金属切削加工的基本知识

合集下载

机械制造基础-金属切削加工(本)

机械制造基础-金属切削加工(本)
Page 40
车刀结构
(1)焊接式车刀 (2)机夹重磨式车刀 (3)机夹可转位车刀
Page 41
车刀结构
可转位车刀特点: 避免焊接缺陷 减少调刀时间 刀具材料性能好 标准化程度高
Page 42
2.车刀切削部分的主要角度
(1).坐标平面参考系 ① 基面pr:通过主切削刃选 定点,与该点切削速度垂直 的平面 ②主切削平面ps:通过主切 削刃选定点,与主切削刃相 切并垂直于基面 ③正交平面po :通过主切削 刃选定点,同时垂直于基面 和主切削平面 ④假定工作平面pf :通过主 切削刃选定点,垂直于基面 并平行于假定进 给运动方向
• 目前还没有一种刀具材料能够全部满足上述要求。
Page 27
一、
• • • •
常用刀具材料及其选择
碳素工具钢 合金工具钢 高速钢 硬质合金
常 用 新 型 材 料
Page 28
• 陶瓷刀具 • 金刚石刀具 • 立方氮化硼
碳素工具钢
• 碳素工具钢(T10、T12等)——含碳量较高(0.71.3)的优质钢,杂质少(S、P),淬火后较硬
Page 36
立方氮化硼
• 立方氮化硼刀具的硬度、耐磨性、热稳定 性、化学稳定性、导热性都比较高; • 主要的两大类氮化硼刀具是: • 整体聚晶立方氮化硼 • 立方氮化硼复合片
Page 37
刀具构造
二、刀具的组成
n
夹持部分 切削部分
f
刀具的组成:
切削部分 夹持部分
Page 38
三、刀具的几何形状
• 直线度 • 平面度 • 圆度
圆柱度 线轮廓度 面轮廓度
形状公差的标注
在图纸上用两个框格标注,前一框格标注形 状公差符号,后一框格填写形状公差值

金属切削的基础知识

金属切削的基础知识
弹性变形 塑性变形 挤裂 切离 切屑
切削过程: 三个变形区
(1)第一变形区
(2)第二变形区: (3)第三变形区:
制造技术
切屑种类:
1)带状切屑
外形连绵不断,与前刀 面接触的面很光滑,背面呈毛 茸状。用较大前角、较高的切 削速度和较小的进给量切削塑 性材料时,容易得到带状切屑。
制造技术
2)崩碎切屑 切削铸铁等脆性材料
制造技术
二、切削热的传散
在一般干切削的情况下,大部分的切削热由切屑传散出 去,其次由工件和刀具传散,而周围介质传散出去的热量很 少。但各种传散热量的比例,随着工件材料、刀具材料、切 削用量、刀具角度及切削方式等切削条件的不同而异。 切削热传散给切削及周围介质,对切削加工没有影响, 且传散得越多越好。 切削热传散给刀具切削部分,使刀具磨损加快,缩短刀 具的使用寿命;切削热传散给工件,影响工件的加工精度和 表面质量。 为了减小切削热对工件加工质量的不良影响,可采取的 两方面工艺措施:一是减小工件材料的变形抗力和摩擦阻力, 降低功率消耗和减少切削热;二是要加速切削热的传散,以 降低切削温度。
面粗糙度;严重时,会引起崩刀打刀,加速刀具的磨损。 二、表层材质变化
1.加工硬化
加工硬化是指在切削过程中,工件已加工表面受刀刃和后 面的挤压和摩擦而产生塑性变形,使表层组织发生变化,硬度 显著提高的现象。硬化层深度可达到0.02~0.03mm,表层硬度 约为工件材料的1.2~2倍。
制造技术
对加工硬化的影响因素:刀具几何参数、切削条件、工件
制造技术
2.润滑作用 金属切削加工液(简称切削液)在切削过程中的润滑作用, 可以减小前刀面与切屑,后刀面与已加工表面间的摩擦,形成部 分润滑膜,从而减小切削力、摩擦和功率消耗,降低刀具与工件 坯料摩擦部位的表面温度和刀具磨损,改善工件材料的切削加工 性能。在磨削过程中,加入磨削液后,磨削液渗入砂轮磨粒-工 件及磨粒-磨屑之间形成润滑膜,使界面间的摩擦减小,防止磨 粒切削刃磨损和粘附切屑,从而减小磨削力和摩擦热,提高砂轮 耐用度以及工件表面质量。 3.清洗和排屑作用 在金属切削过程中,要求切削液有良好的清洗作用。除去生 成切屑、磨屑以及铁粉、油污和砂粒,防止机床和工件、刀具的 沾污,使刀具或砂轮的切削刃口保持锋利,不致影响切削效果。 对于油基切削油,粘度越低,清洗能力越强,尤其是含有煤油、 柴油等轻组份的切削油,渗透性和清洗性能就越好。含有表面活 性剂的水基切削液,清洗效果较好,因为它能在表面上形成吸附

第十七章 金属切削加工基础知识

第十七章 金属切削加工基础知识

图17-17 刀具磨损的三个阶段
• 第五节
工件材料的切削加工性
• 一、 衡量工件材料切削加工性的指标 • 由于切削加工性是对材料多方面的综合评价,所以很难用一个简单的 物理量来精确规定和测量。在生产和实验中,常取某一项指标来反映 材料切削加工性的某一具体方面,最常用的是vT和Kr。 • vT——指在一定的切削条件下,当刀具的寿命为T分钟时,切削某种材 料所允许的最大的切削速度。vT越高,表示材料的切削加工性越好。 通常取T=60min,则vT可写作v60。 • Kr——称为相对加工性,一般以正火状态45钢的v60为基准,写作 (v60),然后将其它各种材料的v60与之相比所得的比值。当Kr>1时, 表示该材料比45钢容易切削。反之,则比45钢难切削。常用工件材料 的相对加工性可分为八级,见表17-2。
• 五、切削热与切削温度 • 1.切削热的来源: • ⑴是正在加工和已加工表面所发生的弹性和塑性变形而产生的大量的热, 是切削热的主要来源; • ⑵是切屑与刀具前刀面之间的摩擦产生的热; • ⑶是工件与刀具后刀面之间的摩擦产生的热。切削时所消耗的功约有98% -99%转换为切削热。 • 2.切削温度 • 切削温度过高,会使刀头软化,磨损加剧,寿命下降;工件和刀具受热膨 胀,会导致工件精度超差影响加工精度,特别是在加工细长轴、薄壁套时, 更应注意热变形的影响。 ⑴ • 在生产实践中,为了有效地降低切削温度,常应用切削液,切削液能带走 大量的热,对降低切削温度的效果显著,同时还能起到润滑、清洗和防锈的 作用。常见的切削液有: • ⑴切削油 主要是各种矿物油、动植物油和加入油性、极压添加剂的混 合油。其润滑性能好,但冷却性能较差,主要用来减少磨损和降低工件的表 面粗糙度,一般用于低速精加工,如铣削加工和齿轮加工等。 • ⑵水溶液 主要成分是水并加入防锈剂、表面活性剂或油性添加剂。其 热导率高、流动性好,主要起冷却作用,同时还具有防锈、清洗等作用。 • ⑶乳化液 由乳化油加水稀释而成,呈乳白色或半透明状,有良好的流 动性和冷却作用,是应用最广泛的切削液。低浓度的乳化液用于粗车、磨削。 高浓度乳化液用于精车、钻孔和铣削等。在乳化液中加入硫、磷等有机化合 物,可提高润滑性。适用于螺纹、齿轮等精加工。

第一章 金属切削基本知识

第一章 金属切削基本知识

刀具角度对加工过程的影响
1. 前角(0) ① 减小切屑的变形;
作用 ② 减小前刀面与切屑之间的摩擦力。
a .减小切削力和切削热; 所以 0 : b .减小刀具的磨损;
c .提高工件的加工精度和表面质量。
0
0选择:
加工塑性材料和精加工—取大前角( 0 ) 加工脆性材料和粗加工—取小前角(0 )
前角(0)可正、可负、也可以为零。
➢ 偏挤压:金属材料一部分受挤压时 ,OB线以下金属由于母体阻碍,不 能沿AB线滑移,而只能沿OM线滑移
F
B
O
a)正挤压
45° M A F
BO
b)偏挤压
➢ 切削:与偏挤压情况类似。弹性变
M
形→剪切应力增大,达到屈服点→产 生塑性变形,沿OM线滑移→剪切应
O F
力与滑移量继续增大,达到断裂强度
c)切削
后角( 0)只能是正的。
精加工: 0= 80~120 粗加工: 0= 40~80 3 . 主偏角(kr)
作用:改善切削条件,提高刀具寿命。
减小kr:当ap、f 不变时,则 aw 、ac — 使切削条件得到改善,提高了刀具寿命。
dw
ap
dm
但减小kr
Fy 、
n
Fx ,加大工件的变形
挠度,使工件精度降
化学惰性
低 惰性大 惰性小 惰性小 惰性大
耐磨性 低 加工质量

较高
高 最高
最高
很高
一般精度 Ra≤0.8 Ra≤0.8 IT7-8 IT7-8
高精度 Ra=0.1-0.05
IT5-6
Ra=0.4-0.2
IT5-6 可替代磨削
低速加 加工对象 工一般

金属切削加工的基本知识

金属切削加工的基本知识

第一章金属切削加工的根本学问教学方法导入课:金属切削加工,通常又称为机械加工,是通过刀具与工件之间的相对运动,从毛坯上切除多余的金属,从而获得合格零件的加工方法。

切削加工的根本形式有:车、铣、刨、磨、钻等,包括钳工加工〔錾、锉、锯、刮削、钻孔、铰孔、攻丝、套丝等〕一般状况下,通过铸造、锻造、焊接及轧制的型材毛坯精度低和外表粗糙度大,必需进展切削加工才能成为零件。

本章主要介绍金属切削加工中的根本规律和现象。

讲授课:第一节金属切削加工的根本概念一、切削运动和切削要素1、切削运动切削运动是为了形成工件所必需的刀具和工件之间的相对运动。

切削运动按其作用不同,分为主运动和进给运动。

(1)主运动是切削运动中速度最高、消耗功率最大的运动;一般切削运动中,主运动只有一个。

各种机械加工的主运动:车削:工件的旋转铣削:铣刀的旋转刨削:刨刀〔牛头刨〕或工件〔龙门刨〕的往复直线运动钻削:刀具〔钻床上〕或工件〔车床上〕的旋转。

(2)进给运动是使的切削层金属不断地投入切削,从而切出整个外表的运动;进给运动可以是一个或多个。

各种机械加工的进给运动:车削:刀具的移动铣削:工件的移动钻孔:钻头沿轴向移动内外圆磨削:工件旋转和移动切削加工过程中,为实现机械化和自动化,提高效率,除切削运动外,还需要关心运动。

如切入运动,空程运动,分度转位运动、送夹料运动及机床掌握运动等。

切削过程中形成三个外表:待加工外表、加工外表、已加工外表2、切削要素包括切削用量和切削层横截面要素。

(1)切削用量三要素1)切削速度v是主运动的线速度〔m/s 或m/min 〕a = d w旋转主运动:2) 进给速度 v f 或进给量 fv f :单位时间内刀具对工件沿进给方向的相对位移〔 mm/s或 mm/min 〕进给量 f :工件或刀具每转一周,刀具对工件沿进给方向的相对位移。

〔mm/r 〕切削时间 t = L/v f = L/nf3〕背吃刀量 a p 〔切削深度〕工件已加工外表和待加工外表的垂直距离〔mm 〕 教学方法 外圆车削: - d p 2钻孔: a = d mp 2合成切削运动 :v e = v +v f 〔向量的关系〕(2) 切削层横截面要素切削层是指刀具与工件相对移动一个进给量时,相邻两个加工外表之间的金属层,切削层的轴向剖面称为切削层横截面。

2技能准备篇之金属切削加工的基本知识

2技能准备篇之金属切削加工的基本知识

图2-2 切削运动及选定点
2.进给运动
进给运动是指使新的切削层金属不断地投入 切削,从而切出整个工件表面的运动。进给 运动形式可以是连续的,也可以是间断的; 可以是直线运动,也可以是旋转运动。进给 运动的运动方式主要有:车削是刀具移动; 铣削是工件移动;钻削是钻头沿其轴线方向 移动;内、外圆磨削是工件旋转和移动等。 进给运动可以是一个、多个或者没有。进给 运动的速度较小,消耗的功率也较小。
被切除的金属层)。切削层(沿工件)的轴向
剖面称为切削层横截面,如图2-3所示。切削层
的尺寸被称为切削
参数。切削层横截
面要素包括切削层
公称宽度bD、公称 厚度hD和公称横截 面积AD三个要素。
图2-3 纵车外圆时的切削层要素
1.切削层公称宽度bD 切削层公称宽度bD是指 刀具主切削刃与工件的接触长度,沿工件过渡 表面度量,单位为mm。当λs=0°时,有
(2)刀具工作角度参考系,它是确定刀具在 切削运动中有效工作角度的参考系。
两类角度参考系的区别在于:刀具标注角度参 考系由主运动方向确定,而刀具工作角度参 考系则由合成切削运动方向确定。由于通常 进给速度远小于主运动速度,所以刀具工作 角度近似等于刀具标注角度。
为了方便理解,以刨刀为例建立静止参考系。
宽刃刨刀垂直自由切削刀具标注角度参考系
通过对上图的分析发现,宽刃刨削具有以下特 点:刀刃为直线、刀刃长度大于工件宽度、前 面和后面均为平面、无进给运动(只有主运动)。
1.宽刃刨刀静止参考系的建立
选取三个相互垂直的参考平面构建宽刃刨刀的 静止参考系,即正交平面参考系。
取过主切削刃上选定点,平行于主运动方向并 切于工件过渡表面的平面为切削平面(ps)。
图2-2 合成切削运动

金属切削加工的基本知识

金属切削加工的基本知识

金属切削加工的基本知识金属切削加工是一种高精度、高效率的加工工艺,广泛应用于制造各种金属零件和工业产品。

本文将介绍一些关于金属切削加工的基本知识,包括加工原理、常用工具、加工过程和注意事项等。

1. 加工原理金属切削加工的原理是利用旋转的刀具在金属工件上切削,将金属切屑削除,以达到加工精度和表面质量的要求。

切削加工一般分为转动切削和直线切削两种方式。

转动切削是指刀具绕底线旋转,如车削、铣削、钻削等。

直线切削是指刀具相对于工件作直线运动,如镗孔、拉铣、拉削等。

2. 常用工具金属切削加工的常用工具包括车刀、铣刀、钻头、工具刀、镗刀、拉削刀等。

车刀和铣刀是常见的切削工具,通常由切刃、切削角、刃倾角、切刃宽度等部分组成。

钻头是专门用于钻孔的工具,通常用来钻圆形孔和通孔。

工具刀是用于切削轻质材料、薄板和半成品的工具,镗刀是用于镗孔的工具,拉削刀则是用于削成品的工具。

3. 加工过程金属切削加工的加工过程分为粗加工、半精加工和精加工三个阶段。

粗加工是指在尺寸留出一定的余量后,利用粗加工刀具先将工件上的金属材料削除,以达到快速加工的目的。

半精加工要求切削刃的精度和表面质量比粗加工更高一些,工件尺寸也更加接近目标尺寸。

精加工则是最后通过切削刃对工件进行微调,以达到期望的尺寸和表面精度要求。

4. 注意事项金属切削加工需要注意安全,因为在加工过程中可能会飞溅出热的金属屑、润滑剂和冷却液。

所以在切削加工时需要戴好防护眼镜、手套等个人防护用具。

此外,还要注意刀具的选择、加工参数的调整、加工尺寸的测量等方面,以确保加工质量和效率。

金属切削的基础知识

金属切削的基础知识

金属切削的基础知识金属切削是一种通过切削工具在金属工件上施加力量,使其产生剪切应力,从而剥离所需形状的金属层的加工方法。

它是目前最常用和广泛应用的金属加工方式之一。

以下是金属切削的基础知识:1. 切削工具:切削工具通常由硬质材料制成,如高速钢、硬质合金等。

常见的切削工具包括刀片、钻头、铣刀等。

刀具的选择根据加工材料、加工形状和加工质量要求等因素进行。

2. 切削速度:切削速度是指在单位时间内切削刀具工作部分对工件的相对运动速度。

它是影响切削加工效果和刀具寿命的重要因素。

通常以米每分钟(m/min)作为单位。

3. 进给速度:进给速度是指切削刀具沿工件表面移动的速度。

它决定了每分钟进给长度。

进给速度的选择需要考虑切削深度、加工精度和刀具强度等因素。

4. 切削深度:切削深度是指切削刀具在每次切削中从工件表面剥离金属的厚度。

切削深度越大,切削力也会增加,刀具磨损加剧。

因此,切削深度的选择要根据材料性质、刀具强度和加工要求等综合考虑。

5. 切削力:切削力是指在切削过程中作用在切削刀具上的力。

它是切削加工过程中的重要力学参数,会影响刀具的磨损和加工精度。

切削力的大小与切削厚度、切削速度、切削角度和材料硬度等因素密切相关。

6. 刀具磨损:切削刀具在切削过程中会不可避免地发生磨损。

刀具磨损会使切削力增加、切削质量下降,并且降低了刀具的寿命。

因此,定期更换和修磨切削刀具是保证加工质量和生产效率的重要措施。

7. 切削液:切削液是指在金属切削过程中加入的一种液体。

它主要用于降低切削温度、润滑切削表面、冲洗切削区域,以减少金属切削时产生的摩擦和热量。

良好的切削液选择能够有效地提高加工质量和刀具寿命。

金属切削是工业生产中广泛应用的加工方式之一,掌握金属切削的基础知识对于提高加工质量、降低生产成本具有重要意义。

因此,对于从事金属加工的工作者来说,了解切削工具、切削速度、进给速度、切削深度、切削力、刀具磨损以及切削液等基础知识是十分必要的。

金属切削加工基本知识

金属切削加工基本知识

第一章金属切削及机床的基本知识
基本内容: 主要介绍刀具几何角度及工作角度、切削变形
与积屑瘤、切削力、切削热、切削温度、刀具磨 损与刀具耐用度、切削液及刀具几何参数的合理 选择、机床的基本知识等。 2.基本要求:
刀具几何角度和积屑瘤的成因、作用及控制措施 影响切削力、切削热、切削温度、刀具磨损的因 素; 合理选择刀具材料、几何参数、切削液等。
部分表面。
3.切削用量 切削用量是切削速度、进给量(或进给速度)和背吃刀量 的总称。
1)切削速度(Vc)是指在切削加工时,切削刃上选定 点相对于工件的主运动瞬时线速度。
Vc=πDn/1000
2)进给量(f)是指工件(或刀具)每回转一周时,刀 具(或工件)在进给运动方向上的相对位移量。
3)背吃刀量(ap)指待加工表面和已加工表面之间的 垂直距离。
度达10000HV,耐磨性是硬质合金的60~80 倍;切削刃锋利,能实现超精密微量加工和 镜面加工;很高的导热性。 (3)缺点:耐热性差,强度低,脆性大,对振动 很敏感。 (4)适用范围:用于高速条件下精细加工有色金 属及其合金和非金属材料。
3)立方氮化硼刀具
(1)概念:立方氮化硼(简称CBN)是由六方氮化 硼为原料在高温、高压下合成。
A、刀具耐磨性是刀具抵抗磨损能力。 一般刀具硬度越高,耐磨性越好。 刀具金相组织中硬质点(如碳化物、氮化物等)越多,
颗粒越小,分布越均匀,则刀具耐磨性越好。 B、刀具材料耐热性是衡量刀具切削性能的主要标志,
通常用高温下保持高硬度的性能来衡量,也称热硬性。 刀具材料高温硬度越高,则耐热性越好,在高温抗塑性
γoe = γo + µ αoe = αo - µ
2)纵向进给运动对工作角度的影响

金属工艺学第一章 金属切削基础知识

金属工艺学第一章 金属切削基础知识

主要的影响因素
切削速度 (切中碳钢) <5m/min不产生 5~50m/min形成
控 制 措 降低塑性 施
(正火、调质)
>100 m/min不形成 选用低速或高速
冷却润滑条件
300~500oC最易产 生 >500oC趋于消失
选用切削液
第三节 金属切削过程
三、切削力与切削功率
1、切削力的构成与分解
切削力的来源
热处理变形 不需要
用途
各种刀片
1200
(12~14)
高硬度钢材 精加工
人造金刚石
HV10000 (硬质合金为 HV1300~1800)
700~800
不宜加工钢铁材 料
第二节 刀具材料及刀具构造
三、刀具角度
各种刀具的切削部分形状
第二节 刀具材料及刀具构造
二、刀具角度
1、车刀切削部分的组成
三面
两刃 一尖
(2)作用 ①冷却 ②润滑
第三节 金属切削过程
五、刀具磨损和刀具耐用度
1、刀具磨损形式
(1)前刀面磨损 (2)后刀面磨损 (通常以后刀面磨损值VB表示刀具磨损程度) (3)前后刀面同时磨损
2、刀具磨损过程:
前面磨损、后面磨损、前后面同时磨损 。 刀具磨损过程: 初期磨损阶段、正常磨损阶段、急剧磨损阶段
刀尖高低对刀具工作角度的影响
车刀刀杆安装偏斜对刀具角度的影响
② 进给运动的影响
第二节 刀具材料及刀具构造
三、刀具结构
刀具的结构形式很多,有整体式、焊接式、机夹 不重磨式等。
目前一般整体式的多为高速钢车刀,其结构简单, 制造、使用都方便。而对于贵重刀具材料,如硬质合 金等,可采用焊接式或机夹不重磨式。焊接式车刀结 构简单、紧凑、刚性好,可磨出各种所需角度,应用 广泛。

金属切削加工基本知识

金属切削加工基本知识
我国最常用的硬质合金分为钨钴类(代号YG)和钨钛钴类(代号YT ) 两种。其中钨钴 类硬质合金硬度与耐热性较低,强度、韧性和导热性较好,主要用于加工脆性材料, 如铸铁、青铜等。钨钛钴类硬质合金硬度和耐热性高于钨钴类硬质合金,所以钨钛钴 类硬质合金更适合于加工钢材等塑性材料。 1) 钨钻类硬质合金碳化物是碳化钨(WC) 。常用的牌号有YG8、YG6、YG3等。YG8 有较高的强度和韧性,能承受较大的冲击载荷,适宜于粗加工,而YG3则适用于精加 工。 2) 钨钛钴类硬质合金碳化物是WC、TiC。常用的牌号有YT5,YTl5,YT30。YT30 的硬度和耐热性很高,但强度和韧性很差,用于精加工;而YT5则相反,适用于粗加 工。
一、刀具材料
1.刀具材料应具备的性能
(1) 硬度 刀具切削部分的硬度,必须高于工件材料的硬度才能切下切屑。 一般其常用硬度要求在HRC60以上。 (2) 强度和冲击韧性 在切削力作用下工作的刀具,必须具有足够的抗弯 强度。刀具在切削时会承受较大的冲击载荷和振动,因此必须具备足够 的韧性。 (3) 耐磨性 为保持刀刃的锋利,刀具材料应具有较好的耐磨性。一般来 说,材料的硬度越高.耐磨性则越好。 (4) 红硬性 由于切削区的温度较高.因此刀具材料要有在高温下仍能保 持高硬度的性能,这种性能称为红硬性或热硬性。 (5) 工艺性 为了便于刀具的制造和刃磨.刀具材料应具有良好的切削加 工性和可磨削性,以及良好的热处理性能。
图4—5刀具几何角度
(3)刀具几何角度的选择及其对切削加工的影响 前角(γo)
前角大,刀具锋利,切削层的塑性变形和摩擦阻力减小,切削力和切 削热降低。但前角过大会使切削刃强度减弱,散热条件变差,刀具寿命下 降,甚至会造成崩刃。前角的大小选择原则:
1)工件材料的强度、硬度低,塑性好,应取较大前角;加工脆 性材料,应取较小前角:加工特硬材料,应取负前角。 2)高速钢刀具可取较大前角;硬质合金刀具应取较小前角。 3)精加工应取较大前角;粗加工或断续切削应取较小前角。

金属切削加工基础知识

金属切削加工基础知识

第7章金属切削加工基础知识一、判断题1.切削运动中,主运动通常只有一个,进给运动的数目可以有一个或几个。

()2.车削外圆时,进给运动是刀具的横向运动。

()3.当切削刃安装高于工件的中心时,其实际工作前角会变小。

()4.在基面内测量的角度是刃倾角。

()5.在主切削平面内测量的角度是主偏角。

()6.刃倾角的正负影响切屑的排出方向。

当刃倾角为正时,切屑流向已加工表面。

()7.一般来说, 刀具材料的硬度越高,耐磨性越好。

()8.背吃刀量对刀具寿命影响最大,进给量次之,切削速度最小。

()9.工件材料的硬度和强度越高,切削力越大,切削加工性就越差。

()10.低碳钢硬度低,切削加工性最好,中碳钢次之,高碳钢最难切削。

()11.切削层公称厚度(简称切削厚度)BdhD:是垂直于工件过渡表面测量的切削层横截面尺寸。

( )12.耐热性和化学稳定性是衡量刀具切削性能的主要指标。

( )13.在同样切削条件下,硬质合金刀具(韧性差,怕冲击振动)的前角应比高速钢的大些。

( )14.当以很大的刀具前角、很大的进给量和很高的切削速度切削钢等塑性金属时形成的是节状切屑。

( )15.背切削力Fp也称为切向力。

( )16.积屑瘤使刀具的实际前角增大,并使切削轻快省力,所以对精加工有利。

( )17.切削用量中,切削速度对刀具寿命影响最大,进给量次之,背吃刀量影响最小。

( )18.刀具寿命是指刀具从开始切削到完全报废实际切削时间的总和。

( )19.当用较低的切削速度,切削中等硬度的塑性材料时,常形成崩碎切屑。

( )20.精车加工塑性金属时为避免积屑瘤的产生,常采用高速或低速切削。

( )二、填空1、切削运动包括运动和运动两种,其中运动是切削运动中速度最高、消耗功率最多的运动。

2、切削用量三要素是指、和。

3、外圆车刀的切削部分由面刃和尖组成。

4. 金属切削过程的实质,是被切削金属连续受到刀具的和,产生和,最终使被切削金属与母体分离形成切屑的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)进给速度vf和进给量f
进给速度vf是单位时间内刀具对工件沿进给方
向的相对位移,单位是mm/s或mm/min。
进给量f是工件或刀具每回转一周时两者沿进
给运动方向的相对位移,单位是mm/r。
二者关系:
vf=f×n
切 削 用 量 三 要 素
(3)背吃刀量 工件上已加工表面和待加工表面间的垂直距 离,单位为mm。 外圆柱表面车削的深度可用下式计算: ap=(dw-dm)/2 mm 对于钻孔工作 ap=dm/2 mm 上两式中 dm——已加工表面直径(mm) dw—— 待加工表面直径(mm)
(3)金刚石
是目前人工制造出的最硬的物质,分天然和人造两种。
特点:
耐磨性好,可用于加工硬质合金、陶瓷、高硅铝合金及耐磨塑料等高硬度、
高耐磨的材料;
其热稳定性差, 强度低、脆性大、对振动敏感,只宜微量切削; 与铁有极强的化学亲合力,不适于加工黑金属。
(4)立方氮化硼
由软的立方氮化硼在高温高压下加入催化剂转变而成。
切 削 层 横 截 面 要 素
由切削刃正在切削的这一层金属叫作切削层。切削层的 截面尺寸称为切削层参数。它决定了刀具切削部分所承受的 负荷和切屑尺寸的大小,通常在基面Pr内度量。 1. 切削厚度 ac (λs= 0)
ac= f sinκr
2. 切削宽度 aw
aw= ap/sinκr
3. 切削层面积 Ac ( κr = 0)
特点:Leabharlann 有很高的硬度及耐磨性; 热稳定性好,可用来加工高温合金; 化学惰性大,可用与加工淬硬钢及冷硬铸铁; 有良好的导热性、较低的摩擦系数。
第二节 金属切削过程中的基本规律
一、切削变形
1.变形区的划分
第Ⅰ变形区
近切削刃处 切削层内产生的塑性变形区; 是切削过程中产生变形的主 要区域。
刀 具 的 工 作 角 度
以上所讲的刀具标注角度,是在假定运动条件和 假定安装条件下的标注角度。 如果考虑合成运动和实际安装情况,则刀具的参 考系将发生变化,刀具角度也随之发生变化。 按照刀具工作中的实际情况,在刀具工作角度参 考系中确定的角度,称为刀具工作角度。 进给运动对工作角度的影响 刀具安装高低的影响 刀具安装 情况对工 作角度的 影响
一、切削运动与切削要素 1、切削运动
切削运动是为了形成工件表面所必需的、刀具 与工件之间的相对运动。 金属切削机床的基本运动有直线运动和回转运 动。但是,按切削时工件与刀具相对运动所起的作 用来分,可分为主运动和进给运动。
主运动
是切下金属所必须的最基本 的运动。通常它的速度最高,消 耗机床功率最多。一般只有一个 主运动。 进给运动 使新的金属不断投入切削的 运动。进给运动可以是连续运动, 也可以是间歇运动。可以有一个 或多个进给运动。 切削过程中,主运动与进给 运动的合理组合,便可以加工各 种不同的工件表面。
分 类
短切屑黑色金属 有色金属非金属
WC+ Co
常用硬质合金牌号及应用范围
见教材第12页 表1-2:

其它刀具材料
(1)涂层刀具
它是在韧性较好的硬质合金基体上,或在高速钢刀具 基体上,涂抹一薄层耐磨性高的难熔金属化合物而获得的。 常用的涂层材料有TiC、TiN、Al2O3等。
特点:
有较高的耐磨性和抗月牙洼磨能力; 有低的摩擦系数,耐热性高; 通用性好,便于刀具的管理; 不能采用焊接结构,不能重磨。
机械制造及工艺
第一章 金属切削加工的基本知识
金属切削加工的基本概念
金属切削过程中的基本规律
提高生产率的途径
第一节 金属切削加工的基本概念
切削加工是通过刀具与工件之间的相对 运动,从毛坯上切除多余的金属,从面获得 合格零件的加工方法。
切削加工的基本形式: 车削 铣削 刨削 磨削 钻削 钳工加工

基面pr:通过切削刃选定
点,垂直于主运动方向的平 面。

切削平面ps:通过切削刃
选定点、与切削刃相切、并 垂直于基面pr的平面。
主剖面po:通过切削刃选 定点,同时垂直于基面pr和 切削平面ps的平面。 主剖面参考系pr – ps–po是目前生产中最

常用的刀具标注角度参考系
主剖面与法剖面参考系
余偏角:在基面内度量的切 削平面与切深平面的夹角, 也是主偏角的余角。 刀尖角:主切削刃与副切削 刃在基面上的投影间的夹角。
刃倾角:在切削平面内度 量的主切削刃与基面的夹 角。
法剖面参考系内的标注角度
法前角γn
法后角αn
法楔角βn 与主剖面参考 系内的标注角度的 区别仅在于以法剖 面代替主剖面作为 测量前角、后角、 楔角的平面。其余 角度完全相同。
副后刀面Aa ’: 与副切削刃毗邻,与工件
2、刀具角度参考系
刀具标注角度参考系
刀具制造、测量、刃磨时的基准 刀具工作角度参考系 确定刀具在切削运动中有效工作角度的基准 构成刀具标注参考系的参考平面 基面 切削平面 主剖面 切削刃法剖面 进给剖面 切深剖面
其中基面与切削平面是两个基本的参考平面,以它们作 基准,加上其它任意一个剖面,便构成各种不同的刀具 标注角度参考系。
切削层横截面要素
切 削 用 量 三 要 素
(1)切削速度v
主运动的线速度。
主运动是旋转运动时: vc=πd n/1000 m/s 或 m/min 式中 d-工件或刀具上某一点的回转直径(mm) n-工件或刀具的转速(r/s或r/min)
注:磨削速度单位用m/s
其它加工的切削速度单位用m/min
切 削 用 量 三 要 素
κr e =κr +G
κr e = κr -G
κ =κ - G
' re
' r
κ'r e = κ'r +G
三、刀具材料及选用
刀具的切削性能决定于刀具结构、切削部分的材料和几何参数
1.刀具材料必须具备的性能
(1) 高的硬度和耐磨性 常温硬度60HRC以上,耐磨性是硬度、 组织 结构及化 学性能等的综合反映。一般来说,硬度越高越耐磨。 (2)足够的强度和冲击韧性 (3)高耐热性 (4)良好的工艺性 (5)好的导热性和小的膨胀系数 (6)经济性
刀杆中心线与进给方向 不垂直的影响
进给运动的影响
η角称为合成切削速度角,它是主
运动方向与合成运动切削速度方向之间 的夹角。由η角定义可知:

γoe=γo+ η αoe=αo- η

当进给量f一定时,随 d 值↓, η值↑,接近中心αoe为负值。 当 f↑,η值↑。横车时 f 不宜 过大,并应适当加大αo
第二变形区内金属的挤压摩擦变形 经过第一变形区后,形成的切屑要沿前刀面方向排出,
还必须克服刀具前刀面对切屑挤压而产生的摩擦力。切屑在 受前刀面挤压摩擦过程中进一步发生变形(第二变形区的变 形)这个变形主要集中在与前刀面摩擦的切屑底面一薄层金 属里,表现为该处晶粒纤维化的方向和前刀面平行。
第三变形区内金属的挤压摩擦变形 已加工表面受到切削刃钝圆部分和后刀面的挤压摩擦, 造成纤维化与加工硬化。

带状切屑:外形呈带状,最常见,切削过程最平衡。 挤裂切屑:切屑上与前刀面接触的一面较光洁,其背面局部 开裂成节状。 单元切屑:切屑沿厚度断裂成均匀的颗粒状。 崩碎切屑:脆性材料的切屑。切削层几乎不经过塑性变形就 产生脆性崩裂,得到的切屑呈不规则的细粒状。
切屑的类型是由材料的应力—应变特性和塑性变形程度决定的。
切削刃法剖面pn:
通过切削刃选定点,并垂直于 切削刃的平面。
近年来,我国主要采用主剖面参考系
pr – ps–po ,兼用法剖面参考系prps-pn。
主剖面与法剖面参考系
进给剖面Pf
:
过切削刃上选定点并垂直
于刀杆轴线及基面的平面

切深剖面Pp :
过切削刃上选定点平行刀 杆轴线并垂直基面的平面
刀具安装高低的影响
假定车刀λs=0, 刀尖高于工件中心
γpe=γp+θp αpe=αp- θp tanθp=h/
(
dw
2
)2 h 2
γoe=γo+θ αoe=αo-θ tanθ= tanθp cosκr
若刀尖低于工件中心, 角度变化与上述相反
刀 杆 中 心 线 与 进 给 方 向 不 垂 直 的 影 响
(2)高性能高速钢
是在通用高速钢的基础上再增加一些含碳量、含钒量及添加钴、铝 等元素。按其耐热性,又称为高热稳定性高速钢。 具有更好的切削性能,耐用度较通用型高速钢高1.3~3倍。适合于 加工高温合金、钛合金、超高强度钢等难加工材料。 典型牌号有高碳高速钢9W18Cr4V,高钒高速钢W6MoCr4V3、钴高 速钢W6MoCr4V2Co8、超硬高速钢W2Mo9Cr4Co8等。

(2)陶瓷
有纯Al2O3陶瓷及Al2O3-TiC混合陶瓷两种,以其 微粉在高温下烧结而成。
特点:
很高的硬度(HRA91~95)和耐磨性; 很高的耐热性,在高温1200℃以上仍能进行切削; 切削速度比硬质合金高2~5倍; 有很高的化学稳定性、与金属的亲合力小,抗粘结和抗
扩散的能力好; 脆性大、抗弯强度低、冲击韧性差,易崩刀。
'
Ac= ac aw= f ap
二、刀具切削部分的基本定义 前刀面 三面 后刀面 副后刀面 车刀的 主切削刃 组成 二刃 副切削刃
一尖:刀尖

前刀面Ar: 切屑流过的表面。 后刀面Aa : 与工件上新形成的过渡表面
相对 表面。
图1-3

上已加工表 面相对的刀面。 主切削刃:指前刀面与后刀面相交的锋 边; 副切削刃:指前刀面与副后刀面相交的 锋边。 刀尖: 刀尖可以是主、副切削刃的实际 交点,也可以是主、副两条切削刃连接起 来的一小段切削刃,它可以是圆弧,也可 以是直线,通常都称为过渡刃。
相关文档
最新文档