C D ∠=∠ ∴ADM MCB △≌△,∴BC DM MC AD =, 即343MCMC -=, ∴ MC =1或3. 当MC =1时, AN =1, NH =2,∴2MN =2MH +2NH =222)3(+=7, ∴ MN =7.当MC =3时, MN =BC =.3 综上, 7=MN 或3.DBCAM (第22题图1)DBCAM(第22题图2)HN23.解: (1) 设折叠进去的宽度为x cm , 则 (2x +31) (2x +21)=875,化简得 x 2+26x -56=0, ∴ x =2或-28(不合题意,舍去),即折叠进去的宽度为2 cm . (2) 设折叠进去的宽度为x cm ,则①⎩⎨⎧≤+≤+,50212,60)312(2x x 得x ≤-21, 不符合题意;②⎩⎨⎧≤+≤+,x ,x 6021250)312(2得x ≤-3, 不符合题意;③⎩⎨⎧≤+≤+++,x ,x x 5031260)212()312(得x ≤2;④⎩⎨⎧≤+≤+++,x ,x x 6031250)212()312(得x ≤-21, 不符合题意;⑤⎩⎨⎧≤+≤+,x ,x 50)212(260312 得x ≤2;⑥⎩⎨⎧≤+≤+,x ,x 60)212(250312 得x ≤4.5.综上, x ≤4.5. 即折叠进去的宽度最大为4.5cm . 24.解:(1) -2;D ; (2) ∵ 2F : y =a (x -2)2+c -1,而A (0,c )在2F 上,可得a =41. ∴ DB =(4a +c )-(c -1)=2, ∴ ABD S ∆=2. (3)当点C 在点A 的右侧时(如图1), 设AC 与BD 交于点N ,抛物线3732312+-=x x y ,配方得2)1(312+-=x y ,其顶点坐标是A (1,2), ∵ AC =,∴ 点C 的坐标为)2321(,+. ∵2F 过点A , ∴2F 解析式为1)31(312+--=x y , ∴ B ()1,31+, ∴ D ()3,31+,∴ 1==ND NB ,∵ 点A 与点C 关于直线BD 对称,∴DB AC ⊥,且NC ,AN =∴ 四边形ABCD 是菱形. ∴ PD =PB .作AD PH ⊥交AD 于点H , 则PD +PH =PB +PH . 要使PD +PH 最小, 即要使PB +PH 最小,此最小值是点B 到AD 的距离, 即△ABD 边AD 上的高h .(第24题图1)第23题图∵DN =1,AN =3,AC DB ⊥,∴DAN ∠=30°, 故ABD △是等边三角形.∴ .323==AD h ∴ 最小值为3. 当点C 在点A 的左侧时(如图2),同理, 最小值为3. 综上,点P 到点D 的距离和到直线AD 的距离之和 的最小值为3.(第24题图2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年杭州市各类高中招生文化考试
数 学
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间120分钟。
2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷
试题卷
一. 仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 如果0=+b a ,那么a ,b 两个实数一定是
A.都等于0
B.一正一负
C.互为相反数
D.互为倒数
2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是
A.调查全体女生
B.调查全体男生
C.调查九年级全体学生
D.调查七、八、九年级各100名学生
3. 直四棱柱,长方体和正方体之间的包含关系是
4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标
系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限。
其中错误的是
A.只有①
B.只有②
C.只有③
D.①②③
5. 已知点P (x ,y )在函数x x
y -+=
21的图象上,那么点P 应在平面直角坐标系中的
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限
6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影
区域,则针头扎在阴影区域内的概率为
A.161
B.41
C.16π
D.4
π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别
是3和4及x ,那么x 的值
A.只有1个
B.可以有2个
C.有2个以上,但有限
D.有无数个
8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC
的中点,EP ⊥CD 于点P ,则∠FPC=
A.35°
B.45°
C.50°
D.55°
9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图
象是
A.射线(不含端点)
B.线段(不含端点)
C.直线
D.抛物线的一部分
10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在
点)(k k k y x P ,处,其中11=x ,11=y ,当k ≥2时,
⎪⎪⎩
⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0。
按此方案,第2009棵树种植点的坐标为
A.(5,2009)
B.(6,2010)
C.(3,401) D (4,402)
二. 认真填一填(本题有6个小题,每小题4分,共24分)
要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案
11. 如图,镜子中号码的实际号码是___________
12. 在实数范围内因式分解44
-x = _____________________
13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中
位数是___________;方差(精确到0.1)是_______________
14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形
的周长可以是
______________
15. 已知关于x 的方程32
2=-+x m x 的解是正数,则m 的取值范围为______________ 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,
另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆
弧上。
①若正方形的顶点F 也在半圆弧上,则半圆的
半径与正方形边长的比是______________;②若正方
形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,
则半圆的直径AB = __________
三. 全面答一答(本题有8个小题,共66分)
解答应写出文字说明、证明过程或推演步骤。
如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
17. (本小题满分6分)
如果a ,b ,c 是三个任意的整数,那么在2b a +,2
c b +,2a c +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由。
18. (本小题满分6分)
如图,,有一个圆O 和两个正六边形1T ,2T 。
1T 的6个顶点都在
圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O
的内接正六边形和外切正六边形)。
(1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值;
(2)求正六边形1T ,2T 的面积比21:S S 的值。
19. (本小题满分6分)
如图是一个几何体的三视图。
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表
面爬到AC 的中点D ,请你求出这个线路的最短路程。
如图,已知线段a 。
(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分
别为两条直角边,使AB=a ,BC=a 2
1(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的Rt ΔABC 中,AB=4cm ,求AC 边上的高。
21. (本小题满分8分)
学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中。
编号 项 目 人数 比例 1
经常近距离写字 360 37.50% 2
经常长时间看书 3
长时间使用电脑 52 4
近距离地看电视 11.25% 5
不及时检查视力 240 25.00%
(1)请把三个表中的空缺部分补充完整;
(2)请提出一个保护视力的口号(15个字以内)。
如图,在等腰梯形ABCD 中,∠C=60°,AD ∥BC ,且AD=DC ,E 、F 分别在AD 、
DC 的延长线上,且DE=CF ,AF 、BE 交于点P 。
(1)求证:AF=BE ;
(2)请你猜测∠BPF 的度数,并证明你的结论。
23. (本小题满分10分)
在杭州市中学生篮球赛中,小方共打了10场球。
他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高。
如果他所参加的10场比赛的平均得分超过18分
(1)用含x 的代数式表示y ;
(2)小方在前5场比赛中,总分可达到的最大值是多少?
(3)小方在第10场比赛中,得分可达到的最小值是多少?
24. (本小题满分12分)
已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数x y 1=
的图象分别交于点A 和点B ,又有定点P (2,0)。
(1)若0>a ,且tan ∠POB=9
1,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=
38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式;
(3)已知经过A ,B ,P 三点的抛物线,平移后能得到25
9x y =
的图象,求点P 到直线AB 的距离。
答案:
选择题:CDACBCBDBD;
填空题:
11.3265,
12.(x-√2)(x+√2)(x²+2),
13.23,2.6,
14.14或16或26,
15.m>-6,且m≠-4
16.√5:2,21;
解答题:
17.分类思想,假设abc全奇偶或者两奇一偶或两偶一奇;
18.r:a=1:1,r:b=√3:2,S1:S2=3;4;
19.(1)圆锥,(2)S表=16π,(3)3√7
20.(1)略(2)4/√5;
21.略;(送分题)
22.(1)由ΔABE≌ΔDAF,(2)∠BPF=120°;
23.(1)Y=(5X+68)/9,(2)84(3)29;24.(1)8/3(2)-3/4(X-5/3)²+5/3或者-3/4(X+5/3)²-5/3(3)3或者6/13。