云南省曲靖市2019-2020学年高考第四次大联考数学试卷含解析
云南省曲靖市2019-2020学年高考第四次模拟数学试题含解析
云南省曲靖市2019-2020学年高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若ABC ∆的内角A 满足2sin 23A =-,则sin cos A A -的值为( ) AB. CD .5-3【答案】A 【解析】 【分析】由2sin 22sin cos 3A A A ==-,得到1sin cos 03A A =-<,得出(,)2A ππ∈,再结合三角函数的基本关系式,即可求解. 【详解】由题意,角A 满足2sin 22sin cos 3A A A ==-,则1sin cos 03A A =-<, 又由角A 是三角形的内角,所以(,)2A ππ∈,所以sin cos A A >,因为()225sin cos 12sin cos 1()33A A A A -=-=--=,所以sin cos A A -=. 故选:A. 【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.2.已知a>0,b>0,a+b =1,若 α=11a b a bβ+=+,,则αβ+的最小值是( ) A .3 B .4C .5D .6【答案】C 【解析】 【分析】根据题意,将a 、b 代入αβ+,利用基本不等式求出最小值即可. 【详解】∵a>0,b>0,a+b=1,∴211111152a b a bab a b αβ+=+++=+≥+=+⎛⎫⎪⎝⎭,当且仅当12a b ==时取“=”号. 答案:C 【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.3.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .a c b >>C .b c a >>D .b a c >>【答案】D 【解析】 【分析】 构造函数()ln xf x x=,利用导数求得()f x 的单调区间,由此判断出,,a b c 的大小关系. 【详解】依题意,得ln 33a ==,1ln e b e e -==,3ln 2ln888c ==.令ln ()x f x x=,所以21ln '()x f x x -=.所以函数()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减.所以max 1[()]()f x f e b e===,且(3)(8)f f >,即a c >,所以b a c >>.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.4.已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( ) A .29 B .30C .31D .32【答案】B 【解析】 【分析】设正项等比数列的公比为q ,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求. 【详解】设正项等比数列的公比为q , 则a 4=16q 3,a 7=16q 6,a 4与a 7的等差中项为98, 即有a 4+a 7=94, 即16q 3+16q 6,=94,解得q=12(负值舍去),则有S 5=()5111a q q--=511612112⎛⎫⨯- ⎪⎝⎭-=1. 故选C . 【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题. 5.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64【答案】B 【解析】 【分析】设大正方体的边长为x ,312x x -,设落在小正方形内的米粒数大约为N ,利用概率模拟列方程即可求解。
【附5套中考模拟试卷】云南省曲靖市2019-2020学年中考第四次大联考数学试卷含解析
云南省曲靖市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.152.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB 各边的长度如图所示,则剪出的小三角形ADE应是()A.B.C.D.3.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>04.估计3﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间5.下列运算正确的是()A.B.=﹣3 C.a•a2=a2D.(2a3)2=4a66.下列图形中,主视图为①的是()A.B.C.D.7.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm 8.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围()A.a<0,b<0,c<0 B.a<0,b>0,c<0C.a>0,b>0,c<0 D.a>0,b<0,c<09.25-的倒数的绝对值是()A.25-B.25C.52-D.5210.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣111.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.3D.312.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用换元法解方程221231x xx x+-=+时,如果设21xyx+=,那么原方程化成以y为“元”的方程是________.14.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.15.分解因式x 2﹣x=_______________________16.已知函数y=|x 2﹣x ﹣2|,直线y=kx+4恰好与y=|x 2﹣x ﹣2|的图象只有三个交点,则k 的值为_____. 17.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.18.如果a 2﹣a ﹣1=0,那么代数式(a ﹣21a a -)2•1a a -的值是 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步? 20.(6分)已知函数y=3x(x >0)的图象与一次函数y=ax ﹣2(a≠0)的图象交于点A (3,n ). (1)求实数a 的值;(2)设一次函数y=ax ﹣2(a≠0)的图象与y 轴交于点B ,若点C 在y 轴上,且S △ABC =2S △AOB ,求点C 的坐标.21.(6分)已知抛物线23y ax bx =++的开口向上顶点为P (1)若P 点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y 的取值范围(用含a 的代数式表示)(3)若a =1,且当0≤x≤1时,抛物线上的点到x 轴距离的最大值为6,求b 的值22.(8分)当a =3,b=2时,求代数式222222a b b ab a ab b a b+--++-的值. 23.(8分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.24.(10分)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,求AD AB的值.25.(10分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.26.(12分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.27.(12分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.2.C【解析】【分析】利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴AD AE DE AB AC BC==,∴6121614x yx y==++,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B【解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.A【解析】【分析】直接利用已知无理数得出3的取值范围,进而得出答案.【详解】解:∵1<3<2,∴1-2<3﹣2<2-2,∴-1<3﹣2<0即3-2在-1和0之间.故选A.【点睛】此题主要考查了估算无理数大小,正确得出3的取值范围是解题关键.5.D【解析】试题解析:A. 与不是同类二次根式,不能合并,故该选项错误;B.,故原选项错误;C.,故原选项错误;D. ,故该选项正确.故选D.6.B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.7.C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.8.D【解析】试题分析:根据二次函数的图象依次分析各项即可。
云南省曲靖市2019-2020学年高考数学仿真第四次备考试题含解析
云南省曲靖市2019-2020学年高考数学仿真第四次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0.60.5a =,0.50.6b =,0.52c =,则下列结论正确的是( ) A .b c a >> B .c a b >>C .a b c >>D .c b a >>【答案】D 【解析】 【分析】根据指数函数的性质,取得,,a b c 的取值范围,即可求解,得到答案. 【详解】由指数函数的性质,可得0.50.50.610.60.50.50>>>>,即10b a >>>, 又由0.512c =>,所以c b a >>. 故选:D. 【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得,,a b c 的取值范围是解答的关键,着重考查了计算能力,属于基础题. 2.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( ) A .B .2C .D .【答案】C 【解析】 【分析】 计算得到,,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,,故,,故,代入双曲线化简得到:,故.故选:. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力. 3.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( )A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .21,e e ⎛⎫-∞+ ⎪⎝⎭C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭【答案】B 【解析】 【分析】求出导函数()f x ',确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围. 【详解】21ln ()2()xf x x e x-'=--,当(0,)x e ∈时,()0f x '>,()f x 单调递增,当(,)x e ∈+∞时,()0f x '<,()f x 单调递减,∴在(0,)+∞上()f x 只有一个极大值也是最大值21()f e e a e=+-,显然0x →时,()f x →-∞,x →+∞时,()f x →-∞,因此要使函数有两个零点,则21()0f e e a e =+->,∴21a e e<+. 故选:B . 【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围. 4.已知i 为虚数单位,若复数12z i =+,15z z ⋅=,则||z = A .1 B 5C .5 D .5【答案】B 【解析】由15z z ⋅=可得15z z =,所以155||2i ||||z z +====B . 5.在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+= ⎪⎝⎭( ) A .45 B .45-C .35D .35-【答案】C 【解析】 【分析】利用诱导公式以及二倍角公式,将3sin 22πθ⎛⎫+⎪⎝⎭化简为关于tan θ的形式,结合终边所在的直线可知tan θ的值,从而可求3sin 22πθ⎛⎫+⎪⎝⎭的值. 【详解】因为222222223sin cos tan 1sin 2cos 2sin cos 2sin cos tan 1πθθθθθθθθθθ--⎛⎫+=-=-== ⎪++⎝⎭,且tan 2θ=, 所以3413sin 22415πθ-⎛⎫+==⎪+⎝⎭. 故选:C. 【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解22sin cos m n θθ+值的两种方法:(1)分别求解出sin ,cos θθ的值,再求出结果;(2)将22sin cos m n θθ+变形为222222sin cos tan sin cos tan 1m n m nθθθθθθ++=++,利用tan θ的值求出结果. 6.一辆邮车从A 地往B 地运送邮件,沿途共有n 地,依次记为1A ,2A ,…n A (1A 为A 地,n A 为B 地).从1A 地出发时,装上发往后面1n -地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达1A ,2A ,…n A 各地装卸完毕后剩余的邮件数记为(1,2,,)k a k n =….则k a 的表达式为( ).A .(1)k n k -+B .(1)k n k --C .()n n k -D .()k n k -【分析】根据题意,分析该邮车到第k 站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案. 【详解】解:根据题意,该邮车到第k 站时,一共装上了(21)(1)(2)()2n k kn n n k --⨯-+-+⋯⋯-=件邮件,需要卸下(1)123(1)2k k k ⨯-+++⋯⋯-=件邮件, 则(21)(1)()22k n k k k k a k n k --⨯⨯-=-=-,故选:D . 【点睛】本题主要考查数列递推公式的应用,属于中档题.7.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a Q 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>Q ,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠Q ,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意. 所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列. 所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件.本题主要考查充分条件和必要条件的判断,结合等差数列的前n项和公式是解决本题的关键,属于中等题.8.不等式组201230 xyy xx y-≥⎧⎪⎪≥⎨⎪+-≤⎪⎩表示的平面区域为Ω,则()A.(),x y∀∈Ω,23x y+>B.(),x y∃∈Ω,25x y+>C.(),x y∀∈Ω,231yx+>-D.(),x y∃∈Ω,251yx+>-【答案】D【解析】【分析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设1222,1yz x y zx+=+=-,分析12,z z的几何意义,可得12,z z的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组201230x yy xx y-≥⎧⎪⎪≥⎨⎪+-≤⎪⎩其表示的平面区域如图所示,其中()2,1A,()1,2B,设12z x y=+,则122zxy=-+,1z的几何意义为直线122zxy=-+在y轴上的截距的2倍,由图可得:当122zxy=-+过点()1,2B时,直线12z x y=+在y轴上的截距最大,即25x y+≤,当122zxy=-+过点原点时,直线12z x y=+在y轴上的截距最小,即20x y+≥,故AB错误;设221 yzx +=-,则2z的几何意义为点(),x y与点()1,2-连线的斜率,由图可得2z最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题. 9.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A.24πB.28πC.32πD.36π【答案】C【解析】【分析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为23,高为1的等腰三角形,侧棱长为4,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为23,高为1的等腰三角形,侧棱长为4,如图:由底面边长可知,底面三角形的顶角为120o,由正弦定理可得2324sin120AD==o,解得2AD=,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以222222OA =+=,该几何体外接球的表面积为:()242232S ππ=⋅=.故选:C 【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.10.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( )A .B .C .D .【答案】B 【解析】因为对A 不符合定义域当中的每一个元素都有象,即可排除; 对B 满足函数定义,故符合;对C 出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定; 对D 因为值域当中有的元素没有原象,故可否定. 故选B .11.已知抛物线C :214y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于A ,B 两点,若2PA AF =u u u r u u u r,则AB 为( ) A .409B .40C .16D .163【答案】D 【解析】 【分析】如图所示,过AB 分别作AC l ⊥于C ,BD l ⊥于D ,利用APC BPD ∆∆:和FPM BPD ∆∆:,联立方程组计算得到答案. 【详解】如图所示:过AB 分别作AC l ⊥于C ,BD l ⊥于D .2PA AF=u u u r u u u r ,则2433AC FM ==, 根据APC BPD ∆∆:得到:AP ACBP BD =,即4343AP BD AP BD =++, 根据FPM BPD ∆∆:得到:AF FM BP BD =,即42343AP BD AP BD +=++,解得83AP =,4BD =,故163AB AF BF AC BD =+=+=. 故选:D .【点睛】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.12.正项等比数列{}n a 中,153759216a a a a a a ++=,且5a 与9a 的等差中项为4,则{}n a 的公比是 ( ) A .1 B .2 C .22D 2【答案】D 【解析】 【分析】设等比数列的公比为q ,q 0>,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q . 【详解】由题意,正项等比数列{}n a 中,153759a a 2a a a a 16++=,可得222337737a 2a a a (a a )16++=+=,即37a a 4+=,5a 与9a 的等差中项为4,即59a a 8+=,设公比为q ,则()2237q a a 4q 8+==,则q 2(=负的舍去),故选D . 【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2019届高三第四次大联考数学试题(内附答案)!
全国大联考|2019届高三第四次大联考数学试题(内附答案)!
距离每年一度的高考又进了一天,学弟学妹们是不是已经做好准备了呢!
昨天有个学弟微信我说:‘我觉得我要挂在数学上了!’他是文科的学生,其他成绩都很棒,唯独数学不是很好,很拉分。
其实,我想说的是,数学没有那么难,真的!
高中数学得学习是一种积累,是一个长期的过程,高考也并不需要灯光下的熬夜苦战,也不需要题海中的无边漫游,有一适合自己的学习方法,才是最为重要的!每年的高考其实都是换汤不换药!只要摸索到其中的方法,数学拿高分还是很容易的。
今天我帮大家整理了一套最新高考数学测试题!大家可以看一下!这都是最新的题型,相信对你们的考试会有一定的帮助的!
由于篇幅有限,只能添加部分,完整版解析答案添加微信:1802344851即可无偿领取完整版!。
云南省曲靖市2019-2020学年中考数学第四次调研试卷含解析
云南省曲靖市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数0,23,3,π,其中,无理数共有()A.1个B.2个C.3个D.4个2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,53)C.(0,2)D.(0,103)3.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为( )A.6 B.7 C.8 D.94.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.204030650x yx y+=⎧⎨+=⎩B.204020650x yx y+=⎧⎨+=⎩C.203040650x yx y+=⎧⎨+=⎩D.704030650x yx y+=⎧⎨+=⎩5.如果m的倒数是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20186.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a7.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C .170个,180个D .160个,200个8.下列函数中,当x >0时,y 值随x 值增大而减小的是( ) A .y =x 2B .y =x ﹣1C .34y x =D .1y x=9.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯10.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )A .1B .2C .3D .411.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h12.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表: 班级 参加人数 平均数 中位数 方差 甲 55 135 149 191 乙55135151110某同学分析上表后得出如下结论: ①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); ③甲班成绩的波动比乙班大. 上述结论中,正确的是( )A.①②B.②③C.①③D.①②③二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.14.抛物线y=2x2+4向左平移2个单位长度,得到新抛物线的表达式为_____.15.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F 处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.16.函数32xyx=-中,自变量x的取值范围是______17.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.18.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.20.(6分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.21.(6分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= 35,cos37°=45,tan37°=34)(1)求把手端点A到BD的距离;(2)求CH的长.22.(8分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?23.(8分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP 中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.24.(10分)先化简代数式222x x11x x x2x1-⎛⎫-÷⎪+++⎝⎭,再从12x-≤≤范围内选取一个合适的整数作为x的值代入求值。
云南省曲靖市2019-2020学年高考最新终极猜押数学试题含解析
云南省曲靖市2019-2020学年高考最新终极猜押数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设(),1,a b ∈+∞,则“a b > ”是“log 1a b <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分条件和必要条件的定义结合对数的运算进行判断即可. 【详解】∵a ,b ∈(1,+∞), ∴a >b ⇒log a b <1, log a b <1⇒a >b ,∴a >b 是log a b <1的充分必要条件, 故选C . 【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.2.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于A ,B 两点,交y 轴于点M ,若1F 、M 是线段AB 的三等分点,则椭圆的离心率为( )A .12B .2C D 【答案】D 【解析】 【分析】根据题意,求得,,A M B 的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果. 【详解】由已知可知,M 点为1AF 中点,1F 为BM 中点, 故可得120F A M x x x +==,故可得A x c =;代入椭圆方程可得22221c y a b +=,解得2b y a =±,不妨取2A b y a=,故可得A 点的坐标为2,b c a ⎛⎫⎪⎝⎭,则202b M a ⎛⎫ ⎪⎝⎭,,易知B 点坐标22,2b c a ⎛⎫-- ⎪⎝⎭,将B 点坐标代入椭圆方程得225a c = 故选:D. 【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得,,A B M 点的坐标,属中档题.3.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B 两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A B .32C .53D 【答案】D 【解析】 【分析】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,'Rt CBF ∆和'Rt FBF ∆中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF , 设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,AF FB ⊥,根据对称性知四边形'AFBF 为矩形,'Rt CBF ∆中:222''CF CB BF =+,即()()()2223242x a x a x +=++,解得x a =;'Rt FBF ∆中:222''FF BF BF =+,即()()22223c a a =+,故2252c a =,故e =. 故选:D .【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.4.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A 33263cm B 36463cm C 33223cm D 36423cm 【答案】B 【解析】设折成的四棱锥的底面边长为a ,高为h ,则3h =,故由题设可得12124222a a a +=⨯⇒=所以四棱锥的体积2313646=(42)423V =,应选答案B . 5.函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的部分图像如图所示,若5AB =,点A 的坐标为(1,2)-,若将函数()f x 向右平移(0)m m >个单位后函数图像关于y 轴对称,则m 的最小值为( )A .12B .1C .3π D .2π 【答案】B 【解析】 【分析】根据图象以及题中所给的条件,求出,A ω和ϕ,即可求得()f x 的解析式,再通过平移变换函数图象关于y 轴对称,求得m 的最小值.【详解】由于5AB =,函数最高点与最低点的高度差为4, 所以函数()f x 的半个周期32T =,所以263T ππωω==⇒=, 又()1,2A -,0ϕπ<<,则有2sin 123πϕ⎛⎫-⨯+= ⎪⎝⎭,可得56πϕ=, 所以()()52sin 2sin 2cos 1363323f x x x x ππππππ⎛⎫⎛⎫=+=++=+⎪ ⎪⎝⎭⎝⎭, 将函数()f x 向右平移m 个单位后函数图像关于y 轴对称,即平移后为偶函数, 所以m 的最小值为1, 故选:B. 【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.6.设函数()(1)x g x e e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .,2e⎛⎫+∞⎪ ⎪⎝⎭B .,)e +∞C .,)e +∞D .2e⎡⎫+∞⎪⎢⎪⎣⎭【答案】D【解析】 【分析】先构造函数()()212T x f x x =-,由题意判断出函数()T x 的奇偶性,再对函数()T x 求导,判断其单调性,进而可求出结果. 【详解】构造函数()()212T x f x x =-, 因为()()2f x f x x -+=, 所以()()()()()()()22211022T x T x f x x f x x f x f x x +-=-+---=+--=, 所以()T x 为奇函数,当0x ≤时,()()''0T x f x x =-<,所以()T x 在(],0-∞上单调递减, 所以()T x 在R 上单调递减. 因为存在()()0112x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭, 所以()()000112f x f x x +≥-+, 所以()()()220000011111222T x x T x x x ++≥-+-+,化简得()()001T x T x ≥-, 所以001x x ≤-,即012x ≤令()()12xh x g x x e a x ⎛⎫=-=--≤⎪⎝⎭, 因为0x 为函数()y g x x =-的一个零点, 所以()h x 在12x ≤时有一个零点 因为当12x ≤时,()12'0x h x e e =≤=,所以函数()h x 在12x ≤时单调递减,由选项知0a >,102<<,又因为0h ea e⎛=-=> ⎝,所以要使()h x 在12x ≤时有一个零点,只需使11022h e e a ⎛⎫=--≤⎪⎝⎭,解得2e a ≥, 所以a 的取值范围为,2e ⎡⎫+∞⎪⎢⎪⎣⎭,故选D. 【点睛】本题主要考查函数与方程的综合问题,难度较大.7.已知某几何体的三视图如图所示,则该几何体的体积是( )A .643B .64C .323D .32【答案】A 【解析】 【分析】根据三视图,还原空间几何体,即可得该几何体的体积. 【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4, 故()16444433V =⨯⨯⨯=. 故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题. 8.点O 为ABC ∆的三条中线的交点,且OA OB ⊥,2AB =,则AC BC ⋅u u u r u u u r的值为( ) A .4 B .8C .6D .12【答案】B 【解析】 【分析】可画出图形,根据条件可得2323AC BC AO BC AC BO ⎧-=⎨-=⎩u u u v u u u v u u u v u u uv u u u v u u u v ,从而可解出22AC AO BOBC BO AO⎧=+⎨=+⎩u u u v u u u v u u u vu u u v u u u v u u u v ,然后根据OA OB ⊥,2AB =进行数量积的运算即可求出()()282AO BO BO AO AC BC ⋅=⋅++=u u u r u u u r u u u r u u u u u u r u u u rr .【详解】 如图:点O 为ABC ∆的三条中线的交点11()(2)33AO AB AC AC BC ∴=+=-u u u r u u u r u u u r u u u r u u u r ,11()(2)33BO BA BC BC AC =+=-u u u r u u u r u u u r u u u r u u u r∴由2323AC BC AO BC AC BO ⎧-=⎨-=⎩u u u v u u u v u u u v u u u v u u u v u u u v 可得:22AC AO BO BC BO AO⎧=+⎨=+⎩u u u v u u u v u u u v u u u v u u u v u u u v ,又因OA OB ⊥,2AB =,222(2)(2)2228AC BC AO BO BO AO AO BO AB ∴⋅=+⋅+=+==u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .故选:B 【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.9.已知()21AB =-u u u r ,,()1,AC λ=u u u r ,若10cos 10BAC ∠=,则实数λ的值是( )A.-1 B.7 C.1 D.1或7 【答案】C【解析】【分析】根据平面向量数量积的坐标运算,化简即可求得λ的值.【详解】由平面向量数量积的坐标运算,代入化简可得cos10AB ACBACAB AC⋅∠===u u u r u u u ru u u r u u u r.∴解得1λ=.故选:C.【点睛】本题考查了平面向量数量积的坐标运算,属于基础题.10.已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,直线l经过点F且与双曲线的一条渐近线垂直,直线l与双曲线的左支交于不同的两点A,B,若2AF FB=u u u r u u u r,则该双曲线的离心率为().A.3B.2C.3D【答案】A【解析】【分析】直线l的方程为bx y ca=-,令1a=和双曲线方程联立,再由2AF FB=u u u r u u u r得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线l的方程为bx y ca=-,不妨设1a=.则x by c=-,且221b c=-将x by c=-代入双曲线方程2221yxb-=中,得到()4234120b y b cy b+--=设()()1122,,,A x yB x y则341212442,11b c by y y yb b+=⋅=--由2AF FB =u u u r u u u r ,可得122y y =-,故32442242121b c y b by b ⎧-=⎪⎪-⎨⎪-=⎪-⎩则22481b c b =-,解得219=b则3c ==所以双曲线离心率3c e a ==故选:A 【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.11.已知函数31,0()(),0x x f x g x x ⎧+>=⎨<⎩是奇函数,则((1))g f -的值为( )A .-10B .-9C .-7D .1【答案】B 【解析】 【分析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值. 【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B 【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.12.已知平面向量a b r r ,满足21a b a r r r =,=,与b r 的夹角为2 3π,且)2(()a b a b λ⊥r r r r +-,则实数λ的值为( ) A .7- B .3-C .2D .3【答案】D 【解析】 【分析】由已知可得()()20a b a b λ+-=⋅r r r r,结合向量数量积的运算律,建立λ方程,求解即可.【详解】依题意得22113a b cos π⋅=⨯⨯=-r r 由()()20a b a b λ+-=⋅r r r r ,得()222210a b a b λλ-+-⋅=r r r r即390λ-+=,解得3λ=. 故选:D . 【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
云南省曲靖市2019-2020学年高考数学三月模拟试卷含解析
云南省曲靖市2019-2020学年高考数学三月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823π 【答案】C 【解析】 【分析】由题意可得PA ⊥面ABC ,可知PA BC ⊥,因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥.由此推出三棱锥P ABC -外接球球心是PC 的中点,进而算出2CP =,外接球半径为1,得出结果. 【详解】解:由DA AB ⊥,翻折后得到PA AB ⊥,又PA AC ⊥, 则PA ⊥面ABC ,可知PA BC ⊥.又因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥, 因此三棱锥P ABC -外接球球心是PC 的中点.计算可知2CP =,则外接球半径为1,从而外接球表面积为4π.故选:C. 【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.2.设复数z 满足31ii z=+,则z =( )A .1122i + B .1122-+i C .1122i - D .1122i -- 【答案】D 【解析】 【分析】根据复数运算,即可容易求得结果. 【详解】3(1)1111(1)(1)222i i i i z i i i i ----====--++-.故选:D. 【点睛】本题考查复数的四则运算,属基础题.3.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( )A .2223S S ,且B .2223S S ,且C .2223S S ,且D .2223S S ,且 【答案】D 【解析】 【分析】如图所示:在边长为2的正方体1111ABCD A B C D -中,四棱锥1C ABCD -满足条件,故{}2,22,23S =,得到答案.【详解】如图所示:在边长为2的正方体1111ABCD A B C D -中,四棱锥1C ABCD -满足条件. 故12AB BCCD AD CC =====,1122BC DC ==,123AC =故{}2,22,23S =,故22S ∈,23S ∈.故选:D .【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.4.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭【答案】D 【解析】 【分析】由题意,设第n 次爬行后仍然在上底面的概率为n P .①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为123n P -;②若上一步在下面,则第1n -步不在上面的概率是11n P --.如果爬上来,其概率是()1113n P --,两种事件又是互斥的,可得()1121133n n n P P P --=+-,根据求数列的通项知识可得选项. 【详解】由题意,设第n 次爬行后仍然在上底面的概率为n P .①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为()1223n P n -≥; ②若上一步在下面,则第1n -步不在上面的概率是()11,2n P n --≥.如果爬上来,其概率是()()111,23n P n --≥, 两种事件又是互斥的,∴()1121133n n n P P P --=+-,即11133n n P P -=+,∴1112213n n P P -⎛⎫-- ⎪⎝⎭=,∴数列12n P ⎧-⎫⎨⎬⎩⎭是以13为公比的等比数列,而123P =,所以111232nn P ⎛⎫=⋅+ ⎪⎝⎭, ∴当10n =时,1010111232P ⎛⎫=⋅+ ⎪⎝⎭, 故选:D. 【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.5.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x = A .1个 B .2个C .3个D .4个【答案】B 【解析】 【分析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证. 【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1); ③不满足(2);④⑤均满足(1)(2). 故选:B. 【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题. 6.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =u u u v u u u u v,则()PA PB PC ⋅+u u u v u u u v u u u v等于( ) A .49B .49-C .43D .43-【答案】B 【解析】 【分析】由M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =u u u r u u u u r可得:P 是三角形ABC 的重心,根据重心的性质,即可求解. 【详解】解:∵M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =u u u r u u u u r∴P 是三角形ABC 的重心∴()PA PB PC ⋅+u u u r u u u r u u u r2||PA AP PA u u u r u u u r u u u r =⋅=-又∵AM =1∴2||3PA =u u u r∴()49PA PB PC ⋅+=-u u u r u u u r u u u r故选B . 【点睛】判断P 点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:0PA PB PC ++=u u u r u u u r u u u r r或222AP BP CP ++u u u r u u u r u u u r 取得最小值③坐标法:P 点坐标是三个顶点坐标的平均数.7.已知α满足1sin 3α=,则cos cos 44ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭( ) A .718B .79C .718-D .79-【答案】A 【解析】 【分析】利用两角和与差的余弦公式展开计算可得结果. 【详解】1sin 3α=Q ,cos cos cos cos sin sin cos cos sin sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫∴+-=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()22211cos cos cos sin 12sin 222222ααααααα⎛⎫⎛⎫=-+=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭2117122318⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故选:A. 【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.8.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( ) A .12种 B .24种 C .36种 D .48种【答案】C 【解析】 【分析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有222A =种,剩余的3门全排列,即可求解. 【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有222A =种, 剩余的3门全排列,安排在剩下的3个位置,有336A =种,所以“六艺”课程讲座不同的排课顺序共有32636⨯⨯=种不同的排法. 故选:C. 【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.已知函数()f x 满足(4)17f =,设00()f x y =,则“017y =”是“04x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】 【分析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可. 【详解】解:若04x =,则()0()417f x f ==,即017y =成立,若2()1f x x =+,则由00()17f x y ==,得04x =±,则“017y =”是“04x =”的必要不充分条件, 故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题. 10.复数()()()211z a a i a R =-+-∈为纯虚数,则z =( )A .iB .﹣2iC .2iD .﹣i【答案】B 【解析】 【分析】复数()()()211z a a i a R =-+-∈为纯虚数,则实部为0,虚部不为0,求出a ,即得z .【详解】∵()()()211z a a i a R =-+-∈为纯虚数,∴21010a a ⎧-=⎨-≠⎩,解得1a =-.2z i ∴=-. 故选:B . 【点睛】本题考查复数的分类,属于基础题.11.下列函数中既关于直线1x =对称,又在区间[1,0]-上为增函数的是( ) A .sin y x =π. B .|1|y x =- C .cos y x π= D .e e x x y -=+【答案】C 【解析】 【分析】根据函数的对称性和单调性的特点,利用排除法,即可得出答案. 【详解】A 中,当1x =时,sin 01y x =π=≠,所以sin y x =π不关于直线1x =对称,则A 错误;B 中,()()1,111,1x x y x x x ⎧-≥⎪=-=⎨-+<⎪⎩,所以在区间[1,0]-上为减函数,则B 错误; D 中,()xxy f x e e -==+,而()()2202,2f f e e -==+,则()()02f f ≠,所以e e x x y -=+不关于直线1x =对称,则D 错误; 故选:C. 【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.12.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计π的值:先用计算机产生2000个数对(),x y ,其中x ,y 都是区间()0,1上的均匀随机数,再统计x ,y 能与1构成锐角三角形三边长的数对(),x y 的个数m ﹔最后根据统计数m 来估计π的值.若435m =,则π的估计值为( ) A .3.12 B .3.13C .3.14D .3.15【答案】B 【解析】 【分析】先利用几何概型的概率计算公式算出x ,y 能与1构成锐角三角形三边长的概率,然后再利用随机模拟方法得到x ,y 能与1构成锐角三角形三边长的概率,二者概率相等即可估计出π. 【详解】因为x ,y 都是区间()0,1上的均匀随机数,所以有01x <<,01y <<,若x ,y 能与1构成锐角三角形三边长,则2211x y x y +>⎧⎨+>⎩,由几何概型的概率计算公式知11435411142000m P n ππ⨯-==-==⨯, 所以4354(1)2000π=⨯-=3.13. 故选:B. 【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.二、填空题:本题共4小题,每小题5分,共20分。
云南省曲靖市2019-2020学年高考适应性测试卷数学试题(1)含解析
云南省曲靖市2019-2020学年高考适应性测试卷数学试题(1)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数,x y 满足约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则3z x y =+的最小值为( )A .-5B .2C .7D .11【答案】A 【解析】 【分析】根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值. 【详解】由约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,画出可行域ABC V 如图3z x y =+变为3y x z =-+为斜率为-3的一簇平行线,z 为在y 轴的截距, ∴z 最小的时候为过C 点的时候,解3020x y x y -+=⎧⎨+=⎩得21x y =-⎧⎨=⎩所以()2,1C -, 此时()33215z x y =+=⨯-+=- 故选A 项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题. 2.设等差数列{}n a 的前n 项和为n S ,若5632a a a +=+,则7S =( ) A .28 B .14C .7D .2【答案】B 【解析】根据等差数列的性质6345a a a a +=+并结合已知可求出4a ,再利用等差数列性质可得1774()772aa S a +==,即可求出结果. 【详解】因为6345a a a a +=+,所以5452a a a +=+,所以42a =, 所以17747()7142a a S a +===, 故选:B 【点睛】本题主要考查等差数列的性质及前n 项和公式,属于基础题.3.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】由复数的除法运算可整理得到z ,由此得到对应的点的坐标,从而确定所处象限. 【详解】由2z iz i -=+得:()()()()2121313111222i i i i z i i i i ++++====+--+, z ∴对应的点的坐标为13,22⎛⎫⎪⎝⎭,位于第一象限.故选:A . 【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.4.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .10102021【解析】 【分析】由题意,设每一行的和为i c ,可得11...(21)i i i n i c a a a n n i ++-=+++=++,继而可求解212...2(1)n n b c c c n n =+++=+,表示12(1)n n b n n =+,裂项相消即可求解. 【详解】由题意,设每一行的和为i c 故111()...(21)2i n i i i i n i a a nc a a a n n i +-++-+=+++==++因此:212...[(3)(5)...(21)]2(1)n n b c c c n n n n n n n =+++=+++++++=+1111()2(1)21n n b n n n n ==-++ 故202011111111(1...)(1)22232020202122021S =-+-++-=-=10102021故选:D 【点睛】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 5.若i 为虚数单位,则复数22sin cos 33z i ππ=-+,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】 【分析】首先根据特殊角的三角函数值将复数化为12z i =-,求出z ,再利用复数的几何意义即可求解. 【详解】Q 221sin cos 332z i i ππ=-+=,122i z -∴=+, 则z在复平面内对应的点的坐标为221⎛⎫- ⎪ ⎪⎝⎭,位于第二象限. 故选:B本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.6.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.35【答案】B 【解析】 【分析】由频率分布直方图求出在此路段上汽车行驶速度在区间)[8590,的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过90/km h 的频率. 【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间)[8590,的频率为0.0650.3⨯=, ∴在此路段上汽车行驶速度在区间)[8590,的车辆数为:0.31000300⨯=, 行驶速度超过90/km h 的频率为:()0.050.0250.35+⨯=. 故选:B . 【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题. 7.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,28f π⎛⎫= ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π且在()0,π上是单调函数,则下列说法正确的是( ) A .12ω=B .628f π+⎛⎫-= ⎪⎝⎭π5π【解析】 【分析】根据函数()f x ,在()0,π上是单调函数,确定 01ω<≤,然后一一验证, A.若12ω=,则()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x ,由02f π⎛⎫= ⎪⎝⎭,得34πϕ=,但13sin 84822πππ⎛⎫⨯+≠ ⎛⎫= ⎪⎭⎪⎝⎭⎝f .B.由8f π⎛⎫= ⎪⎝⎭02f π⎛⎫= ⎪⎝⎭,确定()222sin 33π⎛⎫=+⎪⎝⎭f x x ,再求解8f π⎛⎫-⎪⎝⎭验证.C.利用整体法根据正弦函数的单调性判断.D.计算54f π⎛⎫⎪⎝⎭是否为0. 【详解】因为函数()f x ,在()0,π上是单调函数, 所以2T ≥π ,即22ππω≥,所以 01ω<≤ ,若12ω=,则()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x ,又因为02f π⎛⎫= ⎪⎝⎭,即1sin 0222ππϕ⎛⎫⎛⎫⨯+= ⎪⎝=⎪⎝⎭⎭f ,解得34πϕ=,而13sin 8482πππ⎛⎫⨯+≠ ⎛⎫=⎪⎭⎪⎝⎭⎝f A 错误. 由2sin 022πωπϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭f ,不妨令2ωπϕπ+= ,得2πωϕπ=-由sin 882ππωϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭f ,得 2+84ππωϕπ⨯+=k 或32+84ππωϕπ⨯+=k 当2+84ππωϕπ⨯+=k 时,2=23k πω+,不合题意. 当32+84ππωϕπ⨯+=k 时,22=33k πω+,此时()222sin 33π⎛⎫=+⎪⎝⎭f x x所以222272sin 2sin 2sin 8383383122ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+=⨯-+== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭f ,故B 正确. 因为22,,0,2333ππππ⎡⎤⎡⎤∈--+∈⎢⎥⎢⎥⎣⎦⎣⎦x x ,函数()f x ,在0,3π⎛⎫⎪⎝⎭上是单调递增,故C 错误. 525232sin 2sin 043432f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,故D 错误.本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.8.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1AB 的中点,,M N 分别为线段1AC 和 棱11B C 上任意一点,则22PM MN +的最小值为( )A .22B .2C .3D .2【答案】D 【解析】 【分析】取AC 中点E ,过M 作MF ⊥面1111D C B A ,可得MFN ∆为等腰直角三角形,由APM AEM ∆≅∆,可得PM EM =,当11MN B C ⊥时, MN 最小,由 22MF MN =,故()12222222PM MN PM MN EM MF AA ⎛⎫+=+=+≥= ⎪ ⎪⎝⎭,即可求解.【详解】取AC 中点E ,过M 作MF ⊥面1111D C B A ,如图:则APM AEM ∆≅∆,故PM EM =,此时由MF ⊥面1111D C B A ,可知MFN ∆为等腰直角三角形,2MF MN =,故()1222222PM PM MN EM MF AA ⎛⎫=+=+≥= ⎪ ⎪⎝⎭.故选:D 【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.9.若1(1)z a i =+-(a R ∈),||z =a =( )A .0或2B .0C .1或2D .1【答案】A 【解析】 【分析】利用复数的模的运算列方程,解方程求得a 的值. 【详解】由于1(1)z a i =+-(a R ∈),||z ==0a =或2a =.故选:A 【点睛】本小题主要考查复数模的运算,属于基础题.10.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( )A .2B .2-C .1D .1-【答案】D 【解析】 【分析】()()4f x f x =+说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由()()4f x f x =+知函数()f x 的周期为4,又()f x 是奇函数,(2)(2)f f =-,又(2)(2)f f -=-,∴(2)0f =,∴()()()()()()201820192301011f f f f f f +=+=+-=-=-.本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础. 11.已知函数2(0x y a a -=>且1a ≠的图象恒过定点P ,则函数1mx y x n+=+图象以点P 为对称中心的充要条件是( ) A .1,2m n ==- B .1,2m n =-= C .1,2m n == D .1,2m n =-=-【答案】A 【解析】 【分析】由题可得出P 的坐标为(2,1),再利用点对称的性质,即可求出m 和n . 【详解】根据题意,201x y -=⎧⎨=⎩,所以点P 的坐标为(2,1),又1()1mx m x n mn y m x n x n +++-===+++ 1mnx n-+, 所以1,2m n ==-. 故选:A. 【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.12.如图,抛物线M :28y x =的焦点为F ,过点F 的直线l 与抛物线M 交于A ,B 两点,若直线l 与以F 为圆心,线段OF (O 为坐标原点)长为半径的圆交于C ,D 两点,则关于AC BD ⋅值的说法正确的是( )A .等于4B .大于4C .小于4D .不确定【答案】A 【解析】 【分析】利用F 的坐标为()2,0,设直线l 的方程为20x my --=,然后联立方程得282y xmy x ⎧=⎨=-⎩,最后利用韦达定理求解即可 【详解】据题意,得点F 的坐标为()2,0.设直线l 的方程为20x my --=,点A ,B 的坐标分别为()11,x y ,()22,x y .讨论:当0m =时,122x x ==;当0m ≠时,据282y x my x ⎧=⎨=-⎩,得()228440x m x -++=,所以124x x =,所以()()22AC BD AF BF ⋅=-⋅-()()121222224x x x x =+-⋅+-==. 【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题 二、填空题:本题共4小题,每小题5分,共20分。
云南省曲靖市2019-2020学年数学高二下期末考试试题含解析
云南省曲靖市2019-2020学年数学高二下期末考试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.与圆221x y +=及圆22870x y x +-+=都外切的圆的圆心在( ). A .一个圆上 B .一个椭圆上 C .双曲线的一支上 D .抛物线上【答案】C 【解析】 【分析】设动圆P 的半径为r ,然后根据动圆与圆221x y +=及圆22870x y x +-+=都外切得3,1PF r PO r =+=+,再两式相减消去参数r ,则满足双曲线的定义,即可求解.【详解】设动圆的圆心为P ,半径为r ,而圆221x y +=的圆心为(0,0)O ,半径为1; 圆22870x y x +-+=的圆心为(4,0)F ,半径为1.依题意得3,1PF r PO r =+=+,则()()312PF PO r r FO -=+-+=<, 所以点P 的轨迹是双曲线的一支. 故选C . 【点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义的应用,其中解答中熟记圆与圆的位置关系和双曲线的定义是解答的关键,着重考查了推理与运算能力,属于基础题.2.箱子中有标号为1,2,3,4,5,6且大小、形状完全相同的6个球,从箱子中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.若有4人参与摸奖,则恰好有3人获奖的概率为( ) A .B .C .D .【答案】B 【解析】 获奖的概率为,记获奖的人数为 ,,所以4人中恰好有3人获奖的概率为,故选B.3.已知曲线31y x x =-+在点P 处的切线平行于直线2y x =,那么点P 的坐标为( ) A .(1,0)或(1,1)-B .(1,1)或(1,1)-C .(1,1)-D .(1,1)【答案】B 【解析】分析:设P 的坐标为(),m n ,则31n m m =-+,求出函数的导数,求得切线的斜率,由两直线平行的条件可得m 的方程,求得m 的值从而可得结果. 详解:设P 的坐标为(),m n ,则31n m m =-+,()21f x x x =-+的导数为()2'31f x x =-,在点P 处的切线斜率为231m -, 由切线平行于直线2y x =, 可得2312m -=,解得1m =±, 即有()1,1P 或()1,1-,故选B.点睛:本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线斜率,考查两直线平行的条件:斜率相等,属于基础题. 4.使不等式14x +≤成立的一个必要不充分条件是( ) A .23x ≤≤ B .63x -≤≤C .53x -≤≤D .62x -≤≤【答案】B 【解析】解不等式14x +≤,可得414x -≤+≤,即53x -≤≤,故“63x -≤≤”是“53x -≤≤”的一个必要不充分条件,故选B.5.设函数()f x 在R 上存在导函数()f x ',对任意实数x ,都有()(2)f x f x x =-+,当0x <时,()21f x x '<+,若()()242f a f a a -≤--+,则实数a 的最小值是( )A .1B .1-C .12D .12-【答案】A 【解析】 【分析】构造函数()()2g x f x x x =--,根据等式()()2f x f x x -=+可得出函数()y g x =为偶函数,利用导数得知函数()y g x =在(),0-∞上单调递减,由偶函数的性质得出该函数在()0,∞+上单调递增,由()()242f a f a a -≤--+,得出()()2g a g a -≤-,利用函数()y g x =的单调性和偶函数的性质解出该不等式即可. 【详解】构造函数()()2g x f x x x =--,对任意实数x ,都有()()2f x f x x -=+,则()()()()()()()2222g x f x x x f x x x x f x x x g x =--=--+-=-+---=-, 所以,函数()y g x =为偶函数,()()g x g x ∴=.当0x <时,()()210g x f x x ''=--<,则函数()y g x =在(),0-∞上单调递减, 由偶函数的性质得出函数()y g x =在()0,∞+上单调递增,()()242f a f a a -≤--+Q ,即()()()()()()22222f a a a f a a a -----≤-----,即()()2g a g a -≤-,则有()()2g a g a -≤,由于函数()y g x =在()0,∞+上单调递增,2a a ∴-≤,即()222a a -≤,解得1a ≥,因此,实数a 的最小值为1,故选A. 【点睛】本题考查函数不等式的求解,同时也涉及函数单调性与奇偶性的判断,难点在于根据导数不等式的结构构造新函数,并利用定义判断奇偶性以及利用导数判断函数的单调性,考查分析问题和解决问题的能力,属于难题.6.设函数23()x xf x e -=(e 为自然底数),则使()1f x <成立的一个充分不必要条件是( )A .01x <<B .04x <<C .03x <<D .34x <<【答案】A 【解析】 【分析】由()1f x <可得:03x <<,结合充分、必要条件的概念得解. 【详解】()1f x <⇔ 231x x e -<⇔230x x -<解得:03x <<又“01x <<”可以推出“03x <<” 但“03x <<”不能推出“01x <<”所以“01x <<”是“()1f x <” 充分不必要条件. 故选:A. 【点睛】本题主要考查了等价转化思想及充分、必要条件的概念,属于基础题。
云南省曲靖市2019届高三数学高考复习质量监测试卷文科数学试题及答案解析
云南省曲靖市2019届高三高考复习质量监测卷文科数学试题一、选择题1、设集合,,则( )A .B .C .D .2、设,则( )A .2iB .2C .0D .1+i 3、已知命题方程在上有解,命题,有恒成立,则下列命题为真命题的是( ) A .B .C .D .4、设向量,,则( )A .B .C .D .5、设,,,则的大小关系是( )A .B .C .D .6、若不等式对任意恒成立,则实数的取值范围是( )A .B .C .D .7、设实数满足,则的最小值为( )A .4B .C .D .08、已知函数(,)的最小正周期为,且图象向右平移个单位后得到函数的图象,则( )A .B .C .D . 9、若正实数满足,则的最小值为( )A .2B .3C .4D .510、一个四棱锥的三视图如图所示,关于这个四棱锥,下列说法正确的是( ) A .最长的棱长为B .该四棱锥的体积为C .侧面四个三角形都是直角三角形D .侧面三角形中有且仅有一个等腰三角形11、若,那么的解集为( )A .B .C .D .12、在锐角中,,,,若动点满足,则点的轨迹与直线所围成的封闭区域的面积为( )A .B .C .D .二、填空题13、设等比数列满足,,则__________。
14、在矩形中,,,为矩形内部一点,且,则的取值范围是__________。
15、已知偶函数()满足,且当时,,则的图象与的图象的交点个数为__________。
16、正四面体的棱长为,其外接的体积与内切球的体积之比是__________。
三、解答题17、某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①; ②; ③;④; ⑤(1)从上述5个式子中选择一个,求出这个常数;(2)根据(1)式的计算结果把该同学的发现推广为一个三角恒等式; (3)证明这个结论。
18、已知数列满足,(1)证明是等比数列,并求数列的通项公式;(2)证明。
曲靖市2019-2020学年数学高二下期末统考试题含解析
曲靖市2019-2020学年数学高二下期末统考试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.已知函数()sin()()2f x x x R π=-∈,下面结论错误的是( )A .函数()f x 的最小正周期为2πB .函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数C .函数()f x 的图像关于直线0x =对称D .函数()f x 是奇函数2.已知是虚数单位,若,则的共轭复数等于( )A .B .C .D .3.函数()[]cos sin ,,=-∈-f x x x x x ππ的大致图象为( )A .B .C .D .4.已知函数()sin f x x x =+,x ∈R ,若12log 3a f ⎛⎫= ⎪⎝⎭,13log 2b f ⎛⎫= ⎪⎝⎭,()22c f -=则,,a b c 的大小为( ) A .a b c >>B .b c a >>C .c b a >>D .b a c >>5.已知函数f (x )=(3x ﹣2)e x +mx ﹣m (m ≥﹣1),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是( )A .(5e ,2] B .[52-e ,283-e) C .[12-,283-e)D .[﹣1,52-e)6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .15B .16C .23D .137.若X 是离散型随机变量,12()3P X x ==,21()3P X x ==,又已知3(4)E X =,2()9D X =,则12x x -的值为( ) A .53B .23C .3D .18.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据: 不关注 关注 总计 男生 30 15 45 女生 45 10 55 总计7525100根据表中数据,通过计算统计量()()()()()22n ad bc K a b c d a c b d -=++++,并参考以下临界数据:()20P K k > 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k0.4550.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.828若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过( ) A .0.10 B .0.05C .0.025D .0.019.若,则下列不等式一定成立的是 A .B .C .D .10.下列函数中,在定义域内单调的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x =C .2yx D .1y x x=+11.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种D .150种12.在200件产品中有3件次品,现从中任意抽取5件,其中至少有2件次品的抽法有( ) A .233197C C 种B .()5142003197C C C -种 C .233198C C 种D .()233231973197C C C C +种二、填空题(本题包括4个小题,每小题5分,共20分) 13.已知直线1x ya b+=(a ,b 是非零常数)与圆2225x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有__________条(用数字作答).14.已知数列{}n a 的前n 项和21nn S =-,则26a a ⋅=__________.15.凸多面体的面数F 、顶点数V 和棱数E 之间的关系如下表. 凸多面体 面数(F) 顶点数(V) 棱数(E) 三棱柱 5 6 9 长方体 6 8 12 五棱柱 7 10 15 三棱锥 4 4 6 四棱锥558猜想一般结论:F +V -E =____.16.若9()a x x-的展开式中3x 的系数是84-,则a = .三、解答题(本题包括6个小题,共70分)17.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(Ⅰ)求证:PD ⊥平面PAB ;(Ⅱ)求直线PB 与平面PCD 所成角的正弦值.18.在创建“全国文明卫生城市”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的100人的得分(满分100分)统计结果如下表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分Z 服从正态分布8(),19N μ,μ近似为这100人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求()3779P Z <≤ (2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记ξ (单位:元)为该市民参加问卷调查获赠的话费,求ξ的分布列与均值.附:14.≈若2~(,)X N μσ,则 0.6826, ())22(P X P X μσμσμσμσ-<≤+=-<≤+=0.9544,33 0.99)7( 4.P X μσμσ-<<+=19.(6分)若41nx ⎛⎫ ⎪⎝⎭的展开式中,第二、三、四项的二项式系数成等差数列. (1)求n 的值;(2)此展开式中是否有常数项,为什么?20.(6分)已知函数2()3ln .f x x x x =--(1)求()f x 的图象在点()()1,1f 处的切线方程; (2)求()f x 在1[,3]2上的最大值与最小值。
云南省曲靖市2019-2020学年数学高二下期末考试试题含解析
云南省曲靖市2019-2020学年数学高二下期末考试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量ξ服从正态分布2(0,)N σ,若(1)0.2P ξ>=,则(11)P ξ-≤≤=( ) A .0.4 B .0.8C .0.6D .0.3【答案】C 【解析】分析:根据随机变量ξ服从正态分布()20,N σ,得到正态曲线关于0x =对称,根据(1)0.2P ξ>=,得到对称区间上的概率,从而可求()11P ξ-≤≤. 详解:由随机变量ξ服从正态分布()20,N σ可知正态密度曲线关于y 轴对称,而(1)0.2P ξ>=,则10.2Pξ-=(<), 故111110.6PP P ()(>)(<)ξξξ-≤≤=---= , 故选:C .点睛:本题主要考查正态分布的概率求法,结合正态曲线,加深对正态密度函数的理解. 2.设函数2()ln 2a f x x x bx =+-,若1x =是函数()f x 的极大值点,则实数a 的取值范围是( ) A .(,1)-∞ B .(,1]-∞C .(,0)-∞D .(,0]-∞【答案】A 【解析】分析:()f x 的定义域为10'f x ax b x+∞=+-(,),() ,由'10f =(), 得1b a =+.所以()1(1)'ax x f x x--=() 能求出a 的取值范围. 详解:()f x 的定义域为10'f x ax b x+∞=+-(,),() ,由'10f =(), 得1b a =+.所以()1(1)'ax x f x x--=(). ①若0a = ,当01x <<时,'0f x ()>,此时()f x 单调递增; 当1x >时,'0f x ()< ,此时()f x 单调递减.所以1x =是函数()f x 的极大值点. 满足题意,所以0a =成立.②若0a >,由'0f x =(),得11x x a ==.,当11a> 时,即1a < ,此时当01x <<时,'0f x ()>,此时()f x 单调递增; 当1x >时,'0f x ()< ,此时()f x 单调递减.所以1x =是函数()f x 的极大值点. 满足题意,所以1a <成立..如果11a x =>, 函数取得极小值,不成立;②若0a < ,由'0f x =() ,得11x x a==.. 因为1x =是f (x )的极大值点,成立; 综合①②:a 的取值范围是1a < . 故选:A .点睛:本题考查函数的单调性、极值等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.3.分配4名工人去3个不同的居民家里检查管道,要求4名工人都分配出去,并且每名工人只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有( ) A .34A 种 B .3134A A 种C .2343C A 种D .113433C C A 种【答案】C 【解析】 【分析】根据题意,分析可得,必有2名水暖工去同一居民家检查;分两步进行,①先从4名水暖工中抽取2人,②再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,由分步计数原理,计算可得答案. 【详解】解:根据题意,分配4名水暖工去3个不同的居民家里,要求4名水暖工都分配出去,且每个居民家都要有人去检查;则必有2名水暖工去同一居民家检查,即要先从4名水暖工中抽取2人,有24C 种方法,再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,有33A 种情况, 由分步计数原理,可得共2343C A 种不同分配方案, 故选:C. 【点睛】本题考查排列、组合的综合应用,注意一般顺序是先分组(组合),再排列,属于中档题. 4.1x e dx =⎰( )A .1B .1e +C .eD .1e -【答案】D 【解析】 【分析】根据微积分基本原理计算得到答案. 【详解】1110x x e dx e e ==-⎰.故选:D . 【点睛】本题考查了定积分,意在考查学生的计算能力.5.设集合{}2|log (1)1M x x =-<,{|2}N x x =≥|,则M N ⋃=() A .{|23}x x ≤< B .{|2}x x ≥C .{|1}x x >D .3|}1{x x ≤<【答案】C 【解析】 【分析】解出集合M 中的不等式即可 【详解】因为{}{}2|log (1)1|13M x x x x =-<=<<,{|2}N x x =≥ 所以M N ⋃={|1}x x > 故选:C 【点睛】本题考查的是解对数不等式及集合的运算,属于基本题.6.ABC ∆中,90C =∠,且2,3CA CB ==,点M 满足BM AB =,则CM CA ⋅= A .18 B .8C .2D .4-【答案】D 【解析】分析:以点C 为原点,以CA 所在的直线为x 轴,以CB 所在的直线为y 轴,建立平面直角坐标系,求得点M 的坐标,利用向量的坐标运算即可求解.详解:由题意,以点C 为原点,以CA 所在的直线为x 轴,以CB 所在的直线为y 轴,建立平面直角坐标系,则(0,0),(2,0),(0,3)C A B ,设点(,)M x y ,则(,3),(2,3)BM x y AB =-=-,又由BM AB =,所以2,6x y =-=,即(2,6)M -,所以(2,6),(2,0)CM CA =-=,所以22604CM CA ⋅=-⨯+⨯=-,故选D .点睛:本题主要考查了向量的坐标表示与向量的坐标运算问题,其中恰当的建立直角坐标系,求得向量的坐标,利用向量的数量积的运算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.7.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程. 【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=, 故选C . 【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题. 8.正数a b c 、、满足235log log log 0a b c ==->,则( ) A .a b c << B .a c b <<C .c a b <<D .c b a <<【答案】C 【解析】给定特殊值,不妨设235log log log 1a b c ==-=, 则:12,3,,5a b c c a b ===∴<<. 本题选择C 选项. 9.在等差数列中,若=4,=2,则= ( )A .-1B .0C .1D .6【答案】B 【解析】 在等差数列中,若,则,解得,故选B.10.数列中,则,则A .B .C .D .【答案】C 【解析】 【分析】 分别计算、、归纳出的表达式,然后令可得出的值。
云南省曲靖市2019-2020学年高考数学仿真第二次备考试题含解析
云南省曲靖市2019-2020学年高考数学仿真第二次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( ) A.3y x =±B.y =C.2y x =± D.y =【答案】A 【解析】 【分析】由题意可得222222a b a b -=+,即223a b =,代入双曲线的渐近线方程可得答案. 【详解】依题意椭圆22221(a b 0)x y a b +=>>与双曲线22221(a 0,b 0)2x y a b -=>>即22221(a 0,b 022)x y a b -=>>的焦点相同,可得:22221122a b a b -=+, 即223a b =,∴b a ==双曲线的渐近线方程为:x y x==, 故选:A . 【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题. 2.设复数z =213ii-+,则|z|=( ) A .13B.3C .12D.2【答案】D先用复数的除法运算将复数z 化简,然后用模长公式求z 模长. 【详解】 解:z =213i i -+=(2)(13)(13)(13)i i i i --+-=1710i --=﹣110﹣710i ,则|z|故选:D. 【点睛】本题考查复数的基本概念和基本运算,属于基础题.3.若集合M ={1,3},N ={1,3,5},则满足M ∪X =N 的集合X 的个数为( ) A .1 B .2 C .3 D .4【答案】D 【解析】X 可以是{}{}{}{}5,1,5,3,5,1,3,5共4个,选D.4.已知,m n 为两条不重合直线,,αβ为两个不重合平面,下列条件中,αβ⊥的充分条件是( ) A .m ∥n m n ,,αβ⊂⊂ B .m ∥n m n ,,αβ⊥⊥ C .m n m ,⊥∥,n α∥β D .m n m ,⊥n ,αβ⊥⊥【答案】D 【解析】 【分析】根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可. 【详解】对于A ,当//m n ,m α⊂,n β⊂时,则平面α与平面β可能相交,αβ⊥,//αβ,故不能作为αβ⊥的充分条件,故A 错误;对于B ,当//m n ,m α⊥,n β⊥时,则//αβ,故不能作为αβ⊥的充分条件,故B 错误; 对于C ,当m n ⊥,//m α,//n β时,则平面α与平面β相交,αβ⊥,//αβ,故不能作为αβ⊥的充分条件,故C 错误;对于D ,当m n ⊥,m α⊥,n β⊥,则一定能得到αβ⊥,故D 正确.本题考查了面面垂直的判断问题,属于基础题.5.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为2,则输出的v 值为( )A .10922⨯-B .10922⨯+C .11922⨯+D .11922⨯-【答案】C 【解析】 【分析】由题意,模拟程序的运行,依次写出每次循环得到的k ,v 的值,当1k =-时,不满足条件0k …,跳出循环,输出v 的值. 【详解】解:初始值10v =,2x =,程序运行过程如下表所示:9k =,1029v =⨯+,8k=,2102928v =⨯+⨯+,7k =, 2310292827v =⨯+⨯+⨯+,6k =, 4321029282726v =⨯+⨯+⨯+⨯+,5k =, 4325102928272625v =⨯+⨯+⨯+⨯+⨯+,4k =, 6543210292827262524v =⨯+⨯+⨯+⨯+⨯+⨯+,3k =, 6574321029282726252423v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+,2k =,7654328102928272625242322v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+,1k =, 4987653210292827262524232221v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+,0k =,98765432101029282726252423222120v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+,1k =-,跳出循环,输出v 的值为其中98765432101029282726252423222120v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+① 10987651143221029282726252423222120v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+②①—②得41711098653210212121212121212121212v -=-⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ ()111021210212v --=-⨯+-11922v =⨯+.故选:C . 【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到k ,v 的值是解题的关键,属于基础题.6.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .54【答案】C 【解析】由函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到[]1212g x sin x sin x πωπωω=-=-()()(),函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,可得3x π=时,()g x 取得最大值,即23122k πωππωπ⨯-=+(),k Z ∈,0ω>,当0k =时,解得2ω=,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出()g x ,根据函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得3x π=时,()g x 取得最大值,求解可得实数ω的值.7.已知i 是虚数单位,若1z ai =+,2zz =,则实数a =( )A .B .-1或1C .1D【答案】B 【解析】 【分析】由题意得,()()2111zz ai ai a =+-=+,然后求解即可【详解】∵1z ai =+,∴()()2111zz ai ai a =+-=+.又∵2zz =,∴212a +=,∴1a =±.【点睛】本题考查复数的运算,属于基础题8.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点(设点A 位于第一象限),过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为点1A ,1B ,抛物线C 的准线交x 轴于点K ,若11||2||A KB K =,则直线l 的斜率为 A .1 B. C.D【答案】C 【解析】 【分析】 【详解】根据抛物线定义,可得1||||AF AA =,1||||BF BB =, 又11AA FK BB ∥∥,所以11||||2||||A K AF B K BF ==,所以1111||||2||||A K AAB K BB ==, 设1||(0)BB m m =>,则1||2AA m =,则111||||21cos cos ||23AA BB m m AFx BAA AB m m --∠=∠===+,所以sin AFx ∠=,所以直线l的斜率tan k AFx =∠=C . 9.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±【答案】C 【解析】 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题. 10.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈ B .{1,1}M =-C .M ∅⊆D .M N ⊆【答案】D 【解析】 【分析】集合{}2{|1}1,1M x x ===-.N 为自然数集,由此能求出结果. 【详解】解:集合{}2{|1}1,1M x x ===-.N 为自然数集, 在A 中,1M ∈,正确; 在B 中,{}1,1M =-,正确; 在C 中,M ∅⊆,正确;在D 中,M 不是N 的子集,故D 错误. 故选:D .【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.11.已知抛物线2:6C y x =的焦点为F ,准线为l ,A 是l 上一点,B 是直线AF 与抛物线C 的一个交点,若3FA FB =u u u r u u u r,则||BF =( ) A .72B .3C .52D .2【答案】D 【解析】 【分析】根据抛物线的定义求得6AF =,由此求得BF 的长. 【详解】过B 作BC l ⊥,垂足为C ,设l 与x 轴的交点为D .根据抛物线的定义可知BF BC =.由于3FA FB =u u u r u u u r,所以2AB BC =,所以6CAB π∠=,所以26AF FD ==,所以123BF AF ==. 故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.12.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( ) A .4π B .16πC .163πD .323π【答案】D 【解析】 【分析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积. 【详解】如图,正三棱锥A BCD -中,M 是底面BCD ∆的中心,则AM 是正棱锥的高,ABM ∠是侧棱与底面所成的角,即ABM ∠=60°,由底面边长为3得23333BM =⨯=, ∴tan 60333AM BM =︒=⨯=.正三棱锥A BCD -外接球球心O 必在AM 上,设球半径为R , 则由222BO OM BM =+得222(3)(3)R R =-+,解得2R =, ∴3344322333V R πππ==⨯=. 故选:D .【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键. 二、填空题:本题共4小题,每小题5分,共20分。
云南省曲靖市数学2019-2020年普通高中毕业班理数质量检查试卷
云南省曲靖市数学2019-2020年普通高中毕业班理数质量检查试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高一上·黑龙江期中) 设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A . M=NB . M⊆NC . N⊆MD . M∩N=∅2. (2分) =()A . 3﹣iB . ﹣3﹣iC . 3+iD . ﹣3+i3. (2分) (2019高三上·深州月考) 已知等差数列的前项和为,若,,则()A .B .C .D .4. (2分)双曲线与抛物线相交于A,B两点,公共弦AB恰好过它们的公共焦点F,则双曲线C的离心率为()A .B .C .D .5. (2分)(2017·渝中模拟) 实数x,y满足且z=2x﹣y,则z的最大值为()A . ﹣7B . ﹣1C . 5D . 76. (2分)某几何体三视图如下图所示,则该几何体的体积是()A . 1+B . 1+C . 1+D . 1+π7. (2分) (2017高二上·黑龙江月考) 如图是为了求出满足的最小偶数,那么在和两个空白框中,可以分别填入()A . 和B . 和C . 和D . 和8. (2分)定义域R的奇函数f(x),当x∈(﹣∞,0)时f(x)+xf′(x)<0恒成立,若a=3f(3),b=f (1),c=﹣2f(﹣2),则()A . a>c>bB . c>b>aC . c>a>bD . a>b>c9. (2分)(2018·安徽模拟) 已知,,,则()A .B .C .D .10. (2分)如图所示的是函数y=Asin(ωx+φ)图象的一部分,则其函数解析式是()A . y=sin(x+)B . y=sin(x-)C . y=sin(2x+)D . y=sin(2x-)11. (2分) (2017高二上·河南月考) 设是圆上一动点,点的坐标为,若线段的垂直平分线交直线于点,则点的轨迹方程为()A .B .C .D .12. (2分)(2018·遵义模拟) 对于任意的正实数x ,y都有(2x )ln 成立,则实数m 的取值范围为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知角α终边经过点P(﹣1,﹣),则cosα=________.14. (1分)在平面直角坐标系xOy中,已知向量=(1,2),-=(3,1)则=________15. (1分) (2016高二上·南通开学考) 设直线l经过点(﹣1,1),则当点(2,﹣1)与直线l的距离最大时,直线l的方程为________.16. (1分)如图正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:① 与所成角的正切值是;② ∥ ;③ 的体积是;④平面⊥平面;⑤直线与平面所成角为.其中正确的有________.(填写你认为正确的序号)三、解答题 (共6题;共60分)17. (10分)(2018·淮南模拟) 已知椭圆的中心在原点,对称轴为坐标轴,且过 .(1)求椭圆的方程;(2)直线交椭圆与两点,若,求证: .18. (5分) (2017高三下·凯里开学考) 等差数列{an}中,a2=4,a4+a7=15.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2 +n,求b1+b2+b3+…+b10的值.19. (10分) (2016高一下·钦州期末) 如图,在△ABC中,已知AB=10,AC=14,B= ,D是BC边上的一点,DC=6.(1)求∠ADB的值;(2)求sin∠DAC的值.20. (10分)(2018·河北模拟) 如图,四棱锥的底面是边长为2的正方形,平面平面,点是的中点,棱与平面交于点 .(1)求证: ;(2)若是正三角形,求三棱锥的体积.21. (15分)(2018·虹口模拟) 如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆,点是椭圆上的任意一点,直线过点且是椭圆的“切线”.(1)证明:过椭圆上的点的“切线”方程是;(2)设,是椭圆长轴上的两个端点,点不在坐标轴上,直线,分别交轴于点,,过的椭圆的“切线” 交轴于点,证明:点是线段的中点;(3)点不在轴上,记椭圆的两个焦点分别为和,判断过的椭圆的“切线” 与直线,所成夹角是否相等?并说明理由.22. (10分) (2015高二上·石家庄期末) 已知函数f(x)=x3+ax2+bx图象与直线x﹣y﹣4=0相切于(1,f (1))(1)求实数a,b的值;(2)若方程f(x)=m﹣7x有三个解,求实数m的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、。
曲靖市2019-2020学年新高考高二数学下学期期末统考试题
同步练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设0,0a b >>,若3是33a b 与的等比中项,则11a b+的最小值为( ) A .8B .14C .1D .42.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂ C .若,//l ααβ⊥,则l β⊥ D .若//,l ααβ⊥,则l β⊥3.若,,,则的大小关系为( )A .B .C .D .4.若数据123,,x x x 的均值为1,方差为2,则数据123,s,x s x x s +++的均值、方差为( ) A .1,2B .1+s ,2C .1,2+sD .1+s ,2+s5.即将毕业,4名同学与数学老师共5人站成一排照相,要求数学老师站中间,则不同的站法种数是 A .120B .96C .36D .246.函数3()2ln =---f x x x x的单调递增区间是() A .(0,)+∞B .(3,1)-C .(0,1)D .(1,)+∞7.一次数学考试后,甲说:我是第一名,乙说:我是第一名,丙说:乙是第一名。
丁说:我不是第一名,若这四人中只有一个人说的是真话且获得第一名的只有一人,则第一名的是( ) A .甲B .乙C .丙D .丁8.已知集合{1,2,3}A =,{}3,4B =,则从A 到B 的映射f 满足(3)3f =,则这样的映射共有( ) A .3个B .4个C .5个D .6个 9.已知定义在R 上的偶函数,在时,,若,则a 的取值范围是( ) A .B .C .D .10.下列命题中,真命题是( ) A .00,0x x R e∃∈≤ B .2,2x x R x ∀∈>C .0a b +=的充要条件是1ab=- D .1,1a b >>是1ab >的充分条件11.下列关于积分的结论中不正确的是( )A .11cos d 0x x x -=⎰B .111sin d 2sin d x x x x x x -=⎰⎰C .若()f x 在区间[],a b 上恒正,则()d 0baf x x >⎰D .若()d 0baf x x >⎰,则()f x 在区间[],a b 上恒正12.如图,可导函数()y f x =在点00(,())P x f x 处的切线方程为()y g x =,设()()()h x g x f x =-,)'(h x 为()h x 的导函数,则下列结论中正确的是( )A .0'()0h x =,0x 是()h x 的极大值点B .0'()0h x =,0x 是()h x 的极小值点C .0'()0h x ≠,0x 不是()h x 的极值点D .0'()0h x ≠,0x 是()h x 是的极值点 二、填空题:本题共4小题13.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.14.若612ax x -⎛⎫+ ⎪⎝⎭的展开式中的常数项为240,则实数a 的值为______.15.已知向量a 与b 的夹角为120︒,且()2,4a =--,5b =,则向量a 在向量b 方向上的投影为________.16.若实数,,,a b c d 满足22ln 321a a c b d--==,则()()22a cb d -+-的最小值为__________. 三、解答题:解答应写出文字说明、证明过程或演算步骤。
2019-2020学年云南省曲靖市新高考高二数学下学期期末考试试题
提高练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列说法正确的是( )A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B .已知()y f x =是R 上的可导函数,则“()00f x '=”是“x 0是函数()y f x =的极值点”的必要不充分条件C .命题“存在x ∈R ,使得210x x ++<”的否定是:“对任意x ∈R ,均有210x x ++<”D .命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题2.甲、乙、丙三人每人准备在个旅游景点中各选一处去游玩,则在“至少有个景点未被选择”的条件下,恰有个景点未被选择的概率是( ) A .B .C .D .3.设集合{}2S x x =-,2{|340}T x x x =+-≤,则()R C S T ⋃= ( )A .[-4,-2]B .(-∞,1]C .[1,+∞)D .(-2,1]4.()481214y x ⎛⎫++ ⎪⎝⎭的展开式中22x y 的系数是( ) A .58B .62C .52D .425.已知函数()ln (1)22f x x a x a =+-+-.若不等式()0f x >的解集中整数的个数为3,则a 的取值范围是( ) A .(]1ln3,0-B .(]1ln3,2ln 2-C .(]0,1ln 2-D .(]1ln3,1ln 2--6.已知0x 是函数()121xf x x=+-的一个零点,若()()10201,,x x x x ∈∈+∞,则() A .()10<f x ,()20f x < B .()10<f x ,()20f x > C .()10f x >,()20f x <D .()10f x >,()20f x >7.如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x 、y 的值分别为A .7、8B .5、7C .8、5D .7、78.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有()A.90种B.120种C.180种D.240种9.已知函数()2ln ln(1)1x xF x a ax x⎛⎫=+-+-⎪⎝⎭有三个不同的零点123,,x x x(其中123x x x<<),则2312123lnln ln111xx xx x x⎛⎫⎛⎫⎛⎫---⎪⎪ ⎪⎝⎭⎝⎭⎝⎭的值为( )A.1a-B.1a-C.1-D.110.在等差数列{}n a中,21a=-,57a=-,则{}na的前10项和为()A.-80 B.-85 C.-88 D.-9011.在101()2xx-的展开式中,4x的系数为( )A.-120 B.120C.-15 D.1512.若将函数()()()2cos1cos1cosf x x x x=+-图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数()y g x=的图象,则函数()y g x=的单调递减区间为()A.(),2k k k Zπππ⎡⎤-+∈⎢⎥⎣⎦B.(),2k k k Zπππ⎡⎤+∈⎢⎥⎣⎦C.()11,844k k k Zπππ⎡⎤-+∈⎢⎥⎣⎦D.()11,484k k k Zπππ⎡⎤+∈⎢⎥⎣⎦二、填空题:本题共4小题13.复数z满足(23)18z i i-=-,则z=__________.14.如图,矩形ABCD中曲线的方程分别为siny x=,cosy x=,在矩形内随机取一点,则此点取自阴影部分的概率为____.15.已知复数()()1a i i+-是纯虚数,则实数a=_________.16.若函数()lnf x kx x=-在区间(1,)+∞上为单调增函数,则k的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤。
云南省曲靖市2019-2020学年高考第二次大联考数学试卷含解析
云南省曲靖市2019-2020学年高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知底面是等腰直角三角形的三棱锥P-ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直 B .三棱锥P-ABC 的体积为83C .||||||6PA PB PC ===D .三棱锥P-ABC 的侧面积为35【答案】C 【解析】 【分析】根据三视图,可得三棱锥P-ABC 的直观图,然后再计算可得. 【详解】解:根据三视图,可得三棱锥P-ABC 的直观图如图所示,其中D 为AB 的中点,PD ⊥底面ABC. 所以三棱锥P-ABC 的体积为114222323⨯⨯⨯⨯=, 2AC BC PD ∴===,2222AB AC BC ∴=+=,||||||2DA DB DC ∴===()22||||||226,PA PB PC ∴===+=222PA PB AB +≠Q ,PA ∴、PB 不可能垂直,即,PA ,PB PC 不可能两两垂直,122222S =⨯=Q 1∴三棱锥P-ABC 的侧面积为2522+.故正确的为C. 故选:C. 【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.2.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x 的值为( )A .3B .3.4C .3.8D .4【答案】D 【解析】 【分析】根据三视图即可求得几何体表面积,即可解得未知数. 【详解】由图可知,该几何体是由一个长宽高分别为,3,1x 和 一个底面半径为12,高为5.4x -的圆柱组合而成. 该几何体的表面积为()()233 5.442.2x x x π+++⋅-=,解得4x =, 故选:D. 【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题. 3.函数1()ln ||1xf x x+=-的图象大致为A .B .C .D .【答案】D 【解析】 【分析】 【详解】由题可得函数()f x 的定义域为{|1}x x ≠±, 因为1()ln ||1x f x x --==+1ln ||()1xf x x+-=--,所以函数()f x 为奇函数,排除选项B ; 又(1.1)ln 211f =>,(3)ln 21f =<,所以排除选项A 、C ,故选D .4.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】 依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D .【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.5.一袋中装有5个红球和3个黑球(除颜色外无区别),任取3球,记其中黑球数为X ,则()E X 为( ) A .98B .78C .12D .6256【答案】A由题意可知,随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,进而可求得随机变量X 的数学期望值. 【详解】由题意可知,随机变量X 的可能取值有0、1、2、3,则()353810056C P X C ===,()21533830156C C P X C ===,()12533815256C C P X C ===,()33381356C P X C ===. 因此,随机变量X 的数学期望为()103015190123565656568E X =⨯+⨯+⨯+⨯=. 故选:A. 【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.6.已知函数()y f x =在R 上可导且()()f x f x '<恒成立,则下列不等式中一定成立的是( ) A .3(3)(0)f e f >、2018(2018)(0)f e f > B .3(3)(0)f e f <、2018(2018)(0)f e f > C .3(3)(0)f e f >、2018(2018)(0)f e f < D .3(3)(0)f e f <、2018(2018)(0)f e f < 【答案】A 【解析】 【分析】 设()()x f x g x e=,利用导数和题设条件,得到()0g x '>,得出函数()g x 在R 上单调递增, 得到()0(3)(2018)g g g <<,进而变形即可求解. 【详解】由题意,设()()x f x g x e =,则()2()()()()()x x x xf x e f x e f x f xg x e e '''--'==, 又由()()f x f x '<,所以()()()0xf x f xg x e '-'=>,即函数()g x 在R 上单调递增, 则()0(3)(2018)g g g <<,即032018(0)(3)(2018)(0)f f f f e e e=<<, 变形可得32018(3)(0),(2018)(0)f e f f e f >>.故选:A. 【点睛】于中档试题.7.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( ) A .4π B .16πC .163πD .323π【答案】D 【解析】 【分析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积. 【详解】如图,正三棱锥A BCD -中,M 是底面BCD ∆的中心,则AM 是正棱锥的高,ABM ∠是侧棱与底面所成的角,即ABM ∠=60°,由底面边长为3得23333BM =⨯=, ∴tan 60333AM BM =︒=⨯=.正三棱锥A BCD -外接球球心O 必在AM 上,设球半径为R , 则由222BO OM BM =+得222(3)(3)R R =-+,解得2R =, ∴3344322333V R πππ==⨯=. 故选:D .【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键. 8.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===o 若点E 为边CD 上的动点,则AE BE ⋅u u u v u u u v的最小值为 ( )A .2116B .32C .2516D .3【答案】A 【解析】 【分析】 【详解】分析:由题意可得ABD △为等腰三角形,BCD V 为等边三角形,把数量积AE BE ⋅u u u v u u u v分拆,设(01)DE tDC t =≤≤u u u v u u u v,数量积转化为关于t 的函数,用函数可求得最小值。
云南省曲靖市2019-2020学年高考数学模拟试题含解析
云南省曲靖市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝【答案】B 【解析】解:命题p :∀x >0,ln (x+1)>0,则命题p 为真命题,则¬p 为假命题; 取a=﹣1,b=﹣2,a >b ,但a 2<b 2,则命题q 是假命题,则¬q 是真命题. ∴p ∧q 是假命题,p ∧¬q 是真命题,¬p ∧q 是假命题,¬p ∧¬q 是假命题. 故选B .2.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( )A .a b c >>B .b a c >>C .b c a >>D .a c b >>【答案】B 【解析】 【分析】利用指数函数和对数函数的单调性,将数据和0,1做对比,即可判断. 【详解】由于0.2110122⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,120.2-==, 1133log 2log 10<=故b a c >>. 故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题. 3.函数()()ln 1f x x =++的定义域为( ) A .()2,+∞ B .()()1,22,-⋃+∞C .()1,2-D .(]1,2-【答案】C【详解】函数的定义域应满足20,1 2.10x x x ->⎧∴-<<⎨+>⎩ 故选C.4.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( )2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C 【解析】 【分析】计算球心连线形成的正四面体相对棱的距离为,得到最上层球面上的点距离桶底最远为)()101n +-cm ,得到不等式)101100n +-≤,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为,每装两个球称为“一层”,这样装n 层球,则最上层球面上的点距离桶底最远为)()101n +-cm ,若想要盖上盖子,则需要满足)101100n +-≤,解得113.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球. 故选:C 【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.5.已知集合{}0,1,2,3A =,}{21,B x x n n A ==-∈,P A B =⋂,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B 【解析】 【分析】根据集合A 中的元素,可得集合B ,然后根据交集的概念,可得P ,最后根据子集的概念,利用2n 计算,由题可知:{}0,1,2,3A =,}{21,B x x n n A ==-∈当0n =时,1x =- 当1n =时,0x = 当2n =时,3x = 当3n =时,8x =所以集合}{{}21,1,0,3,8B x x n n A ==-∈=-则{}0,3P A B =⋂= 所以P 的子集共有224= 故选:B 【点睛】本题考查集合的运算以及集合子集个数的计算,当集合P 中有n 元素时,集合P 子集的个数为2n ,真子集个数为21n -,非空子集为21n -,非空真子集为22n -,属基础题.6.著名的斐波那契数列{}n a :1,1,2,3,5,8,…,满足121a a ==,21n n n a a a ++=+,*N n ∈,若2020211n n k a a -==∑,则k =( )A .2020B .4038C .4039D .4040【答案】D 【解析】 【分析】计算134a a a +=,代入等式,根据21n n n a a a ++=+化简得到答案. 【详解】11a =,32a =,43a =,故134a a a +=,202021134039457403967403940401............n n aa a a a a a a a a a a -==+++=++++=+++==∑,故4040k =. 故选:D . 【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.7.已知集合{|M x y =,2{|40}N x N x =∈-≥,则M N ⋂为( )A .[1,2]B .{0,1,2}C .{1,2}D .(1,2)【答案】C 【解析】 【分析】分别求解出,M N 集合的具体范围,由集合的交集运算即可求得答案. 【详解】因为集合{}|1M x x =≥,{}{}220,1,2N x N x =∈-≤≤=, 所以{}1,2M N =I 故选:C 【点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.8.若AB 为过椭圆22116925x y +=中心的弦,1F 为椭圆的焦点,则△1F AB 面积的最大值为( )A .20B .30C .50D .60【答案】D 【解析】 【分析】先设A 点的坐标为(,)x y ,根据对称性可得(,)B x y --,在表示出1F AB ∆面积,由图象遏制,当点A 在椭圆的顶点时,此时1F AB ∆面积最大,再结合椭圆的标准方程,即可求解. 【详解】由题意,设A 点的坐标为(,)x y ,根据对称性可得(,)B x y --, 则1F AB ∆的面积为122S OF y c y =⨯⨯=, 当y 最大时,1F AB ∆的面积最大,由图象可知,当点A 在椭圆的上下顶点时,此时1F AB ∆的面积最大,又由22116925x y +=,可得椭圆的上下顶点坐标为(0,5),(0,5)-,所以1F AB ∆的面积的最大值为560S cb ===. 故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.9.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( )A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦U C .179,42⎡⎤⎢⎥⎣⎦D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 【答案】C 【解析】 【分析】将函数()f x 解析式化简,并求得()f x ',根据当[]11,3x ∈时()0f x >′可得()1f x 的值域;由函数()2g x x m =-++在[]21,3x ∈上单调递减可得()2g x 的值域,结合存在性成立问题满足的集合关系,即可求得m 的取值范围. 【详解】依题意()()222113311x x x x x f x x x ++++++==++ 121x x =+++, 则()()2111f x x '=-+,当[]1,3x ∈时,()0f x >′,故函数()f x 在[]1,3上单调递增,当[]11,3x ∈时,()1721,24f x ⎡⎤∈⎢⎥⎣⎦; 而函数()2g x x m =-++在[]1,3上单调递减, 故()[]21,1g x m m ∈-+, 则只需[]721,1,124m m ⎡⎤⊆-+⎢⎥⎣⎦, 故7122114m m ⎧-≤⎪⎪⎨⎪+≥⎪⎩,解得17942m ≤≤, 故实数m 的取值范围为179,42⎡⎤⎢⎥⎣⎦. 故选:C. 【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题. 10.函数2()1cos 1xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是( ) A . B .C .D .【答案】B 【解析】 【分析】判断函数()f x 的奇偶性,可排除A 、C ,再判断函数()f x 在区间0,2π⎛⎫⎪⎝⎭上函数值与0的大小,即可得出答案. 【详解】解:因为21()1cos cos 11x x x e f x x x e e ⎛⎫-⎛⎫=-= ⎪ ⎪++⎝⎭⎝⎭, 所以()()111()cos cos cos 111x x xx x xe e ef x x x x f x e e e --⎛⎫----=-===- ⎪+++⎝⎭, 所以函数()f x 是奇函数,可排除A 、C ; 又当0,2x π⎛⎫∈ ⎪⎝⎭,()0f x <,可排除D ; 故选:B. 【点睛】本题考查函数表达式判断函数图像,属于中档题.11.如图所示的程序框图输出的S 是126,则①应为( )A .5?n ≤B .6?n ≤C .7?n ≤D .8?n ≤【答案】B 【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n 的值,并输出满足循环的条件. 解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加S=2+22+…+2n 的值, 并输出满足循环的条件. ∵S=2+22+…+21=121, 故①中应填n≤1. 故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.12.射线测厚技术原理公式为0t I I e ρμ-=,其中0I I ,分别为射线穿过被测物前后的强度,e 是自然对数的底数,t 为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am )低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln 20.6931≈,结果精确到0.001) A .0.110 B .0.112C .0.114D .0.116【答案】C 【解析】 【分析】根据题意知,010.8,7.6,2I t I ρ===,代入公式0t I I e ρμ-=,求出μ即可. 【详解】由题意可得,010.8,7.6,2I t I ρ===因为0t I I e ρμ-=, 所以7.60.812e μ-⨯⨯=,即ln 20.69310.1147.60.8 6.08μ==≈⨯. 所以这种射线的吸收系数为0.114. 故选:C 【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省曲靖市2019-2020学年高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数()222y sin x ϕϕπ⎛⎫< ⎪⎝+⎭=的图象经过点012π⎛⎫ ⎪⎝⎭,,则函数()()()22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( )A .24x π=- B .3724x π= C .1724x π= D .1324x π=- 【答案】B【解析】【分析】 由点012π⎛⎫ ⎪⎝⎭,求得ϕ的值,化简()f x 解析式,根据三角函数对称轴的求法,求得()f x 的对称轴,由此确定正确选项.【详解】 由题可知220,122sin ππϕϕ⎛⎫⨯+=< ⎪⎝⎭.6πϕ=-所以()2cos 266f x sin x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭5226412x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭ 令52,122x k k Z πππ+=+∈, 得,242k x k Z ππ=+∈ 令3k =,得3724x π= 故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.2.已知三棱锥D ABC -的体积为2,ABC V 是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 中点,则球O 的表面积为( )A .523πB .403πC .253πD .24π【答案】A【解析】【分析】根据O 是CD 中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】解:设D 点到平面ABC 的距离为h ,因为O 是CD 中点,所以O 到平面ABC 的距离为2h , 三棱锥D ABC -的体积11122sin602332ABC V S h h ︒==⋅⨯⨯⋅⨯⋅=V ,解得23h =⋅, 作OO '⊥平面ABC ,垂足O '为ABC V 的外心,所以233CO '=,且32h OO '==, 所以在Rt CO O 'V 中,22133OC CO O O ''=+=,此为球的半径, 213524433S R πππ∴==⋅=. 故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.3.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】分析:根据集合{}{}1,3,5,7,2,3,4,5A B ==可直接求解{3,5}A B =I .详解:{}{}1,3,5,7,2,3,4,5A B ==Q , {}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.4.记M 的最大值和最小值分别为max M 和min M .若平面向量a r 、b r 、c r ,满足()22a b a b c a b c ==⋅=⋅+-=r r r r r r r r ,则( )A .max 37a c+-=r r B .max 37a c -+=r r C .min 372a c +-=r r D .min 372a c -+=r r 【答案】A【解析】 【分析】设θ为a r 、b r 的夹角,根据题意求得3πθ=,然后建立平面直角坐标系,设()2,0a OA ==r u u u r ,()1,3b OB ==r u u u r ,(),c OC x y ==r u u u r ,根据平面向量数量积的坐标运算得出点C 的轨迹方程,将a c -r r 和a c +r r 转化为圆上的点到定点距离,利用数形结合思想可得出结果. 【详解】 由已知可得cos 2a b a b θ⋅=⋅=r r r r ,则1cos =2θ,0θπ≤≤Q ,3πθ∴=, 建立平面直角坐标系,设()2,0a OA ==r u u u r ,()1,3b OB ==r u u u r ,(),c OC x y ==r u u u r ,由()22c a b c ⋅+-=r r r r ,可得()(),42322x y x y ⋅-=, 即2242322x x y -+-=,化简得点C 的轨迹方程为()2233124x y ⎛-+-= ⎝⎭,则()222a c x y -=-+r r ,则a c -r r 转化为圆()2233124x y ⎛-+-= ⎝⎭上的点与点()2,0的距离,22max 33371222a c ⎛⎫=+= ⎪ ⎪⎝⎭∴-r r ,22min 33731222a c ⎛⎫=+= ⎪ ⎪⎝-⎭r r ,a c +=r ra c +r r 转化为圆()22314x y ⎛-+-= ⎝⎭上的点与点()2,0-的距离,max a c ==∴+r r m im a c ==+r r 故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.5.以()3,1A -,()2,2B-为直径的圆的方程是 A .2280x y x y +---= B .2290x y x y +---=C .2280x y x y +++-=D .2290x y x y +++-= 【答案】A【解析】【分析】 设圆的标准方程,利用待定系数法一一求出,,a b r ,从而求出圆的方程.【详解】设圆的标准方程为222()()x a y b r -+-=,由题意得圆心(,)O a b 为A ,B 的中点,根据中点坐标公式可得32122a -==,12122b -+==,又||2AB r ===,所以圆的标准方程为: 221117()()222x y -+-=,化简整理得2280x y x y +---=, 所以本题答案为A. 【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.6.已知双曲线2222:1(0)x y M b a a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是( )A .B .C .D .【答案】B【解析】【分析】由b a >可得2e >;由过点T 所作的圆的两条切线互相垂直可得2TF a =,又焦点(c,0)F 到双曲线渐近线的距离为b ,则2TF a b =≥,进而求解.【详解】 b a >Q ,所以离心率212c b e a a ⎛⎫==+> ⎪⎝⎭, 又圆222()a c y x +=-是以(c,0)F 为圆心,半径r a =的圆,要使得经过点T 所作的圆的两条切线互相垂直,必有2TF a =,而焦点(c,0)F 到双曲线渐近线的距离为b ,所以2TF a b =≥,即2b a ≤, 所以213c b e a a ⎛⎫==+ ⎪⎝⎭≤,所以双曲线M 的离心率的取值范围是(2,3]. 故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.7.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线()220y px p =>与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且125cos 7PF F ∠=,则双曲线C 的离心率为( )A 23B .2或3C .23D .2或3 【答案】D【解析】【分析】设1PF m =,2PF n =,根据125cos 7PF F ∠=和抛物线性质得出257PF m =,再根据双曲线性质得出7m a =,5n a =,最后根据余弦定理列方程得出a 、c 间的关系,从而可得出离心率. 【详解】 过P 分别向x 轴和抛物线的准线作垂线,垂足分别为M 、N ,不妨设1PF m =,2PF n =,则121125cos 7m MF PN PF PF PF F ===∠=, P Q 为双曲线上的点,则122PF PF a -=,即527m m a -=,得7m a =,5n a ∴=, 又122F F c =,在12PF F ∆中,由余弦定理可得2225494257272a c a a c+-=⨯⨯, 整理得22560c ac a -+=,即2560e e -+=,1e >Q ,解得2e =或3e =.故选:D.【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.8.若23455012345(21)(21)(21)(21)(21)a a x a x a x a x a x x +-+-+-+-+-=,则2a 的值为( )A .54B .58C .516D .532【答案】C【解析】【分析】根据551[(21)1]32x x =-+,再根据二项式的通项公式进行求解即可. 【详解】因为551[(21)1]32x x =-+,所以二项式5[(21)1]x -+的展开式的通项公式为:55155(21)1(21)r r r r r r T C x C x --+=⋅-⋅=⋅-,令3r =,所以2235(21)T C x =⋅-,因此有32255111545323232216C C a ⨯=⋅=⋅=⨯=. 故选:C【点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力9.已知函数||()()x f x x R =∈,若关于x 的方程()10f x m -+=恰好有3个不相等的实数根,则实数m 的取值范围为( )A .(21),eB .(20,)eC .(11,1)e + D .21,1()e + 【答案】D【解析】【分析】讨论0x >,0x =,0x <三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当0x >时,()x xf x e =,故'()2x f x xe =,函数在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎡⎫+∞⎪⎢⎣⎭上单调递减,且122e f ⎛⎫= ⎪⎝⎭; 当0x =时,()00f =;当0x <时,()x f x -=,'()02x f e x x =-<,函数单调递减; 如图所示画出函数图像,则12012e m f ⎛⎫<-<=⎪⎝⎭,故()21,1e m +∈. 故选:D .【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.10.设函数()(1x g x e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .,2⎛⎫+∞⎪ ⎪⎝⎭ B .)+∞ C .)+∞ D .2⎡⎫+∞⎪⎢⎪⎣⎭【答案】D【解析】【分析】 先构造函数()()212T x f x x =-,由题意判断出函数()T x 的奇偶性,再对函数()T x 求导,判断其单调性,进而可求出结果.【详解】构造函数()()212T x f x x =-, 因为()()2f x f x x -+=,所以()()()()()()()22211022T x T x f x x f x x f x f x x +-=-+---=+--=, 所以()T x 为奇函数,当0x ≤时,()()''0T x f x x =-<,所以()T x 在(],0-∞上单调递减,所以()T x 在R 上单调递减.因为存在()()0112x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭, 所以()()000112f x f x x +≥-+, 所以()()()220000*********T x x T x x x ++≥-+-+, 化简得()()001T x T x ≥-,所以001x x ≤-,即012x ≤令()()12x h x g x x e a x ⎛⎫=-=--≤⎪⎝⎭, 因为0x 为函数()y g x x =-的一个零点,所以()h x 在12x ≤时有一个零点 因为当12x ≤时,()12'0x h x e e =≤=,所以函数()h x 在12x ≤时单调递减,由选项知0a >,12<<,又因为0h e a e⎛=-=> ⎝,所以要使()h x 在12x ≤时有一个零点,只需使102h a ⎛⎫=≤ ⎪⎝⎭,解得a ≥所以a 的取值范围为,2⎫+∞⎪⎪⎣⎭,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.11.曲线(2)x y ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =()A .4-B .8-C .4D .8【答案】B【解析】【分析】求函数导数,利用切线斜率求出a ,根据切线过点(0,2)求出b 即可.【详解】因为(2)x y ax e =+,所以(2)x y e ax a '=++,故0|22x k y a ='==+=-,解得4a =-,又切线过点(0,2),所以220b =-⨯+,解得2b =,所以8ab =-,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.12.函数3()cos ln ||f x x x x x =+在[,0)(0,]ππ-U 的图象大致为( )A .B .C .D .【答案】B【解析】【分析】先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】()f x 是奇函数,排除C ,D ;()2()ln 0f ππππ=-<,排除A. 故选:B.【点睛】本题考查函数图象的判断,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。