授课内容4_平面力系的简化和平衡
合集下载
平面任意力系的简化
F' F" F
作用在刚体上的力是滑移矢量。
定理:作用在刚体上的力,沿其作用线移动后, 不改变其作用效应。
刚 体
变 形 体
作用于刚体上力的三要素:大小、方向、作用线.
2、力的平移
F
F
A
B
A
B
F
A
B
MB
A rBA
B
力的平移定理:作用在刚体上某一点的 力F可以平移到刚体内任一点,但必须 同时附加一个力偶,这个附加力偶的矩 等于原来的力F对新作用点的矩。
❖ 平移定理分析:平面内的一个力和一个力偶也可以合成一个 力。
2、平面任意力系向一点简化
Fn
o
据力的平移定理
An
A2
O
O
A1
F2
F1 O为简化中心
FR 为一个作用在O点上的力。 MO 为一个作用在刚体上的力偶。
•主矢
•主矩
(与简化中心O无关)
(与简化中心O有关)
结论:平面任意力系向作用面内任一点简化, 可得到一个力和一个力偶,该力的作用线通过 简化中心,其大小原力系的主矢,该力偶的力 偶矩等于原力系对简化中心的主矩。
机械设计基础
平面任意力系的简化
❖ 1、力的平移定理
加减平衡力系原理:
在刚体上增加或减去一组平衡力系,不会改变 原力系对刚体的作用效应。
加减平衡力系原理
F
A
F
B
若 {P1, P2,, Pm} {0} 则 {F1, F2,, Fn}
{F1, F2,, Fn , P1, P2,, Pm}
力沿作用线移动 力的可传性: F
(F2
F3 )
j
n
MO ri Fi
作用在刚体上的力是滑移矢量。
定理:作用在刚体上的力,沿其作用线移动后, 不改变其作用效应。
刚 体
变 形 体
作用于刚体上力的三要素:大小、方向、作用线.
2、力的平移
F
F
A
B
A
B
F
A
B
MB
A rBA
B
力的平移定理:作用在刚体上某一点的 力F可以平移到刚体内任一点,但必须 同时附加一个力偶,这个附加力偶的矩 等于原来的力F对新作用点的矩。
❖ 平移定理分析:平面内的一个力和一个力偶也可以合成一个 力。
2、平面任意力系向一点简化
Fn
o
据力的平移定理
An
A2
O
O
A1
F2
F1 O为简化中心
FR 为一个作用在O点上的力。 MO 为一个作用在刚体上的力偶。
•主矢
•主矩
(与简化中心O无关)
(与简化中心O有关)
结论:平面任意力系向作用面内任一点简化, 可得到一个力和一个力偶,该力的作用线通过 简化中心,其大小原力系的主矢,该力偶的力 偶矩等于原力系对简化中心的主矩。
机械设计基础
平面任意力系的简化
❖ 1、力的平移定理
加减平衡力系原理:
在刚体上增加或减去一组平衡力系,不会改变 原力系对刚体的作用效应。
加减平衡力系原理
F
A
F
B
若 {P1, P2,, Pm} {0} 则 {F1, F2,, Fn}
{F1, F2,, Fn , P1, P2,, Pm}
力沿作用线移动 力的可传性: F
(F2
F3 )
j
n
MO ri Fi
理论力学平面力系的简化和平衡
原力偶系的合力偶矩
n
M Mi i 1
只受平面力偶系作用的刚体平衡充要条件:
n
M Mi 0 i 1
对BC物块对B点取矩,以逆时针为正列方程应为:
M 2 M B (FC ) M FCY a FCx b M FC (b a) cos45 0
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
两轴不平行即 条件:x 轴不 AB
可,矩心任意
连线
mA (Fi ) 0 mB (Fi ) 0 mC (Fi ) 0
③三矩式 条件:A,B,C不在
同一直线上
上式有三个独立方程,只能求出三个未知数。
4. 平面一般力系的简化结果分析
简化结果: 主矢R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
解除约束,可把支反
力直接画在整体结构
的原图上)
解除约束
由
mA (Fi
)
0
P2a N B
3a0,
N B
2P 3
X 0 XA 0
Y 0 YB NB P0,
YA
P 3
2.5物体系统的平衡、静定与超静定问题
1、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
N2个物体受平面汇交力系(或平面平行力系)
X 0 Y 0
2*n2个独立平衡方程
N3个物体受平 X 0 面任意力系 Y 0
第四章 平面力系简化平衡方程
第四章 平面力系的简化与平衡方程
工程实例:
厂房吊车梁实例:
平面任意力系:
本章任务:
(1)掌握平面任意力系向一点的简化---主矢 和主矩 (2)掌握平面任意力系的平衡条件· 平衡方程 (3)掌握物系的平衡问题(包括了解考虑摩 擦的物系平衡问题的处理)
一、平面一般力系向一点(简化中心O点)简化:
解(1)取整体为研究对 象,作受力图如图;
(2)列平衡方程, 求解未知力。 ∑X=0,XA +qL =0 XA A
1.5L
q
B
NB
L
X
∑Y=0,YA +NB
=0
YA
∑ mA(Fi)=0 1.5LNB -0.5L×qL =0
XA =-qL(←)
NB =qL/3
YA = -qL/3(↓)
[例4-4]十字交叉梁用三个链杆支座固定,如图所示。求在 水平力P的作用下各支座的约束反力。
[例4-1] 在边长为a=1m的正方形的四个顶点上,作用有 F1、 F2 、 F3 、F4等四个力,如图所示。已知F1=40N,F2=60N, F3=60N,F4=80N。试求该力系向A点简化的结果。
解:R′x=40cos45°+60cos45°+60cos60°-80sin30°=60.7N R′y=40sin45°-60sin45°-60sin60°- 80cos30°=-106.1N R′=√(R′ x)2+(R′ y)2=122.4N cos=60.7/122.4 , =60.27°
1.若R´=0,Mo=0,原力 系为平衡力系,物体处于 平衡状态。
平衡
2.若 R´=0,Mo≠0, 原力系与一力偶等效, 其力偶矩就是原力系 的 主矩。并且简化结 果与 简化中心位置无关。
工程实例:
厂房吊车梁实例:
平面任意力系:
本章任务:
(1)掌握平面任意力系向一点的简化---主矢 和主矩 (2)掌握平面任意力系的平衡条件· 平衡方程 (3)掌握物系的平衡问题(包括了解考虑摩 擦的物系平衡问题的处理)
一、平面一般力系向一点(简化中心O点)简化:
解(1)取整体为研究对 象,作受力图如图;
(2)列平衡方程, 求解未知力。 ∑X=0,XA +qL =0 XA A
1.5L
q
B
NB
L
X
∑Y=0,YA +NB
=0
YA
∑ mA(Fi)=0 1.5LNB -0.5L×qL =0
XA =-qL(←)
NB =qL/3
YA = -qL/3(↓)
[例4-4]十字交叉梁用三个链杆支座固定,如图所示。求在 水平力P的作用下各支座的约束反力。
[例4-1] 在边长为a=1m的正方形的四个顶点上,作用有 F1、 F2 、 F3 、F4等四个力,如图所示。已知F1=40N,F2=60N, F3=60N,F4=80N。试求该力系向A点简化的结果。
解:R′x=40cos45°+60cos45°+60cos60°-80sin30°=60.7N R′y=40sin45°-60sin45°-60sin60°- 80cos30°=-106.1N R′=√(R′ x)2+(R′ y)2=122.4N cos=60.7/122.4 , =60.27°
1.若R´=0,Mo=0,原力 系为平衡力系,物体处于 平衡状态。
平衡
2.若 R´=0,Mo≠0, 原力系与一力偶等效, 其力偶矩就是原力系 的 主矩。并且简化结 果与 简化中心位置无关。
平面任意力系 简化与平衡
P
列平衡方程 MB Fi 0,
FA b W a b Ge Pl 0
解得
FA
1 b
W
a
b
G
e
P
l
A
B
FA b FB
将其代入条件 FA ≥ 0,即得满载时平衡块的重量应满足
W ≥ 1 Ge Pl
ab
W ≤ Geb
a
W ≥ 1 Ge Pl
ab
所以,要保证起重机在空载和 满载时都不翻倒,平衡块重应 满足不等式
y FT
FAx A
D
FAy
FB
Bx
P
2m 1m
3m
4)求解未知量
解得
FAx 2.4 kN
FAy 1.2 kN
FB 0.85 kN
杆 BC 所受的力与FB是作用力与反作用力的关系,即杆 BC 所受的 力为 0.85 kN,是拉力
[例5] 横梁 AB 用三根杆支撑,受图示载荷。已知 F = 10 kN, M = 50 kN·m,若不计构件自重,试求三杆 所受的力。
2. 分布载荷的合成结果 均布载荷
q Fq ql
A
B
l/2
l
线性分布载荷
Fq ql /2
q
A
B
2l /3
l
三、平面任意力系简化结果的讨论
4)FR 0 且 MO 0
FR Fi' Fi
FR 0
F
' Rx
Fix'
Fix
F
' Ry
Fiy'
Fiy
Fix 0 Fiy 0
MO Mi MO Fi
W a
eC
G P
静力学第4章平面一般力系
第四章 平面一般力系
【本章重点内容】
力线平移定理; 平面一般力系向作用面内一点简化; 平面一般力系简化结果分析; 平面一般力系的平衡条件与平衡方程.
第四章 平面一般力系
§4-1 工程中的平面一般力系问题
§4-1 工程中的平面一般力系问题
平面一般力系 作用在物体上诸力的作用线都分布在同一平面内,既
力线向一点平移时所得 附加力偶等于原力对平 移点之矩.
力偶M′与M 平衡.
第四章 平面一般力系
§4-3 平面一般力系向一点简化 主矢与主矩
§4-3 平面一般力系向一点简化 主矢与主矩
一、平面一般力系向作用面内一点简化
rr
F1′ = F1
rr
F2′ r
...=
F2 r
Fn′ = Fn
r M1 = MO (F1)
主矩MO
∑ MO =
MO
r (F
)
=
−1m
⋅
F1
−
3m
⋅
F2
+
2m
⋅
sin
30o
⋅
F3
+
M
= −1m ×1kN - 3m ×1kN + 2m × 1 × 2kN + 4kN ⋅ m 2
= 2kN ⋅ m
§4-4 简化结果的分析 合力矩定理
合力 方向 主矩
FR′ = 3.39kN α = −36.2°
§4-3 平面一般力系向一点简化 主矢与主矩
主矩的计算
主矩的计算方法与力矩和平面力偶系的计算方法相同. 主矩的计算
平面一般力系向一点简化,得到力对简化点的力矩和.
主矩大小
∑r
MO = MO(Fi )
理论力学 第2章 平面力系的简化和平衡
l 0
xq
(
x ) dx
FR'0,MO0;故可合成为一个合力,且
FR=
FR'=
l 0
q
(
x ) dx
FR大小等于分布载荷图形的面积
合力FR的作用线到O的距离为:
h=MO/FR'=
l xq
0
(x)dx
/
lq
0
(x ) dx
FR的作用线通过分布载荷图形的形心。 33
情况 向O点简化的结果 力系简化的最终结果
分类 主矢FR' 主矩MO (与简化中心无关)
1
FR’=0 MO=0 平衡状态(力系对物体的移动
和转动作用效果均为零)。
2
FR'=0
MO0 一个合力偶,M=MO。
3
FR0
MO=0 合力FR=FR,作用线过O点。
4
FR‘0
MO0 一个合力,其大小为 FR=FR,
m
求得: RA AB cos30 144N
0.24
对CD杆:m 0 m Rc 0.182 0.242 0.2322 0
§2–3 平面任意力系的合成与平衡
平面任意力系:各力的作用线在同一平面内,既不汇交为一点 又不相互平行的力系叫∼。
[例]
力系向一点简化:把未知力系(平面任意力系)变成已知 力系(平面汇交力系和平面力偶系)
现mo (R ) mo (F1)mo (F2 )证毕
3、平面汇交力系合成与平衡的解析法
从前述可知:平面汇交力系平衡的必要与充分条件是该力系
的合力为零。 即:
R 0 Rx2 Ry2 0
Rx X 0 Ry Y 0
平面任意力系(工程力学课件)
解:① 选AB梁为研究对象
qF
② 画受力图
FAy
qF
A
B
M
2a
a
FAx A
M
B FB
列平衡方程
M A(F)
0
F
2a q 2a a M
FB
3a
0
FB
5qa 3
Fx 0
Fy 0
FAx 0
FB FAy F 2qa 0,
FAy
4 qa 3
均布载荷
课堂练习 图示为悬臂梁的平面力学简图。已知梁长为2l,作用均布载荷q,
(2)建立直角坐标系,矩心选在A点,列平衡方程得:
MA (F ) 0
l FT sin 30l G1 2 G2 x 0
FT
G1
2G2 x l
34kN
Fx 0 FAx FT cos 30 0
FAx FT cos 30 29.4kN
平面任意力系的
平衡方程及其应用
Fy 0 FAy G1 G2 FT sin 30 0
FAy F ql 2ql
物体系统的平衡
物体系统的平衡
一、静定与静不定(超静定)问题的概念
平面汇交力系
Fx Fy
0 0
两个独立方程,只能求解两个未知数。
平面力偶系 M 0 一个独立方程,只能求解一个未知数。
平面平行力系
Fy 0
M o F
0
两个独立方程,只能求解两个未知数。
平面任意力系
ab
Gb cos
ab
平面任意力系的 平衡方程及其应用
三、平面平行力系的平衡方程
平面平行力系:各力的作用线共面且相互平行的力系。
平面平行力系是平面任意力系的特例,
力系的简化和平衡方程
表示,并 合成为一
个作用在点
O'
的力
v R
如图
3—2
所示。
R΄ O M O΄΄
R′ OR
R″O΄
Od R O΄
(a)
(b) 图 3-2
(c)
这个力
v R
就是原力系的合力,合力矢等于主矢,合力的作用线在
O
的哪一侧,需根
据主矢和主矩的方向确定;合力作用线到点 O 的距离 d,可按下式计算。
d = M0 R
必须指明是力系对哪一点的主矩。
二、简化结果的讨论
由于平面任意力系对刚体的作用决定于力系的主矢和主矩,因此,可由这两个物理
量来研(究一力)系若简主化矢的Rv最′ =后0 ,结主果矩。M 0 ≠ 0 ,则原力系与一力偶等效。此力偶称为平面任意
力系的合力偶,合力偶矩等于
M0
=
n
v
∑ m0 (Fi )
。由力偶的性质可知,力偶对任意点的力
一、平面任意力系向作用面内一点简化、主矢和主矩
设刚体上作用一平面任意力系
v F1 ,
v F2
⋅⋅⋅
⋅
⋅
⋅Fvn
如图(3—1)。根据力的平移定理,将力
矩系Fv1'分中, Fv别诸2' ..等力....F于向vn' 力平,以面MFv及11内,=F相v任2M应⋅ ⋅一0⋅(的⋅F点⋅v1⋅附F)vnO加对点M力O平2偶点=移系M的,0M矩(OF1v,,2M)点即2称:..M..为..3M简=nM化。0这中(Fv些心3 )力。偶这作样用得在到同作一用平于面O内点,它的们力系的
θ
态。取料斗车为研究对象,对料斗车进行受力分析,所
O
受力有:重力
第四章平面一般力系的平衡方程及其应用简化及平衡方程分解
2)列平衡方程,求解未知量
m 0
FRA 4 cos 450 m 0
解得:
FRA
FRB
m 4 cos450
3.5kN
Fx 0 FP FRBx 0
Fy 0
FRA FRBy q 3 0
mB (F) 0
FP
3
FRA
3
q
3
3 2
0
解得:
FRBx 5kN
FRA 28kN
FRBy 38kN
2.平衡方程的二矩式
Fx 0 mA(F)
0
(A与B两点的连线不垂直于x轴)
mB
(F
)
0
3.平衡方程的三矩式
第四章 平面一般力系的简化及平衡方程
§4.1 平面一般力系的简化 §4.2 平面一般力系的平衡方程及其应用 §4.3 物体系的平衡问题
§ 4-2 平面一般力系的平衡方程及其应用
平面一般力系平衡的必要和充分条件:力系的主矢和力
系对于任一点的矩都等于零,即: FR' 0, M0 0
由此平衡条件可导出不同形式的平衡方程。
1.平面汇交力系的平衡方程
1)平面汇交力系平衡的必要与充分 的解析条件是:各力在两个坐标轴 上投影的代数和分别等于零
Fx 0
Fy
0
2)平面汇交力系平衡的必要与充分 的几何条件是:力多边形自行封闭
利用几何法求解平面汇交力系的平衡 问题时,画出自行封闭的力多边形 , 然后按比例尺从力多边形中直接量出 未知力的大小即可。
16 0.8
2
20
12(kN)
FRAy P qa FRB 20 20 0.8 12 24(kN)
[例]如图所示一钢筋混凝土刚架的计算简图,其左侧面受到一水平
工程力学课件 第四章 平面一般力系
第4章 平面一般力系
14
3. 力系平衡
0, MO 0 FR
FR′
O
MO
合力矩定理 平面一般力系如果有合力,则合力对该力系 作用面内任一点之矩等于力系中各分力对该点之 矩的代数和。
课程:工程力学
第4章 平面一般力系
15
证明: 如下图所示,显然有
M O ( FR ) FR d M O , M O M O ( F ), M O ( FR ) M O ( F )
课程:工程力学
第4章 平面一般力系
1
第4章 平面一般力系
前言 §4-1 力线平移定理 §4-2 平面一般力系向一点简化 §4-3 分布荷载 §4-4 平面一般力系的平衡条件
§4-5 平面平行力系的平衡条件 §4-6 物体系统的平衡问题 §4-7 滑动摩擦
课程:工程力学
第4章 平面一般力系
2
前言
平面一般力系是指位于同一平面内的诸力其作 用线既不汇交于一点,也不互相平行的力系。 工程计算中的很多实际问题都可以简化为平 面一般力系来处理。
FAx A D
B x
arctan
FA y FA x
E F
FAy
P
思考题 4-4 如果例题4-3中的荷载F可以沿AB梁移动,问: 荷载F在什么位置时杆BC所受的拉力(FT)最大? 其值为多少?
课程:工程力学
第4章 平面一般力系
33
思考题 4-5 (1) 由右图所示的受力图,试按
M A (F ) 0 M B (F ) 0 F
22
(2) 非均布荷载:荷载集度不是常数。 如坝体所受的水压力等。
A qy y
B C
课程:工程力学
平面力系的简化
cos
FRy FR
式中: , ——分别是 与x轴和y轴的夹角
固定端(插入端)约束。
它是使被约束体插入约束内部,被约束体一端与约束成为一体而完全 固定,即不能移动也不能转动的一种约束形式。
例
(a)
图 2-13
(b)
固定端约束的约束力是由约束与被约束体紧密接触而产生的一个 分布力系。如图所示
O,若设合力作用线到简化中心的距离为d,则 d | MO | / | FR |。
情况(3)证明 其中 O 为合力 FR 的作用点,
(a)
(b)
(c)
FR FR FR M (FR ,FR) MO
图 2-15
另外,由图2-15(b)及证明过程知
n
MO (FR ) FR d MO MO (Fi ) i 1
注意
固定端约束与平面铰链约束中的固定铰链是有本质区别的。 从约束效果上看,固定端约束既限制被约束体移动又限制其转动, 而平面铰链约束则只限制被约束体移动,并不限制其转动; 从约束力的表示方法上看,固定端约束除与铰链约束一样, 用一对正交分力表示约束力的主矢之外, 还必须加上一个约束力偶,正是这个约束力偶起着限制转动的作用。
点A处的力F就由点B处的力 F F 及附加力偶等效代替了, 而且该力偶的力偶矩M等于原来的F对新作用点B的矩。
意义
在理论上,它建立了力与力偶这两个基本要素之间的联系。 在实践上,应用力线平移定理,可以很方便地简化一个复杂的力系。
例
攻螺纹用的铰杠丝锥
图 2-11 (a)
图 2-11 (b)
二、平面力系的简化 主矢与主矩
三、简化结果的进一步讨论 合力矩定理的证明
对平面力系向作用面内一点简化后得到的主矢和主矩做进一步分析后,
第四章平面一般力系
雨棚
RA MA
雨棚
XA A
MA YA
§4-2 平面一般力系向作用面内任一点的简化
简化结果分析
1. R 0 , MO 0
即原力系与一合力偶等效,其
MO
矩为 M=MO。故只有在此时主矩与
O
“O”的位置 无关。
2. R 0 , MO 0
即原力系与R′等效,所以称R′为原 力系的合力,且过点“O ” 。
平面 汇交 力系
R´( 过“O” 但与“O” 无关)
体转动效果的 物理量
主矢 + 主矩
意 向“O” 简化 力 系
平面 力偶 系
MO (与“O” 有关)
描述力系 对物体移 动效果的
物理量
§4-2 平面一般力系向作用面内任一点的简化
固定端约束力 固定端约束 —— 物体受约束的一端既不能沿 任何方向移动,也不能转动。如深埋在地底下 的电线杆、牢固浇筑在基础上的水泥柱及车站 的雨棚等。
MO (Fi )
即:平面任意力系的主矩MO 为力系中各个力对 点“O”力矩的代数和。
很明显,一旦“O ”的位置改变,各力偶矩的 大小和转向也随之而变,因此,MO 与“O ”有关。
§4-2 平面一般力系向作用面内任一点的简化
二、 主矢和主矩
r
大小:MO mO(Fi )
主矩 MO 方向:方向规定 +
合力矩定理
R 0 , MO 0
R´
MO
O
R´
= Od R
R" O'
=
R Od
O'
R R R d MO
R
合力矩定理 Rd MO (R) MO (F )
§4-2 平面一般力系向作用面内任一点的简化
理论力学4 平面一般力系
力F ′+ 力偶( F , F ′′)
3
说明: 说明 力线平移定理揭示了力与力偶的关系: ①力线平移定理揭示了力与力偶的关系:力 (例断丝锥) 例断丝锥)
力+力偶 力偶
有关, ②力平移的条件是附加一个力偶m,且m与d有关,m=F•d 力平移的条件是附加一个力偶 , 与 有关 ③力线平移定理是力系简化的理论基础。 力线平移定理是力系简化的理论基础。
Fx = 0, FAx − FT cos 30 0 = 0 ∑
Fy = 0, FAy + FT sin300 − P −Q = 0 ∑
1 ∑ M A = 0, FT 2 ⋅ 6a − P ⋅ 3a − Q ⋅ 4a = 0 F T = 17 . 33 kN 解得: F Ax = 15 . 01 kN 解得: F 22 Ay = 5 . 33 kN
a a 两力作用线过x1 = 和x2 = 3 2
17
§3-4
平面一般力系的平衡条件与平衡方程
一 平面任意力系的平衡方程 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零
r ′ 即 FR = 0
Mo = 0
FR′ = (∑ Fx )2 + (∑ Fy )2
MO = ∑MO (Fi )
∑ F = 0, F = 0 ∑ Fy = 0, FAy + FBy − P − q ⋅ 2a = 0
9
固定端(插入端) 固定端(插入端)约束 说明 ① 认为Fi这群力在同一平面内; 雨搭 ② 将Fi向A点简化得一力和一力偶; ③ FA方向不定可用正交分力FAX, FAY 表示; ④ FAX, FAY, MA为固定端约束反力;
FR FYA FXA
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B FNB
FAx
A
F FAy
1-4(d)
q B FNy
F
FAy A
FAx
1-4(b)
§2—3 平面力对点之矩的概念及计算 3
力对刚体的运动效应包括移动和转动两种, 力对刚体的运动效应包括移动和转动两种, 其中移动 由力矢来度量,而转动由力矩(或力偶)来度量。 由力矢来度量,而转动由力矩(或力偶)来度量。
M O ( F ) = ± Fh = ±2 A∆OAB
式中 A∆OAB为三角形OAB 的 面积,如图所示。单位为 N•m或kN •m。
力的作用效果
移动效应--取决于力的大小、方向 移动效应 转动效应--取决于力矩的大小、方向 转动效应
M O ( F ) = ± F ⋅d
+
-
说明: 说明:①
M O (F )是代数量。
M = ∑Mi
i=1
n
(2)平面力偶系的平衡 若力偶系平衡时,其合力偶的矩等于零。即
n
∑M
i =1
iHale Waihona Puke =0上式是平面力偶系平衡的必要与充分条件,即平 面力偶系的平衡方程。只有一个独立方程,只能 只有一个独立方程, 只有一个独立方程 求解一个求知数。 求解一个求知数
例1 : 已知
M1 = 2kN⋅ m, OA = r = 0.5m, θ = 30 ;
3.力偶与力偶矩 由两个大小相等、方向相反且不共线的平行力组成 的力系,称为力偶 力偶。如图所示,记作(F,F')。力 力偶 偶的两力之间的垂直距离d称为力偶臂 力偶臂,力偶所在的 力偶臂 平面称为力偶作用面。 力偶作用面。 力偶作用面
A F' D d B C F
如司机用双手转动驾驶盘,钳工用丝锥 攻螺纹,人们用手指转动钥匙或水龙头 等等都是力偶作用的例子。
② F↑,d↑转动效应明显。 ③ M O (F )是影响转动的独立因素。
M 当F=0或d=0时, O (F ) =0。
④单位N•m,工程单位kgf•m。 ⑤ M O (F ) =2⊿AOB=F•d ,2倍⊿形面积。
的作用点沿其作用线移动, 力F的作用点沿其作用线移动, 的作用点沿其作用线移动 不改变这力对O点的矩 点的矩。 不改变这力对 点的矩。
F‘2
(1)平面力偶系的合成
F4 A F3 d
F ‘3 B F ‘4 F'
A F F,F‘组成一新力偶即为合力偶 ,合力偶 的矩为 M=Fd=(F3-F4)d=F3d-F4d=M1+M2
d
B
同理,可以推得几个力偶的合成。即作用于刚体同平 面内的任意个力偶可以合成一个合力偶,合力偶矩等 于各个分力偶矩的代数和。可表示为
力偶矩矢
11) (3–11) 11
2.同平面内力偶的等效定理 定理:在同平面内的两个力偶,如果力偶矩相 等,则两力偶彼此等效。
由此可得两个推论: (1)力偶可以在其作用面内任意移转,而不影响 它对于刚体的效应。因此,力偶对刚体的作用与力 偶在其作用面的位置无关。 (2)只要保持力偶矩的大小和转向不变,可以同 时改变力偶中力的大小和力偶臂的长短,而不改变 力偶对刚体的作用。 这样,力偶中的力的大小和力臂长短都不是力偶的 特征量,故常用下图所示的符号表示。 F d == F' F1 d1 == F'1 F2 d2 == M
M O ( F ) = M O ( Fx ) + M O ( Fy ) = xFy − yFx
y y O x Fy
F
θ
A Fx x
上式为平面内力矩的解析形 上式为平面内力矩的 解析形 注意, 式。注意,式中各量应以代数 量代入。 量代入。
合力FR对点O之矩的解析表达式为
MO (FR ) = ∑(xi Fyi − yi Fxi )
A
θ
M1 M2
D
能与力偶平衡,所以支座O和D的约束力FO 和FD 只能分别平行于FAB 和FBA ,且与其方向相反。 写出杆OA和DB的平衡方程: ∑M = 0 M
O FBA A M1 FO
O
B
M1 − FABrcos θ = 0 − M2 + 2FBArcos θ = 0
因为
FAB M2
FAB = FBA
2、合力矩定理与力矩的解析表达式
合力矩定理:平面汇交力系的合力对于平面内任一点 合力矩定理: 之矩等于所有各分力对于该点之矩的代数和。 之矩等于所有各分力对于该点之矩的代数和。即
M O ( FR ) = ∑ M O ( Fi )
i =1
n
为了便于计算力对点之矩,将力分解成两个正交分力, 为了便于计算力对点之矩,将力分解成两个正交分力, 如图所示,再利用合力矩定理求得。 如图所示,再利用合力矩定理求得。即
F
A
F F’NC
2.取分离体画受力图 2.取分离体画受力图 3.解除约束 3.解除约束
FNC
B
F’NB
FNA
FNB
FNB
C
FNC
1-5(c)
FND
1-5(a)
FAy
q
F’Nc F FNc 1-5(e) FND
A
FAx FNB
及铰链O, 处的约束力 处的约束力。 求:平衡时的 M2 及铰链 ,B处的约束力。 由力偶只能由力偶平衡的性质,画受力图 解:取轮,由力偶只能由力偶平衡的性质 画受力图。 取轮 由力偶只能由力偶平衡的性质 画受力图。
∑M = 0
解得
M1 − FA ⋅ r sinθ = 0
F = FA = 8kN O
M2 = 2M1
所以求得 D FD
图示结构, =800N.m, 两点的约束反力。 例5 图示结构,已知M=800N.m,求A、C两点的约束反力。
M AC = RC ⋅ d = 0.255 R C ( N .m )
∑M
i
=0
M AC − M = 0
RC = 3137 N
作业:2-6,2作业:2-6,2-8 :2
例题 4 如图所示的铰接四连杆机构OABD,在杆OA和BD 上分别作用着矩为M1和M2的力偶,而使机构在图示位 置处于平衡。已知OA=r,DB=2r,θ =30°,不计杆重, 试求M1和M2间的关系。 B A
θ
M1 M2
D
O
解:
B
因为杆AB为二力杆,故其反力FAB和FBA只
能沿A,B的连线方向。 分别取杆OA和DB为研究对象。因为力偶只
i=1
n
如图所示,如果已知: 如图所示,如果已知:F 、θ、ϕ 、l,求力F 对点O之矩 (1)按力矩的定义
MO (F) = F ⋅ h = Flsin(90 −θ +ϕ) = Fl cos( −ϕ) θ
(2)应用合力矩定理
MO (F) = MO (Fx ) + MO (Fy ) = F sinθ ⋅ l sinϕ + F cosθ ⋅ l cosϕ + = Fl cos( −ϕ) θ
图示结构 ,若 F 下的约束力
P
已知, 和 L 已知, 确定二种情形
L A L A L C M=FP L C L B B L
L M=FP L A A C C
L B L B M=FP L
L L D M=FP L D
FNA
FNB
P
1-3(b)
注意事项
1.用作图工具画图:铅笔、 1.用作图工具画图:铅笔、直尺 用作图工具画图
授课内容( 授课内容(四)
作业讲评 §2—3 平面力对点之矩的概念及计算 3 §2-4 平面力偶与平面力偶系
2010年9月15日
注意事项
F
1.用作图工具画图:铅笔、 1.用作图工具画图:铅笔、直尺 用作图工具画图 2.取分离体画受力图 2.取分离体画受力图
FNB
P
FNA 1-3(b)
3.解除约束 3.解除约束
力偶不能合成为一个力,但又不平衡,故力偶也不能 用一个力来平衡。力偶和力一样为一个基本力学量。 力偶的作用只改变物体的转动状态,其效应用力偶矩来 度量,其值为力与力偶臂的乘积,即Fd与矩心位置无关。 平面力偶对物体的作用效应,由两个因素决定: (1)力偶矩的大小 ) (2)力偶在作用面的转向。 )力偶在作用面的转向。 因此,平面力偶矩是一个代数量,以M表示,即 M=±Fd=±2A△ABC 转向用正负号表示,用力矩规定。力偶矩的单位为 N•m,与力矩相同。
取杆BC,画受力图。 取杆 ,画受力图。
r − M2 = 0 ∑M = 0 F ⋅ sinθ 解得 M2 = 8kN⋅ m FB = FA = 8kN
' A
例题 2
在一钻床上水平放置工件,在工件上同时钻四个等直 径的孔,每个钻头的力偶矩为M1=M2=M3=M4=15N•m。 求工件的总切削力偶矩和A 、B端约束力。
例题 3 一简支梁作用一矩为M 的力偶,不 计梁重,求二支座约束力。 M A l B
解:以梁为研究对象。
梁上除作用有力偶 M 外,还 有反力FA,FB 。
M A FB l
FA B
因为力偶只能与力偶平衡,所 以 FA=FB。 又 ∑M = 0 即 M - FAl = 0
所以 FA =FB = M / l
已知: 求: 解:
a, b, F , α
Mo F = ?
( )
Fy
o a
F = Fx + Fy
αF x b
F
M o F = M o Fx + M o Fy
( )
由合力矩定理
( )
( )
= − Fx b + Fy a
= − Fbcosα + Fasinα
Fx = Fcosα
Fy = Fsinα