2013七年级(下)数学期末模拟考试三
七年级下册数学期末考试模拟试卷(一)A3版
2013七年级下册数学期末考试模拟试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 下列调查方式,你认为最合适的是( )A .日光灯管厂要检测一批灯管的使用寿命,采用普查方式B .了解郑州市每天的流动人口数,采用抽样调查方式C .了解郑州市居民日平均用水量,采用普查方式D .旅客上飞机前的安检,采用抽样调查方式2. 已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A .a +c <b +cB .a -c >b -cC .ac <bcD .ac >bc 3. 已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( ) A. BC4. 已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m -n 的算术平方根为( )A .±2 BC .2D .4 5. 12的算术平方根的相反数介于( )A .-5与-4之间B .-4与-3之间C .-3与-2之间D .-2与-1之间 6. 如图,小明在操场上从A 点出发,先沿南偏东30°方向走到B 点,再沿南偏东60°方向走到C 点.这时,∠ABC 的度数是( ) A .120° B .135° C .150° D .160°C BA4321D BCA l第6题图 第7题图 第8题图7. 如图,在所标识的角中,是内错角的是( )A .∠1和∠B B .∠1和∠3C .∠3和∠BD .∠2和∠38. 如图,AB ⊥l ,BC ⊥l ,B 为垂足,那么A ,B ,C 三点在同一条直线上,理由是( )A .经过直线外一点有且只有一条直线与这条直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行二、填空题(每小题3分,共21分)9. 若关于x 的一元一次不等式组>7+1<2x ax x ⎧⎨-⎩有解,则a 的取值范围是________.10. 如图所示的数轴上,点B 与点C 关于点A 对称,A ,B-1,则点C 所对应的实数是_____________.2B A 1C D第10题图 第11题图 第12题图11. 如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是____________.12. 实数a ,b 在数轴上的位置如图所示,|b |>|a|,化简a -______________. 13. 如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为_________.第13题图 第15题图14. 下列命题中,属于真命题的是______________.①带根号的数都是无理数;②两条线被第三条线所截,同位角相等;③a ,b ,c 是直线,若a ∥b ,b ∥c ,则a ∥c ; ④a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥c ; ⑤0.01是0.1的一个平方根;⑥0的平方根和算术平方根都是0; ⑦无限小数都是无理数.15. 如图,在一个单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,-1),A 3(0,0),则依图中所示规律,A 2013的坐标为_____________.三、解答题(本大题共8个小题,满分75分)16. (8分)解二元一次方程组8312x y x y -=⎧⎨+=⎩①②(1)有位同学是这么做的,①+②得4x =20,解得x =5,代入①得y =-3.∴这个方程组的解为53x y =⎧⎨=-⎩.该同学解这个二元一次方程组的过程中使用了____________消元法,目的是把二元一次方程组转化为___________________求解; (2)请你换一种方法来求解该二元一次方程组. 17. (8分)计算:(1)2(-+; (2)()2013312---+.18. (8分)求不等式组6+152(43)2112323x x x x +⎧⎪-⎨-⎪⎩>≥的正整数解.19. (10分)如图,某化工厂与A ,B 两地有公路和铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为 1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元? (1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲: 1.5(2010)__________1.2(110120)________x y x y +=⎧⎨+=⎩乙: 1.5(2010)_________800010001.2(110120)_______80001000x y x y ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩根据甲、乙两名同学所列方程组,请你分别指出未知数x ,y 表示的意义,然后在等式右边的空格内补全甲、乙两名同学所列方程组.甲:x 表示_____________________,y 表示________________________; 乙:x 表示_____________________,y 表示________________________.(2)甲同学根据他所列方程组解得x =300.请你帮他解出y 的值,并解决该实际问题. 20. (10分)如图,AC ∥BD ,点P 是直线AC 和BD 之间的一动点,当点P 运动到某一位置时,连接P A ,PB .(1)当点P 在运动过程中构成了不同类型的∠APB ,试画出各种不同类型的∠APB .(2)请直接写出∠APB ,∠P AC ,∠PBD 之间的等量关系.21. (10分)某制笔企业欲将200件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地. (1)根据信息填表:4000元,则有哪几种运输方案?22. (10分)七(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?23. (11分)如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-2,1),且|a +2b +1|+(3a -4b +13)2=0. (1)求a ,b 的值;(2)在y 轴上存在一点D ,使得△COD 的面积是△ABC 面积的两倍,求出点D 的坐标.(3)在x 轴上是否存在这样的点,存在请直接写出点D 的坐标,不存在请说明理由.工厂铁路 110km 公路 20km 公路 10km 铁路 120km B A。
2013-2014学年七年级下期末考试数学试题及答案(3)
2013-2014学年下学期期末水平测试试卷七年级数学一、 单项选择题(共10个小题,每小题3分,满分30分)1.16的平方根是 ( B ) A .2 B .±4 C .±2 D .42.下面各图中,∠1与∠2是邻补角的是 ( D )A .B .C .D .3.有40个数据,其中最大值为35,最小值为12,若取组距为4对数据进行分组,则应 分为 ( C ) A .4组 B .5组 C .6组 D .7组 4.为了了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的 300个产品叫做 ( C ) A .总体 B .个体 C .总体的一个样本 D .普查方式5.由a >b 得到am <bm ,需要的条件是 ( B ) A .m >0 B .m <0 C .m ≥0 D .m ≤06.下列命题中,不正确的是 ( C ) A .在同一平面内,过一点有而且只有一条直线与已知直线垂直 B .经过直线外一点,有而且只有一条直线与这条直线平行 C .垂直于同一直线的两条直线垂直 D .平行于同一直线的两条直线平行7.在平面直角坐标系中,已知线段AB 的两个端点分别是A (-4,-1),B (1,1),将线段 AB 平移后得到线段A ′B ′,若点A ′的坐标为(-2,2),则点B ′的坐标为 ( A ) A .(3,4) B .(-1,-2) C .(-2,-1) D .(4,3)8.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了 “A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选 一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是( D )A .全面调查;26B .全面调查;24C .抽样调查;26D .抽样调查;249.方程组⎩⎨⎧=-=+32y x a y x 的解为⎩⎨⎧==b y x 5,则a 、b 分别为 ( C )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =810.若不等式组⎩⎨⎧<-->-+01202b x a x 的解集为0<x <1,则a 、b 的值分别为 ( A )A .a =2,b =1B .a =2,b =3C .a =-2,b =3D .a =-2,b =1二、填空题(共6个小题,每小题4分,满分24分)11.一个数的算术平方根是2,则这个数是______2_______.12.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式:如果两条直线都平行于同一条直线,那么这两条直线互相平行.13.已知点A (-1,b +2)不在..任何象限,则b =____-2___. 14.不等式264331->+--x x 的解集是______x <6________. 15.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为_____30°_____.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向 依次平移,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那 么点A 2014的坐标为___(1007,1)____.学校:班级:考号:姓名:1 212121 2第8题图 第15题图第16题图三、解答题(一)(共3个小题,每小题6分,满分18分)17.(6分)计算:3633643+--.解:3633643+--=6334+-+ =37+18.(6分)解方程组:⎩⎨⎧-=-=4223y x y x .解:由②得 x =2y -4 ③ 把③代入①,得 y =3把y =3代入③,得 x =2∴原方程组的解为⎩⎨⎧==32y x .19.(6分)如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系; (2)写出体育场、市场、超市的坐标.解:(1)图略;(2)体育场(-2,4), 市场(6,4),超市(4,-2)四、解答题(二)(共3个小题,每小题7分,满分21分)20.(7分)解不等式组:⎩⎨⎧-≥+>+13)1(201x x x ,并求其整数解.解:解不等式①得 x >-1,解不等式②得 x ≤3∴不等式组的解集为-1<x ≤3 ∵x 为整数∴x =0,1,2,3.21.(7分)如图,直线AB 、CD 、EF 相交于点O ,OG 平分∠COF ,∠1=30°,∠2=45°. 求∠3的度数.解:∵∠1=30°,∠2=45°∴∠EOD =180°-∠1-∠2=105°∴∠COF =∠EOD =105° 又∵OG 平分∠COF ,∴∠3=21∠COF =52.5°22.(7分)某超市开业十周年举行了店庆活动,对A 、B 两种商品实行打折出售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元.而店庆期间,购买3件A 商品和8件B 商品仅需72元,求店庆期间超市的折扣是多少? 解:设打折前A 商品的单价是x 元,B 商品的单价是y 元,由题意得:⎩⎨⎧=+=+10836845y x y x 解得⎩⎨⎧==416y x 所以3x +8y =3×16+8×4=80(元),72÷80=90% 答:店庆期间超市的折扣是九折.123 A BCDOEGF第21题图① ②五、解答题(三)(共3个小题,每小题9分,满分27分)23.(9分)某学校对学生的课外阅读时间进行抽样调查,将收集的数据分成A、B、C、D、E 五组进行整理,并绘制成如下的统计图表(图中信息不完整).阅读人数分组统计图阅读时间分组统计图请结合以上信息解答下列问题(1)求a、b、c的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20小时以下(不含20小时)的学生所占比例.解:(1)a=20,b=200,c=40;(2)200人,图略;(3)120÷500×100%=24%24.(9分)如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.解:∠C与∠AED相等,理由如下:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠3=∠ADE(两直线平行内错角相等),又∠B=∠3(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行),∴∠C=∠AED(两直线平行同位角相等).25.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:⎩⎨⎧=+=+4102534032yxyx解得⎩⎨⎧==8050yx则购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96-a)个足球,根据题意得:80a+50(96-a)≤5720解得a≤392∵a是整数∴a≤30故最多可以购买30个篮球.第24题图20015010050C40%D28%E8%AB。
2013-2014下期末模拟考试卷(答题卷)
第 4 页(共 4 页)
第 1 页(共 4 页)
22. (本题满分 6 分)
(1)请将两幅统计图补充完整; (2)是________ ; (3)_______,________;
走姿不良 37%
人数 坐姿不良 20% 站姿不良 31%
(4)根据统计结果,请你简单谈谈自己的看法.
200 175 150 125 100 75 50 25
班级
封
线
21. (本小题 5 分) (1)在图中画出△ABC 向下平移 2 个单位,向右平移 5 学校
个单位后的△A1B1C1. 密 (2)写出点 A1( , )的坐标.
(3)画出 BC 边上的高线 (4)画出 AC 边上的中线 (5)△ABC 的面积是__________.
福州励志中学 2013 级七年级第二学期期末模拟考数学科答题卷
福州励志中学 2013 级七年级第二学期期末模拟考数学科答题卷
第 2 页(共 4 页)
25.解:
26.
福州励志中学 2013 级七年级第二学期期末模拟考数学科答题卷
第 3 页(共 4 页)
27.
E
y
E
y A
A
D F
D F
B
O
C
x
B
O
C
x
福州励志中学 2013 级七年级第二学期期末模拟考数学科答题卷
福州励志中学 2013-2014 学年七年级下学期期末模拟考试卷(答题卷)
(完卷时间:120 分钟,总分:100 分)
一.选择题(共 10 小题,每小题 2 分,满分 20 分) 题号 答案 二.填空题(共 9 题,每小题 2 分,满分 18 分) 题 11. 16. ; 12. ;17. ; 13. ; 18. ; 14. ;19. ; 15. ; ; 1 2 3 4 5 6 7 8 9 10
2012-2013学年福建泉州七年级下学期期末模拟考试数学组卷(带解析)
2012-2013学年福建泉州七年级下学期期末模拟考试数学组卷考试范围:xxx ;考试时间:100分钟;命题人:xxx1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释一、单选题(注释)( )。
A .克莱武 B .章西女王 C .洪秀全D .玻利瓦尔2、-2的相反数是( ) A .B .-C.2D .-23、下列各式运算结果为负数的是( ) A . B. C . D .4、某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是( ) A .9.4×108m B .9.4×107m C .9.4×10-8m D .9.4×10-7 m5、下列计算中,正确的是 ( ) A .B .C .D .6、如图,数轴上的点分别表示有理数a 、b ,若a>b,其中表示正确的图形是( )7、下面计算正确的是( ) A .-22=4 B .(-)3 =-C .D .8、.下列说法正确的个数为().①若a<0, 则;②若,a<0;③ 7的绝对值为7;④绝对值为7的数只有7;A.1个B.2个C.3 个D.4个9、无论a取何值下列说法正确的是().A.为正数B.+的值不小于C.为负数D.为正数10、若,则()A. 5 B. 1 C. -5 D. -111、若互为相反数,互为倒数,则()A. -3 B. 1 C. 3 D. -112、已知:数a , b , c在数轴上的对应点如右图所示,化简| a+b | - |-3c| - |a+b-c| 的值是().A.-2c B.4c C.2c D.2a+2b+2c 13、如果某个月的6号是星期四,则这个月的23号是星期()A.五B.六C.日D.一14、-3的绝对值是()A.B. 3 C.±3 D.–315、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆……依此规律,第7个图形的小圆个数是()16、下列四个数中,比0小的数是()A.B.C.D.17、不等式3x+1≥2x的解集在数轴上表示为()18、下列各数中,无理数是()A.0 B.C.D.-3.1419、某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是【】A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字20、如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为()A.1 B.2 C.3 D.5分卷II评卷人得分二、填空题(注释)(1)2个氮原子_______(2)5个水分子_______(3)3个镁离子______22、、若、为相反数,、为倒数,,则23、按下面程序计算:输入x=3,则输出的答案是__ _ .24、如果数轴上到一4的距离等于3的点,所表示的数是25、初三年级某班有54名学生,所在教室有6行9列座位,用表示第行第列的座位,新学期准备调整座位,设某个学生原来的座位为,如果调整后的座位为,则称该生作了平移[],并称为该生的位置数。
七年级下数学期末复习测试题(三)
七年级下数学期末复习测试题(三)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列计算正确的是()A.a3+a2=a5B.a2•a3=a6C.2a﹣3a=﹣a D.(3a)2=6a2 2.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(3分)若2x=m,2y=n,则2x﹣y等于()A.B.mn C.2mn D.m+4.(3分)用科学记数法表示0.000532正确的是()A.5.32×10﹣6B.5.32×10﹣5C.5.32×10﹣4D.0.532×10﹣5 5.(3分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,3cm,6cmC.2cm,5cm,6cm D.5cm,6cm,7cm6.(3分)直角三角板和直尺如图放置,若∠1=25°,则∠2的度数为()A.50°B.45°C.40°D.35°7.(3分)已知△ABC≌△DEF,∠A=60°,∠E=70°,那么∠C等于()A.40°B.50°C.60°D.70°8.(3分)如图,用不同的代数式表示图中阴影部分的面积,可得等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2+2ab﹣b2C.(a+b)(a﹣b)=a2﹣b2D.(a﹣b)2=a2﹣2ab+b29.(3分)如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是()A.B.C.D.10.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论:①AE平分∠BAC;②△ABD是等边三角形;③DE垂直平分线段AC;④△BCD是等腰三角形,其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算:(2π﹣6.28)0+(﹣)﹣2=.12.(3分)如图,∠ABC=∠DCB,只需补充条件,就可以根据“AAS”得到△ABC≌△DCB.13.(3分)等腰三角形ABC中,∠A=44°,则∠B的度数是.14.(3分)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD ∥BE,∠1=20°,则∠2的度数是.15.(3分)如图,在△ABC中,AB=AC,∠B=50°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是.16.(3分)港珠澳大桥全长近55km,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的关系式为.三.解答题(共8小题,满分72分)17.(10分)计算(1)2(x2)3•x3﹣(3x3)3+(5x)2•x7(2)(6x4﹣8x3)÷(﹣2x)2 18.(7分)化简求值[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy,其中x=10,y=.19.(7分)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.20.(8分)如图,直线l1,l2,l3表示三条相互交叉的公路,现计划建一个加油站P,要求它到三条公路的距离相等,请用尺规画出可供选择的其中一个P点的位置(不写作法,保留作图痕迹)21.(8分)如图,地面上有一个不规则的封闭图形,为求得它的面积,小明在此封闭图形内画出一个边长为0.5米的正方形后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似看成点),记录如下:掷小石子所落的总次数(小石子所落的50150300600…有效区域内,含边界)m103578149…小石子落在正方形内(含正方形边上)的次数nn:m0.2000.2330.2570.248…(1)根据如表,如果你掷一次小石子,那么小石子落在正方形内(含正方形边上)的概率约为(精确到0.01);(2)当掷小石子所落的总次数m=1000时,小石子落在正方形内(含正方形边上)的次数n最可能为;A.105B.249C.518D.815(3)请你利用(1)中所得概率,估计整个不规则封闭图形的面积约是多少平方米?22.(10分)甲、乙两地相距200km,早上8:00货车从甲地出发将一批物资运往乙地,途中货车出现了故障,已知货车离甲地的路程y(km)与行驶时间x(h)的关系如图所示.①求货车出现故障前的速度;②若货车司机经过24分钟维修排除了故障,继续运送物资去乙地,现要求该批物货运到乙地必须在当天中午12:00,那么货车的速度应该提高到多少?23.(10分)如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段的长度就是A、B两点间的距离(2)请说明(1)成立的理由.24.(12分)尺规作图之旅如图1是一副纯手绘的画作,其中用到的主要工具就是直尺和圆规,在数学中,我们也能通过尺规作图创造出许多带有美感的图形.尺规作图起源于古希腊的数学课题,只允许使用圆规和直尺,来解决平面几何作图问题.(1)(作图原理)在两年的数学学习里中,我们认识了尺规作图,并学会用尺规作图完成一些作图问题,请仔细思考回顾,判断以下操作能否通过尺规作图实现,可以实现的画√,不能实现的画×.①过一点作一条直线.②过两点作一条直线.③画一条长为3cm的线段.④以一点为圆心,给定线段长为半径作圆.(2)(回顾思考)还记得我们用尺规作图完成的第一个问题吗?那就是“作一条线段等于已知线段”,接着,我们学习了使用尺规作图作线段的垂直平分线,作角平分线,过直线外一点作垂线……而这些尺规作图的背后都与我们学习的数学原理密切相关,下面是用尺规作一个角等于已知角的方法及说理,请补全过程.已知:如图2,∠AOB.求作:∠A′O′B′使∠A′O′B′=∠AOB作法:①如图,以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,;(3)如图3,4,过点D′画射线O′B′,则∠A′O′B′=∠AOB.说理:由作法得已知:OC=O′C′,OD=O′D′,CD=C′D′求证:∠A′O′B′=∠AOB证明:∵∴△OCD≌△O′C′D′()所以∠A′O′B′=∠AOB()(4)(小试牛刀)请按照上面的范例,完成尺规作图并说理:过直线外一点作已知直线的平行线.已知:如图5,直线l与直线外一点A.求作:过点A的直线l′,使得l∥l′.(5)(创新应用)现实生活中许多图案设计都蕴含着数学原理,如图6是一个常见商标的设计示意图.假设你拥有一家书店,请利用你手中的刻度尺和圆规,为你的书店设计一个图案.要求保留作图痕迹,并写出你的设计意图.。
七年级下学期数学期末模拟试题(3)
七年级下学期数学期末模拟试题(3)一、单选题每小题3分,共30分)1.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A B C D2.在实数﹣,,0,,﹣π,中,无理数的个数是( ) A .1个 B .2个C .3个D .4个 3.在平面直角坐标系中,点(3,﹣2)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知 是方程 的一组解,则a 的值分别是( ) A .1 B .3 C .-3 D .-15. 下列计算正确的是( )A .√25=±5B .√(−6)2=−6C .√−273=−3D .−√9=36. 不等式2x -7≤5的正整数解有( )。
A .7个B .6个C .5个D .4个7. 如图,点E 在AC 的延长线上,若BD ∥AE ,则下列结论错误的是( )A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°8.已知方程组⎩⎨⎧=++=+my x m y x 332223中未知数x +y =2,求m 的值是( ) 第7题图 A .0 B .1 C .2 D .39.如果不等式组8x x m <⎧⎨>⎩无解,那么m 的取值范围是( ) A .m >8 B .m≥8 C .m <8 D .m≤810.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,第n⎩⎨⎧-==11y x 32=-ay x次移动到A n ,则△OA 3A 2020的面积是( )A .504.5m 2B .505m 2C .505.5m 2D D .1010m 2二、填空题(每小题3分,共30分)11.64的平方根为 .12.把命题“对顶角相等”改写成“如果…那么…”的式 .13.写出一个以 ⎩⎨⎧==1-4y x 为解的二元一次方程组:______________. 14.一个正数的两个平方根分别为a +3和2a +3,则a = .16.王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数为________17.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为(3,2),则B 点坐标为 . 18.如图,在△ABC 中,∠B+∠C=110°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于点E ,则∠ADE 的大小是_____.第18题图 第19题图 第20题图19.如图,将三角形ABC 沿射线BC 方向平移3cm 得到三角形DEF .若三角形ABC 的周长为14cm ,则四边形ABFD 的周长为.20.如图,直线AB 和直线CD 相交于点O ,∠BOE =90°,有下列结论:①∠AOC 与∠COE 互为余角;②∠AOC =∠BOD ;③∠AOC =∠COE ;④∠COE 与∠DOE 互为补角;⑤∠AOC 与∠DOE 互为补角;⑥∠BOD 与∠COE 互为余角.其中错误的有 .(填序号)三、解答题(本大题8个小题,共60分)21.(4分) 计算 :5-5-28-1-3100++)(22.(8分)解方程:(1)4(x -2)2-36=0. (2)(x+1)3+64=0.23.(10分)解方程组及不等式组.⎩⎨⎧-=-+=53x 2x 1y 1y )(⎩⎨⎧-=-=+53x 2-13y x 2y )((3)解不等式组 并把它的解集在数轴上表示出来.24.(6分)在平面直角坐标系中,三角形ABC 的三个顶点分别是A (﹣2,0),B (0,5).(1)在所给的网格图中,画出这个平面直角坐标系;(2)将三角形ABC 平移得到三角形A 1B 1C 1,顶点A 、B 、C 分别对应顶点A 1、B 1、C 1,此时点B 1(3,7). ⎪⎩⎪⎨⎧-≤-->+x x x x 2371211315)(①画出平移后的三角形A1B1C1,点C1的坐标为;②请你描述三角形ABC经过怎样的平移后得到三角形A1B1C1③求出四边形BB1C1C的面积.25.某学校为了解该校七年级学生的身高情况,抽样调查了部分同学,将所得数据处理后,如图,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)该校七年级有多少人?(2)请根据所提供的信息补全频数直方图;(3)155~160cm之间这一组的频数是多少?26.(6分)已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.①求证:BD∥CE.②若∠A=40°,求∠F的值.27.(本题10分)天水某交公司淘汰某一条线路上“冒黑烟“较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元。
2012-2013北师大版数学七年级下期末考试模拟试题3
北师大版数学七年级下册期末考试模拟试题(一)一、选择题(12×3=36分)1、下列运算中,正确的是( )A. 22(3)6a a =B. 623a a a ÷= C. 336()a a = D. 325a a a ⋅= 2、下列图形不是轴对称图形的是( )A. B.C.D.3、已知2(3)(2)x x x bx c+-=++,那么b 、c 的值分别是( )A .1b =, 6c =-B .1b =,6c =C .5b =,6c =-D .5b =,6c = 4、如图1,由AB//DC ,能推出正确的结论是( )A .∠3=∠4B .∠1=∠2C .∠A=∠CD .AD//BC 5、如图2,往地板中随意一颗石头,石头落在黑色区域的概率为( )A .12B .516C .38D .346、如图5所示的是线段AB 关于直线l 对称的图形,那么:①AB A B ''= ; ②直线l ③BB AA ''∥ ;④AB 延长线与A B ''的延长线的交点在直线l 上。
对于以上说法,正确的个数有( )A .1个B .2 个C .3个D .4个7、已知△ABC 的三个内角满足:22A B C ∠=∠=∠,则△ABC 的形状是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .不能确定 8、以下不一定能判定两个三角形全等的条件是( )A .两角及它们的夹边对应相等B .两角及其中一角的对边对应相等C .两边及它们的夹角对应相等D .两边及其中一边的对角对应相等 9、如图,能判断直线AB ∥CD 的条件是( ) A 、∠1=∠2 B 、∠3=∠4 C 、∠1+∠3=180 o D 、∠3+∠4=180 o 10、洗衣机洗衣经历了注水(此前机内无水)、洗涤、脱水(包括排水)三个连续的过程.下列图中可以 近似地刻画出洗衣机在这段时间内的水量变化情况的是( )A B .C . D.二、填空题(4×3=12分)11、一个三角形两边长分别是2cm 和7cm 12、如图3,Rt △ABC 中,∠ACB=90°,过C 点作DE//AB ,若∠BCE=40°.那么∠A= ;13、如图7,一转盘被平均分成8份。
苏科版七年级数学下册期末模拟测试试卷(三)
苏科版七年级下册数学期末模拟(3)一、选择题:(本大题共8小题.每小题3分,共24分.)1. 下列计算正确的是 ……………………………… ( )A .2223a a a +=B .824a a a ÷=C .326a a a ⋅=D .326()a a =2. 如果9-mx +x 2是一个完全平方式,则m 的值为 ……………… ( )A .3B .6C .±3D .±63. 为了了解我校七年级学生每天用于体育锻炼的时间,对其中200名学生进行了调查,则下列说法错误的是 ………………………………………………… ( )A .总体是我校七年级学生每天用于体育锻炼的时间B .其中200名学生每天用于体育锻炼的时间是总体的一个样本C .样本容量是200D .个体是其中1名学生用于体育锻炼的时间4. 如图,用8块全等的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积为( )A .200cm 2 B .300cm 2 C .600cm 2 D .2400cm 2第5题图 第7题图5. 火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x 、y 、z 的箱子按如图所示的方式打包,则打包带的长至少为 ……………………… ( )A .4x+4y+10zB .x+2y+3zC .2x+4y+6zD .6x+8y+6z6. 2010年南非世界杯比赛中,A 、B 、C 、D 四个队分在同一个小组进行单循环赛(每两个队之间赛一场),争夺出线权,比赛规定:胜一场得3分,平一场得1分,负一场0分,小组得分在前面的两个队出线,相同分数再参考其他情况定夺.小组比赛结束后,A 队得6分,则关于A 队的出线权问题,下列说法正确的是 ( ) A .随机事件 B .必然事件 C .不可能事件 D .以上均有可能7. 如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN .其中正确的结论是 …… ( )A .①②③B .①②④C .①③④D .②③④8. 若代数式2346x x -+的值为15,则6342+-x x 的值为 …………… ( ) A .12 B .15 C .27 D .9二、填空题 (本大题共12小题,每小题2分,共24分)9. 遗传物质脱氧核糖核酸(DNA)的分子直径为0.00000023cm ,用科学记数法表示为 cm.10. 已知123=-y x ,将y 用x 的代数式表示为_________________ 11. 将一副学生用三角板按如图所示的方式放置.若AE ∥BC ,则∠AFD 的度数是________.题12.如图,△ABC 中,∠A =30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB =82°,则原三角形的∠ABC =____________度.13. 在一个不透明的袋子中装有2个红球,3个白球和1个黄球,每个球除颜色外完全相同,将球搅匀,从中任取1球,记“恰好取出红球”的概率为P(1),“恰好取出白球”的概率为P(2),“恰好取出黄球”的概率为P(3),则P(1)、P(2)、P(3)的大、小关系是___________________________ (用“<”号连接). 第4题图F E DC B A 17题图14. 如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有__________个(不含△ABC).15. 如图,△AB D ≌△ACE ,点B 和点C 是对应顶点,AB=8cm ,BD=7cm ,AD=3cm ,则DC=____________cm .第14题16. 如图,在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,AC =14cm , 且CD ∶AD =3∶4,则点D 到AB 的距离为__________cm.17. 如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 个单位. 18. 在△ABC 和△A ′B ′C ′中,AB =A ′B ′,AC= A ′C ′, 高AD=A ′D ′,则∠C 与∠C ′的关系是____________________19. 若关于x ,y 的二元一次方程组210x y mx y -=⎧⎨+=⎩的解均为正整数,m 也是正整数,则满足条件的所有m值的和为_____________.20. 要使(x —a)(x 2+2x+3)的展开式中不含x 2的项, 则a 的值为_____________.三、解答题(本大题共小题,共52分,解答应写出必要的计算过程、推演步骤或文字说明)21.(本题4分) 计算: 201120110310)1.0()2()21(⨯-+-+--22.(本题4分) 解方程组:34221x y x y -=⎧⎨+=⎩23.(本题4分) 分解因式: 4x 2(x -y )+(y -x )24.(本题5分) 先化简,再求值.(2a+b)(2a -b)+3(2a -b) 2+(-3a)(4a -3b),其中a=-1,b=2第16题C D A B26. (本题6分) 5月1日起,我国对醉酒驾车违法行为从行政处罚上升到更加严厉的刑事处罚。
2013-2014学年七年级下期末考试数学试题及答案(2)
2013-2014初一下数学期末学业水平质量检测2014年7月考生须知:1.本试卷共有三个大题,29个小题,共6页,满分100分. 2.考试时间为90分钟,请用蓝色或黑色钢笔、圆珠笔答卷.一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1. 下列运算,正确的是( ) A .34a a a+=B .()222a b a b+=+C .1025a a a ÷= D .236()a a =2.下列各式由左边到右边的变形中,是因式分解的是( )A .()a x y ax ay +=+B .()24444x x x x -+=-+C .()2105521x x x x -=- D .()()2163443x x x x x -+=+-+3.不等式23x >-的最小整数解是( )A .-1B .0C .2D .34. 如图,∠AOB =15°,∠AOC =90°,点B 、O 、D 在同一直线上,那么∠COD 的度数为( ) A .75° B .15° C .105° D . 165°5. 计算()()2342515205m m n m m +-÷-结果正确的是()A .2134mn m -+B .2134m m --+C .2431m mn -- D .243m mn -6. 已知一组数据8,9,10,m ,6的众数是8,那么这组数据的中位数是( )A. 6B. 8C. 8.5D. 97. 已知22a b -=,那么代数式2244a b b --的值是 ( )A .2B .0C .4D .68.如图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A .1B .2C .3D .49.如图,从边长为1a +的正方形纸片中剪去一个边长为1a -的正方形(a >1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),那么该矩形的面积是( )第4题图COBAE54321第8题图D CAA .2B . 2aC . 4aD . 21a -10.将正整数1,2,3,…,从小到大按下面规律排列.那么第i 行第j 列的数为( )A .i j +B .in j +C .1n i j -+D .(1)i n j -+ 二、专心填一填:(每题2分,共16分) 11.已知⎩⎨⎧==32y x 是方程570x ky --=的一个解,那么k = . 12.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把数0.0000000001用科学记数法表示为_______________________.13. 计算:2220142013-=____________.14. 如图,一把矩形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上,如果∠ADE =128°,那么∠DBC 的度数为___________.15.如果关于的不等式组12x m x m >-⎧⎨>+⎩,的解集是1x >-,那么m =________.16. 将命题“对顶角相等”改写成“如果……,那么……”的形式为______________________________________________. 17. 某班40如果这个班的数学平均成绩是69分,那么x =___________,y =____________.18. 定义一种新的运算叫对数,如果有n a N = ,那么log a N n =, 其中0a >且1a ≠,0N >. 例如,如果328=,那么2log 83=;如果3128-=,那么21log 8=_________. 由于,22log 816log 1287⨯==,因此,222log 8log 16log 816+=⨯. 可以验证 log log log a a a M N MN +=. 请根据上述知识计算:228log 6log 3+=_______. 三、耐心做一做:(共54分)19. (3分)计算:02211(π2014)()33--+--+; 20.(3分)计算:()()()2322643xy y x ÷-⋅;第14题图FEDCB A21.把下列各式进行因式分解:(每题3分,共6分)(1)22363ax axy ay -+; (2)()()2x x y y x -+-;22. (4分)解方程组25,437.x y x y +=⎧⎨+=⎩ 23. (4分) 解不等式组:26(3),5(2)14(1).x x x x ->+⎧⎨--≤+⎩24.(5分)已知425x y +=,求()()()()222282x y x y x y xy y ⎡⎤--+-+÷-⎣⎦的值.25.看图填空:(6分)如图,∠1的同位角是___________________,∠1的内错角是___________________, 如果∠1=∠BCD , 那么 ∥ ,根据是 ; 如果∠ACD =∠EGF , 那么 ∥ ,根据是 .26. (4分)对于形如222x xa a ++这样的二次三项式,可以用公式法将它分解成()2x a +的形式. 但对于二次三项式2223x xa a +-,就不能直接运用公式了. 小红是这样想的:在二次三项式2223x xa a +-中先加上一项2a ,使它与22x xa +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:()2222222323x xa a x ax a a a +-=++--第25题图GF E 1D CBA()224x a a =+-()()222x a a =+-()()3x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.参考小红思考问题的方法,利用“配方法”把268a a -+进行因式分解.27. 列方程(组)解应用题:(5分)漕运码头的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到漕运码头租船游览,如果每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.28. (5分)某校为了更好地开展“阳光体育一小时”活动,围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对本校学生进行了随机抽样调查,以下是根据得到的相关数据绘制的统计图的一部分.各年级学生人数统计表图2图1%其它 10%踢毽子 20%跳绳 40%投篮各运动项目的喜欢人数占抽样总人数百分比统计图抽样调查学生最喜欢的运动项目的人数统计图请根据以上信息解答下列问题: (1)该校对多少名学生进行了抽样调查? (2)请将图1和图2补充完整;(3)已知该校七年级学生比九年级学生少20人,请你补全上表,并利用样本数据估计全校学生中最喜欢踢毽子运动的人数约为多少?29.(9分)直线1l 平行于直线2l ,直线3l 、4l 分别与1l 、2l 交于点B 、F 和A 、E ,点D 是直线3l上一动点,AB DC //交4l 于点C .(1)如图,当点D 在1l 、2l 两线之间运动时,试找出BAD ∠、DEF ∠、ADE ∠之间的等量关系,并说明理由;(2)当点D 在1l 、2l 两线外侧运动时,试探索BAD ∠、DEF ∠、ADE ∠之间的等量关系(点D 和B 、F 不重合),画出图形,直接写出结论.初一数学期末学业水平质量检测参考答案一、精心选一选:(每小题只有一个正确答案,每题3分,共30分)第29题图FED C B A l2l3l 4l 1二、专心填一填:(每题2分,共16分)三、耐心做一做:(共54分)19. 解:原式= 1199+-+ ; ………………… 2分;= 2; ………………… 3分.20. 解:原式= 43229(4)36x y x y ⋅-÷; ………………… 2分;=43223636x y x y -÷;= 2x y -. ………………… 3分.21. 把下列各式进行因式分解:(每题3分,共6分)(1)解:原式=()2232a x xy y -+; ………………… 1分;=()23a x y -. ………………… 3分.(2)解:原式=()()2xx y x y ---; ………………… 1分;= ()()21x y x --; ………………… 2分;=()()()11x y x x -+-. ………………… 3分.22. (4分)解方程组25,437.x y x y +=⎧⎨+=⎩①②解:3⨯-①②得:2=8x ; ………………… 1分;4x=, ………………… 2分;把4x=代入①得,5y=8+,3y=-. ………………… 3分;所以原方程组的解为=4= 3.x y ⎧⎨-⎩ ………………… 4分.23. (4分) 解不等式组: 6(3)5(2)14(1).x x x x -2>+⎧⎨--≤+⎩, ①②解:解不等式①,2618x x+->; 520x ->;4x<-; ………………… 1分;解不等式②,510144x x --≤+;15x ≤; ………………… 2分;………………… 3分; 所以这个不等式组的解集是4x <-. ………………… 4分.24. 解:原式=()2222[4448](2)x xy y x y xy y -+--+÷-; ……………… 2分;=2222[4448](2)x xy y x y xy y -+-++÷- ;=2(42)(2)xy y y +÷-; ………………… 3分; =2x y --. ………………… 4分; ∵425x y +=, ∴522x y --=-. ………………… 5分. 25.看图填空:(6分)如图,∠1的同位角是∠EFG , ………………… 1分; ∠1的内错角是∠BCD 、∠AED , ………………… 2分; (少写一个扣0.5分,用它控制满分) 如果∠1=∠BCD ,那么 DE ∥ BC , ………………… 3分; 根据是内错角相等,两直线平行; ………………… 4分; 如果∠ACD =∠EGF ,那么 FG ∥ DC , ………………… 5分; 根据是同位角相等,两直线平行. ………………… 6分. 26. (4分)利用“配方法”把268a a -+进行因式分解.解:原式=26989a a -++-; ………………… 1分;=()231a --; ………………… 2分;=()()3131a a -+--; ………………… 3分;=()()24a a --. ………………… 4分. 备注:学生用十字相乘法分解且结果正确只能给1分.27. 解:设租用4座游船x 条,租用6座游船y 条.根据题意得:4638,60100600.x y x y +=⎧⎨+=⎩①②; ………………… 2分;解得:5,3x y =⎧⎨=⎩. ………………… 4分; 答:租用4座游船5条,租用6座游船3条. ………………… 5分. 28.(1)解:408020=200.20%40%10%或或(名) ……………………… 1分; (2)如图所示: ……………………… 3分;(3)表中填200. …………………… 4分;(180+120+200)⨯20%=100. …………………… 5分. 答:全校学生中最喜欢踢毽子运动的人数约为100名. 29.(1)结论:BAD DEF ADE ∠+∠=∠. ……………… 1分; 证明:∵AB DC //,(已知)∴BAD ADC ∠=∠(两直线平行,内错角相等); ……………… 2分;∵1l ∥2l ,AB DC //,(已知)∴//DC EF ,(平行于同一条直线的两条直线平行); ……………… 3分; ∴CDE DEF ∠=∠(两直线平行,内错角相等); ……………… 4分;∵ADC CDE ADE ∠+∠=∠,∴BAD DEF ADE ∠+∠=∠(等量代换). ……………… 5分. 注:理由注错不扣分,其它证法酌情给分. (2)30抽样调查学生最喜欢的运动项目的人数统计图各运动项目的喜欢人数占抽样总人数百分比统计图投篮跳绳 40%踢毽子 20%其它10%%图1图2D C B A l3l 4l 1画图正确,……………… 6分;当点D 在直线1l 上方运动时,DEF BAD ADE ∠-∠=∠, ……………… 7分;画图正确,……………… 8分;当点D 在直线2l 下方运动时,BAD DEF ADE ∠-∠=∠. ……………… 9分.第29题图F ED C BAl2l3l 4l 1。
华师大版数学七年级下册期末复习试题(三)(有答案)
华师大版数学七年级下册期末复习试题(三)一、选择题(3分×8=24分)1、如果2(23)3250a b c a b c+-+-+=,那么ab的值为()A 、1B 、-1C 、5 D、-52、已知方程组325a xb y mc xd y n+=⎧⎨-=⎩的解是21xy=⎧⎨=-⎩,则方程组(2)3(3)2(2)5(3)a xb y mc xd y n++-=⎧⎨+--=⎩的解是()A21xy=⎧⎨=-⎩B42xy=⎧⎨=⎩C2xy=⎧⎨=⎩D4xy=⎧⎨=-⎩3、小亮在计算多边形内角和时,先测量各个内角的度数,再求和,结果得1570°,下列说法中错误的是()A 、小亮多加了一个内角,这个内角的度数是130°;B 、小亮少加了一个内角,这个内角的度数是50°;C 、小亮测量的多边形的边数可能是10;D、小亮测量的多边形的边数一定是11;4、已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是().A 、k<-3B、1≤ k<3 C 、-3≤k<-1D、k≥-35、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
下列说法错误的是()A 、2秒或5秒时,甲到A、B、C的距离和为40个单位;B 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲、乙在数轴上相遇点代表的数是-10.4;C 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-44;D、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-8;6、点A1、A2、A3、……A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1A O=1,点A2在点A1的右边,且A2A1=2,点A3在点A2的左边,且A3A2=3,点A4在点A3的右边,且A4A3=4,……,依照上述规律点A2008、A2009所表示的数分别为()。
四川省自贡市2012-2013学年七年级数学下学期期末复习试题(三)
四川省自贡市2012-2013学年七年级数学下学期期末复习试题(三)一、填空题(本大题共10小题,每小题3分,共30分) 1、在平面直角坐标系中,点(-6,-12)在第______象限.2、已知△ABC 为等腰三角形,当它的两个边长分别为8 cm 和 3 cm 时,它的周长为_____________。
3、如图,在一张透明的纸上画一条直线l ,在l 外任取一点Q 并折出过点Q 且与l 垂直的直线。
这样的直线能折出( )A 、0条B 、1条C 、2条D 、3条4、不等式组13x x -<⎧⎨≥⎩的解集是5、小明一家三口随旅游团外出旅游,旅途的费用支出情况如图所示,若他们共支出了4800元,则在食宿上用去了______元.6、如图,在一块五边形场地的五个角修建五个半径为2米的扇花台,那么五个花台的总面积是______平方米.(结果中保留π)7、某建筑工地急需长12cm 和17cm 两种规格的金属线材,现工 地上只有长为100cm 的金属线材,要把一根这种金属线材截 成12cm 和17cm 的线材各 根时,才能最大限度地利 用这种金属线材.8、如图,若∠1=∠2,则 ∥ ,依据是 。
9、已知关于y x ,的二元一次方程+x 2 y =7中,y 的系数已经模糊不清,但已知⎩⎨⎧-==12y x 是这个方程的解,那么原方程是_________ _______。
10、阅读下列语句:①对顶角不相等;②今天天气很热;③同位角相等;④画∠AOB的平分线OC;⑤这个角等于30°吗?在这些语句是,属于真命题的是_____ _____(填写序号)二、选择题1、把不等式组1010xx+≥⎧⎨-<⎩的解集表示在数轴上正确的是()2、在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A、1个B、2个C、3个D、4个3、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( )A、()3,3B、()3,3-C、()3,3-- D、()3,3-4、下列A、B、C、D;四幅图案中,能通过平移左图案得到的是()5、用代入法解方程组723(1)212(2)x yx y-=⎧⎨-=-⎩有以下步骤:①:由⑴,得732xy-=⑶ ②:由⑶代入⑴,得737232xx--⨯=③:整理得 3=3 ④:∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A、①B、②C、③D、④6、如图直线a、b相交,下列结论错误的是()A ∠1=∠3B ∠1+∠2=180°C ∠1+∠3=180°D ∠3+∠4=180°7、已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(-3,4)B. (3,4)C.(-4,3)D. (4,3)8、如图,在△ABC中,BE⊥AC于E,CF⊥AB于F,CF、BE相交于D,∠ABC=48°,∠ACB=84°,则∠FDB的度数为()A 48°B 46°C 50°D 52°9、地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是()A、836 561284 x yx y+=⎧⎨-=⎩B、836651284x yx y-=⎧⎨-=⎩C、836651284x yy x+=⎧⎨-=⎩D、836651284x yy x-=⎧⎨-=⎩10、现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为()(A)丙甲乙(B)丙乙甲(C)乙甲丙(D)乙丙甲三、解答题1、解不等式431263x x++≤,并把解集表示在数轴上.2、解方程组3 3531 x yx y-=-⎧⎨+=⎩3、求不等式组5131131132x xx x-<+⎧⎪++⎨≤+⎪⎩的整数解. (5分)4、如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F. 已知∠A=30°,∠FCD=80°,求∠D。
七年级下数学期末模拟考试试卷3
七年级数学下期末考试模拟试卷4班级 姓名 成绩一、选择:(本大题共有8小题,每小题3分,共24分。
)1. 不等式24x -<的解集是 ( )A .12x <-B .2x <-C .12x >-D .2x >-2.下列计算正确的是 ( )A .3232a a a =+B .326a a a =÷C .()632a a =D .2223a a a =-3. 若b a <,则下列各式中一定成立的是( )A .a 21>b 21B .a -6<b -6C .bc ac <D .11-<-b a 4.下列图形中,由AB ∥CD ,能得到12∠=∠的是( )5. 如图,下列推理及所注明的理由都正确的是 ( )A 、∵∠A =∠D (已知) ∴AB ∥DE(同位角相等,两直线平行)B 、∵∠B =∠DEF(已知) ∴AB ∥DE(两直线平行,同位角相等)C 、∵∠A +∠AOE =180°(已知)∴AC ∥DF(同旁内角互补,两直线平行)D 、∵AC ∥DF(已知) ∴∠F +∠ACF =180°(两直线平行,同旁内角互补)6. 小明、小华两人练习跑步,如果小华先跑10米,则小明跑6秒就可追上乙; 如果小华先跑2秒,则小明跑4秒就可追上乙。
若设小明的速度为x 米/秒,小华的速度为y 米/秒,则下列方程组中 正确的是( )A 、⎩⎨⎧+=+=y y x y x 2441066B 、⎩⎨⎧=-=-yx x y x 4241066 C 、⎩⎨⎧=-=+2446106y x y x D 、⎩⎨⎧=-=-y x y x 4241066 7.若方程组 2313,3530.9a b a b -=⎧⎨+=⎩ 的解是 8.3,1.2,a b =⎧⎨=⎩ 则方程组 2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( )A . 6.3,2.2x y =⎧⎨=⎩B . 8.3,1.2x y =⎧⎨=⎩C .10.3,2.2x y =⎧⎨=⎩D . 10.3,0.2x y =⎧⎨=⎩ 8.三角形的边长都是整数,并且唯一的最长边是6,则这样的三角形共有( )A 、 5个B 、 6个C 、 7个D 、 12个二、填空:(本大题共有10小题,每小题3分,共30分。
七年级下学期期末模拟试卷(数学)及答案20130501
七年级下学期期末模拟试卷(数学)本试卷120分 考试用时120分钟一. 选择:(本题共有12小题,每小题3分,共36分)下列各题均附有四个备选答案,其中有且只有一个是正确的, 请将正确答案的代号填在上面答题卡中对应的题号内1、在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ) A .冠军属于中国选手B .冠军属于外国选手C .冠军属于中国选手甲D .冠军属于中国选手乙2、下列因式分解正确的是( )A .24(4)(4)p p p -=+-B .221(2)1a a a a ++=++C .23(3)x x x x -+=-+D .2221(1)x x x ++=+3、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:222()2a b a ab b +=++.你根据图乙能得到的数学公式是( ) A .22()()a b a b a b +-=- B .222()2a b a ab b -=-+ C .2()a a b a ab +=+ D .2()a a b a ab -=-4、如图,下列条件中不能判定AB∥CD 的是(A )∠3=∠4 (B )∠1=∠5 (C )∠1+∠4=180° (D )∠3=∠55、已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是(A )13cm (B )6cm (C )5cm (D )4cm6、要反映武汉市一周内每天的最高气温的变化情况,宜采用 (A )条形统计图 (B )扇形统计图 (C )折线统计图(D )频数分布直方图7、如果a >b ,那么下列结论一定正确的是 (A )a―3<b —3(B ) 3―a<3—b(C )ac 2>bc 2(D )a 2>b 28、如图,直角△ADB 中,∠D=90°,C 为AD 上一点,且∠ACB 的度数 为(5x -10)°,则x 的值可能是(A )10 (B )20 (C )30 (D )409、一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °∠2=y °, 则可得到方程组为10、玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具, 怎样安排生产才能在60 天内组装出最多的玩具?设生产甲种玩具零件x 天 乙种玩具零件y 天,则有(A )602412x y x y +=⎧⎨=⎩(B )601224x y x y +=⎧⎨=⎩ (C )6022412x y x y+=⎧⎨⨯=⎩ (D )6024212x y x y +=⎧⎨=⨯⎩11、近年来市政府每年出资新建一批廉租房,使城镇住房困难的居民住房状况得到改善.下面是某小区2006~2008年每年人口总数和人均住房面积的统计的折线图(人均住房面积=该小区住房总面积/该小区人口总数,单位:㎡/人).根据以上信息,则下列说法:①该小区2006~2008年这三年中,2008年住房总面积最大;②该小区2007年住房总面积达到1.728×106m 2;③该小区2008年人均住房面积的增长率为4%.其中正确的有 (A )①②③(B )①②(C )①(D )③12、如图,AB ∥CD ,∠BAC 与∠DCA 的平分线相交于点G ,GE ⊥AC 于点E ,F 为AC 上的一点,且FA =FG =FC ,GH ⊥CD 于H.下列说法:①AG ⊥CG ;②∠BAG =∠CGE ;③S △AFG =S △CFG ; ④若∠EGH ︰∠ECH =2︰7,则∠EGF =50°. 其中正确的有(A) ①②③④ (B) ②③④ (C) ①③④ (D) ①②④二、你能填得又快又准吗?(本题共有4题,每小题3分,共12分)13、将方程532=-y x 变形为用x 的代数式表示y 的形式是 . 14、用不等式表示“a 与5的差不是正数”: .15、如图,将△ABC 沿CB 边向右平移得到△DFE,DE 交AB 于点G. 已知∠A ︰∠C ︰∠ABC =1︰2︰3,AB =9cm ,BF =5cm ,AG =5cm , 则图中阴影部分的面积为 cm 2. 16、观察下列有规律...的点的坐标:A 1(1,1) A 2(2,-4) A 3(3,4) A 4(4,-2) A 5(5,7) A 6(6,34-) A 7(7,10) A 8(8,-1)……,依此规律,A 11的坐标为 ,A 12的坐标为 .三、解下列各题(本题共9题,共72分) 17、(本题6分)解方程组 33814x y x y -=⎧⎨-=⎩18、(本题6分)解不等式321x+>x -1并把解集在数轴上表示出来19、(本题6分)如图,四边形中,点E 在BC 上,∠A +∠ADE =180°,∠B =78°,∠C =60°,求∠EDC 的度数.20、(本题7分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2.(1)该班共有多少名学生?若全年级共有1200名学生,估计全年级参加乒乓球活动的学生有多少名?(2)请在图1中将“乒乓球”部分的图形补充完整,并求出扇形统计图中,表示“足球”的扇形圆心角的度数.21、(本题7分)如图,在平面直角坐标系中:(1)写出点A的坐标;(2)将线段OA向上平移两次,每次平移1个单位,再将线段向左平移2个单位,得到线段O′A′,写出点O、A的对应点O′、A′的坐标;(3)在图中画出与线段OA相等的两条不同的线段.22、(本题8分)如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度数.23、(本题10分)某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购,帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人居住. 学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.(1)求该校采购了多少顶3人小帐篷,多少顶10人住的大帐篷;(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?24、(本题10分)已知:在△ABC和△XYZ中,∠A=40°,∠Y+∠Z=95°,将△XYZ如图摆放,使得∠X的两条边分别经过点B和点C.(1)当将△XYZ如图1摆放时,则∠ABX+∠ACX=度;(2)当将△XYZ如图2摆放时,请求出∠ABX+∠ACX的度数,并说明理由;(3)能否将△XYZ摆放到某个位置时,使得BX、CX同时平分∠ABC和∠ACB?请直接写出你的结论: .25、(本题12分)如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若∣x+2y-5∣+∣2x-y∣=0,试分别求出1秒钟后,A、B两点的坐标.(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.答案: 一.选择二、你能填得又快又准吗?(本题共有4题,每小题3分,共12分) 13、y=352-x . 14、a -5≤0. 15、265. 16、(11,16),(12,-32)(对1空得1分).三、解下列各题(本题共9题,共72分) 17、解:由①得 y x +=3 ③……1分把③代入②得()14833=-+y y ……2分1-=y ……4分 把1-=y 代人③得2=x ……5分∴原方程组的解为⎩⎨⎧-==12y x……6分18、解: 1+2x >3x -3 ……1分 2x -3x >-3-1 ……2分 -x >-4 ……3分x <4 ……4分……6分19、证明: ∵∠A +∠ADE =180°∴AB ∥DE ……2分∴∠CED =∠B =78° ……4分又∠C =60°∴∠EDC =180°-∠CED -∠C=180°―78°―60° =42° ……6分20、解:(1)20÷40%=50(人) ……1分 50-20-10-15=5(人)505×1200=120(人) ……3分 答:该班共有50名学生,估计全年级参加乒乓球活动的学生有120名. ……4分 (2)(图略), ……5分6305010=72° ……6分 答:表示“足球”的扇形圆心角的度数为72°. ……7分21、(1)A(2,1) ……2分 (2)O ′(-2,2) 、A ′(0,3) ……5分 (3)略 ……7分22、解:(1)相等.理由如下: ……1分∵AD 平分∠BAC∴∠BAD =∠CAD ……2分 又∠EAD =∠EDA∴∠EAC=∠EAD-∠CAD=∠EDA-∠BAD=∠B ……4分(2)设∠CAD=x°,则∠E=3 x°,……5分由(1)有:∠EAC=∠B=50°∴∠EAD=∠EDA=(x+50)°在△EAD中,∠E+∠EAD+∠EDA=180°∴3 x+2(x+50)=180 ……6分解得:x=16 ……7分∴∠E=48°……8分(用二元一次方程组的参照此标准给分)23、解:(1)设该校采购了x顶小帐篷,y顶大帐篷……1分根据题意得……3分解这个方程组得……4分答:该校采购了100顶3人小帐篷,200顶10人住的大帐篷. ……5分(2)设甲型卡车安排了a辆,则乙型卡车安排了(20-a)辆根据题意得……7分解这个不等式组得15≤a≤17.5 ……8分∵车辆数为正整数∴a=15或16或17∴20-a =5或4或3 ……9分答:学校可安排甲型卡车15辆,乙型卡车5辆或安排甲型卡车16辆,乙型卡车4辆或安排甲型卡车17辆,乙型卡车3辆,可一次性将这批帐篷运往灾区.有3种方案.……10分24、解:(1)235°;……3分(2)∠ABX +∠ACX =45°.理由如下: ……4分∵∠Y +∠Z =95°∴∠X =180°-(∠Y +∠Z )=85° ……5分 ∴∠ABX +∠ACX =180°-∠A -∠XBC -∠XCB=180°-40°-(180°-85°) ……7分 =45° ……8分(3)不能. ……10分 25、解:(1)解方程组:⎩⎨⎧=-=-+02052y x y x得:⎩⎨⎧==21y x ……3分∴A (-1,0),B (0,2) ……4分(2)不发生变化. ……5分 ∠P =180°-∠PAB -∠PBA=180°-21(∠EAB +∠FBA ) ……6分 =180°-21(∠ABO +90°+∠BAO +90°) ……7分=180°-21(180°+180°-90°)=180°-135°=45° ……8分 (3)作GM ⊥BF 于点M ……9分由已知有:∠AGH =90°-21∠EAC =90°-21(180°-∠BAC )=21∠BAC ……10分 ∠BGC =∠BGM -∠BGC =90°-21∠ABC -(90°-21∠ACF ) =21(∠ACF -∠ABC )=21∠BAC ……11分 ∴∠AGH =∠BGC ……12分注:不同于此标答的解法请比照此标答给分。
七年级(下)期末数学试卷(解析版) (3)
七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列交通标志图案,是轴对称图形的是()A. B. C. D.2.下列运算结果正确的是()A. a6÷a2=a3B. 6a2b÷2ab=3abC. (−2a2)2=4a4D. (2xy+y)÷y=2x+y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.冰柜里有四种饮料:2瓶可乐、3瓶咖啡、4瓶桔子水、6瓶汽水,其中可乐和咖啡是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是()A. 13B. 23C. 12D. 345.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为()A. s=6xB. s=8(6−x)C. s=6(8−x)D. s=8x6.如图,要测量河两岸相对的两点A、B的距离,先过点B作BF⊥AB,在BF上找点D,过D作DE⊥BF,再取BD的中点C,连接AC并延长,与DE交点为E,此时测得DE的长度就是AB的长度.这里判定△ABC和△EDC全等的依据是()A. ASAB. SASC. SSSD. AAS7.甲、乙两位同学在一次频率估计概率的试验中,统计了某一结果出现的频率,给出的统计如图所示,则符合这一结果的试验可能是()8.A. 掷一枚正六面体的骰子,出现5点的概率B. 掷一枚硬币,出现正面朝上的概率C. 任意写出一个整数,能被2整除的概率D. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率9.如图,AD,CE为△ABC的角平分线交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A. 25∘B. 30∘C. 35∘D. 40∘10.一列货运火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是()A. B.C. D.11.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A. ①②B. ③④C. ①②③D. ①②③④二、填空题(本大题共4小题,共12.0分)12.如果x2+ax+9=(x+3)2,那么a的值为______.13.如图,已知AD=CB,若利用“SSS”来判定△ABC≌△CDA,则添加直接条件是______.14.某人购进一批苹果,到市场零售,已知卖出苹果数量x与售价y的关系如下表,写出用x表示y的关系式数量x(千克)2345售价y(元)16.224.332.440.515.∠B=70°,∠DAE=18°,则∠C的度数是______.三、计算题(本大题共2小题,共13.0分)16.计算(1)(2x2y)3•(-3xy2)÷6xy(2)2a2(3a2-2a+1)+4a317.先化简,再求值:(m-n)(m+n)+(m+n)2-2m2,其中m=1,n=-2.四、解答题(本大题共7小题,共45.0分)18.如图,一块三角形模具的阴影部分已破损.回答下列问题:(1)只要从模具片中度量出哪些边、角,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具?请简要说明理由.(2)按尺规作图的要求,在框内正确作出△A′B′C′图形,保留作图痕迹,不写作法和证明.19.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形.在下面每个网格中画出一种符合要求的图形(画出三种即可).20.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(______),∴AB∥CD(______)∴∠B=∠DCE(______)又∵∠B=∠D(______),∴∠DCE=∠D(______)∴AD∥BE(______)∴∠E=∠DFE(______)21.如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.求:(1)转动转盘,转出的数字大于3的概率是多少;(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.①这三条线段能构成三角形的概率是多少?②这三条线段能构成等腰三角形的概率是多少?22.如图是小明的爸爸骑一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)小明的爸爸从出发到最后停止共经过了多少分钟?离家最远的距离是多少千米?(3)摩托车在哪一段时间内速度最快?最快速度是多少千米/小时?23.如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,(1)试说明△ABC与△MED全等;(2)若∠M=35°,求∠B的度数?24.某公交车每月的支出费用为4000元,票价为2元/人次,设每月有x人次乘坐该公交车,每月收入与支出的差额为y元.(1)请写出y与x之间的关系式;(2)列表表示当x的值分别是500,1000,1500,200,2500,3000,3500时,y 的值;并观察表格中的数值,直接写出,当每月乘客量达到多少人次以上时,该公交车才不会亏损?(3)如果该公交车每月的收入与支出的差额要达到8000元,则乘坐该公交车的人要达到多少人次?答案和解析1.【答案】D【解析】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称.本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.2.【答案】C【解析】解:A、原式=a4,不符合题意;B、原式=3a,不符合题意;C、原式=4a4,符合题意;D、原式=2x+1,不符合题意,故选:C.各项计算得到结果,即可作出判断.此题考查了整式的除法,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.3.【答案】B【解析】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.本题考查了余角和垂线的定义以及对顶角相等的性质.4.【答案】A【解析】解:2瓶可乐、3瓶咖啡、4瓶桔子水、6瓶汽水一共15瓶,2瓶可乐、3瓶咖啡共5瓶含有咖啡因,所以从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是=.故选:A.先求出饮料的总瓶数及含咖啡因的饮料的瓶数,再利用概率公式解答即可.此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】【分析】直接利用已知表示出新矩形的长,进而得出其面积.此题主要考查了函数关系式,正确表示出新矩形的长是解题关键.【解答】解:∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:s=6(8-x).故选:C.6.【答案】A【解析】解:∵C为BD中点,∴BC=CD,∵AB⊥BF,DE⊥BF,∴∠ABC=∠CDE=90°,且∠ACB=∠DCE,∴在△ABC和△EDC中,满足ASA的判定方法,故选:A.根据条件可得到BC=CD,∠ABD=∠EDC,∠ACB=∠DCE,可得出所用的判定方法.本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.7.【答案】D【解析】【分析】本题考查了折线统计图和利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A.掷一枚正六面体的骰子,出现5点的概率为,故本选项错误;B.掷一枚硬币,出现正面朝上的概率为,故本选项错误;C.任意写出一个整数,能被2整除的概率为,故本选项错误;D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为≈0.33,故本选项正确.故选D.8.【答案】A【解析】【分析】根据角平分线的定义可得出∠BAC=60°、∠ACB=70°,结合三角形内角和可得出∠ABC=50°,由三角形的三条角平分线交于一点,可得出BO平分∠ABC,进而可得出∠ABO的度数,此题得解.本题考查了三角形内角和定理、角平分线以及三角形的内心,利用角平分线的定义结合三角形内角和定理找出∠ABO的度数是解题的关键.【解答】解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°-∠BAC-∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∴∠ABO=∠ABC=25°.故选:A.9.【答案】B【解析】解:抓住关键词语:“匀加速行驶一段时间---匀速行驶---停下(速度为0)---匀加速---匀速”.故选:B.由于图象是速度随时间变化的图象,而火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,注意分析其中的“关键点”,由此得到答案.此题首先正确理解题意,然后根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势.10.【答案】D【解析】解:表示该长方形面积的多项式①(2a+b)(m+n)正确;②2a(m+n)+b(m+n)正确;③m(2a+b)+n(2a+b)正确;④2am+2an+bm+bn正确.故选:D.根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.11.【答案】6【解析】解:x2+ax+9=(x+3)2=x2+6x+9.故答案为:6.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.12.【答案】AB=CD【解析】解:要利用SSS判定两三角形全等,现有AD=CB,AC=CA,则再添加AB=CD 即满足条件.故填AB=CD.要使△ABC≌△CDA,已知AD=CB,且有公共边AC=CA,所以只要添加AB=CD即可.本题重点考查了三角形全等的判定;添加时要按题目的要求进行,必须是符合SSS,注意此点是解答本题的关键.13.【答案】y=8.1x【解析】解:易得1千克苹果的售价是16.2÷2=8.1元,那么x千克的苹果的售价:y=8.1x,故答案为:y=8.1x.应先得到1千克苹果的售价,总售价=单价×数量,把相关数值代入即可求得相关函数关系式.本题考查了函数关系式,解决本题的难点是得到每千克苹果的售价,关键是得到总售价的等量关系.14.【答案】34°【解析】解:∵△ABC中,AD是高,∠B=70°,∴∠BAD=20°,∴∠BAE=38°,∵AE是∠BAC的平分线,∴∠BAC=76°,∴∠C=180°-76°-70°=34°,故答案为:34°.根据三角形内角和定理求出∠BAD,根据角平分线的定义求出∠BAC,根据三角形内角和定理计算即可.本题考查的是三角形内角和定理、三角形的高和中线,掌握三角形内角和等于180°是解题的关键.15.【答案】解:(1)原式=8x6y3•(-3xy2)÷6xy=-4x6y4;(2)原式=6a4-4a3+2a2+4a3=6a4+2a2.【解析】(1)原式利用幂的乘方及积的乘方运算法则,以及单项式乘除单项式法则计算即可求出值;(2)原式利用单项式乘以多项式法则计算,合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:原式=m2-n2+m2+2mn+n2-2m2=2mn,当m=1,n=-2时,原式=-4.【解析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把m与n的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17.【答案】解:(1)要从模具片中度量出边BC的长度、∠B及∠C的大小,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具.因为两角及夹边对应相等的两个三角形全等;(2)如图:【解析】(1)根据全等三角形的判定定理,当已知两角及夹边对应相等时,两个三角形全等,据此求解即可.(2)根据角边角作△A′B′C′即可.本题考查全等三角形的应用,关键知道两角一夹边对应相等的两个三角形全等,根据此也可画出全等三角形.18.【答案】解:如图所示..【解析】根据轴对称的性质设计出图案即可.本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键. 19.【答案】已知 同旁内角互补,两直线平行 两直线平行,同位角相等 已知 等量代换 内错角相等,两直线平行 两直线平行,内错角相等【解析】证明:∵∠B+∠BCD=180°(已知),∴AB ∥CD (同旁内角互补,两直线平行)∴∠B=∠DCE (两直线平行,同位角相等)又∵∠B=∠D (已知),∴∠DCE=∠D (等量代换)∴AD ∥BE (内错角相等,两直线平行)∴∠E=∠DFE (两直线平行,内错角相等).根据平行线的判定和平行线的性质填空.本题利用平行线的判定和平行线的性质填空,主要在于训练证明题的解答过程.20.【答案】解:(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,∴转出的数字大于3的概率是46=23;(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,∴这三条线段能构成三角形的概率是56;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,∴这三条线段能构成等腰三角形的概率是26=13.【解析】(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,由概率公式可得.本题主要考查概率公式的运用及三角形三边间的关系、等腰三角形的判定,熟练掌握三角形三边间的关系和等腰三角形的判定是解题的关键. 21.【答案】解:(1)图象表示了小明的爸爸离家的距离和行驶时间之间的关系, 行驶时间是自变量,小明的爸爸离家的距离是因变量;(2)由图可得,摩托车从出发到最后停止共经过:100分钟;离家最远的距离是:40千米.(3)摩托车在20~50分钟内速度最快;最快速度是:30÷50−2060=60(千米/小时).【解析】 本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.(1)根据题意“离家的距离(千米)随行驶时间(分)的变化而变化”,即可得到结论;(2)根据图象得出信息解答即可;(3)根据图象中的信息进行计算即可.22.【答案】解:(1)理由:∵MD ⊥AB ,∴∠MDE =∠C =90°,∵ME ∥BC ,∴∠B =∠MED ,在△ABC 与△MED 中,{∠B =∠MED∠C =∠EDM DM =AC,∴△ABC≌△MED(AAS).(2)由(1)知△ABC≌△MED,∴∠A=∠M=35°,在Rt△ABC中,∠B=90°-35°=55°.【解析】(1)根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.(2)利用全等三角形的性质解答即可.此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.23.【答案】解:(1)依题意得,y=2x-4000;(2)当x分别为500,1000,1500,2000,2500,3000,3500时,y的值分别为-3000,-2000,-1000,0,1000,2000,3000;根据表格可知,每月的乘客量不少于2000人时,该公交车才不会亏损;(3)当y=8000时,8000=2x-4000,x=6000,答:该公交车每月的收入与支出的差额要达到8000元,则乘坐该公交车的人要达到6000人次.【解析】(1)由于公交车每月的支出费用为4000元,票价为2元/人次,设每月有x人次乘坐该公交车,每月的收入与支出的差额为y元,由此可以列出y与x之间的关系式;(2)分别把所给数据代入其中计算即可求解;根据计算结果可以直接得到结论;(3)把y=8100代入(1)的关系式计算即可求解.此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.。
七年级数学下学期期末综合测练题(三) 华东师大版
CB A 21D C B A EDC B A 福建省泉州市泉港三川中学七年级数学下学期期末综合测练题(三) 华东师大版一、正本清源,做出选择!(每小题3分,共30分)1.一个三角形的两个内角分别是55和65,不可能是这个三角形外角的是( ) A.115B.120C.125D.1302.不等式组23182x x x>-⎧⎨-≤-⎩,的最小整数解是( )A.1- B.0 C.2 D.3 3.下列图形中对称轴最多的图形是( )4.若代数式312x -的值在1-和2之间,x 可以取得整数有( ) A.1个 B.2个 C.3个 D.4个5.买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%.设买甲种水x 桶,乙种水y 桶,则所列方程组中正确的是( ) A.6825075%x y x y+=⎧⎨=⎩B.8625075%x y y x +=⎧⎨=⎩C.8625075%x y x y +=⎧⎨=⎩D.6825075%x y y x +=⎧⎨=⎩6.用两种正多边形拼地板,其中的一种是正八边形,则另一种正多边形的边数是( )A.正五边形 B.正六边形 C.正三角形 D.正四边形7.如图,是由大小一样的小正方形组成的网格,ABC △的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与ABC △成轴对称的三角形共有( )A.5个 B.4个 C.3个 D.2个(第7题) (第14题) (第15题)8.下列说法正确的是( )A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大B.如果某种彩票的中奖的机会是25%,买100张这种彩票,就会有25张中奖 C.如果某种彩票的中奖的机会是25%,买4张这种彩票,就会有1张中奖D.抛一枚质量均匀的硬币,每抛一次,朝上的是“正面”还是“反面”无法确定 9.将1,2,3这三个数字全用上写出一个三位数,恰写出一个偶数的机会是( )A.16B.14C.13 D.1210.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔( )A.20支 B.14支 C.13支 D.10支二、有的放矢,圆满填空!(每小题3分,共30分)11.如果正多边形的一个外角为72,那么它的边数是_______.12.关于x 的不等式322x a --≤的解集如图所示,则a 的值是_______.13.某商场计划每月销售900台电脑,5月1日至7日黄金周期限间,商场决定开展促销活动,5月的销售计划又增加了30%.已知黄金周这7天平均每天销售54台,则这个商场本月后24平均每天至少销售_______台才能完成本月计划.14.如图,在ABC △中,AB AC =,AD BC ⊥,D 为垂足.由以上两个条件可得_______.(写出一个结论即可). 15.如图,ABC △中,AC BC =,BAC ∠的外角平分线交BC 的延长线于点D ,若12A D C C A D =∠∠,则ABC =∠_______.16.不等式组1201202x x ->⎧⎪⎨+>⎪⎩,的解集是_______.17.在活动课上,小红已有两根长为4cm ,8cm 的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_______cm . 18.如果221(21)0x y x y --+++=,那么x =_______,y =_______.19.(用x 表示).从这10名女生中任意抽出一名,其身高不低于的事件的机会,可以用图中的点_______表示.(在A B C D E ,,,,五个字母中选择一个符合题意的)20.如图,将标号为AB C D ,,,的正方形沿图形的虚线剪开后得到标号为P Q M N ,,,四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系.填空:A与_______对应;B与_______对应;C与_______对应;D与_______对应.三、细心解答,运用自如!(每小题12分,共60分)21.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价⨯利润率=销售价⨯打折数-让利数-进价)22.某校有两种类型的学生宿舍共30间,大的宿舍每间可住8人,小的每间可住5人,该校198人住宿生恰好能住满这30间宿舍.大小宿舍各有多少间?23.如图7的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在下面的方格纸中作出“小猪”关于线段DE所在直线对称的图案(只画图,不写作法).24.一对普通骰子,如果掷两骰子正面的点数和为2,11,12,那么甲赢;如果两骰子正面的点数和为7,那么乙赢;如果两骰子正面的点数和为其它数,那么甲乙都不赢.继续下去,直到有一个人赢为止.(1)你认为游戏是否公平,并解释原因;(2)如果你认为游戏公平,那么请你设计一个不公平的游戏;如果你认为游戏不公平,那么请你设计一个公平的游戏.25.某校计划在暑假期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.(1)求外出旅游的学生人数是多少?单租45座客车需多少辆?(2)已知45座客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都能有座,决定同时租用两种客车.使得租车总数可比单租45座客车少一辆,问45座客车和60座客车分别租多少辆才能使得租金最少?参考答案22.大宿舍16间,小宿舍14间.(提示:设学校有大宿舍x 间,小宿舍y 间,依题意,得3085198x y x y +=⎧⎨+=⎩,.解得1614x y =⎧⎨=⎩,.)23.(1)1322; (提示:1114411371332222⨯⨯+⨯⨯+⨯+⨯=.)(2)略.24.解:两骰子正面的点数和共会出现36种情况,出现两骰子正面点数和为2,11,12共有四种可能,则出现和为2,11,12的机会为19;出现和为7的有6种可能,即出现和为7的机会为16,出现的机会不相等,故游戏不公平.(2)游戏规则:一对骰子,如果掷两骰子正面点数和为2,11,12,那么甲赢;如果两骰子正面的点数和为5,那么乙赢.25.解:(1)设学生人数为x 人,单组45座客车需y 辆,由题意,得4560(1)30x y x y =⎧⎨=--⎩,.解得2706x y =⎧⎨=⎩,.所以学生总人数为270人,单租45座客车需6辆.(2)由题意及(1)知:两种客车同时租用共需5辆,设45座客车z 辆,则60座客车为(5)z -辆. 要使每个学生都有座,需有4560(5)270z z +-≥. 解之,得2z ≤. 当2z =时,租金最少为:225033001400⨯+⨯=(元).。
大连市2013年七年级(下)期末数学模拟试题及答案(三)
大连市2013年度第二学期七年级下数学期末模拟试卷(三)一、填空(每题3分,共30分)1、 已知方程241458m n n x y ----=是二元一次方程,则m = ,n =2、 若不等式组2600x x m -≥⎧⎨-≤⎩无解,则m 的取值范围3、 已知不等式组3113x x a-⎧〉⎪⎨⎪〉⎩的解集为x ﹥2,则a 的取值范围4、 把圆心在点(a ,b )处的圆向右平移2个单位长度,再向下平移1个单位长度的圆心坐标为 圆上任意一点P (x ,y )的坐标,变成 ,其形状大小都 。
5、 已知关于x ,y 的二元一次方程2x +□y =7中,y 的系数已经模糊不清,但已知21x y =⎧⎨=-⎩是这个方程的解,那么原方程是 。
6、 某种商品的进价为15元,出售标价是22.5元,由于不景气销售情况不好,商店准备降价处理,但要保证利润不低于10%,那么该店最多降价 出售该商品。
7、 如图直线a 与直线b 平行,则︳x -y ︴的值是8、 不等式组23482x x x -⎧⎨-≤-⎩的最小整数解是 。
9、 一组数据分成了五组,其中第三小组的频数是10,频数为0.05,则这组数据共有个数。
10、给你一对数32x y =-⎧⎨=⎩请写出一个二元一次方程组使这对数满足这个方程组的解 。
二、选择(每题3分,共30分)11、如果a ﹥b ,那么下列结论错误的是( )A 、a -3﹥b -3B 、3a ﹥3bC 、22a b > D 、-a ﹥-b 12、某市科学知识竞赛的预赛中共有20道题,满分200分,答对一道得10分,答错或不答扣5分,总分不少于80分者就通过预赛,若小王通过了预赛,那么他至少答对了( )A 、10道B 、12道C 、14道D 、16道13、如图,若a ∥b ,则∠1、∠2、∠3的关系是( )A 、∠1+∠2+∠3=360°B 、∠1-∠2+∠3=180°C 、∠1+∠2-∠3=180°D 、∠1+∠2+∠3=180°14、不等式组123x x -≤⎧⎨-⎩的解集是( ) A 、x ≥-1 B 、x <5 C 、-1≤x <5 D 、x ≤-1或x >515、由x <y 得到ax <ay 则a 应满足条件是( )A 、a ≥0B 、a ≤0C 、a >0D 、a <016、已知点M (3a -9,1-a )在第三象限,且满足坐标都是整数,则a 的值为( )A 、1B 、2C 、3D 、017、某商店有两种进价不同的耳机,都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元18、如图,是两学校的男女生人数占总人数的百分比情况统计图,能看出甲校中的女生人数比乙校中的女生人数( )A 、多B 、少C 、一样多D 、不能判定19、若方程组323x y x y a -=⎧⎨+=-⎩的解是负数,则a 的取值范围是( )A 、-3<a <6B 、a <6C 、a <-3D 、无解20、在等式y =kx +b 中,当x =-1时,y =-2,当x =2时,y =7,则这个等式是( )A、y =-3x +1 B、y =3x +1 C、y =2x +3 D、y =3x -1三、解下列方程组或不等式组(每题8意分,共16分)21、3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩ 22、104(3)2(1)1213x x x x --≥-⎧⎪-⎨-⎪⎩四、解答题(23、24、25各10分,26题14分)23、已知不等式组104(3)2(1)1213x x x x --≥-⎧⎪-⎨-⎪⎩的整数部分解a 满足方程组513(1)131722a a a a -+⎧⎪⎨--⎪⎩ 求32x y +的值。
人教版七年级下学期期末考试数学试题及答案三
人教版七年级下学期期末考试数学试题及答案亲爱的同学们:本次考试将实行网上阅卷,所有试题答案一律填写在答题卡上相应区域,选择题用2B铅笔在相应小框框内涂黑,要求把小框框涂满,非选择题必须填写在相应的框框内横线上,不准填写在框框外,否则不得分。
每题留下的横线可能较长,但答案可能很短。
一.选择题(每题3分,共30分)1.平方根等于它自己的数是()A.0B.1C.﹣1D.42.下列方程中,为二元一次方程的是()A.2a+1=0B.3x+y=2z C.x=3y D.xy=93.如图,在梯形ABCD中,∠B=115°,则∠C的大小是()A.50°B.65°C.75°D.85°(3题图)(4题图)(6题图)4.如图,直线AB与CD相交于点O,若∠1+∠2=80°,则∠3等于()A.100°B.120°C.140°D.160°5.在﹣,﹣,0,﹣3四个数中,满足不等式x+2>0的有()A.1个B.2个C.3个D.4个6.光线在不同介质中的传播速度不同,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,当∠1=45°,∠2=122°时,∠3和∠4的度数分别是()A.45°,68°B.45°,58°C.45°,45°D.58°,122°7.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.样本容量是34000C .1800名学生的视力情况是总体的一个样本D .本次调查是抽样调查 8.由方程组可得x 与y 的关系式是( ) A .3x =7+3mB .5x ﹣2y =10C .﹣3x +6y =2D .3x ﹣6y =29.已知a <b ,下列不等式成立的是( ) A .a +2<b +1B .﹣3a >﹣2bC .m ﹣a >m ﹣bD .am 2<bm 210.小明在拼图时,发现8个大小一样的小长方形恰好可以拼成一个大的长方形,如图1所示.小红看见了,说“我来试一试”,结果拼成如图2所示的正方形,中间还留有一个洞,恰好是边长为2cm 的小正方形.则每个小长方形的长和宽分别为( )A .8cm 和6cmB .12cm 和8cmC .10cm 和8cmD .10cm 和6cm二.填空题(每题3分,共15分) 11.已知x 2=64,则= .12.阅读下列材料:设=0.333…①,则10x =3.333…②,则由②﹣①得:9x =3,即.所以=0.333…=.根据上述提供的方法把下列这个数化成分数.= .13.以方程组的解为坐标的点(x ,y )在平面直角坐标系中的位置是在第 象限.14.如图,有一条直的等宽纸条按图折叠时,则图中∠α= . 15.已知02=+-n mm ,则当m ≥2时,m +n 的取值范围是 . 三.解答题(共75分) 16.(8分)解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3解法二:由②得3x+(x﹣3y)=5③把①代入③得3x+8=5(1)上述两种消元过程是否正确?你的判定是.A.都正确B.解法一错C.解法二错D.两种都错(2)请选择一种你喜欢的方法解此方程组.17.(10分)解不等式组:,在数轴上画出它的解集并写出该不等式组的非负整数解.18.(8分)下面数据是20位同学的身高(单位:cm):159、157、164、161、167、153、166、163、162、158162、164、160、172、166、162、168、167、161、156(1)这组数据中,最大值与最小值的差是;(2)将这组数据分为4组:153≤x<158,158≤x<163,163≤x<168,168≤x<173,则组距是.(3)完成下面频数分布表,并将频数分布直方图补充完整.19.(8分)如图,这是一所学校的平面示意图.(1)若校门的坐标为(﹣2,0)、图书馆的坐标为(2,3),请在图中画出对应的坐标系,这时实验楼的坐标为;(2)以国旗杆的位置为坐标原点,校门的坐标可以不可以表示为(﹣1,0)?若可以请写出这时实验楼的坐标,若不可以请说明理由。
扬中市七年级下期末数学模拟试卷(三)含答案解析
-江苏省镇江市扬中市八桥中学七年级(下)期末数学模拟试卷(三)一、选择题(共9小题,每小题3分,满分27分)1.不等式组的解集在数轴上表示为()A.B.C.D.2.下面是一名学生所做的4道练习题:①(﹣3)0=1;②a3+a3=a6;③4m﹣4=;④(xy2)3=x3y6,他做对的个数是()A.0 B.1 C.2 D.33.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于()A.65° B.55°C.45°D.50°4.若﹣≤﹣,则a一定满足()A.a>0 B.a<0 C.a≥0 D.a≤05.△ABC中,∠A=∠B=∠C,则△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形6.下列各式,能用平方差公式计算的是()A.(a﹣1)(﹣a﹣1)B.(a﹣3)(﹣a+3) C.(a+2b)(2a﹣b) D.(﹣a﹣3)2 7.已知(2x+1)x+2=1,则x的值是()A.0 B.﹣2 C.﹣2或0 D.﹣2、0、﹣18.由下面的图形得到的乘法公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2﹣(a﹣b)2=4ab9.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=()A.60° B.70°C.80°D.90°二、填空题(共9小题,每小题1分,满分10分)10.化简:(x+y)2﹣3(x2﹣2y2)=.11.如果2x÷16y=8,则2x﹣8y=.(﹣2a5)÷(﹣a)2=.12.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为.13.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.14.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=20°,则∠1的度数为度.15.分解因式:a4﹣1=.16.如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为=.17.已知关于x、y的方程组的解是,则a+b=.18.若关于x的不等式组的整数解共有3个,则a的取值范围为.三、解答题(共7小题,满分63分)19.计算:(1)(﹣)100×3101﹣(π﹣3)0﹣(﹣2)﹣2+|﹣1|(2)(4a﹣5b)2﹣2(4a﹣5b)(3a﹣2b).(3)已知4m+n=9,2m﹣3n=1,求(m+2n)2﹣(3m﹣n)2的值.20.解方程组.21.解不等式组,并写出不等式组的正整数解..22.分解因式:(1)﹣9x3+81x(2)(a2+b2)2﹣4a2b2.23.(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=.(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.24.黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?25.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.-江苏省镇江市扬中市八桥中学七年级(下)期末数学模拟试卷(三)参考答案与试题解析一、选择题(共9小题,每小题3分,满分27分)1.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】首先分别解出两个不等式,再根据“大小小大中间找”确定解集,然后再在数轴上表示出解集即可.【解答】解:,由①得:x>1,由②得:x≤2,不等式组的解集为:1<x≤2,在数轴上表示为:,故选:C.【点评】此题主要考查了解不等式组,以及在数轴上表示解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.下面是一名学生所做的4道练习题:①(﹣3)0=1;②a3+a3=a6;③4m﹣4=;④(xy2)3=x3y6,他做对的个数是()A.0 B.1 C.2 D.3【考点】零指数幂;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】分别根据零指数幂,合并同类项的法则,负指数幂的运算法则,幂的乘方法则进行分析计算.【解答】解:①根据零指数幂的性质,得(﹣3)0=1,故正确;②根据同底数的幂运算法则,得a3+a3=2a3,故错误;③根据负指数幂的运算法则,得4m﹣4=,故错误;④根据幂的乘方法则,得(xy2)3=x3y6,故正确.故选C.【点评】本题主要考查了零指数幂,负指数幂的运算,合并同类项法则和幂的乘方法则.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.合并同类项的时候,只需把它们的系数相加减.3.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于()A.65° B.55°C.45°D.50°【考点】翻折变换(折叠问题).【分析】根据对折,对折角相等,由直线平行,内错角相等,根据角的等量关系,求得∠1.【解答】解:作图如右,∵图形对折,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∵∠2+∠3=130°,∴∠1=65°,故选A.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.4.若﹣≤﹣,则a一定满足()A.a>0 B.a<0 C.a≥0 D.a≤0【考点】不等式的性质.【分析】根据,所以﹣>﹣,因为﹣≤﹣,根据不等式的基本性质,所以a≤0.【解答】解:∵,∴﹣>﹣,∵﹣≤﹣∴a≤0,故选:D.【点评】本题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.△ABC中,∠A=∠B=∠C,则△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形【考点】三角形内角和定理.【分析】根据题意可设∠A=x°,则∠B=3x°,∠C=4x°,由于三角形内角和为180°,故可得到关于x 的方程:x+3x+4x=180,解方程即可得到x的值,进而可求出∠B,∠C的度数,即可得到答案.【解答】解;设∠A=x°,则∠B=3x°,∠C=4x°,x+3x+4x=180,解得:x=22.5,∴∠B=67.5°,∠C=90°,∴△ABC是直角三角形.故选:B.【点评】此题主要考查了三角形内角和定理,此题运用方程思想进行计算可以有效的简化推理过程.6.下列各式,能用平方差公式计算的是()A.(a﹣1)(﹣a﹣1)B.(a﹣3)(﹣a+3) C.(a+2b)(2a﹣b) D.(﹣a﹣3)2【考点】平方差公式.【专题】计算题.【分析】A、可以利用平方差公式化简;B、变形后利用完全平方公式化简;C、利用多项式乘以多项式法则计算;D、变形后利用完全平方公式化简.【解答】解:A、(a﹣1)(﹣a﹣1)=(﹣1+a)(﹣1﹣a)=(﹣1)2﹣a2=1﹣a2,本选项能用平方差公式计算;B、(a﹣3)(﹣a+3)=﹣(a﹣3)2=﹣a2+6a﹣9,本选项不能用平方差公式计算;C、(a+2b)(2a﹣b)=2a2﹣ab+4ab﹣2b2=2a2+3ab﹣2b2,本选项不能用平方差公式计算;D、(﹣a﹣3)2=(a+3)2=a2+6a+9,本选项不能用平方差公式计算;故选A【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.已知(2x+1)x+2=1,则x的值是()A.0 B.﹣2 C.﹣2或0 D.﹣2、0、﹣1【考点】零指数幂;有理数的乘方.【专题】分类讨论.【分析】根据零指数幂可得x+2=0,2x+1≠0,根据有理数的乘方可得x﹣1=1;x﹣1=﹣1,x+2为偶数,再解即可.【解答】解:由题意得:①x+2=0,2x+1≠0,解得:x=﹣2;②2x+1=1,解得:x=0;③2x+1=﹣1,x+2为偶数,无解.综上可得x的值为:﹣2或0.故选C.【点评】此题主要考查了零指数幂,以及有理数的乘方,关键是注意要分类讨论,不要漏解.8.由下面的图形得到的乘法公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2﹣(a﹣b)2=4ab【考点】平方差公式的几何背景.【分析】根据边长为a的正方形剪掉边长为b的正方形的面积和组成的长方形的面积相等解答.【解答】解:左图:剪掉边长为b的正方形的面积为:a2﹣b2,右图:拼成长方形的面积为:(a+b)(a﹣b),所以得到的乘法公式为:a2﹣b2=(a+b)(a﹣b).故选C.【点评】本题考查了平方差公式的几何背景,根据剪拼前后图形的面积相等求解是解题的关键.9.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=()A.60° B.70°C.80°D.90°【考点】多边形内角与外角.【分析】由多边形的内角和公式,即可求得六边形ABCDEF的内角和,又由∠1+∠2+∠3+∠4+∠5=430°,即可求得∠GBC+∠C+∠CDG的度数,继而求得答案.【解答】解:∵六边形ABCDEF的内角和为:180°×(6﹣2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,∴∠GBC+∠C+∠CDG=720°﹣430°=290°,∴∠G=360°﹣(∠GBC+∠C+∠CDG)=70°.故选:B.【点评】此题考查了多边形的内角和公式.此题难度不大,注意掌握整体思想的应用.二、填空题(共9小题,每小题1分,满分10分)10.化简:(x+y)2﹣3(x2﹣2y2)=﹣2x2+2xy+7y2.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘方和小括号里面的,然后合并同类项,求出算式(x+y)2﹣3(x2﹣2y2)的值是多少即可.【解答】解:(x+y)2﹣3(x2﹣2y2)=x2+2xy+y2﹣3x2+6y2=﹣2x2+2xy+7y2故答案为:﹣2x2+2xy+7y2.【点评】此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.11.如果2x÷16y=8,则2x﹣8y=6.(﹣2a5)÷(﹣a)2=﹣2a3.【考点】整式的除法.【分析】把2x÷16y化为2x﹣4y,把8化为23,求出x﹣4y,得到2x﹣8y的值;根据整式的运算法则先算乘方再算乘除计算得到答案.【解答】解:2x÷16y=2x÷24y=2x﹣4y=8=23,则x﹣4y=3,2x﹣8y═2(x﹣4y)=6;(﹣2a5)÷(﹣a)2=(﹣2a5)÷a2=﹣2a3.故答案为:6;﹣2a3.【点评】本题考查的是同底数幂的除法和整式的除法,掌握同底数幂的除法法则:同底数幂相除,底数不变,指数相减是解题的关键.12.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为13,15,17.【考点】三角形三边关系.【分析】首先设第三边为x,再根据三角形的三边关系可得6﹣3<x<6+3,再确定出x的范围,然后再确定出x的值,进而算出周长即可.【解答】解:设第三边为x,由题意得:6﹣3<x<6+3,即3<x<9,∵x为偶数,∴x=4,6,8,∴三角形的周长为:3+6+4=13,3+6+6=15,3+6+8=17,故答案为:13,15,17.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.13.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.14.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=20°,则∠1的度数为100度.【考点】翻折变换(折叠问题).【专题】计算题.【分析】先根据三角形的内角和定理可出∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【解答】解:如图,∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°﹣80°=100°.故答案为100.【点评】本题考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.15.分解因式:a4﹣1=(a2+1)(a+1)(a﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】运用平方差公式进行两次分解即可.【解答】解:a4﹣1,=(a2+1)(a2﹣1),=(a2+1)(a+1)(a﹣1).故答案为:(a2+1)(a+1)(a﹣1).【点评】本题考查了用平方差公式分解因式,注意利用平方差公式进行两次分解,注意分解要彻底.16.如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为=40°.【考点】平行线的性质;三角形的外角性质.【分析】由AB∥CD,∠B=75°,根据两直线平行,同位角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.【解答】解:∵AB∥CD,∠B=75°,∴∠1=∠B=75°,∵∠D=35°,∴∠E=∠1﹣∠D=75°﹣35°=40°.故答案为:40°.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.17.已知关于x、y的方程组的解是,则a+b=5.【考点】二元一次方程组的解.【专题】计算题.【分析】由x=2,y=1为方程组的解,将x=2,y=1代入方程组,求出a与b的值,即可求出a+b的值.【解答】解:将x=2,y=1代入方程组得:,解得:a=3,b=2,则a+b=2+3=5.故答案为:5【点评】此题考查了二元一次方程组的解,方程组的解即为能使两方程成立的未知数的值.18.若关于x的不等式组的整数解共有3个,则a的取值范围为﹣2<a≤﹣1.【考点】一元一次不等式组的整数解.【专题】探究型.【分析】先把a当作已知表示出不等式组的解集,再根据不等式组有3个整数解即可求出a的取值范围.【解答】解:,∵由①得,x≥a;由②得,x<2,∴不等式组的解集为:a≤x<2,∵不等式组有3个整数解,∴这三个整数解是:﹣1,0,1,∴﹣2<a≤﹣1.故答案为:﹣2<a≤﹣1.【点评】本题考查的是一元一次不等式组的整数解,先根据题意题用a表示出不等式组的解集是解答此题的关键.三、解答题(共7小题,满分63分)19.计算:(1)(﹣)100×3101﹣(π﹣3)0﹣(﹣2)﹣2+|﹣1|(2)(4a﹣5b)2﹣2(4a﹣5b)(3a﹣2b).(3)已知4m+n=9,2m﹣3n=1,求(m+2n)2﹣(3m﹣n)2的值.【考点】整式的混合运算;整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)先算积的乘方、0指数幂、负整数指数幂以及绝对值,再算加减;(2)先利用完全平方公式和整式的乘法计算,再进一步合并即可;(3)由①﹣②得m+2n=4,①+②得3m﹣n=5,进一步整体代入求得答案即可.【解答】解:(1)原式=3﹣1﹣+1=;(2)原式=16a2﹣40ab+25b2﹣2(12a2﹣23ab+10b2)=16a2﹣40ab+25b2﹣24a2+46ab﹣20b2=﹣8a2+6ab+5b2;(3)∵4m+n=9,2m﹣3n=1,∴m+2n=4,3m﹣n=5,∴42﹣52=﹣9.【点评】此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.20.解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①﹣②×2得:x=﹣1,把x=10代入②得:y=5,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.解不等式组,并写出不等式组的正整数解..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的正整数解即可.【解答】解:,解①得:x≤3,解②得:x>﹣2.则不等式组的解集是:﹣2<x≤3.则正整数解是1,2,3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.22.分解因式:(1)﹣9x3+81x(2)(a2+b2)2﹣4a2b2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣9x(x2﹣9)=﹣9x(x+3)(x﹣3);(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD= 25°.(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.【考点】平行线的性质;三角形内角和定理.【分析】(1)由AB∥CD,∠B=40°,根据两直线平行,内错角相等,即可求得∠BOD的度数,又由三角形外角的性质,可求得∠BPD的度数;(2)首先过点P作PE∥AB,由AB∥CD,可得AB∥PE∥CD,然后由两直线平行,内错角相等,即可证得∠BPD=∠1+∠2=∠B+∠D;(3)首先延长BP交CD于点E,利用三角形外角的性质,即可求得∠B+∠D的度数.【解答】解:(1)∵AB∥CD,∠B=40°,∴∠BOD=∠B=40°,∴∠P=∠BOD﹣∠D=40°﹣15°=25°.故答案为:25°;(2)∠BPD=∠B+∠D.证明:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(3)延长BP交CD于点E,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=90°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=90°﹣40°=50°.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】应用题.【分析】设四座车租x辆,十一座车租y辆,先根据“共有70名职员”作为相等关系列出x,y的方程,再根据“公司职工正好坐满每辆车且总费用不超过5000元”作为不等关系列不等式,求x,y的整数解即可.注意求得的解要代入实际问题中检验.【解答】解:设四座车租x辆,十一座车租y辆,则有:,将4x+11y=70变形为:4x=70﹣11y,代入70×60+60x+11y×10≤5000,可得:70×60+15(70﹣11y)+11y×10≤5000,解得y≥,又∵x=≥0,∴y≤,故y=5,6.当y=5时,x=(不合题意舍去).当y=6时,x=1.答:四座车租1辆,十一座车租6辆.【点评】本题考查二元一次方程组与一元一次不等式的综合应用,将现实生活中的事件与数学思想联系起来,列出关系式即可求解.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的关系式.25.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设大车货x辆,则小货车(20﹣x)辆,根据“大车装的货物数量+小车装的货物数量=240吨”作为相等关系列方程即可求解;(2)①调往A地的大车m辆,小车(10﹣m)辆;调往B地的大车(8﹣m)辆,小车(m+2)辆,根据“运往A地的白砂糖不少于115吨”列关于m的不等式求出m的取值范围,②设总运费为W元,根据运费的求算方法列出关于运费的函数关系式W=10m+11300,再结合一次函数的单调性得出w的最小值即可求解.【解答】解:(1)设大货车x辆,则小货车有(20﹣x)辆,15x+10(20﹣x)=240,解得:x=8,20﹣x=20﹣8=12(辆),答:大货车用8辆.小货车用12辆;(2)①调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,由题意得:15m+10(10﹣m)≥115,解得:m≥3,∵大车共有8辆,∴3≤m≤8;②设总运费为W元,∵调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,∴到B的大车(8﹣m)辆,到B的小车有[12﹣(10﹣m)]=(2+m)辆,W=630m+420(10﹣m)+750(8﹣m)+550(2+m),=630m+4200﹣420m+6000﹣750m+1100+550m,=10m+11300.又∵W随m的增大而增大,∴当m=3时,w最小.当m=3时,W=10×3+11300=11330.因此,应安排3辆大车和7辆小车前往A地,安排5辆大车和5辆小车前往B地,最少运费为11330元.【点评】本题考查了一元一次方程、一次函数和一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出相关的式子是解题的关键.注意本题中所给出的相等关系和不等关系关键语句“现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖”“运往A地的白砂糖不少于115吨”等.21 / 21。
七年级数学下册期末考试真题卷含答案解析(3)
七年级数学下册期末考试真题卷一.选择题(共10小题,满分30分)1.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A、B两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短3.下列计算正确的是()A.x3÷x3=0B.(﹣3x)2=6x2C.2x﹣2=D.(x3)2=x6 4.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.105.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()﹣+从袋子中随机摸出一个球,摸到红球的概率是,那么=,=∠=×21.如图,已知△ABC.(1)尺规作图,画出线段AB的垂直平分线(不写作法,保留作图痕迹);(2)设AB的垂直平分线与BA交于点D,与BC交于点E,连接AE.若∠B=40°,求∠BEA的度数.22.某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买200元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物220元.(1)他获得购物券的概率是多少?(2)他得到100元、50元、20元购物券的概率分别是多少?(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?(直接写出修改方案即可).23.如图,在△ABC中,AB=AC,D是边BC延长线上一点,连接AD,过A作AE=AD,且∠DAE=∠BAC,连接CE交AD于点F.(1)求证:△ABD≌△ACE;(2)若∠FCD=34°,求∠B的度数.参考答案一.选择题1.D.2.D.3.D.4.B.5.C.6.C.7.C.8.C.9.C.10.B.二.填空题11.108°.12.2.13.4.14.8.15.﹣1.16.70°.17.y=x.三.解答题18.解:(1)原式=﹣a3•a2﹣9a6÷a=﹣a5﹣9a5=﹣10a5;(2)原式=20212﹣(2021+1)×(2021﹣1)=20212﹣20212+1=1.19.解:原式=x2﹣2xy﹣y2﹣(x2﹣y2)=x2﹣2xy﹣y2﹣x2+y2=﹣2xy,当x=,y=1时,原式=﹣2××1=﹣1.20.解:∵AD∥BC,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵AD∥BC,(已知)∴∠C+∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°﹣∠C=180°﹣60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=∠ADC=×120°=60°.(角平分线定义)∴∠1=∠ADE.(等量代换)∴AB∥DE.(内错角相等,两直线平行.)故答案为:B,两直线平行,同位角相等,ADC,两直线平行,同旁内角互补,ADC,角平分线定义,内错角相等,两直线平行.四.解答题21.解:(1)线段AB的垂直平分线如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE∴∠BAE=∠B=40°∴∠BEA=180°﹣∠B﹣∠BAE=180°﹣40°﹣40°=100°答:∠BEA的度数为100°22.解:(1)∵共有20种等可能事件,其中满足条件的有11种,∴P(中奖)=;(2)由题意得:共有20种等可能结果,其中获100元购物券的有2种,获得50元购物券的有4种,获得20元购物券的有5种,∴P(获得100元)==;P(获得50元)==;P(获得20元)==;(3)直接将3个无色扇形涂为黄色.23.(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).(2)由(1)可知∠B=∠ACB=ACE,∵∠ACB+∠ACE+∠FCE=180°,即2∠B+34°=180°,∴∠B=73°.24.解:(1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg后,小钱的微信零钱为650元,∴销售草莓20kg,销售收入为650﹣50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30﹣10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.25.解:(1)如图①,∵△ACB和△DCE均为等边三角形,∴AC=BC,DC=CE,∠ACB=∠DCE=60°,∵点A、D、E在同一条直线上,∴∠ADC=120°,∵∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,且AC=BC,DC=CE,∴△CAD≌△CBE(SAS)(2)如图①∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A、D、E在同一条直线上,∴∠ADC=120°,∵△CAD≌△CBE,∴AD=BE,∠BEC=∠ADC=120°,∴∠AEB=120°﹣60°=60°,故答案为:60°,AD=BE;(3)结论:∠AEB=90°,AE=BE+2CM,理由:如图②,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∵CD=CE,CM⊥DE,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM.。
2013-2014学年度七年级下期数学期末模拟卷(三)
A BCD E2013-2014学年度七年级下期数学期末模拟卷(三)A 卷(100分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的.) 1、下列各式计算正确的是( )A .8442x x x =+ B . ()326x yx y=C .()325xx = D .()853x x x =-⋅-2、如图,AB ∥ED ,则∠A +∠C +∠D =( ) A .180°B .270°C .360°D .540°3、小明用一枚均匀的硬币试验,前7次掷得的结果都是下面向上,如果将 第8次掷得下面向上的概率记为P ,则( ) A 、P=0.5 B 、P <0.5 C 、P >0.5 D 、无法确定4、下列图形中,不是轴对称图形的是 ( )A B C D5、能使两个直角三角形全等的条件是 ( ) A 、两直角边对应相等 B 、一锐角对应相等 C 、两锐角对应相等 D 、斜边相等6、已知三角形的三边分别为2,1-a ,4那么a 的取值范围是( ) A 、51<<a B 、62<<a C 、73<<a D 、64<<a7、已知等腰三角形的一个内角为70°,则它的另外两个角的度数为( )。
A .55°,55° B.55°,70° C.70°,40° D.55°,55°或70°,40°8.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶。
下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况( )A速度时间B速度时间C速度时间D速度时间9、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形? 应该带( ). A .第1块 B .第2 块 C .第3 块 D .第4块10..如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( )(A)40°. (B)30°. (C)20°. (D)10°. 二.填空题(共4小题,每小题4分,计16分) 11.如果42++kx x是一个完全平方式,那么k 的值为12.有一种原子的直径约为0.00000053米,它可以用科学计数法表示为 13、如图,已知:DE 是AC 的垂直平分线,AB=10cm, BC=11cm,则△ABD 的周长为________ 14.如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D=25°,∠E=105°, ∠DAC=16°,求∠DGB 的度数北师大版七年级下期期末数学模拟卷(三)(全卷150分,时间:120分钟)一、选择题(每题3分,共30分,将A 卷选择题答案写在下表中) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每题4分,共16分,将A 卷中填空题写在对应题号的横线上)11、 cm .12、 .13、 14、三、解答题(54分)(15题16分,16题6分,17-20每题8分)15、(1)2(m +1)2-(2m +1)(2m -1) (2)( 用公式计算):98×102(3))32)(32(42--+--x x x (4) ()()()320122332-+---+⎪⎭⎫⎝⎛--π16,化简求值[]x yy x y x y x 25)3)(()2(22÷--+-+,其中21,2=-=y x17. 某商场柜台为了吸引顾客,打出了一个小广告如下:本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖50元.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题: (1)小亮的妈妈购物150元,她获得50元、5元购物券的概率分别是多少?(2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,指针落在某一区域的事件发生概率为83,并说出此事件.红色 黄色绿色EDCA B18. 如图所示,已知△ABC 和直线MN.求作:△A 1B 1C 1使△A 1B 1C 1和△ABC 关于直线MN 对称.19.如图,已知四边形ABCD 是梯形,AD∥BC,∠A=90°,BC=BD ,CE⊥BD,垂足为E . (1)求证:△ABD≌ECB; (2)若∠DBC=50°,求∠DCE 的度数.20、如图已知四边形ABCD 中,∠D=∠C=90°,AE 平分∠DAB,BE 平分∠ABC,且E 在DC 上. (1) 求证:DE=EC ,(2)求∠AEB,(3)求证:AD+BC=ABB 卷(50分)一.填空题:(每小题4分,共20分)21、命题“同角的余角相等”的逆命题是_____________________________22/一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球不是绿球的概率是______________23、如图,△ABC ≌△ADE ,若∠BAE=120°,∠BAD=40°,求∠BAC 的度数 24.△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,且CD=4cm ,则点D 到AB•的距离是________.25、如图,在△ABC 中,MN ⊥AC ,垂足为N ,,且MN 平分∠AMC ,△ABM 的周长为9cm,AN=2cm ,则△ABC 的周长是____________二.解答题(共30分)26.证明定理“三角形内角和为180度”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013七年级(下)数学期末模拟考试三
1.下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( )
A .12cm, 3cm, 6cm
B .8cm, 16cm, 8cm
C .6cm, 6cm, 13cm
D .2cm, 3cm, 4cm 2. 下列世界博览会标志中是轴对称图形的是( )
A .
B .
C .
D . 3. 化简4
1(-4x +8)-3(4-5x )的结果为 .
4. 小狗在如图所示的方砖上走,最终停在黑色方砖上的概率为
5. 计算:=-÷)2(62
8a a
6. 如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在 同一条直线上,若∠ADE=125°,则∠DBC 的度数为( ) A .55° B .65° C .75° D .125°
7. 下列计算正确的是( )
A .2
62)31(2x x x x --=-- B .22=-a a C .3252a a a += D .235a a a ⋅=
8. 12.如图所示,将ABC △沿着DE 折叠压平,A 与A ′重合,
若∠A =60°,则∠1+∠2=( ) A.60° B.120° C.130° D.140°
9. 下列多项式乘法中,可用平方差公式计算的是( )
A .)32)(2(b a b a -+
B .)1)(1(x x ++
C .)2)(2(y x y x +-
D .))((y x y x +-- 10.如图,在长方形ABCD 中,AB=2,BC=1,动点P 从点B 出发,
沿路线B→C→D 作匀速运动,那么图象中能反映△ABP 的面 积y 与点P 运动的路程x 之间关系的是( )
A
.
B.
C.
D.
O
x
y
3
1
13
O
x
y
3
1
1O
x
y
3
3
O
x
y
3
1
2
P
D C
B
A
第10题图
第6题图
第4题图
第8题图
A
B
B
C
B
E B
D
1 2
A '
11. 单项式2
3ab -的次数是 . 12. 计算:223)2(x x ∙= .
13. 一个标准大气压下1cm 3空气的质量是0.001293克, 数0.001293用科学计数法表示为___________.
14. 已知∠α,∠β互为余角,且∠β=70°,则∠α= °. 15. 如图,已知∠1=∠2,请你添加一个条件使△ABC ≌△BAD ,
你添加的条件是 (填一个即可). 16. 如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,
若∠BOC=120°, 则∠A=________°. 17.(5分)计算:(1)022010
)14.3()3
1
()1(π--+--
(2)
2
(3)2(3+)7x x x -+-
(3)先化简,再求值:(4ab 3+8a 2b 2)÷4ab -(2a +b )(2a -b ),其中a =2,b =1.
(4)化简求值 x x y x x 2)1()2(2
++-+,其中x=-2,y=-3
18.(6分)求做ABC △使∠A=α,∠B=β, AB=m
第15题图
A
B
C
O
第16题图
A
B
C
O 20.(5分)推理填空如图,已知∠A =∠F ,∠C =∠D ,试说明BD ∥CE. 解: ∵∠A = ∠F (已 知)
∴AC ∥ ( ) ∴∠D = ∠ ( ) 又∵∠C = ∠D (已 知) ∴∠1 = ∠C (等量代换)
∴BD ∥ CE ( )
21.(5分)闽东某地区有种习俗,端午节吃粽子时,吃到包有钱币的粽子就象征吉祥如意.今年 外婆来我家过端午节,她在10个粽子中的一个放了钱币,吃粽子时妈妈给外婆、爸爸每人分3 个,我和妈妈各2个,结果爸爸、妈妈和外婆都没有吃到钱币,我却吃到了.请根据上述信息, 简要回答下列问题:
(1)若此游戏具有公平性,吃一个粽子能吃到钱币的概率是 ;我能吃到钱币 的概率又是 .
(2)事后我了解到:之所以我能吃到钱币,是因为外婆和妈妈做了手脚,在此前提下,我吃 第一个粽子就有钱币的概率是 .
外婆和妈妈做手脚的方法我猜想是 .
22.(7分)如图,两根长度为10米的绳子,一端系在旗杆上,另一端分别固定 在地面的两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.
23.如图,AD ∥BC ,∠2=40°,∠A =100°,且BD ⊥CD ,求∠C 的度数.
A B D
C
1
2
24.如图,AD =AE ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O .
(1)求证: AB =AC
(2)连接OA ,BC ,试判断直线OA ,BC 是否垂直并说明理由. (3)若∠BAC =45°,求证△ADO ≌△DBC
25.(11分)如图,在ABC ∆中, 40,2=∠==B AC AB ,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作
40=∠ADE ,DE 交线段AC 于E .
(1)当
115=∠BDA 时,=∠BAD °;
点D 从B 向C 运动时,BDA ∠逐渐变 (填“大”或“小”);(本小题2分) (2)当DC 等于多少时,ABD ∆≌DCE ∆,请说明理由;(本小题5分)
(3)在点D 的运动过程中,ADE ∆的形状也在改变,判断当BDA ∠等于多少度时,ADE ∆是等腰三角形。
(本小题4分)
A
B
C
备用图
40°
D
40
°
A
B C
40°
E
A
B
C
E
D
O。