2.1不等式的基本性质
中职数学教案:不等式的基本性质(全2课时)
教
学
内
容
教
学
内
容
*汇报展示 交流巩固
学生小组讨论活动——举例验证上述不等式的性质.
例3用符号“ ”或“ ”填空,并说出应用了不等式的哪条性质.
(1)设 , ;
(2)设 , ;
(3)设 , ;
(4)设 , .
解(1) ,应用不等式性质2;
(2) ,应用不等式性质3;
(3) ,应用不等式性质3;
(5)比较 与 的大小
(6)比较 的大小,其中 .
五小结
板
书
设
计
2.1 不等式的基本性质
一、概念 二、例题 二、习题
教后札记
中等专业学校2023-2024-1教案
编号:
备课组别
数学组
课程名称
数学
所在
年级
一年级
主备
教师
授课教师
授课系部
授Байду номын сангаас班级
授课
日期
课题
§2.1不等式的基本性质
教学
目标
1. 理解不等式的基本性质.
解:(1)
∴ .
(2) ,∵ , ,∴ ,所以 .
说明:不等式 ( , )在生活中可以找到原型: 克糖水中有 克糖( ),若再添加 克糖( ),则糖水便甜了.(浓度= )
例4已知 比较 与 的大小.
解:
= …………………(*)
①当 时,(*)式 ,所以 ;
②当 时,(*)式 ,所以 ;
③当 时,(*)式 ,所以
(4) ,应用不等式性质2与性质3.
例4已知 , ,求证 .
证明因为 ,由不等式的性质3知, ,
人教高中数学不等式的基本性质PPT完美版
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
练习 比较两数(a2 +1)2与 a4+a2+1的值的大小。
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
例题讲解
•
6.不能把质朴、理性的爱国主义视为 民粹主 义、狭 隘民族 主义, 同时应 防止各 种形式 的民粹 主义和 极端民 族主义 行为。
•
7. 众多短视频平台成为人们的消遣神 器,但 如果缺 乏内容 创新和 内涵续 航,短 视频的 发展将 不容乐 观。
•
8. 在这个浅表性阅读时代,越是具有 艺术美 感、内 容穿透 力和人 文内涵 的走心 作品越 能获得 观众的 认可。
性质5:如果a>b>0,c>d>0,那么ac>bd.不等式的叠乘性质
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版
谢谢
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版
•
1.中美贸易摩擦已升级为舆论战,坚 持正确 舆论导 向、弘 扬爱国 主义精 神尤为 重要。
•
2.爱国主义精神具有深厚的历史性, 极强的 传承力 、感染 力,以 及坚韧 性,顽 强性和 理性。
•
3.爱国主义精神,是在中国共产党近 百年之 奋斗史 中不断 形成, 积聚与 升华而 成的。
•
4.面对史上规模最大的贸易战,中国 政府和 人民最 重要的 是“集中 力量做 好自己 的事”
不等式的基本性质
=-5<0
∴(2x-5)(x+1)<2x2-3x
亲爱的同学们,下节课见!
第二章 不等式
2.1 不等式的基本性质
1.作差比较法:比较两个实数的大小,可以通过考察它们的差来实现.
对于两个任意的实数a和b,有:a-b>0⇔a>b;
a-b=0⇔a=b;
a-b<0⇔a<b.
2.不等式的性质.
(1)性质1(加法法则):如果a>b,那么a+c>b+c.
(2)性质2(乘法法则):如果a>b,c>0,那么ac>bc;
(
√ )
2.如果a>b,且c>d,那么a+c>b+d.
(
√ )
3.如果a>b,且c>d,那么ac>bd.
(
× )
三、选择题
1.已知a>b,且ac>bc,那么(
A. c>0
B. c=0
A ).
C. c<0
2.若m>3,则下列不等式中必定成立的是(
A. m>0
B. m-3<0
3.如果a>b,那么(
A. ac<bc
(4)设a>b,则-2a< -2b,
(5)设x<y,则1-2x>1-2y,
1 1
(6)设x>y>0,则 < .
2.根据条件,写出x的取值范围:
(1)x+4>7, x>3
(2)2x-1<3,x<2
(3)3-2x>5, x<-1
(4)2-x<x-4, x>3
二、判断题
1.如果a<b,且b<c,那么a<c.
(
三、解答题
比较大小.
1.x2+1与(x+1)2,其中x>0.
解:∵(x2+1)-(x+1)2
=x2+1-(x2+2x+1)
2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式
A.x2>y2
B.ax>ay
C.x+5>y+5
D.x+2y>3y
【解析】 B选项中,当a=0时,ax=ay,故选项B不成立.
2.a、b、c 为实数,且 c≠0,下列命题中正确的是( D ) A.a>b⇒ac>bc B.ac<bc⇒a<b C.a>b⇒1a<1b D.a>b⇒ca2>cb2 【解析】 利用不等式的性质或举反例进行判断,取 a=2、b=-1、c=-1 来检验,对 A 有ac<bc,故 A 错;对 B 有 a>b,故 B 错;对 C 有a1>1b,故 C 错;对 D,∵ c≠0,∴ c12>0,由不等式的性质知,选项 D 正确.
【融会贯通】 比较大小. (1)( 2+ 3)2 与 4+2 6; (2)2x2+5x+6 与(x+3)(x+2),x∈R. 解:(1)∵( 2+ 3)2-(4+2 6)=(5+2 6)-(4+2 6)=1>0,∴( 2+ 3)2 >(4+2 6). (2)∵(2x2+5x+6)-(x+3)(x+2)=(2x2+5x+6)-(x2+5x+6)=x2≥0, ∴(2x2+5x+6)≥(x+3)(x+2).
2.1 不等式的基本性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.不等式的概念 用不等号“≠、>、<、≥、≤”表示不等关系的式子叫做不等 式.如:f(x)>g(x),f(x)≤g(x),等等.
知识点1 知识点2 知识点3 知识点4 知识点5
2.几个恒不等式 任意实数的平方不小于0,即a2≥0. 任意实数的绝对值不小于0,即|a|≥0.
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
【解析】 根据不等式的性质可知,a>3 且 b>3⇒a+b>6 成立,a>3 且 b
中职数学2.1不等式的基本性质课件
例3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
用符号“ ”或“ ”填空,并说明利用了不等式的哪(几)条
基本性质.
(2)如果 > ,那么 + 4
+ 2;
(2)根据不等式性质1,不等式 > 两边同时加上4,不等号
方向不变,即 + 4 > + 4,
又因为 + 4 > + 2,所以根据不等式性质3,可以得到
当>0时,点和点同时向右平移个单
位,即可到达点′和点′的位置;
当<0时,点和点同时向左平移
个单位,即可到达点′和点′的位置.
显然,两种情况中,点′点′的左右位置与点和点的情况相同.
2.1不等式的性质 —不等式的性质
性质3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
5
2
例1 比较 7 与 3 的大小.
解 因为 5 2 15 14 15 14 1 0
7
3
21
5 2
所以
.
7 3
21
21
21
,
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
大于b(或b小于a).
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
因为实数与数轴上的点是一一对应的,对于任意实数,都可以
在数轴上找到对应的点和,如图所示.
不等式的基本性质
a>b>0,c>d>0 如果a>b,c>d,那么ac>bd是否成立? 如果a>b>0,那么1/a<1/b是否一定成立? 如果a<b<0,那么1/a>1/b是否一定成立? 同号倒数改向性 例:若a、bR,请写出不等式a>b和1/a>1/b同时成立的 充要条件。
正数同向相乘法性
例 求证:如果a>b>0,那么a2>b2。 如果a>b>0,那么an>bn。(nN*)
7、已知三个不等式:(1)ab>0;(2)-c/a<-d/b;
(3)bc>ad,以其中两个作为条件,余下一个作为结论, 则可以组成多少个真命题? 8、已知命题甲:a>b,命题乙:1/a<1/b, 命题丙:c/a2>c/b2。 (1)若甲是乙的必要非充分条件,求a、b应满足的条件; (2)若a<0,b<0,判断丙是甲的什么条件,并加以证明。 9、(1)设2<a5,3b<10,求a+b、a-b及a/b的取值范围; (2)若二次函数f(x)的图像过原点,且1f(-2) 2, 3f(3)
2、如果a>b,那么a+c>b+c。
3、如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc。 4、如果a>b,c>d,那么a+c>b+d。 5、如果a>b>0,c>d>0,那么ac>bd。 6、如果a、b同号,那么1/a<1/b。
7、如果a>b>0,那么an>bn (nN*) 。
4、解关于x的不等式:(1)ax+4<2x+a2,其中a>2 (2)m(x+2)>x+m。
不等式的基本性质
不等式的基本性质第二章不等式课题:2.1-不等式的基本性质(2课时)教学目标:1.掌握作差比较大小的方法,并能证明一些不等式。
2.掌握不等式的性质,掌握它们的证明方法及其功能,能简单运用。
3.提高逻辑推理和分类讨论的能力;培养条理思维的惯和认真严谨的研究态度。
教学重点:作差比较大小的方法;不等式的性质。
教学难点:不等式的性质的运用教学过程:第1课时:问题情境:现有A、B、C、D四个长方体,A、B的底面积为a²,高分别为a、b,C、D的底面积为b²,高分别为a、b,其中a≠b。
甲先从四个中取两个盛水,乙用剩下的两个盛水。
问如果你是甲,是否一定能保证两个所盛水比乙的多?分析:依题意可知:A、B、C、D四个的容积分别为a³、a²b、ab²、b³,甲有6种取法。
问题可以转化为比较两两和的大小。
研究比较大小的依据:我们知道,实数与数轴上的点是一一对应的。
在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大。
例如,在右图中,点A表示实数a,点B表示实数b,如果点A在点B右边,则a>b。
而a-b表示a减去b所得的差,由于a>b,则差是一个正数,即a-b>。
命题:“若a>b,则a -b>”成立;逆命题“若a-b>,则a>b”也正确。
类似地:若a<b,则a-b<;若a=b,则a-b=。
结论:(1)“a>b”⇔“a-b>”;(2)“a=b”⇔“a-b=”;(3)“a<b”⇔“a-b<”——以上三条即为比较大小的依据:“作差比较法”。
正负数运算性质:1) 正数加正数是正数;2) 正数乘正数是正数;3) 正数乘负数是负数;4) 负数乘负数是正数。
研究不等式的性质:性质1:若a>b,b>c,则a>c(不等式的传递性)证明:∵a>b∴a-b>;∵b>c∴b-c>;∴(a-b)+(b -c)=a-c>(正负数运算性质)则a>c。
反思:证明要求步步有据。
性质2:若a>b,则a+c>b+c(不等式的加法性质)证明:∵a>b∴a-b>;∵(a+c)-(b+c)=a-b>∴a+c >b+c。
不等式的基本性质
第二章 不等式2.1 不等式的基本性质一、教学目的:首先让学生掌握不等式的一个等价关系,了解并会证明不等式的基本性质1、2、3。
二、教学重点:比较实数的大小、不等式的基本性质。
三、教学难点:会比较两个实数的大小。
四、教学过程:2课时一、引入新课1.世界上所有的事物不等是绝对的,相等是相对的。
2.过去我们已经接触过许多不等式 从而提出课题二、几个与不等式有关的名称 (例略)1.“同向不等式与异向不等式”2.“绝对不等式与矛盾不等式”三、不等式的一个等价关系(充要条件)1.从实数与数轴上的点一一对应谈起0>-⇔>b a b a 0=-⇔=b a b a 0<-⇔<b a b a2.应用:例一 比较)5)(3(-+a a 与)4)(2(-+a a 的大小解:(取差))5)(3(-+a a - )4)(2(-+a a07)82()152(22<-=-----=a a a a∴)5)(3(-+a a <)4)(2(-+a a例二 已知x ≠0, 比较22)1(+x 与124++x x 的大小解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=∵0≠x ∴02>x 从而22)1(+x >124++x x小结:步骤:作差—变形—判断—结论例三 比较大小1.231-和10 解:∵23231+=- ∵02524562)10()23(22<-=-=-+ ∴231-<102.a b 和ma mb ++ ),,(+∈R m b a 解:(取差)a b -m a m b ++)()(m a a a b m +-= ∵),,(+∈R m b a ∴当a b >时a b >m a m b ++;当a b =时a b =m a m b ++;当a b <时a b <ma mb ++ 3.设0>a 且1≠a ,0>t 比较t a log 21与21log +t a 的大小解:02)1(212≥-=-+t t t ∴t t ≥+21 当1>a 时t a log 21≤21log +t a ;当10<<a 时t a log 21≥21log +t a 课堂练习:P33页练习2.1.2、不等式的基本性质1.性质1(传递性):如果b a >,c b > 那么c a >证:∵b a >,c b > ∴0>-b a ,0>-c b∵两个正数的和仍是正数 ∴+-)(b a 0)(>-c b0>-c a ∴c a >2.性质2(加法法则):如果b a >,.c b c a +>+证明3. 性质3(乘法法则):如果b a >,bc c c >>a 0,则;如果b a >,bc c c ∠∠a 0,则;文字归纳不等式性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.例1 利用不等式的性质,填”>”,“<”(1)若a>b,则2a+1 2b+1;(2)若-1.25y<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,则(a-b)c 0.变式训练 :用“>”或“<”在横线上填空,并在题后括号内填写理由.(1) 3a 3b;( ) (2) a -8 b -8; ( ) (3) -2a -2b;( ) (4) 2a -5 2b -5;( ) (5) -3.5a -1 -3.5b -1. ( )课堂练习:P36页练习 P37页的习题五、归纳小结:1.本节重点(1)掌握不等式的三条基本性质,尤其是性质3;(2)能正确应用性质对不等式进行变形;2.注意事项(1)要反复对比不等式性质与等式性质的异同点;(2)当不等式两边都乘以(或除以)同一个数时,一定要看清是正数还是负数;对于未给定范围的字母,应分情况讨论.。
第二章 2.1 第二课时等式性质与不等式的性质
第二课时 等式性质与不等式的性质课标要求素养要求1.掌握不等式的基本性质;2.运用不等式的性质解决有关问题.通过学习不等式的性质及运用不等式的性质解决问题,提升数学抽象及数学运算素养.教材知识探究在日常生活中,糖水中加些糖后就会变的更甜,也可以用不等式来表示这一现象.问题 你能利用这一事实表示出糖水浓度不等式吗?提示 糖水变甜这一现象对应的不等式为a b <a +c b +c,其中a <b ,c >0.1.等式的性质性质1 如果a =b ,那么b =a ; 性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ; 性质4 如果a =b ,那么ac =bc ; 性质5 如果a =b ,c ≠0,那么a c =b c .2.不等式的性质 注意这些性质是否可逆(易错点) 性质1 如果a >b ,那么b <a ;如果b <a ,那么a >b .即a >b b <a .性质2 如果a >b ,b >c ,那么a >c ,即a >b ,b >c a >c . 性质3 如果a >b ,那么a +c >b +c .性质4 如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc . 性质5 如果a >b ,c >d ,那么a +c >b +d . 性质6 如果a >b >0,c >d >0,那么ac >bd . 性质7 如果a >b >0,那么a n >b n (n ∈N ,n ≥2).教材拓展补遗[微判断] 1.a >bac 2>bc 2.(×)提示 当c =0时,不成立.2.同向不等式相加与相乘的条件是一致的.(×)提示 相乘需要看是否⎩⎨⎧a >b >0,c >d >0,而相加与正、负和零均无关系.3.设a ,b ∈R ,且a >b ,则a 3>b 3.(√) [微训练]1.已知a ,b ,m 是正实数,则不等式b +m a +m >ba 成立的条件是( )A.a <bB.a >bC.与m 有关D.恒成立解析b +m a +m -b a =m (a -b )a (a +m ),而a >0,m >0且m (a -b )a (a +m )>0,∴a -b >0.即a >b . 答案 B2.已知m >n ,则( ) A.m 2>n 2 B.m >n C.mx 2>nx 2D.m +x >n +x解析 由于m 2-n 2=(m -n )(m +n ),而m +n >0不一定成立,所以m 2>n 2不一定成立,而m ,n 不一定有意义,所以选项A ,B 不正确;选项C 中,若x 2=0,则不成立. 答案 D [微思考]1.若a >b ,c >d ,那么a +c >b +d 成立吗?a -c >b -d 呢?提示 a +c >b +d 成立,a -c >b -d 不一定成立,但a -d >b -c 成立. 2.若a >b ,c >d ,那么ac >bd 成立吗?提示 不一定,但当a >b >0,c >d >0时,一定成立.题型一 利用不等式的性质判断命题的真假【例1】 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3,则不正确的不等式的个数是( ) A.0 B.1 C.2D.3解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2. 答案 C规律方法 不等式的性质常与比较大小结合考查,此类问题一般结合不等式的性质,利用作差法或作商法求解,也可以用特殊值求解.【训练1】 设a >b >0,c <d <0,则下列不等式中一定成立的是( ) A.ac >bd B.a d <b c C.a d >b cD.ac 2<bd 2解析 a >b >0,c <d <0,即为-c >-d >0, 即有-ac >-bd >0,即ac <bd <0,故A 错;由cd >0,又ac <bd <0,两边同乘1cd ,可得a d <bc ,则B 对,C 错; 由-c >-d >0,-ac >-bd >0, 可得ac 2>bd 2,则D 错.故选B. 答案 B题型二 利用不等式的性质证明不等式解决此类问题一定要记准,记熟不等式的性质,并注意在解题中灵活地加以应用 【例2】 若bc -ad ≥0,bd >0,求证:a +b b ≤c +dd . 证明 ∵bc -ad ≥0,∴bc ≥ad ,∴bc +bd ≥ad +bd , 即b (c +d )≥d (a +b ).又bd >0,两边同除以bd 得,a +b b ≤c +dd .规律方法 1.不等式证明的实质是比较两个实数(代数式)的大小;2.证明不等式可以利用不等式性质证明,也可以用作差比较法证明,利用不等式性质证明时,不可省略条件或跳步推导.【训练2】 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc . (2)a <b <0,求证:b a <ab .证明 (1)因为a >b ,c >0,所以ac >bc ,即-ac <-bc . 又e >f ,即f <e ,所以f -ac <e -bc .(2)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab ,∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <a b . 题型三 利用不等式的性质求范围同向可加性,同向同正可乘性是解这类问题的常用性质 【例3】 已知1<a <6,3<b <4,求a -b ,ab 的取值范围. 求解范围时,不可两式直接相减 解 ∵3<b <4,∴-4<-b <-3. ∴1-4<a -b <6-3,即-3<a -b <3. 又14<1b <13,∴14<a b <63, 即14<a b <2.规律方法 求含字母的数(或式子)的取值范围时,一要注意题设中的条件,二要正确使用不等式的性质,尤其是两个同方向的不等式可加不可减,可乘(同正)不可除.【训练3】 已知-π2<β<α<π2,求2α-β的取值范围.解 ∵-π2<α<π2,-π2<β<π2, ∴-π2<-β<π2.∴-π<α-β<π. 又∵β<α,∴α-β>0,∴0<α-β<π, 又2α-β=α+(α-β),∴-π2<2α-β<32π.一、素养落地1.通过学习并理解不等式的性质,培养数学抽象素养,通过运用不等式的性质解决问题,提升数学运算素养.2.利用不等式的性质证明简单的不等式是否成立,实际上就是根据不等式的性质把不等式进行适当的变形,证明过程中注意不等式成立的条件. 二、素养训练1.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A.M >N B.M =N C.M <ND.与x 有关解析 M -N =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0.∴M >N . 答案 A2.设a ,b ∈R ,若a +|b |<0,则下列不等式中正确的是( ) A.a -b >0 B.a 3+b 3>0 C.a 2-b 2<0D.a +b <0解析 本题可采用特殊值法,取a =-2,b =1,则a -b <0,a 3+b 3<0,a 2-b 2>0,排除A ,B ,C ,故选D. 答案 D3.若8<x <10,2<y <4,则xy 的取值范围为________. 解析 ∵2<y <4,∴14<1y <12.又∵8<x <10,∴2<xy <5. 答案 2<xy <54.下列命题中,真命题是________(填序号).①若a >b >0,则1a 2<1b 2;②若a >b ,则c -2a <c -2b ;③若a <0,b >0,则-a <b ;④若a >b ,则2a >2b . 解析 ①a >b >00<1a <1b1a 2<1b 2;②a >b-2a <-2bc -2a <c -2b ;对③取a=-2,b =1,则-a <b 不成立.④正确. 答案 ①②④5.已知c a >db ,bc >ad ,求证:ab >0.证明 ∵⎩⎪⎨⎪⎧c a >d b ,bc >ad ,∴⎩⎪⎨⎪⎧c a -d b >0,bc -ad >0.∴⎩⎪⎨⎪⎧bc -ad ab >0,bc -ad >0,∴ab >0.基础达标一、选择题1.已知a <b <0,则下列式子中恒成立的是( ) A.1a <1b B.1a >1b C.a 2<b 2D.a b <1解析 因为a <b <0,不妨令a =-3,b =-2, 则-13>-12,可排除A ; (-3)2>(-2)2,可排除C ; a b =-3-2>1,可排除D ; 而-13>-12,即1a >1b ,B 正确. 答案 B2.设x <a <0,则下列不等式一定成立的是( ) A.x 2<ax <a 2 B.x 2>ax >a 2 C.x 2<a 2<axD.x 2>a 2>ax解析 ∵x <a <0,∴x 2>a 2. ∵x 2-ax =x (x -a )>0,∴x 2>ax . 又ax -a 2=a (x -a )>0,∴ax >a 2. ∴x 2>ax >a 2. 答案 B3.设a <b <0,则下列不等式中不正确的是( ) A.2a >2b B.ac <bc C.|a |>-bD.-a >-b 解析 a <b <0,则2a >2b ,选项A 正确;当c >0时选项B 成立,其余情况不成立,则选项B 不正确;|a |=-a >-b ,则选项C 正确;由-a >-b >0,可得-a >-b ,则选项D 正确,故选B. 答案 B4.已知a <0,b <-1,则下列不等式成立的是( ) A.a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2D.a b >a b 2>a解析 由题意知ab >0,b 2>1, 则a b 2>a ,且a b 2<0,所以a b >a b 2>a . 答案 D5.若1<a <3,-4<b <2,那么a -|b |的范围是( ) A.-3<a -|b |≤3 B.-3<a -|b |<5 C.-3<a -|b |<3D.1<a -|b |<4 解析 ∵-4<b <2,∴0≤|b |<4,∴-4<-|b |≤0. 又∵1<a <3,∴-3<a -|b |<3. 答案 C二、填空题6.若a >b >0,则a +1b ________b +1a (用“<”,“>”,“=”填空). 解析 法一 ∵a >b >0,∴0<1a <1b , 即1b >1a >0,∴a +1b >b +1a .法二 a +1b -(b +1a )=(a -b )(1+ab )ab ,∵a >b >0,∴a -b >0,ab >0,1+ab >0, 则a +1b >b +1a . 答案 > 7.若a <b <0,则1a -b与1a 的大小关系是________. 解析1a -b -1a =a -(a -b )(a -b )a =b (a -b )a, ∵a <b <0,∴a -b <0,则b (a -b )a <0,1a -b <1a.答案1a -b <1a8.已知-π2≤α<β≤π2,则α-β2的取值范围是________. 解析 ∵-π2≤α<β≤π2,∴-π4≤α2<β2≤π4. ∴-π4≤α2<π4,①-π4<β2≤π4,∴-π4≤-β2<π4.② 由①+②得-π2≤α-β2<π2.又知α<β,∴α-β<0.∴-π2≤α-β2<0. 答案 -π2≤α-β2<0 三、解答题9.判断下列各命题的真假,并说明理由. (1)若a <b ,c <0,则c a <cb ; (2)若ac 3<bc 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ; (4)若a >b ,b >c 则a -b >b -c . 解 (1)∵a <b ,不一定有ab >0, ∴1a >1b 不一定成立, ∴推不出c a <cb ,∴是假命题.(2)当c >0时,c 3>0,∴a <b ,∴是假命题.(3)当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题. 10.已知c >a >b >0,求证:a c -a >b c -b. 证明a c -a -bc -b =a (c -b )-b (c -a )(c -a )(c -b )=ac -ab -bc +ab (c -a )(c -b )=c (a -b )(c -a )(c -b ). ∵c >a >b >0,∴c -a >0,c -b >0,a -b >0. ∴c (a -b )(c -a )(c -b )>0.∴a c -a >b c -b. 能力提升11.已知a >b >0,c <d <0,求证:⎝ ⎛⎭⎪⎫a d 3<⎝ ⎛⎭⎪⎫b c 3.证明 ∵c <d <0,∴-c >-d >0, ∴0<-1c <-1d .∵a >b >0,∴-a d >-bc >0,∴⎝ ⎛⎭⎪⎫-a d 3>⎝ ⎛⎭⎪⎫-b c 3,即-⎝ ⎛⎭⎪⎫a d 3>-⎝ ⎛⎭⎪⎫b c 3,∴⎝ ⎛⎭⎪⎫a d 3<⎝ ⎛⎭⎪⎫b c 3. 12.已知1≤a +b ≤4,-1≤a -b ≤2,求4a -2b 的取值范围. 解 法一 设u =a +b ,v =a -b 得a =u +v 2,b =u -v2, ∴4a -2b =2u +2v -u +v =u +3v . ∵1≤u ≤4,-1≤v ≤2,∴-3≤3v ≤6. 则-2≤u +3v ≤10,即-2≤4a -2b ≤10. 法二 令4a -2b =x (a +b )+y (a -b ), ∴4a -2b =(x +y )a +(x -y )b . ∴⎩⎨⎧x +y =4,x -y =-2,∴⎩⎨⎧x =1,y =3. 又⎩⎨⎧1≤a +b ≤4,-3≤3(a -b )≤6. ∴-2≤4a -2b ≤10.。
中职数学(基础模块)2.1不等式的基本性质
不等式的基本性质定义
不等式的基本性质分类
练习题
汇报人:
性质3:不等式的同乘性
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
以上是关于“性质3:不等式的同乘性”的介绍内容,希望对您有所帮助。
性质:当两个不等式相乘时,如果两个不等式都是正数或都是负数,则它们的乘积仍然是正数或负数。
定义:不等式的同乘性是指当两个不等式相乘时,如果两个不等式都是正数或都是负数,则它们的乘积仍然是正数或负数。
利用不等式性质比较大小
定义:不等式是数学中比较两个数大小关系的数学符号。
性质:不等式的性质有对称性、传递性、可加性和同向不等式的可乘性。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
应用:不等式的同乘性在解决不等式问题时非常有用,可以用来化简不等式或比较大小。 以上是关于“性质3:不等式的同乘性”的介绍内容,希望对您有所帮助。
证明:设a>b>0,c>d>0,则ac>bc>0,bc>bc+d>0,ac>bc+d>0,因此ac>bc+d>0,即不等式的同乘性成立。
不等式的基本性质:对于任意两个实数a和b,如果a>b且c>d,则a+c>b+d
不等式的基本性质:对于任意两个正实数a和b,如果a>b,则ac>bc
《数学 基础模块》上册 2.1.1不等式的基本性质(作差比较法)
教学目标
知识目标:
理解作差比较实数大小的方法.
能力目标:
能够应用作差法判断任意两个实数的大小.
情感目标:
主动参与学习,感受数学在生活中的应用,提升数学思维能力与计算技能.
教学重点
作差比较法.
教学难点
作差比较法.
教学备品
教学课件.
课时安排
1课时.
教学过程
教学过程
教学意图
情境引入
巩固知识,提升知识的应用能力.
2006年7月12日,在国际田联超级大奖赛洛桑站男子110米栏比赛中,我国百米跨栏运动员刘翔以12秒88的成绩夺冠,并打破了尘封13年的世界记录12秒91,为我国争得了荣誉.
如何体现两个记录的差距?
知识探究
通常利用观察两个数的差的符号,来比较它们的大小.因为12.88−12.91=−0.03<0,所以得到结论:刘翔的成绩比世界记录快了0.03秒.
ห้องสมุดไป่ตู้变换练习,体会作差比较法的应用技巧,突破重难点。
归纳小结
本次课学了哪些内容?重点和难点各是什么?
(1)本次课学了哪些内容?
(2)在学习方法上有哪些体会?
加深学生对于本节课知识的理解,培养学生自主学习的能力,提升学习主动性。
布置作业
(1)书面作业:教材习题一
(2)实践调查: 探究生活中作差比较法的应用
强化练习
教材练习
P321、2
及时练习,巩固新知.
难点突破
本次课重难点:作差比较法.
强化练习
比较下列各对实数的大小:
(1) 与 ;(2) 与 ;
(3)当 时,比较 与 的大小.
解析:(1)例1、2中是比较任意两个实数的大小,可直接根据作差比较法进行判断.
2.1不等式的基本性质高中
(1)作差; 常用手段:配方法,因式分
(2)变形;
解法。
常见形式:变形为常数;
(3)定号;
一个常数与几
(4)下结论;
个平方和; 几个因式的积。
作商比较两数大小的依据
若 b0
(1) a 1 a b b
(2) a 1 a b b
(3) a 1 a b b
例1:已知a 0,1 b 0 ,那么在
三、例题分析:
例2:(2)已知2x 4y 1 ,比较 x2 y2
作与差210比的较大法:小__xx2_2_y_y2_2__121_0 _
注:特殊值 法容易漏“=”
20
x2
(1 4
1 2
x)2
1(条件 20
2x
4y=1
的应用)
5 x2 - 1 x+ 1 5(x2 - 1 x+ 1 ) 4 4 80 4 5 100
3b 4
1 1 1(乘法单调性)
4 Q2
a
b
3
3
1
-
a
(1 乘法法则)
2b
1 a 1(乘法单调性)
b2
三、例题分析:
例5:已知 2 a 3, 4 b 3,求 a b, a b, a , ab, b2 的取值范围。
ba
解:(4)Q 4 b 3 3 b 4(乘法单调性)
• 上式中的左边反映的是实数的运算性质, 而右边则是实数的大小顺序,合起来就成 为实数的运算性质与大小顺序之间的关系。 这一性质不仅可以用来比较两个实数的大 小,而且是推导不等式的性质,不等式的 证明,解不等式的主要依据。
不等式的基本性质
如果a+b>c,则a与c-b?
推论1:如果a+b>c,则a>c-b.
证明 :因为 所以 即 a+b>c, a+b+(-b)>c+(-b), a>c-b.
综合法:指从已知条件出发,借助其性质和有 关定理,经过逐步的逻辑推理,最后达到特征结论 或需求问题的方法。其特点和思路是:由因到果。
小试牛刀
(1)在-6<2 (2)在4>-3 的两边都加上9,得 的两边都减去6,得 3<11 ;
(3)如果 a<b,那么 a-3 (4)如果 x>3,那么 x+2
-2>-9 ; < b-3;
> 5; (5)如果 x+7>9,那么两边都 减去7,得 x>2.
把不等式60>36的两边同时乘以任意一个
不为0的数,你发现什么规律了吗?
如果不等式两边都乘同一个正数,则不等
号的方向不变,如果都乘同一个负数,则不等
趣味探索不等式
10年后爷爷和爸爸他们各自多少 岁呢?爷爷的年龄还比爸爸的年 龄大吗?10年前呢?X年后呢?
10年后,60+10>36+10 10年前,60-10>36-10 x年后,60+x>36+x
不等式的两边都加上(或减去)同一个数,不等号的方向不变。
趣味探索不等式
a>b
b
c b b+c b+c c
号的方向改变。
趣味探索不等式
3.不等式性质3(乘法法则) :如果 a>b,c>0,则ac>bc; 如果 a>b,c<0,则ac<bc. 证明:因为 ac-bc=(a-b)c, 又由 a>b,即 a-b>0, 所以 当c>0时,(a-b)c>0,即 ac>bc; 所以 当c<0时,(a-b)c<0,即 ac<bc.
北师大版中职数学基础模块上册:2.1.1不等式的基本性质(教案)
2.1.1不等式的基本性质
课 型
新授课
课 时
1
授课班级
授课时间
授课教师
教材分析
教材来源:“十四五”职业教育国家规划教材,人民教育出版社出版,高中一年级基础模块上册第二章;
教材内容:包括不等式的基本性质、区间、一元二次不等式、含绝对值的不等式、不等式的应用;
地位与作用:不等式是数学中的重要内容,它具有应用广泛、变换灵活的特点,是研究数量大小关系的必备知识,与数学的其他分支内容有着密切的联系,也是学习高等数学的基础和工具.本单元在初中学习的基础之上,进一步学习不等式பைடு நூலகம்基本性质、区间、一元二次不等式、含绝对值的不等式等,学习根据数量关系列出相应的不等式,并利用这些不等式找到问题的解决方案,提升数学运算、直观想象、逻辑推理和数学建模等核心素养.
2.掌握不等式的基本性质的推论;
教学方法
讲授法、谈话法、谈论法
课前准备
教师:认真备课,设计教学方法,创设问题情境,做好授课过程中出现的突发状况预案;
学生:认真预习教材,标记预习中不清楚、模糊的知识点,准备笔记本;
教学媒体
教学课件PPT、多媒体展板
教学过程
第一课时
教学环节
教师活动设计
学生活动设计
设计意图
若c<0,根据性质3,有ac<bc.
若c=0,则有ac=bc=0,所以ac=bc.
例2已知a>b,比较a-1与b-2的大小.
解因为a>b,-1>-2,
根据推论1,有a+(-1)>6+(-2),
即a-1>b-2.
学生分组讨论、交流,并请同学上台黑板作答,并进行讲解
通过课后习题的解答,巩固学生对本节课知识的掌握,及时纠正学习过程中的错误
2.1(2)不等式的基本性质Ⅱppt课件
(C)a c b c
(D)
a c2 1
b c2 1
5
练习 1、下列结论能成立的是:(_1_)_(_3_)_(_4_)_ (1) a b a b
a (2)
c
b
d
ac
bd
a (3)
cபைடு நூலகம்
b
d
a3
d
3
b3
c3
ab (4)
cd
0 0
证明: 1 1 b a a b ab
b a 0, ab 0
1 1 0 ab
0 1 1
ab
如果a b 0,那么1 ____ 1 ( 0) ab
(同号倒数性质)
4
练习
1、如果x y, m n, 那么下列不等式中正确的是( B )
( A)x m y n (B)x m y n
糖水中加 糖变甜
b ab a 0
又b 0, c 0,b c 0
(b a)c 0 b(b c)
ac a bc b
问: b c __<___ b ?
ac
a
7
例2
a, b R ,比较a5 b5与a3b2 a2b3的大小
解:(a5 b5 ) (a3b2 a2b3 ) a3 (a2 b2 ) b3 (b2 a2 )
iff a b时等号成立
8
练习
ex1、比较两数 (a 1)2与a2 a 1的大小. ex2、比较两数 x2 3与3x的大小.
说明:
不等式的基本性质ppt课件
(2)能正确应用性质对不等式进行变形;
注意事项
当不等式两边都乘以(或除以)同 一个数 时,一定要看清是正数还是负数;对于未给定 范围的字母,应分情况讨论.
P9:习题2.1 第1、2、3题
1、比较a与a+2的大小;
2、比较2与2+a的大小。
1、解: ∵ 0< 2, ∴ a < a+2 2、解:若a <0,则 2+a <2; 若a > 0,则 2+a > 2; 若a = 0,则 2+a = 2;
§2.1 不等式的基本性质
读书改变命运 !刻苦成就事 业 !!态度决定一切!!!
由a+5=b+5, 能得到a=b?
由a-5=b-5, 能得到a=b? 由5a=5b, 能得到a=b?
由–8a=–8b, 能得的基本性质吗?
等式的性质1:等式的两边都加上(或减去) 同一个整式,等式仍然成立. 等式的性质2:等式的两边都乘以(或除以) 同一个不为0的数,等式仍然成立.
试比较5a与3a 的大小。 解:∵ 5 > 3 ∴ 5a 3a 想想:这种解法对吗?如果正确,说 出它根据的是不等式的哪一条基本性 质;如果不正确,请说明理由。 答:这种解法不正确,因为字母 a的取值范 围我们并不知道。如果 a 0,那么 5a 3a ; 如果 a 0 ,那么 3a 5a 。
(1)掌握不等式的三条性质,尤其是性质3; (2)能正确应用性质对不等式进行变形;
本节重点
(1)掌握不等式的三条性质,尤其是性质3; 不等式的三条性质是: ① 、不等式的两边都加上(或减去)同一 个 数或同一个整式,不等号的方向不变; ② 、不等式的两边都乘以(或除以)同一 个 正数,不等号的方向不变; ③ 、*不等式的两边都乘以(或除以)同 一个负数,不等号的方向要改变 ;
不等式的基本性质--参考教案
解 因为a>b, -1>-2 根据推论1, 有a+(-1)>b+(-2), 即a-1>b-2.
练习
1.用“>”或“<”填空.
(1)a+5b+5(a<b);(2)x+5x+2;
(3)m+1m-1; (4)-5p-5q(p<q).
2.用“>”或“<”填空.
(1)若4x<2, 则x Байду номын сангаас (2)若a<0, 则2aa
练习
1.比较下列一组数的大小. 98, -3, 190, -π.
2.用“>”或“<”填空.
(1)a-1a+1;
(2)若a>b>0, 则 .
3.已知x 是实数, 比较 -x与(x+1)(x-2)的大小.
4.我们知道, 如果在一杯糖水中继续加入一些糖, 那么待糖全部溶解后, 这杯糖水就会变得更甜.你能借助不等式的知识来解释其中的道理吗?
二、自主探究
芭蕾舞演员脚尖立起前, 下半身长与全身长的比值为19686; 脚尖立起 后, 下半身长与全身长的比值19686++88=106174.本题要求比较这两个分数的大小
为了借助不等式知识解决上面的问题, 我们需要进一步研究不等式的 性质.根据初中学过的不等式的3个基本性质, 可以得到一系列推论. 根据性质1, 可得下列推论.
例2已知b>a>0,c>0, 比较a+c b+c与ab的大小.
解 作差可得a+c b+c-ab=(a+c)b (b+c)b-a(b+c) b(b+c)=(b-a)c (b+c)b. 因为b>a>0, 所以b-a>0.又因为c>0, 所以(b-a)c (b+c)b>0, 即a+c b+c-ab>0, 所以a+c b+c>ab
中职数学(高教版)授课教案:不等式的基本性质
【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】讲解}4xx<|24}过 程行为 行为 意图 间表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350). 强调 细节领会各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15*运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视辅导思考 解题 交流 反馈 学习 效果20 *动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点,为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x表示的区间为右半开区间,用记号[2,)+∞表 质疑 讲解 说明 强调 细节思考 领会 记忆 理解学习 各种 区间过 程行为 行为 意图 间示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数.明确25*巩固知识 典型例题例 2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写30 *理论升华 整体建构下面将各种区间表示的集合列表如下(表中a 、b 为任意实数,且a b <). 区间(,)a b[,]a b (,]a b 集合 {|}x a x b << {|}x a x b ≤≤ {|}x a x b <≤ 区间[,)a b(,)b -∞ (,]b -∞ 集合 {|}x a x b <≤ {|}x x b < {|}x x b ≤ 区间(,)a +∞[,)a +∞ (,)-∞+∞集合 {|}x x a >{|}x x a ≥R引导分析思考 互动 总结小组 讨论 教师 归纳35B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷ 讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题 2.3 一元二次不等式 *回顾思考 复习导入 问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系? 解决观察函数26y x =-的图像:方程260x -=的解3x =恰好是函数图像与x 轴交点的横坐标;在x 轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x ->的解集{|3}x x >;在x 轴下方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x -<的解集{|3}x x <. 归纳一般地,如果方程0ax b +=(0)a >的解是0x ,那么函数y ax b =+图像与x 轴的交点坐标为0(,0)x ,并且(1)不等式0ax b +>(0)a >的解集是函数y ax b =+的图像在x 轴上方部分所对应的自变量x 的取值范围,即0{|}x x x >;介绍 提出 问题 引领 分析 讲解了解 思考 观察 领悟 理解复习 相关 知识 内容 强化 知识 点的 内在 联系 突出 数形 结合()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间内的值,使得260y x x =--<.30 *动脑思考 探索新知 解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3)(2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞.(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R . 归纳 总结讲解分析强调 讲解思考 观察 理解 领会 记忆引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用40*理论升华 整体建构2(,)x +∞0(,)x +∞0([)2,x +∞R 0< 12,)x∅]12,x }0x224b ac x =-. 典型例题解下列各一元二次不等式:26x x --0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得30.由于判别式0的解集为0的解集为是什么实数时,有意义. 题意需要20-.解0=得1x =.由于二次项系数为30>以不等式的解集为[)1,⎛-∞+∞.[)1,+∞时,32有意义. 解下列各一元二次不等式:0.本次课学了哪些内容?重点和难点各是什么? 【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力.【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞(如图(2)所示).引导分析观察 领会习做 准备 充分 借助 图像 进行 分析10 *动脑思考 明确新知一般地,不等式x a <(0a >)的解集是(),a a -;不等式x a >(0a >)的解集是()(),,a a -∞-+∞.试一试:写出不等式x a 与x a (0a >)的解集.总结 强化理解 记忆强调 特点15*巩固知识 典型例题 例1 解下列各不等式: (1)310x ->; (2)26x.分析:将不等式化成x a <或x a >的形式后求解.解 (1)由不等式310x ->,得13x >,所以原不等式的解集为11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭;(2)由不等式26x ,得3x ,所以原不等式的解集为[]3,3-.分析讲解强调 细节思考 主动 求解进一 步巩 固知 识点20*运用知识 强化练习 教材练习2.4.1 解下列各不等式:巡视解题反馈 学习(2)(1)8;(2)实际操作 探索新知如何通过x a <等式2x +3.3213x --, 224x -, 12x-,所以原不等式的解集为 []1,2-. 7>.257x +>,整理,得6- 或 1x >,()1,+∞.11;4212.本次课学了哪些内容?重点和难点各是什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】2.1不等式的基本性质【教学目标】
知识目标:
⑴理解不等式的基本性质;
⑵了解不等式基本性质的应用.
能力目标:
⑴了解比较两个实数大小的方法;
⑵培养学生的数学思维能力和计算技能.
【教学重点】
⑴比较两个实数大小的方法;
⑵不等式的基本性质.
【教学难点】
比较两个实数大小的方法.
【教学设计】
(1)以实例引入知识内容,提升学生的求知欲;
(2)抓住解不等式的知识载体,复习与新知识学习相结合;
(3)加强知识的巩固与练习,培养学生的思维能力.
【教学备品】
教学课件.
【课时安排】
1课时.(45分钟)
【教学过程】
1页
第2章不等式(不等式的基本性质—电子教案)数学教研组
2页
第2章不等式(不等式的基本性质—电子教案)数学教研组
3页
第2章不等式(不等式的基本性质—电子教案)数学教研组
4页
第2章不等式(不等式的基本性质—电子教案)数学教研组
5页
第2章不等式(不等式的基本性质—电子教案)数学教研组。