高三数学 专项精析精炼 考点2 命题及其关系、充分条件与必要条件

合集下载

高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。

高考文科数学热点题型02 命题及其关系、充分条件与必要条件

高考文科数学热点题型02 命题及其关系、充分条件与必要条件

1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件 C .充分不必要条件 D .既不充分也不必要条件解析:f (x )在R 上为奇函数⇒f (0)=0;f (0)=0/⇒ f (x )在R 上为奇函数,如f (x )=x 2,故选A.答案:A2.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3解析:由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分不必要条件是a >b +1,选A.答案:A3.“(m -1)(a -1)>0”是“log a m >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:B4.若集合A ={x |x 2-5x +4<0},B ={x ||x -a |<1},则“a ∈(2,3)”是“B ⊆A ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:由题意知A ={x |1<x <4},B ={x |-1+a <x <1+a },若B ⊆A ,则-1+a≥1,1+a≤4,解得2≤a ≤3,所以必要性不成立.反之,若2<a <3,则必有B ⊆A 成立,所以充分性成立,故选A.答案:A5.设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故选B.答案:B6.已知p :x ≥k ,q :x +13<1,若p 是q 的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:∵q :x +13<1,∴x +13-1<0,∴x +12-x<0. ∴(x -2)·(x +1)>0,∴x <-1或x >2.因为p 是q 的充分不必要条件,所以k >2,故选B. 答案:B7.已知a ,b 为非零向量,则“函数f (x )=(ax +b )2为偶函数”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C8.“若a ,b ∈R +,a 2+b 2<1”是“ab +1>a +b ”的( ) A .充要条件 B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:a ,b ∈R +,若a 2+b 2<1,则a 2+2ab +b 2<1+2ab <1+2ab +(ab )2,即(a +b )2<(1+ab )2,所以a +b <1+ab 成立;当a =b =2时,有1+ab >a +b 成立,但a 2+b 2<1不成立,所以“a 2+b 2<1”是“ab +1>a +b ”的充分不必要条件,故选C.答案:C9.在△ABC 中,设p :sinB a =sinC b =sinA c;q :△ABC 是正三角形,那么p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C10.以下四个命题中,真命题的个数是( )①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题.②存在正实数a,b,使得lg(a+b)=lg a+lg b.③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”.④在△ABC中,∠A<∠B是sin A<sin B的充分不必要条件.A.0 B.1C.2 D.3解析:对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a=2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知∠A<∠B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R 为△ABC外接圆的半径)⇔sin A<sin B,故∠A<∠B是sin A<sin B的充要条件,故④是假命题.选C.答案:C11.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A .1B .2C .3D .4 答案:B解析:原命题为真命题,从而其逆否命题也为真命题;逆命题“若a>-6,则a>-3”为假命题,故否命题也为假命题,故选B.12.命题“若x 2+y 2=0,则x =y =0”的否命题是( ) A .若x 2+y 2=0,则x ,y 中至少有一个不为0 B .若x 2+y 2≠0,则x ,y 中至少有一个不为0 C .若x 2+y 2≠0,则x ,y 都不为0 D .若x 2+y 2=0,则x ,y 都不为0 答案:B解析:否命题既否定条件又否定结论.13.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 答案:A解析:设p :若A ,则B ,则p 的否命题为若綈A ,则綈B ,从而命题q 为若B ,则A ,则命题p 是命题q 的逆命题,故选A.14.下列命题中为真命题的是( )A .命题“若x>y ,则x>|y|”的逆命题B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a>b ,则a 1<b 1”的逆否命题答案:A15.A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.在下列四个命题中,为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格 B .若A ,B ,C 都及格,则及格分不低于70分C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分 答案:C解析:根据原命题与它的逆否命题之间的关系,命题p :“若及格分低于70分,则A ,B ,C 都没有及格”的逆否命题是“若A ,B ,C 至少有一人及格,则及格分不低于70分”.故选C.16. “x 1>1”是“e x -1<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A解析:∵x 1>1,∴x ∈(0,1).∵e x -1<1,∴x<1. ∴“x 1>1”是“e x -1<1”的充分不必要条件.17.在△ABC 中,“sinB =1”是“△ABC 为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A18.若“x>1”是“不等式2x>a -x 成立”的必要而不充分条件,则实数a 的取值范围是( ) A .a>3 B .a<3 C .a>4 D .a<4答案:A解析:若2x>a -x ,即2x+x>a.设f(x)=2x+x ,则函数f(x)为增函数.由题意知“2x+x>a 成立,即f(x)>a 成立”能得到“x>1”,反之不成立.因为当x>1时,f(x)>3,∴a>3.19.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:p ⇒q ,而q p ,∴选A.20.若不等式31<x<21的必要不充分条件是|x -m|<1,则实数m 的取值范围是( ) A .[-34,21] B .[-21,34] C .(-∞,21) D .(34,+∞) 答案:B解析:由|x -m|<1,解得m -1<x<m +1.因为不等式31<x<21的必要不充分条件是|x -m|<1,所以≤m +1,1且等号不能同时取得,解得-21≤m ≤34,故选B.21.已知函数f(x)=x 2-2x +3,g(x)=kx -1,则“|k|≤1”是“f(x)≥g(x)在R 上恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A22.已知集合A ={x|a -2<x<a +2},B ={x|x ≤-2或x ≥4},则A ∩B =∅的充要条件是________.答案:0≤a ≤2解析:A ∩B =∅⇔a -2≥-2a +2≤4,⇔0≤a ≤2.23.如果对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的________条件.解析:可举例子,比如x =-0.5,y =-1.4,可得〈x 〉=0,〈y 〉=-1;比如x =1.1,y =1.5,〈x 〉=〈y 〉=2,|x -y |<1成立.因此“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.答案:必要不充分24.集合A =<0x -1,B ={x ||x -b |<a }.若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.答案:(-2,2)25.已知A 为xOy 平面内的一个区域. 命题甲:点(a ,b )∈{(x ,y )|3x +y -6≤0x≥0,}; 命题乙:点(a ,b )∈A .如果甲是乙的充分条件,那么区域A 的面积的最小值是________.解析:设3x +y -6≤0x≥0,所对应的区域如右图所示的阴影部分PMN 为集合B .由题意,甲是乙的充分条件,则B ⊆A ,所以区域A 面积的最小值为S △PMN =21×4×1=2.答案:226.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程m -1x2+2-m y2=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a , 即命题p :3a <m <4a ,a >0.由m -1x2+2-m y2=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0, 解得1<m <23,即命题q :1<m <23. 因为p 是q 的充分不必要条件,所以 23或,3解得31≤a ≤83,所以实数a 的取值范围是[31,83]. 答案:[31,83]。

2023年高考分类题库考点2 命题及其关系、充分条件与必要条件

2023年高考分类题库考点2 命题及其关系、充分条件与必要条件
7.(2023·全国甲卷·理科·T7)“sin2α+sin2β=1”是“sin α+cos β=0”的 A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件 D.既不是充分条件也不是必要条件 【解析】选 B.当 sin2α+sin2β=1 时, 例如α=π,β=0,但 sin α+cos β≠0,
考点 2 命题及其关系、充分条件与必要条件
2.(2023·天津高考)“a2=b2”是“a2+b2=2ab”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【解析】选 B.a2=b2,即(a+b)(a-b)=0, 解得 a=-b 或 a=b; a2+b2=2ab,即(a-b)2=0,解得 a=b; 故“a2=b2”不能推出“a2+b2=2ab”,充分性不成立. “a2+b2=2ab”能推出“a2=b2”,必要性成立. 故“a2=b2”是“a2+b2=2ab”的必要不充分条件. Nhomakorabea() ()
2
即 sin2α+sin2β=1 推不出 sin α+cos β=0; 当 sin α+cos β=0 时, sin2α+sin2β=(-cos β)2+sin2β=1, 即 sin α+cos β=0 能推出 sin2α+sin2β=1. 综上可知,“sin2α+sin2β=1”是“sin α+cos β=0”的必要条件但不是充分条件.

考点02 命题及其关系、充分条件和必要条件(解析版)

考点02 命题及其关系、充分条件和必要条件(解析版)

考点02 命题及其关系、充分条件和必要条件【考纲要求】理解必要条件、充分条件与充要条件的意义. 【命题规律】考查充分条件与必要条件的题型一般以选择题或填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,难度一般不大. 【典型高考试题变式】(一)充分条件与必要条件的判定例1.(2021全国甲卷理7)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【解析】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,∴甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,∴甲是乙的必要条件,故选B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.【变式1】【2018年北京卷文】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】B 【解析】 分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.【名师点睛】充分条件、必要条件的判断方法:①定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.②等价法:利用p ⇒q 与⌝q ⇒⌝p ,q ⇒p 与⌝p ⇒⌝q ,p ⇔q与⌝q ⇔⌝p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.③集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 【变式2】【变式1中的条件与结论换位】设a,b,c,d 是非零实数,则“a,b,c,d 成等比数列”是“ad=bc ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A【解析】由a,b,c,d 成等比数列可得ad=bc ,当时,a,b,c,d 不是等比数列,所以“a,b,c,d成等比数列”是“ad=bc ”的充分而不必要条件,故选A.例2.(2021年高考天津卷2)已知a ∈R ,则“6>a ”是“362>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【分析】由充分条件、必要条件的定义判断即可得解.【解析】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,必要性不成立;∴“6a >”是“236a >”的充分不必要条件,故选A . 【名师点睛】充分条件与必要条件的两个特征:①对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.②传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”). 【变式1】【改变例题的条件】设,则“24x >”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【解析】由242x x >⇔>或2x <-,所以“24x >”是“||2x >”的充分必要条件,故选C. (二)充分条件与必要条件的运用例3.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件,故α∥β的充要条件是α内有两条相交直线与β平行,故选B .【变式1】【改变例题中的问法】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,故选B . 例4.【2011全国卷】下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】A【解析】由1a b >+,得a b >;反之不成立,故选A.【名师点津】命题p 是q 的必要不充分条件⇔p q ⇒且q p ⇒;命题p 的必要不充分条件是q ⇔q p ⇒且p q ⇒. 这两种说法有区别,不能混淆.【变式1】【改变例题中的问法】下面四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】B【解析】由a b >,可得1a b >-;反之不成立,故选B.【变式2】【改变例题中的条件、问法】下面四个条件中,使33a b >成立的充要的条件是( ) A .1a b >+ B .a b <C .22a b >D .a b > 【答案】C【解析】由a b >,可得33a b >;反之也成立,故选C. (三)新定义问题例5.【2011湖北卷】若实数a ,b 满足0,0,0a b ab ≥≥=且,则称a 与b 互补,记()22,a b a b a b ϕ=+-,那么(),0a b ϕ=是a 与b 互补的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【名师点津】紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.【变式1】【2010年普通高等学校招生全国统一考试湖北卷10】记实数1x ,2x ,……n x 中的最大数为max {}12,,......n x x x ,最小数为min {}12,,......n x x x 。

高考数学复习考点知识讲解课件02 命题及其关系、充分条件与必要条

高考数学复习考点知识讲解课件02 命题及其关系、充分条件与必要条

(2)[2020·北京卷]已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ” 是“sin α=sin β”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案:C
解析:若存在k∈Z使得α=kπ+(-1)kβ,则当k=2n(n∈Z),α=2nπ+β,有sin α =sin (2nπ+β)=sin β;当k=2n+1(n∈Z),α=(2n+1)π-β,有sin α=sin [(2n+ 1)π-β]=sin β.若sin α=sin β,则α=2kπ+β或α=2kπ+π-β(k∈Z),即α=kπ+(- 1)kβ(k∈Z).
由q是p的必要而不充分条件,知A B.
所以a≤12且a+1≥1,因此0≤a≤12.
微专题
等价转化思想就是对原问题换一个方式、换一个角度、换一个观点
___必_要____条件
q成立的对象的集合为B
p是q的__充_分__不__必_要__条件 p⇒q且q p
A是B的__真__子_集___
p是q的_必__要_不__充__分__条件 p q且q⇒p
B是A的__真__子__集__
p是q的___充__要_____条件 p 是 q 的 _既_不__充__分_也__不__必__要_ 条件
3 . [ 选 修 2 - 1·P10 练 习 T3 改 编 ]“(x - 1)(x + 2) = 0” 是 “x = 1” 的 ()
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
答案:B
解析:若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x-1)(x+2) =0,则x的值也可能为-2.
反思感悟
判断命题真假的方法

《第2节 命题及其关系、充分条件与必要条件》高考考点汇总

《第2节 命题及其关系、充分条件与必要条件》高考考点汇总

《第2节命题及其关系、充分条件与必要条件》高考考点汇总一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.考点一 四种命题及其真假判断[典例] (2019·菏泽模拟)有以下命题: ①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题是( ) A .①② B .②③ C .④D .①②③[解析] ①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案] D [题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D 命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若非q ,则非p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +12,k ∈Z,Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2,k ∈Z,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 因为P=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +12,k ∈Z=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k +12,k ∈Z,Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2,k ∈Z, 所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题, 则原命题的否命题为假命题,所以真命题的个数为2.考点二 充分、必要条件的判断[典例] (1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[解析] (1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪⎪⎪x -12≥12,即“x 3<1”“⎪⎪⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.(3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以非p :x +y =-2,非q :x =-1且y =-1,因为非q ⇒非p 但非p非q ,所以非q 是非p 的充分不必要条件,即p 是q 的充分不必要条件.[答案] (1)B (2)A (3)A[提醒] 判断条件之间的关系要注意条件之间关系的方向,要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别,要正确理解“p 的一个充分不必要条件是q ”的含义.[题组训练]1.[集合法]已知x ∈R ,则“x <1”是“x 2<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若x 2<1,则-1<x <1,∵(-∞,1)⊇(-1,1),∴“x <1”是“x 2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m ,n 为两个非零向量,则“m ·n <0”是“m 与n 的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m ,n 的夹角为θ,若m ,n 的夹角为钝角,则π2<θ<π,则cos θ<0,则m ·n <0成立;当θ=π时,m ·n =-|m |·|n |<0成立,但m ,n 的夹角不为钝角.故“m ·n <0”是“m 与n 的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy ≠1”是“x ≠1或y ≠1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 设p :xy ≠1,q :x ≠1或y ≠1, 则非p :xy =1,非q :x =1且y =1. 可知非q ⇒非p ,非p非q ,即非q 是非p 的充分不必要条件.故p 是q 的充分不必要条件,即“xy ≠1”是“x ≠1或y ≠1”的充分不必要条件.考点三 根据充分、必要条件求参数的范围[典例] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.[解析] 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] [0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S , 所以{ 1-m =-2,1+m =10,解得{ m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.(变条件)若本例将条件“若x ∈P 是x ∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且S P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).[课时跟踪检测]1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:选B 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( ) A .“若x =4,则x 2+3x -4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C 根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,假,真B.假,假,真C.真,真,假 D.假,假,假解析:选B 当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③ B.②C.②③ D.①②③解析:选A 本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b . 因为a ,b 均为单位向量,所以a 2=b 2=1, 所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 7.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x≠y ”是“cos x ≠cos y ”的必要不充分条件.8.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C 若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.9.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z.∵0<A <π,0<B <π,∴A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要10.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:311.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3.又p (2)是真命题,所以4+4-m >0,解得m <8. 故实数m 的取值范围为[3,8). 答案:[3,8)12.(2019·齐鲁名校调研)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号). 解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.。

考点02 命题及其关系、充分条件和必要条件典型高考数学试题解读与变式(详解版)

考点02 命题及其关系、充分条件和必要条件典型高考数学试题解读与变式(详解版)

②等价法:利用 p⇒q 与 q⇒ p,q⇒p 与 p⇒ q,p⇔q 与 q⇔ p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法. ③集合法:若 A⊆B,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A=B,则 A 是 B 的充要条件.
【变式 1】【改变例题中的条件】设 x R ,则“| x −1| 1”是“ 2 − x 0 ”的( )
maxx1, x2,......xn,最小数为 minx1, x2,......xn 。已知 ABC 的三边长位 a,b,c( a b c ),定义它的倾
斜度为
l
=
max
a b
,
b c
,
c a
.min
a b
,
b c
,
c a
,
则“ l =1”是“ ABC 为等边三角形”的(

A.充分不必要条件 C.充分必要条件 【答案】 A
A.充分而不必要条件 C.充要条件 【答案】A
B.必要而不充分条件 D.既不充分也不必要条件
【解析】由| x −1| 1得 0 x 2 ,由 2 − x 0 得 x 2 ,所以“| x −1| 1”是“ 2 − x 0 ”的充分而不必
要条件,故选 A.
【变式 2】【改变例题中的条件】设 x R ,则“ m2 − 4 − x 0 (m R) ”是“| x −1| 1”的必要而不充分
【答案】B
【解析】由等比数列的定义数列,若乙:{an} 是等比数列,公比为 q ,即
an+1 an
=q
a2 n+1
a2 n+1
=
q2
则甲命
a2 n+1
题成立;反之,若甲:数列

第二节 命题及其关系、充分条件与必要条件

第二节 命题及其关系、充分条件与必要条件

p是q的充 分条件
p⇒q
A⊆B
p是q的必要条件
q⇒p
A⊇B
p是q的充要条件
p⇒q且q⇒p A=B
p是q的充分不必要条件 p⇒q且q p A B
p是q的必要不充分条件 p q且q⇒p A B
p是q的既不充分条件 也不必要条件
p q且q p A B且A B
二、“基本技能”运用好 1.通过对四种命题及其相互关系的复习,提高学生的抽象概
答案:A
[一“点”就过] 判断命题真假的 2 种方法
直接 判断
判断一个命题为真命题,要给出严格的推理 证明;说明一个命题是假命题,只需举出一 个反例即可
根据“原命题与逆否命题同真同假,逆命题 间接 与否命题同真同假”这一性质,当一个命题 判断 直接判断不易进行时,可转化为判断其逆否
命题的真假
[提醒] (1)对于不是“若p,则q”形式的命题,需先改 写;(2)当命题有大前提时,写其他三种命题时需保留大前 提.(3)命题的否命题是条件和结论都否定,而命题的否定是条 件不变只否定结论.
答案:充分不必要 充要
三、“基本思想”很重要 1.利用等价转化思想判断命题真假及充分与必要条件. 2.利用集合思想、数形结合思想解决充分、必要条件的应用
问题.
1.命题“若α=π4,则tan α=1”的逆否命题是
()
A.若α≠π4,则tan α≠1
B.若α=π4,则tan α≠1
C.若tan α≠1,则α≠π4
答案:C
3.(2020·广东中山一中第一次统测)下列命题中为真命题的是
A.命题“若x>y,则x>|y|”的逆命题
()
B.命题“若x>1,则x2>1”的否命题

2022年高考文数热点题型和提分秘籍 专题02 命题及其关系、充分条件与必要条件(解析版)

2022年高考文数热点题型和提分秘籍 专题02 命题及其关系、充分条件与必要条件(解析版)

【高频考点解读】1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.【热点题型】题型一命题及其相互关系例1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题答案:A【提分秘籍】(1)首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.(2)要留意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”、“否命题”、“逆否命题”.(3)推断命题真假时,可直接依据定义、定理、性质直接推断,也可使用特值进行排解.【举一反三】(1)有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.(2)命题“若△ABC 有一内角为π3,则△ABC的三内角成等差数列”的逆命题()A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题题型二充分条件和必要条件的判定例2、设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析当a=0,b=-1时,a>b成立,但a2=0,b2=1,a2>b2不成立,所以“a>b”是“a2>b2”的不充分条件.反之,当a=-1,b=0时,a2=1,b2=0,即a2>b2成立,但a>b不成立,所以“a>b”是“a2>b2”的不必要条件.综上,“a>b”是“a2>b2”的既不充分也不必要条件,应选D.答案 D【提分秘籍】推断充要条件应留意:首先弄清条件p和结论q分别是什么?然后尝试p⇒q,q⇒p.对于带有否定性的命题或比较难推断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为推断它的等价命题.【举一反三】“a+c>b+d”是“a>b且c>d”的()A.充分不必要条件B.既不充分也不必要条件C.充分必要条件D.必要不充分条件解析:由“a+c>b+d”不能得知“a>b且c>d”,反过来,由“a>b且c>d”可得知“a+c>b+d”,因此“a+c>b+d ”是“a >b 且c >d ”的必要不充分条件,选D.答案:D题型三 充要条件的应用例3、已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围; (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围.【提分秘籍】利用充要条件求参数的值或范围,关键是合理转化条件,精确 地将每个条件对应的参数的范围求出来,然后转化为集合的包含、相等关系,肯定要留意区间端点值的检验.【举一反三】 已知不等式x 2-5x +4≤0成立的充分不必要条件是-1≤x +2m ≤1,求实数m 的取值范围.解析:由x 2-5x +4≤0得1≤x ≤4,由-1≤x +2m ≤1得-1-2m ≤x ≤1-2m , 由题意知{x |-1-2m ≤x ≤1-2m }{x |1≤x ≤4},所以⎩⎪⎨⎪⎧-1-2m ≥1,1-2m ≤4解得-32≤m ≤-1,∴实数m 的取值范围是⎣⎡⎦⎤-32,-1. 【高考风向标】1.【2021高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D2.【2021高考重庆,文2】“x 1”是“2x 210x ”的( ) (A) 充要条件 (B) 充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】由“x 1 ”明显能推出“2x 210x ”,故条件是充分的,又由“2x 210x ”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.3.【2021高考天津,文4】设xR ,则“12x ”是“|2|1x ”的( )(A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】A【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x”是“|2|1x ”的充分而不必要条件,故选A.4.【2021高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( ) (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A 5.【2021高考湖南,文3】设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不肯定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.6.【2021高考安徽,文3】设p :x <3,q :-1<x <3,则p 是q 成立的( ) (A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C . 1.(2022·北京卷) 设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】当ab <0时,由a >b 不肯定推出a 2>b 2,反之也不成立.2.(2022·广东卷) 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件 【答案】A【解析】设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .3.(2022·江西卷) 下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β 【答案】D【解析】对于选项A ,a >0,且b 2-4ac ≤0时,才可得到ax 2+bx +c ≥0成立,所以A 错. 对于选项B ,a >c ,且b ≠0时,才可得到ab 2>cb 2成立,所以B 错. 对于选项C ,命题的否定为“存在x ∈R ,有x 2<0”, 所以C 错.对于选项D ,垂直于同一条直线的两个平面相互平行,所以D 正确.4.(2022·辽宁卷) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则=0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(-p )∧(-q )D .p ∨(-q ) 【答案】A【解析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 肯定共线,故命题q 是真命题.故p ∨q 为真命题.5.(2022·新课标全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】C6.(2022·山东卷) 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根 【答案】A【解析】方程“x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.7.(2022·陕西卷) 原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的推断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 【答案】A【解析】由a n +a n +12<a n ,得a n +1<a n ,所以数列{a n }为递减数列,故原命题是真命题,其逆否命题为真命题.易知原命题的逆命题为真命题,所以其否命题也为真命题.8.(2022·浙江卷) 设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不肯定为平行四边形.故“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.故选A.9.(2022·重庆卷) 已知命题p :对任意x ∈R ,总有|x |≥0,q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A .p ∧-qB .-p ∧qC .-p ∧-qD .p ∧q 【答案】A【解析】由题意知 p 为真命题,q 为假命题,则-q 为真命题,所以p ∧-q 为真命题. 10.(2021·安徽卷) “(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B【解析】(2x -1)x =0x =12或x =0;x =0(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.11.(2021·山东卷) 给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 【答案】A12.(2021·湖南卷) “1<x<2”是“x<2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】1<x<2,肯定有x<2;反之,x<2,则不肯定有1<x<2,如x =0.故“1<x<2”是 “x<2”成立的充分不必要条件,选A.13.(2021·湖北卷) 在一次跳伞训练中,甲、乙两位学员各跳 一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q 【答案】A【解析】“至少一位学员没降落在指定区域”即为“甲没降落在指定区域或乙没降落在指定区域”,可知选A.14.(2021·福建卷) 设点P(x ,y),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】当x =2,y =-1时,x +y -1=0;但x +y -1=0不能推出x =2,y =-1,故选A. 15.(2021·北京卷) 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( ) A .m>12 B .m≥1C .m>1D .m>2 【答案】C【解析】双曲线的离心率e =ca =1+m>2,解得m>1.故选C.16.(2021·天津卷) 设a ,b ∈R ,则“(a -b)·a 2<0”是“a<b”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】当(a -b)·a 2<0时,易得a<b ,反之当a =0,b =1时,(a -b)·a 2=0,不成立.故选A. 17.(2021·四川卷) 设x ∈,集合A 是奇数集,集合B 是偶数集.若命题p :x ∈A ,2x ∈B ,则( )(A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉ 【答案】C【解析】留意“全称命题”的否定为“特称命题”.18.(2021·陕西卷) 设z 是复数,则下列命题中的假.命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数 C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【答案】C19.(2021·浙江卷) 若α∈R ,则“α=0”是“sin α<cos α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】若α=0,则sin 0=0<cos 0=1,而sin α<cos α,则2sinα-π4<0,所以α=0是sin α<cos α的充分不必要条件.所以选择A.【高考押题】1.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题 答案 A2.“假如x 、y ∈R ,且x 2+y 2=0,则x 、y 全为0”的否命题是( ) A .若x 、y ∈R 且x 2+y 2≠0,则x 、y 全不为0 B .若x 、y ∈R 且x 2+y 2≠0,则x 、y 不全为0 C .若x 、y ∈R 且x 、y 全为0,则x 2+y 2=0 D .若x 、y ∈R 且x 、y 不全为0,则x 2+y 2≠0 答案 B解析 “x 2+y 2=0”的否定是“x 2+y 2≠0”,“x 、y 全为0”的否定是“x ,y 不全为0”. 3.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0, 即m ≥-14,不能推出m >0.所以不是真命题,故选C.4.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ⊆B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 当a =2时,由于B ={1,2,b },所以A ⊆B ;反之,若A ⊆B ,则必有2∈B ,所以a =2或b =2,故“a =2”是“A ⊆B ”的充分不必要条件.选A.5.命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2” B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”答案 C解析依据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.6.已知向量a=(m2,-9),b=(1,-1),则“m=-3”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 A7.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A.3B.2C.1D.0答案 C解析原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,明显逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.8.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=-2 B.m=2C.m=-1 D.m=1答案 A解析已知函数f(x)=x2-2x+1的图象关于直线x=1对称,则m=-2;反之也成立.所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.答案 2解析其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.“m<14”是“一元二次方程x2+x+m=0有实数解”的____________条件.答案充分不必要解析x2+x+m=0有实数解等价于Δ=1-4m≥0,即m≤14,由于m<14⇒m≤14,反之不成立.故“m<14”是“一元二次方程x2+x+m=0有实数解”的充分不必要条件.11.若x<m-1或x>m+1是x2-2x-3>0的必要不充分条件,则实数m的取值范围是________.答案[0,2]12.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”错误.②原命题的逆命题为:“x,y互为相反数,则x+y=0”正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”正确.13.若集合A={x|2<x<3},B={x|(x+2)(x-a)<0},则“a=1”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 A解析 当a =1时,B ={x |-2<x <1},满足A ∩B =∅;反之,若A ∩B =∅,只需a ≤2即可,故“a =1”是“A ∩B =∅”的充分不必要条件. 14.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A15.给定两个命题p 、q ,若-p 是q 的必要不充分条件,则p 是-q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 答案 充分不必要条件解析 若-p 是q 的必要不充分条件,则q ⇒-p 但-p q ,其逆否命题为p ⇒-q 但-q p ,所以p 是-q 的充分不必要条件.16.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________.答案 (-∞,-7]∪[1,+∞)解析 将两个命题化简得,命题p :x >m +3或x <m ,命题q :-4<x <1.由于p 是q 成立的必要不充分条件,所以m +3≤-4,或m ≥1,故m 的取值范围是(-∞,-7]∪[1,+∞).17.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.18.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________. 答案 ①④。

高三数学高考一轮复习资料:命题及其关系、充分条件与必要条

高三数学高考一轮复习资料:命题及其关系、充分条件与必要条

命题及其关系、充分条件与必要条件[最新考纲]1.理解命题的概念.2.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.知识梳理1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.2.充分条件、必要条件与充要条件的概念qpp辨析感悟1.对四种命题的认识(1)(·湖南卷改编)命题“α=π4,则tan α=1”的否命是“若α=π4,则tanα≠1”.(×)(2)若原命题“若p,则q”为真,则在这个命题的否命题、逆命题、逆否命题中真命题的个数为1或2.(×)(3)命题“若x2-3x+2>0,则x>2或x<1”的逆否命题是“若1≤x≤2,则x2-3x+2≤0”.(√)2.对充分条件、必要条件的理解(4)给定两个命题p,q.若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)(5)“(2x-1)x=0”的充分不必要条件是“x=0”.(√)(6)在△ABC中,“A=60°”是“cos A=12”的充分不必要条件.(×)(7)(·浙江卷改编)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,x∈R),则“f(x)是奇函数”是“φ=π2”的充分必要条件.(×)[感悟·提升]1.一个区别否命题与命题的否定是两个不同的概念.否命题同时否定原命题的条件和结论,命题的否定仅仅否定原命题的结论(条件不变),如(1).2.三个防范一是分清命题中的条件和结论,并搞清楚其中的关键词,如“≠”与“=”,“>”与“≤”,“且”与“或”,“是”与“不是”,“都不是”与“至少一个是”,“都是”与“不都是”等互为否定,如(3);二是弄清先后顺序:“A的充分不必要条件是B”是指B⇒A,且A B,如(5);而“A是B的充分不必要条件”则是指A⇒B且B A,如(6)、(7);三是注意题中的大前提,如(6).考点一命题及其相互关系【例1】已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是().A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题解析由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案 D规律方法(1)在判断四种命题的关系时,首先要分清命题的条件与结论,当确定了原命题时,要能根据四种命题的关系写出其他三种命题.(2)当一个命题有大前提时,若要写出其他三种命题,大前提需保持不变.(3)判断一个命题为真命题,要给出推理证明;说明一个命题是假命题,只需举出反例.(4)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【训练1】(·长春二模)命题“若a2+b2=0,则a=0且b=0”的逆否命题是().A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.答案 D考点二充分条件、必要条件的判断【例2】(1)(·安徽卷)“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)(·济南模拟)如果a =(1,k ),b =(k,4),那么“a ∥b ”是“k =-2”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 (1)f (x )=|(ax -1)x |在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a <0,也就是a ≤0,故“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)内单调递增”的充要条件,故选C.(2)因为a ∥b ,所以1×4-k 2=0,即4=k 2,所以k =±2.所以“a ∥b ”是“k =-2”的必要不充分条件.答案 (1)C (2)B 规律方法 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【训练2】(·北京卷)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分不必要条件. 答案 A考点三 充分条件、必要条件的探求【例3】(1)若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( ).A .a >-2B .a ≤-2C .a >-1D .a ≥-1(2)函数f (x )=⎩⎨⎧log 2x ,x >0,2x -a ,x ≤0有且只有一个零点的充分不必要条件是( ). A .a ≤0或a >1 B .0<a <12C.12<a <1 D .a <0审题路线 (1)A ∩B ≠∅⇔A 与B 有交集.(2)先求函数f (x )有且只有一个零点的充要条件M ⇒由选项推出M 成立的充分条件⇒结合选项可得结论解析 (1)A ={x |-1<x <2},B ={x |-2<x <a },如图所示:∵A ∩B ≠∅,∴a >-1.(2)因为f (x )=⎩⎨⎧log 2 x ,x >0,2x -a ,x ≤0有且只有一个零点的充要条件为a ≤0或a >1.由选项可知,使“a ≤0或a >1”成立的充分条件为选项D.答案 (1)C (2)D 规律方法 有关探求充要条件的选择题,破题关键是:首先,判断是选项“推”题干,还是题干“推”选项;其次,利用以小推大的技巧,即可得结论.【训练3】“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”的一个充分不必要条件可以是( ).A .-1<k <3B .-1≤k ≤3C .0<k <3D .k <-1或k >3解析 “直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点”等价于|1-0-k |2<2,解得k ∈(-1,3).四个选项中只有(0,3)是(-1,3)的真子集,故充分不必要条件可以是0<k <3.答案 C1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2.数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的.3.命题的充要关系的判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.思想方法1——等价转化思想在充要条件关系中的应用【典例】已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要而不充分条件,求实数m 的取值范围.解 法一 由q :x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m ,∴綈q :A ={x |x >1+m 或x <1-m ,m >0},由p :⎪⎪⎪⎪⎪⎪1-x -13≤2, 解得-2≤x ≤10,∴綈p :B ={x |x >10或x <-2}.∵綈p 是綈q 的必要而不充分条件.∴A B ,∴⎩⎨⎧ m >0,1-m <-2,1+m ≥10,或⎩⎨⎧ m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9. 故实数m 的取值范围是[9,+∞).法二 ∵綈p 是綈q 的必要而不充分条件,∴p 是q 的充分而不必要条件,由q :x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m ,∴q :Q ={x |1-m ≤x ≤1+m },由p :⎪⎪⎪⎪⎪⎪1-x -13≤2, 解得-2≤x ≤10,∴p :P ={x |-2≤x ≤10}.∵p 是q 的充分而不必要条件,∴P Q ,∴⎩⎨⎧ m >0,1-m <-2,1+m ≥ 10,或⎩⎨⎧ m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9.故实数m的取值范围是[9,+∞).[反思感悟] 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.【自主体验】1.(·山东卷)给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q 的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析由q⇒綈p且綈p q可得p⇒綈q且綈q p,所以p是綈q的充分而不必要条件.答案 A2.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是().A.[1,+∞) B.(-∞,1]C.[-1,+∞) D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1. 答案 A对应学生用书P221基础巩固题组(建议用时:40分钟)一、选择题1.(·重庆卷)命题“若p,则q”的逆命题是().A.若q,则p B.若綈p,则綈q C.若綈q,则綈p D.若p,则綈q解析根据原命题与逆命题的关系可得:“若p,则q”的逆命题是“若q,则p”,故选A.答案 A2.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( ).A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =3解析 同时否定原命题的条件和结论,所得命题就是它的否命题.答案 A3.(·浙江部分重点中学3月调研)设a ∈R ,则“a =2”是“直线y =-ax +2与y =a 4x -1垂直”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 若直线y =-ax +2与y =a 4x -1垂直,则有-a ×a 4=-1,即a 2=4,所以a =±2.所以“a =2”是“直线y =-ax +2与y =a 4x -1垂直”的充分不必要条件,选A.答案 A4.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ).A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.答案 C5.(·台州三校联考)不等式x -1x >0成立的一个充分不必要条件是( ).A .-1<x <0或x >1B .x <-1或0<x <1C.x>-1 D.x>1解析画出直线y=x与双曲线y=1x的图象(图略),两图象的交点为(1,1),(-1,-1),依图知x-1x>0时,-1<x<0或x>1,显然x>1⇒x-1x>0;但x-1x>0x>1. 答案 D 二、填空题6.(·盐城调研)“m<14”是“一元二次方程x2+x+m=0有实数解”的________条件.解析x2+x+m=0有实数解等价于Δ=1-4m≥0,即m≤1 4.答案充分不必要7.(·扬州模拟)下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;③“x>2”是“1x<12”的充分不必要条件;④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.解析①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a,b∈R,若a=3且b=3,则a+b=6”,此命题为真命题,所以原命题也是真命题,②错误;③1x<12,则1x-12=2-x2x<0,解得x<0或x>2,所以“x>2”是“1x<12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.答案①②8.已知a,b,c都是实数,则在命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是________.解析当c2=0时,原命题不正确,故其逆否命题也不正确;逆命题为“若ac2>bc2,则a>b”,逆命题正确,则否命题也正确.三、解答题9.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. 解 原命题:若a ≥0,则x 2+x -a =0有实根.逆否命题:若x 2+x -a =0无实根,则a <0.判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a <0,∴a <-14<0.∴“若x 2+x -a =0无实根,则a <0”为真命题.10.已知p :x 2-8x -20≤0,q :x 2-2x +1-a 2≤0(a >0).若p 是q 的充分不必要条件,求实数a 的取值范围.解 p :x 2-8x -20≤0⇔-2≤x ≤10,q :x 2-2x +1-a 2≤0⇔1-a ≤x ≤1+a .∵p ⇒q ,q p ,∴{x |-2≤x ≤10}{x |1-a ≤x ≤1+a }. 故有⎩⎨⎧ 1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所求实数a 的取值范围是[9,+∞).能力提升题组(建议用时:25分钟)一、选择题1.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ).A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析 否命题既否定题设又否定结论,故选B.2.(·深圳二次调研)已知x ∈R ,则x ≥1是|x +1|+|x -1|=2|x |的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 若x ≥1,则|x +1|+|x -1|=x +1+x -1=2x ,2|x |=2x ,故充分性成立;必要性的判断不易切入,可以考虑采用特值法,取x =-1,则|x +1|+|x -1|=2,2|x |=2,但是-1不满足x ≥1,故必要性不成立,故选A.答案 A二、填空题3.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 解析 已知方程有根,由判别式Δ=16-4n ≥0,解得n ≤4,又n ∈N *,逐个分析,当n =1,2时,方程没有整数根;而当n =3时,方程有整数根1,3;当n =4时,方程有整数根2.答案 3或4三、解答题4.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,求实数a 的取值范围.解 ∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p綈q 等价于p ⇒q ,且qp . 记p :A ={x ||4x -3|≤1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12≤x ≤1,q :B ={x |x 2-(2a +1)x +a (a +1)≤0|={x |a ≤x ≤a +1}, 则从而⎩⎪⎨⎪⎧ a +1≥1,a ≤12,且两个等号不同时成立,解得0≤a ≤12.故所求实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.。

超实用高考数学专题复习:第一章集合常用逻辑用语 第2节命题及其关系充分条件与必要条件

超实用高考数学专题复习:第一章集合常用逻辑用语   第2节命题及其关系充分条件与必要条件
第2节 命题及其关系、充分条件与必要条件
考试要求 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、 否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件 与充要条件的含义.
养成良好的答题习惯,是决定高考数学成败的决定性因素之一。做题前,要
认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟 着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善 于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查 ,查漏补缺,纠正错误。总之,在最后的复习阶段,学生们不要加大练习量。
在这个时候,学生要尽快找到适合自己的答题方式,最重要的是以平常心去面
对考试。数学最后的复习要树立信心,考试的时候遇到难题要想“别人也难”
,遇到容易的则要想“细心审题”。越到最后,考生越要回归基础,单词最好 再梳理一遍,这样有利于提高阅读理解的效率。另附高考复习方法和考前30天 冲刺复习方法。
知识梳理
1.命题 用语言、符号或式子表达的,可以__判__断__真__假__的陈述句叫做命题,其中_判__断__为__真___ 的语句叫做真命题,__判__断__为__假__的语句叫做假命题.
2.四种命题及其相互关系 (1)四种命题间的相互关系
若綈p,则綈q
若q,则p 若綈q,则綈p
(2)四种命题的真假关系 ①两个命题互为逆否命题,它们具有__相__同___的真假性. ②两个命题为互逆命题或互否命题时,它们的真假性__没__有__关__系___.
故原命题是真命题. (2)根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定 义域内有唯一的最小值点,且f(x)min=f(0).
0,x=0, 答案 (1)D (2)f(x)=sin x,x∈[0,2](答案不唯一 ,再如 f(x)=1x,0<x≤2)

高考数学 热点题型和提分秘籍 专题02 命题及其关系、充分条件与必要条件 文(含解析)

高考数学 热点题型和提分秘籍 专题02 命题及其关系、充分条件与必要条件 文(含解析)

专题02 命题及其关系、充分条件与必要条件【高频考点解读】1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的意义.以选择题或填空题为主要题型,一般为容易题或中等题,近两年的新课标高考题多为对充要条件的考查,少数涉及到四种命题及其真假的判断.【热点题型】题型一考查四种命题及其关系例1、写出下列命题的逆命题、否命题及逆否命题,并分别判断四种命题的真假.(1)末位数字是0的整数是5的整数倍;(2)在△ABC中,若AB>AC,则∠C>∠B;(3)若x2-2x-3>0,则x<-1或x>3.【举一反三】分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)面积相等的两个三角形是全等三角形.(2)若q<1,则方程x2+2x+q=0有实根.(3)若x2+y2=0,则实数x,y全为零.【热点题型】题型二考查充分条件与必要条件例2、判断下列各题中,p是q的什么条件?(1)p:a>b,q:a>b-1;(2)p:a>b,q:lg a>lg b;(3)p:a>b,q:2a>2b;(4)p:a>b,q:a2>b2.【答案】(1)充分不必要条件;(2)必要不充分条件;(3)充要条件;(4)既不充分又不必要条件【提分秘籍】如何判断p是q的什么条件?1.对命题“若p,则q”,首先应分清条件是什么(p),结论是什么(q).2.尝试用条件推结论,再尝试用结论推条件,推理方法可以用直接证明法或间接证明法.3.确定条件是结论的什么条件,抓住“以小推大”的技巧,即小范围推得大范围.4.判断的结论需分四种情况:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.【举一反三】判断下列各题中p是q的什么条件?(1)p:x2-2x-3≥0,q:x≤1或x≥2;(2)p:△ABC中,∠A≠60°,q:sin A≠32;(3)在△ABC中,p:∠A=∠B,q:sin A=sin B;(4)非空集合A、B中,p:x∈A∪B,q:x∈B;(5)对于实数x、y,p:x+y≠8,q:x≠2或y≠6.【热点题型】题型三 充要条件的应用例3、设p :实数x 满足x 2-4ax +3a 2<0,其中a >0;q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.若p 是q 的必要不充分条件,求实数a 的取值范围.【举一反三】已知p:-4<x-a<4,q:(x-2)·(x-3)<0,且q是p的充分条件,则a的取值范围为______.【高考风向标】1.(2014·北京卷)设a,b是实数,则“a>b”是“a2>b2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D 【解析】当ab<0时,由a>b不一定推出a2>b2,反之也不成立.2.(2014·广东卷)在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件3.(2014·江西卷)下列叙述中正确的是( )A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β4.(2014·辽宁卷) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则=0;命题q :若a ∥b ,b ∥c ,则a∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )5.(2014·新课标全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件x 0处的导数一定为0 ,所以p 是q 的必要不充分条件.6.(2014·山东卷) 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根 B .方程x 2+ax +b =0至多有一个实根 C .方程x 2+ax +b =0至多有两个实根 D .方程x 2+ax +b =0恰好有两个实根7.(2014·陕西卷) 原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,真,真 B.假,假,真C.真,真,假 D.假,假,假8.(2014·浙江卷)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(2014·重庆卷)已知命题p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧綈q B.綈p∧qC.綈p∧綈q D.p∧q【答案】A 【解析】由题意知p为真命题,q为假命题,则綈q为真命题,所以p∧綈q为真命题.10.(2013·安徽卷)“(2x-1)x=0”是“x=0”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件(2013·山东卷)给定两个命题p,q,若⌝p是q的必要而不充分条件,则p是⌝q的( ) 11.A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(2013·湖南卷) “1<x<2”是“x<2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2013·湖北卷) 在一次跳伞训练中,甲、乙两位学员各跳 一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(⌝p)∨(⌝q)B .p∨(⌝q)C .(⌝p)∧(⌝q)D .p∨q14.(2013·福建卷) 设点P(x ,y),则“x=2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件15.(2013·北京卷) 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m>12 B .m≥1C .m>1D .m>2【答案】C 【解析】双曲线的离心率e =ca =1+m>2,解得m>1.故选C.16.(2013·天津卷) 设a ,b∈R ,则“(a-b)·a 2<0”是“a<b”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件17.(2013·四川卷) 设x∈,集合A 是奇数集,集合B 是偶数集.若命题p :x∈A,2x∈B,则( )(A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉ 【答案】C 【解析】注意“全称命题”的否定为“特称命题”. 18.(2013·陕西卷) 设z 是复数,则下列命题中的假.命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数 C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<019.(2013·浙江卷) 若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【随堂巩固】1.“|a |>0”是“a >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.设a ,b ∈R,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q4.命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥15.设x , y ∈R,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知p :a ≠0,q :ab ≠0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若x ,y ∈R,则下列命题中,甲是乙的充分不必要条件的是( )A .甲:xy =0 乙:x 2+y 2=0B .甲:xy =0 乙:|x |+|y |=|x +y |C .甲:xy =0 乙:x 、y 至少有一个为零D .甲:x <y 乙:x y <18.在△ABC 中,设p :a sin B =b sin C =csin A ;q :△ABC 是正三角形,那么p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.“a =1”是“函数f (x )=lg(ax )在(0,+∞)上单调递增”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件10.“x >y >0”是“1x <1y”的________条件.11.“tan θ≠1”是“θ≠π4”的________条件.12.如果对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的________条件.13.已知A 为xOy 平面内的一个区域.命题甲:点(a ,b )∈{(x ,y )|{ x -y +2≤0,x ≥0,3x +y -6≤0};命题乙:点(a ,b )∈A .如果甲是乙的充分条件,那么区域A 的面积的最小值是________.14.“a =14”是“对任意的正数x ,均有x +a x≥1”的________条件.15.已知命题p :|x -2|<a (a >0),命题q :|x 2-4|<1,若p 是q 的充分不必要条件,求实数a 的取值范围.16.已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0}.(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件;(3)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的一个必要但不充分条件.。

高考数学总复习 基础知识名师讲义 第一章 第二节命题及其关系、充分条件与必要条件 理

高考数学总复习 基础知识名师讲义 第一章 第二节命题及其关系、充分条件与必要条件 理

第二节命题及其关系、充分条件与必要条件知识梳理一、命题用语言、符号或式子表达的可以判断真假的陈述句,叫命题.判断为真的命题是真命题,判断为假的命题是假命题.二、四种命题的形式原命题:若p,则q(p为命题的条件,q为命题的结论).逆命题:若q,则p,即交换原命题的条件和结论.否命题:若綈p,则綈q,即同时否定原命题的条件和结论.逆否命题:若綈q,则綈p,即交换原命题的条件、结论之后,同时否定它们.三、四种命题的关系四、四种命题的真假的关系若两个命题互为逆否命题,则它们有________的真假性.若两个命题为互逆命题或互否命题,则它们的真假性___.在四种形式的命题中真命题的个数只能为0或2或4.五、用推出符号“⇒”概括充分条件、必要条件、充要条件若p⇒q,q p,则p是q的充分不必要条件.若pq,q⇒p,则p是q的______________________条件.若p⇒q,q⇒p,则p是q的_______________________条件.若pq,qp,则p是q的______________________条件.六、用反证法证明命题的一般步骤1.假设命题的结论不成立,即假设结论的反面成立.2.从这个假设出发,经过正确的逻辑推理,得出矛盾.3.由矛盾判定假设不成立,从而肯定命题的结论成立.出现矛盾的几种常见形式有:(1)与定义、定理、公理矛盾;(2)与已知条件矛盾;(3)与假设矛盾;(4)自相矛盾.基础自测1.(2013·北京西城区模拟)命题“若a>b,则a+1>b”的逆否命题是( )A.若a+1≤b,则a>bB.若a+1<b,则a>bC.若a+1≤b,则a≤bD.若a+1<b,则a<b解析:逆否命题为“若a+1≤b,则a≤b”.答案:C2.(2013·深圳模拟)已知b,c是平面α内的两条直线,则“直线a⊥α”是“直线a⊥b,直线a⊥c”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意,由a⊥α,b⊂α,c⊂α,得a⊥b,a⊥c;反过来,由a⊥b,a⊥c不能得出a⊥α,因为直线b,c可能是平面α内的两条平行直线.综上所述,“直线a⊥α”是“直线a⊥b,直线a⊥c”的充分不必要条件,选A.答案:A3.(2013·黄冈模拟)已知命题p:x2-3<0;命题q:log2x2>1,则命题p是命题q的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2-3<0得-3<x<3,log2x2>1得x>2或x<- 2.∴p既不是q的充分条件,也不是q的必要条件.答案:D1.(2013·福建卷)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:a=3⇒A⊆B,A⊆B⇒a=2或a=3.因此“a=3”是“A⊆B”的充分不必要条件.答案:A2.(2013·北京卷)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当φ=π时,y=sin(2x+φ)=-sin 2x过原点.当曲线过原点时,φ=kπ,k∈Z,不一定有φ=π. ∴“φ=π”是“曲线y=sin(2x+φ)过原点”的充分不必要条件.答案:A1.(2012·江门调研)已知命题p:“sin α=sin β且cos α=cos β”,命题q:“α=β”,则命题p是命题q的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:若“α=β”,则有“sin α=sin β且cos α=cos β”,反之若“sin α=sin β且cos α=cos β”,则有“α=2kπ+β(k∈Z)”,∴p是q的必要不充分条件.故选A.答案:A2.(2013·汕尾二模)设向量a=(1,x),b=(x,4),则“x=2”是“a∥b”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:∵向量a=(1,x),b=(x,4),若x=2,则2a=b,∴a∥b.若a∥b,则1x=x4,x=±2.∴“x=2”是“a∥b”的充分不必要条件.故选A.答案:A中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

高考数学黄金考点精析精训考点02命题及其关系、充分条件与必要条件理(new)

高考数学黄金考点精析精训考点02命题及其关系、充分条件与必要条件理(new)

考点2 命题及其关系、充分条件与必要条件【考点剖析】1。

最新考试说明:(1)了解命题的概念,会分析原命题及其逆命题、否命题与逆否命题这四种命题的相互关系.(2)理解必要条件、充分条件与充要条件的意义.2.命题方向预测:(1)四种命题的概念及其相互关系、四种命题真假的判断、充分要条件的判定及其应用是高考的热点.(2)题型主要以选择题、填空题的形式出现.(3)本节知识常与集合、函数、不等式、数列、立体几何中的直线、平面间的位置关系、复数、平面解析几何等知识结合,复习中在理解命题及其关系、充分条件与必要条件等基础知识的同时,重在掌握其它相关数学知识。

3.课本结论总结:(1)命题的概念在数学中用语言、符号或式子表达的,可以判定真假的陈述句叫做命题.其中,判定为真的命题叫真命题,判定为假的命题叫假命题.(2)四种命题及其关系①四种命题及其关系②四种命题的真假关系逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假,互逆或互否的两个命题,它们的真假没有关系。

(3)充分条件与必要条件①若p q ⇒,则p 是q 充分条件,q 是p 的必要条件。

②若p q ⇒,且q p ⇒,则p 是q 充要条件 4。

名师二级结论:(1) 常见结论的否定形式(2)充要条件判定方法 ①定义法:若p q ⇒,则p 是q 充分条件;若q p ⇒,则p 是q 必要条件;若p q ⇒,且q p ⇒,则p 是q 充要条件。

②集合法:若满足条件p 的集合为A,满足条件q 的集合为B ,若A B ,则p 是q 的充分不必要条件;若B A ,则p 是q 必要不充分条件;若A=B 则,p 是 q 充要条件。

对充要条件判定问题,一定要分清谁是条件,谁是结论,若条件、结论满足的条件易求,常用集合法。

结论是 都是 大于 小于 至少一个 至多一个 至少n个至多有n 个对所有x ,成立 p 或qp且q对任何x ,不成立否定 不是 不都是 不大于 不小于 一个也没有至少两个 至多有(1n -)个至少有(1n +)个存在某x ,不成立p ⌝且q ⌝ p⌝或q ⌝存在某x ,成立③利用原命题与逆命题的真假判断若原命题为“若p则q",则有如下结论:(1)若原命题为真逆命题为假,则p是q的充分不必要条件;(2)若原命题为假逆命题为真,则p是q的必要不充分条件;(3)若原命题与逆命题都为真,则p是q的充要条件;(4)若原命题与逆命题都为假,则p是q的既不充分也不必要条件5。

高考数学 专题02 命题及其关系、充分条件与必要条件热点题型和提分秘籍 理

高考数学 专题02 命题及其关系、充分条件与必要条件热点题型和提分秘籍 理

专题02 命题及其关系、充分条件与必要条件1.理解命题的概念2.了解“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系 3.理解充分条件、必要条件与充要条件的含义热点题型一 四种命题及其真假判断例1、【2017山东,理3】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q 【答案】B【提分秘籍】在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系。

要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可。

对涉及数学概念的命题的判定要从概念本身入手。

【举一反三】已知:命题“若函数f (x )=e x-mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( ) A .否命题是“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”,是真命题 B .逆命题是“若m ≤1,则函数f (x )=e x-mx 在(0,+∞)上是增函数”,是假命题 C .逆否命题是“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”,是真命题 D .逆否命题是“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”,是真命题解析:由f (x )=e x-mx 在(0,+∞)上是增函数,则f ′(x )=e x-m ≥0恒成立,∴m ≤1。

∴命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m >1,则函数f (x )=e x-mx在(0,+∞)上不是增函数”是真命题。

答案:D热点题型二充分条件、必要条件的判断例2、【2017天津,理4】设θ∈R,则“ππ||1212θ-<”是“1sin2θ<”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A【解析】πππ||012126θθ-<⇔<<1sin2θ⇒<,但10,sin2θθ=<,不满足ππ||1212θ-<,所以是充分不必要条件,选A.【提分秘籍】充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断。

高考数学 考点2 命题及其关系、充分条件与必要条件、

高考数学 考点2 命题及其关系、充分条件与必要条件、

考点2 命题及其关系、充分条件与必要条件、简单的逻辑联结词、全称量词与存在量词1.(2010·天津高考文科·T5)下列命题中,真命题是( )(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数 【命题立意】考查简易逻辑、二次函数的奇偶性.【思路点拨】根据偶函数的图像关于y 轴对称这一性质进行判断.【规范解答】选A.当0m =时,函数2()f x x =的图像关于y 轴对称,故选A.2.(2010·天津高考理科·T3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )(A)若f(x) 是偶函数,则f(-x)是偶函数(B )若f(x)不是奇函数,则f(-x)不是奇函数 (C )若f(-x)是奇函数,则f(x)是奇函数(D )若f(-x)不是奇函数,则f(x)不是奇函数【命题立意】考查命题的四种形式中的否命题的概念.【思路点拨】原命题“若p 则q ”,否命题为“若p ⌝则q ⌝”.【规范解答】选B.明确“是”的否定是“不是”,并对原命题的条件和结论分别进行否定,可得否命题为“若f(x)不是奇函数,则f(-x)不是奇函数”.3.(2010·辽宁高考文科·T4)已知a >0,函数2()f x ax bx c =++,若x 0满足关于x 的方程2ax+b=0,则下列选项的命题中为假命题的是( )0000(A) R,()() (B) R,()()(C) R,()() (D) R,()()x f x f x x f x f x x f x f x x f x f x ∃∈≤∃∈≥∀∈≤∀∈≥【命题立意】本题考查二次函数的顶点与最值问题,全称命题与特称命题.【思路点拨】02bx a =-,由于a>0,所以0()f x 是()f x 的最小值.【规范解答】选C.由x0满足方程2ax+b=0,可得02b x a =-.∵a>0,∴0()()2bf x f a =-是二次函数()f x 的最小值,可判定D 选项是真命题,C 选项是假命题;存在x= x0时,0()()f x f x =,可判定A ,B 选项都是真命题,故选C.4.(2010 ·海南宁夏理科·T5)已知命题1p :函数22x xy -=-在R 上为增函数,2p :函数22x xy -=+在R 上为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是( )(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q【命题立意】本小题主要考查逻辑联结词和判断命题的真假. 【思路点拨】先判断出12,p p 的真假,然后再进行相关的判断,得出相应的结论.【规范解答】选C.因为2x y =为增函数,2x y -=为减函数,易知1p:函数22x xy -=-在R 上为增函数是真命题,2p :函数22x xy -=+在R 上为减函数为假命题.故1q ,4q 为真命题.5.(2010·陕西高考文科·T6)“a >0”是“a>0”的 ( )(A)充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 【命题立意】本题考查充分条件、必要条件等的基本概念,属送分题. 【思路点拨】由“条件”的定义求解即可.【规范解答】选A. 因为“a >0” ⇒ “a >0”,但是“a >0” ⇒ “a >0或a<0” ,所以“a>0”推不出“a >0”,故“a >0”是“a>0”的充分不必要条件,故选A.6.(2010·广东高考文科·T8)“x >0”是“32x >0”成立的( )(A)充分非必要条件 (B )必要非充分条件(C)非充分非必要条件 (D )充要条件 【命题立意】本题考查充要条件的判断以及不等式的基本性质. 【思路点拨】判断由“x >0”是否能得到“32x >0”.【规范解答】选A .Q “x >0” ⇒“32x >0” ;而“32x >0”不能得到“x >0”,故选A .7.(2010·广东高考理科·T5) “14m <”是“一元二次方程20x x m ++=”有实数解的( )(A)充分非必要条件 (B)充分必要条件(C)必要非充分条件 (D)非充分非必要条件 【命题立意】本题考查充分必要条件,一元二次方程根的判定.【思路点拨】 先求出一元二次方程20x x m ++=”有实数解的条件,再分析与14m <的关系.【规范解答】选A . 由“一元二次方程20x x m ++=”有实数解得:211404m m -≥⇒≤,故选A .8.(2010·福建高考文科·T8)若向量(,3)()a x x R =∈,则“4x =”是“||5a =”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分又不必要条件 【命题立意】本题考查充分必要条件,平面向量长度的坐标运算. 【思路点拨】先判断||5a =的充要条件,然后可得结论.【规范解答】选 A.Q 2a 5,x 95,x 4=∴+=∴=±,x 4a 5,a 5∴=⇒==⇒x 4= x=4,所以x 4=是a 5=的充分而不必要条件.9.(2010·北京高考理科·T6)a r ,b r 为非零向量.“a b ⊥r r ”是“函数f (x )=()()xa b xb a +⋅-r r v v为一次函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【命题立意】本题考查充分必要条件,向量的数量积、一次函数等知识.【思路点拨】把()f x 展开,由一次函数的条件可得到a b ⊥r r 且||||a b ≠r r . 【规范解答】选 B.函数222()()f x x a b b a x a b =⋅+--⋅r r r r r r 为一次函数,则2200a b b a ⎧⋅=⎪⎨-≠⎪⎩r rr r ,,即a b ⊥r r 且||||a b ≠r r ,反之不成立,因此“a b ⊥r r”是“函数()f x =()()xa b xb a +⋅-r r v v 为一次函数”的必要而不充分条件.【方法技巧】(1)0a b a b ⊥⇔⋅=r r r r;(2)“p q ⇒”.p 是q 的充分条件,q 是p 的必要条件.10.(2010·陕西高考理科·T9)对于数列{na },“1n na a +>(n=1,2,…)”是“{na }为递增数列”的( )(A) 必要不充分条件 (B) 充分不必要条件(C) 必要条件 (D) 既不充分也不必要条件【命题立意】本题考查充分条件、必要条件等的基本概念及数列的基本概念. 【思路点拨】1n n a a +>⇒10n n n a a a +>⇒>⇒{na }为递增数列;而“{na }为递增数列”推不出“1n na a +>(n=1,2,…)”.【规范解答】选B .因为1n na a +>,所以0,n a >1n n a a +>,即{na }为递增数列.又“{na }为递增数列”推不出“1n na a +>(n=1,2,…)”,所以“1n na a +>(n =1,2,…)”是“{na }为递增数列”的充分不必要条件,故选B.11.(2010·辽宁高考理科·T11)已知a>0,则x0满足关于x 的方程ax=b 的充要条件是( )⇒(A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤-【命题立意】本题考查充要条件、二次函数的最值,全称命题、特称命题.【思路点拨】构造二次函数f(x)=21(0)2ax bx a ->,观察对称轴和最值与x0的关系.【规范解答】选C.200220002200001() 0,()()2,()()(0),,11,()() ,2211,,()()22 ()()b bf x ax bx a x f x f a ab x R f x f ab x ax b a x ax R f x f x xR ax bx ax bx x R ax bx ax bx x R f x f x x x f x f x =->=∀∈≥=>=∀∈≥∀∈-≥-∀∈-≥-∀∈≥=令()当时取得最小值。

高考数学 考点汇总 考点2 命题及其关系、充分条件与必

高考数学 考点汇总 考点2 命题及其关系、充分条件与必

考点2 命题及其关系、充分条件与必要条件一、选择题1.(2014·湖北高考理科·T3)设U 为全集,B A ,是集合,则“存在集合C 使得,U A C B C ⊆⊆ð”是“∅=B A I ”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断【解析】选C. 依题意,若C A ⊆,则U U C A ⊆痧,当U B C ⊆ð,可得∅=B A I ;若∅=B A I ,不妨另C A = ,显然满足,U A C B C ⊆⊆ð,故满足条件的集合C 是存在的.2.(2014·江西高考文科·T6)下列叙述中正确的是( )A.若a,b,c ∈R,则“ax 2+bx+c ≥0”的充分条件是“b 2-4ac ≤0”B.若a,b,c ∈R,则“ab 2>cb 2”的充要条件是“a>c ”C.命题“对任意x ∈R,有x 2≥0”的否定是“存在x ∈R,有x 2≥0”D.l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β【解题指南】利用逻辑用语的知识逐一验证.【解析】选D.对于选项A,a<0时不成立;对于选项B,b=0时不成立;对于选项C,应为x 2<0;对于选项D,垂直于同一直线的两平面平行.所以只有D 正确. 3.(2014·天津高考理科·T7)设a,b ∈R,则“a>b ”是“a a b b >”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C . 设()f x x x =,则()220,0,x x x x f x ìï³-=í<ïïïî,所以()f x 是R 上的增函数,“a b >”是“a a b b >”的充要条件.4.(2014·安徽高考理科·T2)“0<x ”是“0)1ln(<+x ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【解题提示】分清条件和结论,根据充分条件、必要条件的定义判断。

2022年高考数学一轮复习 热点难点精讲精析 1.2命题及其关系、充分条件与必要条件

2022年高考数学一轮复习 热点难点精讲精析 1.2命题及其关系、充分条件与必要条件

2022年高考一轮复习热点难点精讲精析:命题及其关系、充分条件与必要条件一、命题的关系与真假的判断1、相关链接(1)对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假。

(2)四种命题的关系的应用掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断它的真假不易进行时,可以转而判断其逆否命题的真假。

注:当一个命题有大前提而写出其他三种命题时,必须保留大前提,大前提不动。

2、例题解析〖例1〗】12022·苏州模拟命题“若一个数是负数,则它的平方是正数”的逆命题是______22022·岳阳模拟命题“若a>b,则a-1>b-1”的否命题是______3给出命题:若函数=f是幂函数,则函数=f的图象不过第四象限在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是______【解题指导】1、2先分清原命题的条件和结论,再根据四种命题的概念,写出逆命题、否命题3在判断四种命题的真假时,可根据原命题与其逆否命题、原命题的逆命题与否命题的等价性来判断【解析】1逆命题是将原命题的结论与条件互换位置,故该命题的逆命题是“若一个数的平方是正数,则它是负数”2同时否定原命题的条件和结论,所得命题就是它的否命题,故该命题的否命题是“若a≤b,则a-1≤b-1”3原命题与逆否命题等价,而原命题为真,所以逆否命题为真命题;原命题的逆命题为:若=f的图象不过第四象限,则函数=f是幂函数,此命题为假命题,又因为逆命题与否命题同真同假,所以否命题为假命题,故真命题的个数是1答案:1若一个数的平方是正数,则它是负数2若a≤b,则a-1≤b-131〖例2〗以下列命题为原命题,分别写出它们的逆命题,否命题和逆否命题.①内接于圆的四边形的对角互补;②已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d;分析:首先应当把原命题改写成“若⇒q p⇒p q⌝⇒⌝q p q p p q⇒⇔q p⇒q p⇒p q⊆则p是q的充分条件;,A B,A B p q ⊇则是的必要条件;p q :()++-2q lg 1x 1x ⌝⌝p q 是⌝p ⌝q :⌝≤-p x 1⎧+≥⎪-≥⎨⎪++->⎩221x 01x 01x 1x 0:⌝≤-p x 1⌝p ⌝q ,.⌝⇒⌝q p ⌝p ⌝q ,12-1a 110a a<⎧⎪⎨<⎪⎩>0,q :方程2--m =0有实根;4:|-1|>2,q :<-1.其中是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析:使用方程理论和不等式性质.解析: 1是q 的必要条件2是q 充要条件3是q 的充分条件4是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点2 命题及其关系、充分条件与必要条件
一、选择题
1.(2011·安徽高考文科·T2)集合{1,2,3,4,5,6},U =}5,4,1{S =,{2,3,4},T =则()
U S T I ð等于( )
(A)}6,5,4,1{ (B) {1,5} (C) {4} (D) {1,2,3,4,5}
【思路点拨】先求出U T ð,之后再和S 取交集.
【精讲精析】选B.U T ð={1,5,6},所以U S T I ð={1,5}.
2.(2011·安徽高考理科·T7)命题“所有能被2整除的整数都是偶数”的否定..
是( ) (A )所有不能被2整除的整数都是偶数
(B )所有能被2整除的整数都不是偶数
(C )存在一个不能被2整除的整数是偶数
(D )存在一个能被2整除的整数不是偶数
【思路点拨】此命题为全称命题,全称命题的否定为相应的特称命题.
【精讲精析】选D. 全称命题的否定为相应的特称命题,即将所有变为存在,并且将结论进行否定.
3.(2011·福建卷理科·T2)若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( )
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分又不必要条件
【思路点拨】解决本题的关键是判断“a =2”与“(a -1)(a -2)=0”两者之间满足怎样的推出关系.
【精讲精析】选A .由(1)(2)0a a --=得1a =或2a =,所以2(1)(2)0a a a =⇒--=, 而(1)(2)a a --=0 ⇒2a =,故2a =是(1)(2)0a a --=的充分而不必要条件.
4.(2011·福建卷文科·T3)若a ∈R,则“a =1”是“|a |=1”的( )
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分又不必要条件
【思路点拨】根据“1a =”与 “||1=a ”之间的推出关系来判定. 【精讲精析】选A .由||1a =得1a =±,||1a ∴
=1a =,而1||1a a =⇒=,即
1a =是||1a =的充分而不必要条件.
5.(2011·山东高考理科·T5)对于函数y=f (x ),x ∈R ,“y=|f(x)|的图象关于y 轴对称”是“y=f (x )是奇函数”的( )
(A )充分而不必要条件 (B )必要而不充分条件
(C )充要条件 (D )既不充分也不必要条件
【思路点拨】考查充分必要条件
【精讲精析】选B.“y=f (x )是奇函数”,图象关于原点对称,所以“y=|f(x)|的图象关于y 轴对称” ,
“y=|f(x)|的图象关于y 轴对称”, y=f (x )的图象关于y 轴对称或者关于原点对称,所以y=f (x )不一定为奇函数.
6.(2011·山东高考文科·T5)已知a ,b ,c ∈R,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( )
(A)若a +b +c ≠3,则222a b c ++<3
(B)若a +b +c =3,则222a b c ++<3
(C)若a +b +c ≠3,则222a b c ++≥3
(D)若222a b c ++≥3,则a +b +c =3
【思路点拨】本题考查命题间的关系,命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝”.
【精讲精析】选A.命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝”,故选A.
7.(2011·湖南高考理科·T2)设集合M={1,2},N={a }2
,则“a=1”是“M N ⊆”的( )
(A )充分不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】本题考查条件之间的关系.解题依据是小范围是大范围的充分条件,大范围是小范围的必要条件.
【精讲精析】选A.当a=1时,N={1},可推出“M N ⊆”.当“M N ⊆”时,有22a 1a 2==或.得到21±=±=a a 或不能推出a=1.所以前者是后者的充分不必要条件.
8.(2011·湖南高考文科T3)“x>1”是“|x|>1”的( )
(A )充分不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既不充分又不必要条件
【思路点拨】本题考查解绝对值不等式和条件的关系.
【精讲精析】选A.判断条件的关系,首先对条件进行等价化简,再利用小范围是大范围的充
分条件,大范围是小范围的必要条件. |x |1x 1x 1⇔->>或<,而且x>1是它的小范围.
9.(2011·江西高考理科·T8) 已知123,,ααα是三个相互平行的平面,平面12,αα之间的
距离为1d ,平面
12,αα23,a α之间的距离为2d ,直线l 与123,,ααα分别相交于123,,P P P .那么“1223P P P P =”是“12d d =”
的( )
(A )充分不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】先根据面面平行的性质定理得出,线线平行,再根据平行线分线段成比例这一性质,易得两者之间的关系.
【精讲精析】选C.如图所示,由于
231323121122312232//,P P N P M //P N,P P d ,P P P P d d .P P d ==αα=⇔同时被第三个平面所截,故有再由平行线分
线段成比例易得,因此
10.(2011·陕西高考理科·T1)设a r ,b r 是向量,命题“若a b =-r r ,则||||a b =r r ”
的逆命题是 ( )
(A )若a b ≠-r r ,则||||a b ≠r r (B )若a b =-r r ,则||||a b ≠r r
(C )若||||a b ≠r r ,则a b ≠-r r (D )若||||a b =r r ,则a b =-r r
【思路点拨】首先确定原命题的条件和结论,然后交换条件和结论的位置即可得到逆命题.
【精讲精析】选D .原命题的条件是a b =-r r ,作为逆命题的结论;原命题的结论是||||a b =r r ,
作为逆命题的条件,即得逆命题“若||||a b =r r ,则a b =-r r ”,故选D .
11.(2011.天津高考理科.T2)设,∈x y R ,则“2≥x 且2≥y ”是“22
4+≥x y ”的( )
(A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】明确22x y 4+≥的几何意义是解题的关键.
【精讲精析】选A.224+≥x y 表示以原点为圆心,以2为半径的圆以及圆外的区域,故A 正确.
12.(2011·天津高考文科·T4)设集合A {x R x 20}=?>,B {x R x 0}=?,C {x R x(x 2)0}=?>, 则“x A B ÎU ”是“x C ∈”的( )
(A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
【思路点拨】求出集合C 及集合A 与B 的并集再判断.
【精讲精析】选C.集合C 的解集是{}|02x x x <>或,{}|02A B x x x =<>Q U 或, A B C ∴=U
二、填空题
13.(2011·陕西高考理科·T12)设*n N ∈,一元二次方程240x x n -+=有整数根的充要条件是n = .
【思路点拨】直接利用求根公式进行计算,然后用完全平方数、整除等进行判断计算.
【精讲精析】42
x ±=2=,因为x 是整数,即2
4n …,又因为*n N ∈,取1,2,3,4n =,验证可知3,4n =符合题意,所以n=3,4时可以推出一元二次方程2
40x x n -+=有整数根.
【答案】3或4。

相关文档
最新文档