中考数学复习第四章几何初步与三角形第四节解直角三角形练习
山东省济南市中考数学一轮复习 第四章 几何初步与三角形检测卷-人教版初中九年级全册数学试题
第四章单元检测卷(考试时间:120分钟满分:100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.若一个三角形的两边长分别为5和8,则第三边长可能是( )A.14 B.10 C.3 D.22.如图,已知直线a∥b,AC⊥AB,AC与直线a,b分别交于A,C两点,若∠1=60°,则∠2的度数为( )A.30° B.35° C.45° D.50°3.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线.则对应作法错误的是( )A.① B.② C.③ D.④4.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A .CB =CD B .∠BAC=∠DACC .∠BCA=∠DCA D.∠B=∠D=90°6.已知直线m∥n,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上.若∠1=20°,则∠2的度数为( )A .20° B.30° C.45° D.50°7.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4B .6C .16D .558.如图,C ,E 是直线l 两侧的点,以C 为圆心,CE 长为半径画弧交l 于A ,B 两点,又分别以AB 为圆心,大于12AB 的长为半径画弧,两弧交于点D ,连接CA ,CB ,CD ,下列结论不一定正确的是( )A .CD⊥lB .点A ,B 关于直线CD 对称C .点C ,D 关于直线l 对称 D .CD 平分∠ACB9.如图,在△ABC 中,∠BAC=90°,AB =AC ,点D 为边AC 的中点,DE⊥BC 于点E ,连接BD ,则tan∠DBC 的值为( )A.13B.2-1 C .2-3D.1410.如图,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =CE ,连接DE 并延长至点F ,使EF =AE ,连接AF ,CF ,连接BE 并延长交CF 于点G.下列结论: ①△ABE≌△ACF;②BC=DF ;③S △ABC =S △ACF +S △DCF ;④若BD =2DC ,则GF =2EG.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(本大题共5个小题,每小题3分,共15分)11.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:__________________________________________________,该逆命题是______命题(填“真”或“假”).12.如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D.若AB =6,AC =9,则△ABD 的周长是________.13.在△ABC 中,如果∠A,∠B 满足|tan∠A-1|+(cos∠B-12)2=0,那么∠C=__________.14.如图,长方体的底面边长分别为2 cm 和4 cm ,高为 5 cm.若一只蚂蚁从点P 开始经过4个侧面爬行一圈到达点Q ,则蚂蚁爬行的最短路径长为________cm.15.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限.△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是____________;翻滚2 017次后AB的中点M经过的路径长为__________.三、解答题(本大题共5个小题,共55分)16.(本题满分9分)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.17.(本题满分10分)如图,四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于点H,交BE于点F.求证:(1)△ABC ≌△ADE;(2)BF=EF.18.(本题满分11分)今年,我国海关总署严厉打击“洋垃圾”某某行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截住可疑船只,此时D点与B点的距离为75 2 海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)19.(本题满分12分)我们知道,三角形的内心是三条角平分线的交点.过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形,若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”.(1)等边三角形“内似线”的条数为________;(2)如图1,△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求证:BD是△ABC的“内似线”;(3)如图2,在Rt△ABC中,∠C=90°,AC=4,BC=3,E,F分别在边AC,BC上,且EF 是△ABC的“内似线”,求EF的长.20.(本题满分13分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图1,当∠ACB=90°时,连接CD ,过点C 作CF⊥CD 交BA 的延长线于点F. ①求证:FA =DE ;②请猜想三条线段DE ,AD ,CH 之间的数量关系,直接写出结论;(2)如图2,当∠ACB=120°时,三条线段DE ,AD ,CH 之间存在怎样的数量关系?请证明你的结论.参考答案11.如果两个三角形的面积相等,那么这两个三角形全等 假15.(5,3) (1 34633+896)π16.解:(1)AC⊥BD.证明如下: ∵△DCE 由△ABC 平移而成, ∴BE=2BC =6,DE =AC =3, ∠E=∠DCE=∠ACB=60°. ∵BC=CD ,∴∠CBD=∠CDB. 又∵∠DCE=∠CBD+∠CDB=60°, ∴∠CBD=30°,∴∠BDE=90°,∴BD⊥DE.又∵∠E=∠ACB=60°, ∴AC∥DE,∴AC⊥BD. (2)由(1)知,BD⊥DE, ∴△BED 是直角三角形. ∵BE=6,DE =3,∴BD=BE 2-DE 2=62-32=3 3. 17.证明:(1)∵AB⊥AD,AE⊥AC, ∴∠BAD=90°,∠CAE=90°, ∴∠BAC+∠CAD=∠CAD+∠DAE, ∴∠BAC=∠DAE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠BAC=∠DAE,AC =AE , ∴△ABC≌△ADE.(2)由(1)知,△ABC≌△ADE, ∴∠AEC=∠ACB.在Rt△ACE 中,∠ACE+∠AEC=90°, ∴∠BCE=90°.∵AH⊥C D ,AE =AC ,∴CH=HE. ∵∠AHE=∠BCE=90°,∴BC∥FH, ∴BF FE =CHHE=1,∴BF=EF. 18.解:(1)如图,过点B 作BH⊥CA 交CA 的延长线于点H ,∵∠MBC=60°,∴∠CBA=30°, ∵∠NAD=30°,∴∠BAC=120°. ∴∠BCA=180°-∠BAC-∠CBA=30°. ∴BH=BC·sin∠BCA=150×12=75.答:B 点到直线CA 的距离为75海里. (2)∵BD=752,BH =75, ∴DH=BD 2-BH 2=75.∵∠BAH=180°-∠BAC=60°, 在Rt△ABH 中,tan∠BAH=BHAH =3,∴AH=253,∴AD=DH -AH =75-25 3.答:执法船从A 到D 航行了(75-253)海里. 19.(1)3(2)证明:∵AB=AC ,∴∠ABC=∠ACB. 又∵BD=BC =AD ,∴∠BAD=∠ABD,∠BDC=∠C. 设∠A=x ,则∠ABD=x , ∠BDC=∠A+∠ABD=2x , ∠C=2x ,∠ABC=2x.又∵∠A+∠ABC+∠C=180°, ∴x+2x +2x =180°,∴x=36°, ∴∠A=∠DBC=36°,∠C=∠BDC=72°.∴△ABC∽△BDC.又∵∠DBC=180°-72°-72°=36°, ∴BD 平分∠ABC,∴BD 过△ABC 的内心, ∴BD 是△ABC 的“内似线”.(3)解:在Rt△ABC 中,AB =AC 2+BC 2=5, 作△ABC 内接圆⊙O,∵⊙O 到各边距离相等设为r , 则S △AB C =12r·(3+4+5).又∵S △ABC =12AC·BC=12×3×4=6,∴r=1.第一种情况,△CEF∽△CAB,如图1,过O 作直线EF∥AB 分别交边AC ,BC 于E ,F ,EF 是△ABC 的“内似线”,过O 作OM⊥AC 于M ,作ON⊥BC 于N ,∴OM=ON =1,且ON∥AC,OM∥BC, 易证△EOM∽△ABC∽△OFN.∴OE OM =AB BC ,OE =53,OF ON =AB AC ,∴OF=54, ∴EF=53+54=3512.第二种情况,△CEF∽△CBA.如图2,同理可得 OE =54,OF =53,EF =3512.综上,EF =3512.20.(1)①证明:∵CF⊥CD,∴∠FCD=90°. ∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE, ∴∠FCA=∠DCE.∵∠FAC=90°+∠B,∠CED=90°+∠B, ∴∠FAC=∠CED.∵AC=EC ,∴△AFC≌△EDC,∴FA=DE.word 11 / 11 ②DE+AD =2CH.(2)解:AD +DE =23CH.理由如下:如图,连接CD ,作∠FCD=∠ACB,交BA 延长线于点F ,∵∠FCA+∠ACD=∠ACD+∠BCD,∴∠FCA=∠BCD.∵∠EDA=60°,∴∠EDB=120°. ∵∠FAC=120°+∠B,∠DEC=120°+∠B, ∴∠FAC=∠DEC.∵AC=EC ,∴△FAC≌△DEC,∴AF=DE ,FC =DC.∵CH⊥FD,∴FH=HD ,∠FCH=∠HCD=60°.在Rt△CHD 中,tan 60°=DH CH , ∴DH=3CH.∵AD+DE =AD +AF =2DH =23CH ,即AD +DE =23CH。
2021中考数学一轮复习第四章几何初步与三角形第四节等腰三角形(含答案)
第四节 等腰三角形姓名:________ 班级:________ 用时:______分钟1.如图,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于D ,连结AD.若AD =AC ,∠B=25°,则∠C=( )A .70° B.60° C.50° D.40°2.如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(3,1)C .(3,3)D .(1,3)3.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有( ) A .4个 B .3个 C .2个D .1个4. 如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE =2,AD =6,则两个三角形重叠部分的面积为( )A. 2B .3- 2 C.3-1D .3- 35.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD⊥AC 于点D ,下列四个结论:①EF=BE +CF ; ②∠BOC=90°+12∠A;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①③④6.已知等腰三角形的一个外角为130°,则它的顶角的度数为__________________.7.如图,△ABC 中,AB =AC ,AD⊥BC 于点D ,DE⊥AB 于点E ,BF⊥AC 于点F ,DE =3 cm ,则BF =______cm .8.已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE⊥AB,DF⊥BC,垂足分别为点E ,F ,且DE =DF.求证:△ABC 是等边三角形.9. 如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.10.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为( )A.2 B.2 3C. 3 D.311.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°12.在一张长为8 cm,宽为6 cm的矩形纸片上,要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上),这个等腰三角形的剪法有( )A.1种B.2种C.3种D.4种13.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=__________.14.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1的右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM,ON于点B2,A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM,ON于点B3,A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为__________________.(用含正整数n的代数式表示)15.数学课上,张老师举了下面的例题:例1. 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2. 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.16. 请认真阅读下面的数学小探究系列,完成所提出的问题.(1)探究1:如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.求证:△BCD 的面积为12a 2;(提示:过点D 作BC 边上的高DE ,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt △ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.请用含a 的式子表示△BCD 的面积,并说明理由;(3)探究3:如图3,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.试探究用含a 的式子表示△BCD 的面积,要有探究过程.17.如图,已知AG⊥BD,AF⊥CE,BD ,CE 分别是∠ABC 和∠ACB 的平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为________.参考答案【基础训练】1.C 2.D 3.B 4.D 5.A 6.50°或80° 7.68.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E ,F , ∴∠AED=∠CFD=90°. ∵D 为AC 的中点,∴AD=DC. 在Rt△ADE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC ,∵AB=AC ,∴AB=BC =AC , ∴△ABC 是等边三角形.9.(1)证明:∵AB=AC ,∴∠B=∠ACF. 在△ABE 和△ACF 中,∵⎩⎪⎨⎪⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)75 【拔高训练】 10.C 11.D 12.C 13.72° 14.(32)2n -2×3315.解:(1)若∠A 为顶角,则∠B=(180°-∠A)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或20°或80°. (2)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个; ②当0<x <90时,若∠A 为顶角,则∠B=(180-x2)°;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B=x°. 当180-x 2≠180-2x 且180-2x≠x 且180-x2≠x, 即x≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x≠60时,∠B 有三个不同的度数. 16.(1)证明:过点D 作DE⊥CB 交CB 的延长线于点E , ∴∠BED=∠ACB=90°.由旋转知AB =BD ,∠ABD=90°, ∴∠ABC+∠DBE=90°.又∵∠A+∠ABC=90°, ∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD , ∴△ABC≌△BDE(AAS), ∴DE=a =BC , ∴S △BCD =12BC·DE=12a 2.(2)解:过点D 作DE⊥CB,交CB 的延长线于点E ,由(1)得∠BED=∠ACB=90°. ∵线段AB 绕点B 顺时针旋转90°得到线段BD , ∴AB=BD ,∠ABD=90°. ∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD , ∴△ABC≌△BDE(AAS), ∴BC=DE =a.∵S △BCD =12BC·DE,∴S △BCD =12a 2.(3)解:如图,过点A 作AF⊥BC 于点F ,过点D 作DE⊥CB,交CB 的延长线于点E ,∴∠AFB=∠E=90°,BF =12BC =12a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD. ∵线段BD 是由线段AB 旋转得到的, ∴AB=BD.在△AFB 和△BED 中,∵⎩⎪⎨⎪⎧∠AFB=∠E,∠FAB=∠EBD,AB =BD ,∴△AFB≌△BED,∴BF=DE =12a.∵S △BCD =12BC·DE,∴S △BCD =12a·12a =14a 2.∴△BCD 的面积为14a 2.【培优训练】 17.30。
全国通用中考数学复习第四单元图形的初步认识与三角形方法技巧训练(四)解直角三角形中常见的基本模型练
(全国通用版)2019年中考数学复习第四单元图形的初步认识与三角形方法技巧训练(四)解直角三角形中常见的基本模型练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019年中考数学复习第四单元图形的初步认识与三角形方法技巧训练(四)解直角三角形中常见的基本模型练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019年中考数学复习第四单元图形的初步认识与三角形方法技巧训练(四)解直角三角形中常见的基本模型练习的全部内容。
方法技巧训练(四)解直角三角形中常见的基本模型模型1单一直角三角形1.(2018·宜宾)某游乐场一转角滑梯如图所示,滑梯立柱AB,CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B,E间距离为10米,立柱AB高30米.求立柱CD的高.(结果保留根号)解:作CH⊥AB于点H,则四边形HBDC为矩形,∴BD=CH.由题意得,∠ACH=30°,∠CED=30°。
设CD=x米,则AH=(30-x)米.在Rt△AHC中,HC=错误!=错误!(30-x),则BD=CH=错误!(30-x).∴ED=3(30-x)-10=303-错误!x-10.在Rt△CDE中,错误!=tan∠CED,即=错误!=错误!,解得x=15-错误!错误!。
答:立柱CD的高为(15-错误!错误!)米.模型2背靠背型及其变式2.(2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大地方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C 地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C地,求B,C两地的距离.(参考数据:sin53°≈错误!,cos53°≈错误!,tan53°≈错误!)解:过点B作BD⊥AC于点D。
九年级数学上册 第4章 锐角三角函数 4.3 解直角三角形练习 (新版)湘教版
4.3 解直角三角形知|识|目|标1.通过探索、讨论,理解解直角三角形的定义与依据.2.通过阅读、自学,掌握已知2个元素(至少有1个是边)求3个未知元素的解法.3.通过转化思想,能把非直角三角形问题转化为直角三角形问题来解决.目标一理解解直角三角形的定义与依据例1 教材补充例题在Rt△ABC中,根据下列条件,可求三角形其他元素的是( ) A.已知a=5,∠C=90°B.已知∠B=48°,∠C=90°C.已知a=5,∠B=48°D.已知∠B=48°,∠A=42°[全品导学号:90912121]例2 教材补充例题在Rt△ABC中,∠C=90°,已知∠B和a,则有( )A.c=a cos B B.c=a sin BC.c=asin BD.c=acos B【归纳总结】解直角三角形的条件和依据1.解直角三角形的条件:除直角外,已知两个条件中至少有1个是边.2.解直角三角形的依据:(1)直角三角形两个锐角的互余关系;(2)直角三角形三边之间的关系(勾股定理);(3)直角三角形边角之间的关系(锐角三角函数).目标二会解直角三角形例3 教材例1针对训练如图4-3-1,在△ABC中,∠C=90°,∠B=45°,BC=5,解这个直角三角形.图4-3-1例4 教材补充例题在Rt△ABC中,∠C=90°,a=2 3,b=6,解这个直角三角形.【归纳总结】解直角三角形的类型与解法1.解直角三角形的基本方法:2.计算边时,可按照“有斜用弦,无斜用切”的原则,即若与斜边有关,则使用正、余弦;若与斜边无关,则使用正切.例5 教材补充例题如图4-3-2,在△ABC中,∠ABC=90°,∠A=30°,D是边AB 上一点,∠BDC=45°,AD=4.求BC的长(结果保留根号).图4-3-2【归纳总结】含双直角三角形的问题的解法对于含有公共直角边的双直角三角形问题,一般从特殊角入手,以含特殊角的直角三角形为基本图形,先分析基本图形,将边转移到另外的直角三角形中,再利用其中特殊的边角,结合锐角三角函数的定义构造方程求解.目标三 会把非直角三角形转化为直角三角形求解例6 教材补充例题如图4-3-3,在△ABC 中,AB =AC =10,sin C =35,D 是BC 上一点,且DC =AC .(1)求BD 的长的值; (2)求tan ∠BAD .图4-3-3【归纳总结】 非直角三角形转化为直角三角形的解法求不规则图形中的边或角的关键是作出辅助线(高),构造直角三角形,把斜三角形的问题转化为直角三角形的问题来解决.注意熟练掌握锐角三角函数的定义.知识点一 解直角三角形的定义与依据在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的2个元素(至少有1个是______),就可以求出其余的3个未知元素.我们把在直角三角形中利用已知元素求其余未知元素的过程叫作解直角三角形.如图4-3-4,在Rt △ABC 中,∠C =90°,设三个内角∠A ,∠B ,∠C 所对的边分别为a ,b ,c (以下字母同),则解直角三角形的主要依据是:(1)三条边之间的关系:a 2+b 2=c 2; (2)两锐角之间的关系:∠A +∠B =90°;(3)边角之间的关系:sin A =cos B =a c ,cos A =sin B =b c ,tan A =1tan B =ab.图4-3-4知识点二 解直角三角形的方法(1)解直角三角形时,已知一个锐角及邻边,可用______求出斜边,用______求出对边; (2)解直角三角形时,已知一个锐角及对边,可用______求出斜边,用正切求出邻边; (3)解直角三角形时,已知两边,可用勾股定理求出第三边,用正切求出锐角. [点拨] 解直角三角形时,应先分析清楚已知元素与所求元素,可作草图帮助理解,正确寻求能够沟通已知与所求元素之间的函数关系式.分析下列解题过程是否正确?若不正确,请指出错误的原因,并给出正确解法. 问题:在△ABC 中,∠A =30°,BC =6,AC =2 3,求AB 的长.解:如图4-3-5,作出符合题意的几何图形,过点C 作CD ⊥AB 于点D ,∴∠ADC =∠BDC =90°.∵sin A =CD AC =12,且AC =2 3,∴CD = 3.又sin ∠CBD =CD BC=36=22,∴∠CBD =45°, ∴tan ∠CBD =CD BD=1, ∴CD =BD = 3.∵∠A =30°,AC =2 3,∴AD =AC ·cos A =3, ∴AB =AD +BD =3+ 3.图4-3-5详解详析【目标突破】例1 [解析] C A .已知一边和一角,一角是直角,Rt △ABC 不可解,不符合题意;B .没有一条边,Rt △ABC 不可解,不符合题意;C .已知一边和一角,一角不是直角,Rt △ABC 可解,符合题意;D .没有一条边,Rt △ABC 不可解,不符合题意.例2 [解析] D 在Rt △ABC 中,∠C =90°, ∵cos B =a c ,∴c =acos B.例3 解:∵∠C =90°,∠B =45°, ∴∠A =90°-45°=45°, ∴∠A =∠B , ∴AC =BC =5. 在Rt △ABC 中,∵cos B =cos45°=BCAB,∴AB =BCcos45°=5 2,∴∠A =45°,AC =5,AB =5 2.例4 解:∵a=2 3,b =6, ∴tan A =a b =2 36=33,∴∠A =30°,∴∠B =90°-30°=60°,c =2a =4 3.例5 解:设BC =x ,在Rt △BCD 中,∠ABC =90°,∠BDC =45°,∴BD =BC =x. 在Rt △ABC 中,∠ABC =90°,∠A =30°,AB =4+x , ∴tan A =BC AB ,即33=x4+x ,解得x =2 3+2.∴BC 的长为2 3+2.例6 解:(1)如图,过点A 作AE ⊥BC 于点E . ∵AB =AC , ∴BE =CE .在Rt △ACE 中,AC =10,sin C =35,∴AE =6,从而CE =AC 2-AE 2=8, ∴BC =2CE =16,∴BD =BC -DC =BC -AC =6.(2)如图,过点D 作DF ⊥AB 于点F . 在Rt △BDF 中,BD =6,sin B =sin C =35,∴DF =185,从而BF =BD 2-DF 2=245,∴AF =AB -BF =265,∴tan ∠BAD =DF AF =913.备选题型 解非直角三角形例 如图,已知在△ABC 中,∠B =45°,∠C =30°,BC =3+3 3,求AB 的长.[解析] 过点A 作AD ⊥BC 于点D ,将特殊角∠B ,∠C 放在两个直角三角形中,再利用相应的锐角三角函数求解.解:过点A 作AD ⊥BC 于点D . ∵∠B =45°, ∴AD =BD ,AB =2BD . 设AD =BD =x ,在Rt △ADC 中, ∵tan C =ADDC ,即x DC =33, ∴DC =3x . 又∵BC =BD +DC , ∴x +3x =3+3 3, 解得x =3, ∴AB =3 2.[归纳总结] (1)在直角三角形中求边长可以从勾股定理和锐角三角函数两个方面考虑. (2)在含有特殊角的非直角三角形中,通常需要作辅助线构造直角三角形来解决问题,通常情况下是以一个特殊角为它的一个锐角构造直角三角形.(3)根据条件中的线段的比或锐角三角函数值,可以设出一个未知数,然后列出方程求解.【总结反思】 [小结] 知识点一 边知识点二 (1)余弦 正切 (2)正弦[反思] 解:解题过程有不正确,错误原因是符合条件的几何图形不是唯一的.正解:情形(1)见题中所给解答,情形(2)如下:过点C 作CD ⊥AB 交AB 的延长线于点D ,∴∠ADC =90°.∵sin A =CD AC =12,且AC =2 3,∴CD = 3.又sin ∠CBD =CD BC=36=22, ∴∠CBD =45°, ∴tan ∠CBD =CD BD=1, ∴CD =BD = 3.∵∠A =30°,AC =2 3, ∴AD =AC ·cos A =3, ∴AB =AD -BD =3- 3.综合情形(1)与(2),得AB 的长为3+3或3- 3.。
2023中考数学一轮复习专题4
专题4.3 几何初步及三角形(培优篇)(真题专练)一、单选题1.(2021·江苏南京·中考真题)下列长度的三条线段与长度为5的线段能组成四边形的是( )A .1,1,1B .1,1,8C .1,2,2D .2,2,2 2.(2021·浙江丽水·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,DE 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .2073.(2021·湖南娄底·中考真题)如图,//AB CD ,点,E F 在AC 边上,已知70,130CED BFC ∠=︒∠=︒,则B D ∠+∠的度数为( )A .40︒B .50︒C .60︒D .70︒4.(2021·辽宁营口·中考真题)如图,一束太阳光线平行照射在放置于地面的正六边形上,若119∠=︒,则2∠的度数为( )A .41︒B .51︒C .42︒D .49︒5.(2021·黑龙江绥化·中考真题)已知在Rt ACB 中,90,75C ABC ∠=︒∠=︒,5AB =.点E 为边AC 上的动点,点F 为边AB 上的动点,则线段FE EB +的最小值是( )A B .52 C D 6.(2021·湖北宜昌·中考真题)如图,将一副三角尺按图中所示位置摆放,点F 在AC 上,其中90ACB ∠=︒,60ABC ∠=︒,90EFD ∠=︒,45DEF ∠=︒,//AB DE ,则AFD ∠的度数是( )A .15︒B .30C .45︒D .60︒7.(2021·山东东营·中考真题)如图,//AB CD ,EF CD ⊥于点F ,若150BEF ∠=︒,则ABE ∠=( )A .30B .40︒C .50︒D .60︒8.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒9.(2021·内蒙古赤峰·中考真题)如图,AB∥CD ,点E 在线段BC 上,CD=CE,若∥ABC=30°,则∥D 为( )A .85°B .75°C .60°D .30°10.(2021·青海西宁·中考真题)如图,ABC 的内切圆О与,,AB BC AC 分别相切于点D ,E ,F ,连接OE ,OF ,90C ∠=︒,6AC =,8BC =,则阴影部分的面积为( )A .122π-B .142π-C .4π-D .114π- 11.(2021·四川绵阳·中考真题)如图,在等腰直角ABC 中,90C ∠=︒,M 、N 分别为BC 、AC 上的点,50CNM ∠=︒,P 为MN 上的点,且12PC MN =,117BPC ∠=︒,则ABP ∠=( )A .22︒B .23︒C .25︒D .27︒12.(2021·四川巴中·中考真题)如图,矩形AOBC 的顶点A 、B 在坐标轴上,点C 的坐标是(﹣10,8),点D 在AC 上,将BCD 沿BD 翻折,点C 恰好落在OA 边上点E 处,则tan∥DBE等于( )A .34B .35CD .1213.(2021·辽宁盘锦·中考真题)如图,已知直线AB 和AB 上的一点C ,过点C 作直线AB 的垂线,步骤如下:第一步:以点C 为圆心,以任意长为半径作弧,交直线AB 于点D 和点E ;第二步:分别以点D 和点E 为圆心,以a 为半径作弧,两弧交于点F ;第三步:作直线CF ,直线CF 即为所求.下列关于a 的说法正确的是( )A .a ≥12DEB .a ≤12DEC .12a DE >D .12a DE < 14.(2021·西藏·中考真题)如图,在Rt ∥ABC 中,∥A =30°,∥C =90°,AB =6,点P 是线段AC 上一动点,点M 在线段AB 上,当AM =13AB 时,PB +PM 的最小值为( )A .B .C .2D .3二、填空题 15.(2021·广东深圳·中考真题)如图,在ABC 中,D ,E 分别为BC ,AC 上的点,将CDE沿DE 折叠,得到FDE ,连接BF ,CF ,90BFC ∠=︒,若//EF AB ,AB =10EF =,则AE 的长为__________.16.(2021·青海·中考真题)如图,AB∥CD ,FE∥DB ,垂足为E ,∥1=50°,则∥2的度数是_____.17.(2021·四川内江·中考真题)如图,矩形ABCD ,1AB =,2BC =,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 __.18.(2021·四川内江·中考真题)已知,在ABC ∆中,45A ∠=︒,AB =5BC =,则ABC ∆的面积为 __.19.(2021·青海西宁·中考真题)如图,在矩形ABCD 中,E 为AD 的中点,连接CE ,过点E 作CE 的垂线交AB 于点F ,交CD 的延长线于点G ,连接CF .已知12AF =,5CF =,则EF =_________.20.(2021·青海西宁·中考真题)如图,ABC 是等边三角形,6AB =,N 是AB 的中点,AD是BC 边上的中线,M 是AD 上的一个动点,连接,BM MN ,则BM MN +的最小值是________.21.(2021·青海西宁·中考真题)如图,在Rt ABC △中,90BAC ∠=︒,D ,E 分别是AB ,BC 的中点,连接AE ,DE ,若92DE =,152AE =,则点A 到BC 的距离是________.22.(2021·辽宁鞍山·中考真题)如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C ',A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为_____________.23.(2021·西藏·中考真题)如图.在Rt ∥ABC 中,∥A =90°,AC =4.按以下步骤作图:(1)以点B 为圆心,适当长为半径画弧,分别交线段BA ,BC 于点M ,N ;(2)以点C 为圆心,BM 长为半径画弧,交线段CB 于点D ;(3)以点D 为圆心,MN 长为半径画弧,与第2步中所面的弧相交于点E ;(4)过点E 画射线CE ,与AB 相交于点F .当AF =3时,BC 的长是_______________.24.(2021·辽宁锦州·中考真题)如图,在∥ABC 中,AC =4,∥A =60°,∥B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.三、解答题25.(2021·山东青岛·中考真题)已知:O ∠及其一边上的两点A ,B .求作:Rt ABC ,使90C ∠=︒,且点C 在O ∠内部,BAC O ∠=∠.26.(2021·广西河池·中考真题)如图,CAD ∠是ABC 的外角.(1)尺规作图:作CAD ∠的平分线AE (不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若//AE BC ,求证:AB AC =.参考答案1.D【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .【点拨】本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.2.D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∥DAE=∥DFE ,AD=DF ,然后根据角平分线的定义证得∥BFD=∥DFE =∥DAE ,进而证得∥BDF=90°,证明Rt∥ABC ∥Rt∥FBD ,可求得AD 的长.【详解】解:∥90,4,3ACB AC BC ∠=︒==,∥AB ,由折叠性质得:∥DAE=∥DFE ,AD=DF ,则BD =5﹣AD ,∥FD 平分EFB ∠,∥∥BFD =∥DFE=∥DAE ,∥∥DAE +∥B =90°,∥∥BDF +∥B =90°,即∥BDF =90°,∥Rt∥ABC ∥Rt∥FBD , ∥BD BC DF AC =即534AD AD -=,解得:AD =207, 故选:D .【点拨】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键. 3.C【分析】取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,利用两直线平行的性质,找到角之间的关系,通过等量代换即可求解.【详解】解:取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,如下图:根据题意:70,130CED BFC ∠=︒∠=︒,50EFG ∴∠=︒,180507060EGF ∴∠=︒-︒-︒=︒,////MN CD AB ,,B BGN D DGN ∴∠=∠∠=∠,B D BGN DGN BGD ∴∠+∠=∠+∠=∠,,ED BF 相交于点G ,60EGF BGD ∴∠=∠=︒,60B D ∴∠+∠=︒,故选:C .【点拨】本题考查了两直线平行的性质和两直线相交对顶角相等,解题的关键是:添加辅助线,利用两直线平行的性质和对顶角相等,同过等量代换即可得解.4.A【分析】先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.【详解】解:∥正六边形的每个内角等于120°,每个外角等于60°,∥∥F AD=120°-∥1=101°,∥ADB=60°,∥∥ABD=101°-60°=41°∥光线是平行的,∥2∠=∥ABD=41︒,故选A【点拨】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.5.B【分析】作点F关于直线AB的对称点F’,如下图所示,此时EF+EB= EF’+EB,再由点到直线的距离垂线段长度最短求解即可.【详解】解:作点F关于直线AB的对称点F’,连接AF’,如下图所示:由对称性可知,EF=EF’,此时EF+EB= EF’+EB ,由“点到直线的距离垂线段长度最小”可知,当BF’∥AF’时,EF +EB 有最小值BF 0,此时E 位于上图中的E 0位置,由对称性知,∥CAF 0=∥BAC =90°-75°=15°,∥∥BAF 0=30°,由直角三角形中,30°所对直角边等于斜边的一半可知,BF 0=12AB =15522⨯=, 故选:B .【点拨】本题考查了30°角所对直角边等于斜边的一半,垂线段最短求线段最值等,本题的核心思路是作点F 关于AC 的对称点,将EF 线段转移,再由点到直线的距离最短求解. 6.A【分析】设AB 与EF 交于点M ,根据//AB DE ,得到45AMF E ∠=∠=︒,再根据三角形的内角和定理求出结果.【详解】解:设AB 与EF 交于点M ,∥//AB DE ,∥45AMF E ∠=∠=︒,∥90ACB ∠=︒,60ABC ∠=︒,∥30A ∠=︒,∥1803045105AFM ∠=︒-︒-︒=︒,∥90EFD ∠=︒,∥AFD ∠=15︒,故选:A ..【点拨】此题考查平行线的性质,三角形的内角和定理,熟记平行线的性质并应用是解题的关键.7.D【分析】过点E 作EH ∥CD ,由此求出90HEF ∠=︒,得到60BEH ∠=︒,根据平行线的推论得到AB ∥EH ,利用平行线的性质求出答案.【详解】解:过点E 作EH ∥CD ,如图,∥180DFE HEF ∠+∠=︒,∥EF CD ⊥,∥90DFE ∠=︒,∥90HEF ∠=︒,∥150BEF ∠=︒,∥60BEH ∠=︒,∥EH ∥CD ,//AB CD ,∥AB ∥EH ,∥ABE ∠=60BEH ∠=︒,故选:D .【点拨】此题考查平行线的推论,平行线的性质,正确引出辅助线、熟记定理是解题的关键. 8.C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∥//BC EF ,∥45FDB F ∠=∠=︒,∥180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点拨】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.9.B【详解】分析:先由AB∥CD ,得∥C=∥ABC=30°,CD=CE ,得∥D=∥CED ,再根据三角形内角和定理得,∥C+∥D+∥CED=180°,即30°+2∥D=180°,从而求出∥D .详解:∥AB∥CD ,∥∥C=∥ABC=30°,又∥CD=CE ,∥∥D=∥CED ,∥∥C+∥D+∥CED=180°,即30°+2∥D=180°,∥∥D=75°.故选B .点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∥C ,再由CD=CE 得出∥D=∥CED ,由三角形内角和定理求出∥D .10.C【分析】连接OD ,由题意,先利用勾股定理求出AB 的长度,设半径为r ,然后求出内切圆的半径,再利用正方形的面积减去扇形的面积,即可得到答案.【详解】解:连接OD ,如图:在ABC 中,90C ∠=︒,6AC =,8BC =,由勾股定理,则 22226810AB AC BC ,设半径为r ,则OD OE OF r ===,∥CF CE OE OF r ====,∥四边形CEOF 是正方形;由切线长定理,则6AD AF r ==-,8BE BD r ==-,∥AB AD BD =+,∥6810r r -+-=,解得:2r ,∥2OD OE OF ===;∥阴影部分的面积为:2902224360S ππ⨯⨯=⨯-=-; 故选:C .【点拨】本题考查了三角形的内切圆,切线的性质,切线长定理,求扇形的面积,勾股定理等知识,解题的关键是熟练掌握所学的知识,正确的进行解题.11.A【分析】作辅助线,构建矩形,得P是MN的中点,则MP=NP=CP,根据等腰三角形的性质和三角形外角的性质可解答.【详解】解:如图,过点M作MG∥BC于M,过点N作NG∥AC于N,连接CG交MN于H,∥∥GMC=∥ACB=∥CNG=90°,∥四边形CMGN是矩形,∥CH=12CG=12MN,∥PC=12MN,存在两种情况:如图,CP=CP1=12MN,∥P是MN中点时,∥MP=NP=CP,∥∥CNM=∥PCN=50°,∥PMN=∥PCM=90°−50°=40°,∥∥CPM=180°−40°−40°=100°,∥∥ABC是等腰直角三角形,∥∥ABC=45°,∥∥CPB=117°,∥∥BPM=117°−100°=17°,∥∥PMC=∥PBM+∥BPM,∥∥PBM=40°−17°=23°,∥∥ABP=45°−23°=22°.∥CP1=1MN,2∥CP=CP1,∥∥CPP1=∥CP1P=80°,∥∥BP1C=117°,∥∥BP1M=117°−80°=37°,∥∥MBP1=40°−37°=3°,而图中∥MBP1>∥MBP,所以此种情况不符合题意.故选:A.【点拨】此题主要考查了等腰直角三角形的性质,矩形的性质和判定,等腰三角形的性质等知识,作出辅助线构建矩形CNGM 证明P 是MN 的中点是解本题的关键.12.D【分析】先根据四边形ABCD 是矩形,C (-10,8),得出BC =AO =10,AC =OB =8,∥A =∥O =∥C =90°,再由折叠的性质得到CD =DE ,BC =BE =10,∥DEB =∥C=90°,利用勾股定理先求出OE 的长,即可得到AE ,再利用勾股定理求出DE ,利用tan DE DBE BE ∠=求解即可. 【详解】解:∥四边形ABCD 是矩形,C (-10,8),∥BC =AO =10,AC =OB =8,∥A =∥O =∥C =90°,由折叠的性质可知:CD =DE ,BC =BE =10,∥DEB =∥C=90°,在直角三角形BEO 中:6OE =,∥4AE OA OE =-=,设CD DE x ==,则8AD AC CD x =-=-在直角三角形ADE 中:222AD AE DE +=,∥()22284x x -+=,解得5x =,∥5DE =,∥∥DEB =90°, ∥51tan 102DE DBE BE ===∠, 故选D.【点拨】本题主要考查了矩形的性质,折叠的性质,勾股定理,三角函数,解题的关键在于能够熟练掌握相关知识进行求解.13.C【分析】根据过直线外一点作已知直线的垂线的步骤,结合三角形三边关系判断即可.【详解】解:由作图可知,分别以点D和点E为圆心,以a为半径作弧,两弧交于点F,此时12a DE >,故选:C.【点拨】本题考查作图-基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.14.B【分析】作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H∥AB交H点,在Rt∥BB'H中,B'H=HB=3,可求MH=1,在Rt∥MHB'中,B'M=PB+PM的最小值为.【详解】解:作B点关于AC的对称点B',连接B'M交AC于点P,∥BP=B'P,BC=B'C,∥PB+PM=B'P+PM≥B'M,∥PB+PM的最小值为B'M的长,过点B'作B'H∥AB交H点,∥∥A=30°,∥C=90°,∥∥CBA=60°,∥AB=6,∥BC=3,∥BB '=BC +B 'C =6,在Rt ∥BB 'H 中,∥B 'BH =60°,∴∥BB 'H =30°,∥BH =3,由勾股定理可得:'B H ==∥AH =AB -BH =3,∥AM =13AB , ∥AM =2,∥MH =AH -AM =1,在Rt ∥MHB '中,'B M ==∥PB +PM 的最小值为故选:B .【点拨】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB +PM 的最小值为B 'M 的长.15.10-【分析】延长ED ,交CF 于点G ,由折叠,可知DG CF ⊥,可得//ED BF ,延长EA ,FB ,交于点M ,结合//AB EF ,可得M BFE α∠=∠=,M ABM α∠=∠=,进而即可求解.【详解】解:如图,延长ED ,交CF 于点G ,设BFE α∠= 由折叠,可知DG CF ⊥,∥BF CF ⊥,∥//ED BF ,∥FED BFE α∠=∠=,延长EA ,FB ,交于点M ,∥//AB EF ,∥2BAC FEC α∠=∠=,ABM BFE α∠=∠=,∥M BAC ABM α∠=∠-∠=,∥M BFE α∠=∠=,M ABM α∠=∠=,∥10EM EF ==,AM AB ==∥10AE EM AM =-=-【点拨】本题主要考查折叠的性质,三角形外角的性质,平行线的判定和性质,等腰三角形的判定和性质,添加合适的辅助线,构造等腰三角形,是解题的关键.16.40°【分析】由EF∥BD ,∥1=50°,结合三角形内角和为180°,即可求出∥D 的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在∥DEF 中,∥1=50°,∥DEF=90°,∥∥D=180°-∥DEF -∥1=40°.∥AB∥CD ,∥∥2=∥D=40°.故答案为40°.【点拨】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∥D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.171##【分析】取AD 的中点H ,连接CH ,OH ,由勾股定理可求CH 的长,由直角三角形的性质可求OH 的长,由三角形的三边可求解.【详解】如图,取AD 的中点H ,连接CH ,OH ,矩形ABCD ,1AB =,2BC =,1CD AB ∴==,2AD BC ==,点H 是AD 的中点,1AH DH ∴==,CH ∴==90AOD ∠=︒,点H 是AD 的中点,112OH AD ∴==, 在OCH ∆中,CO OH CH <+,当点H 在OC 上时,CO OH CH =+,CO ∴的最大值为1OH CH +,1.【点拨】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.18.2或14#14或2【分析】过点B 作AC 边的高BD ,Rt∥ABD 中,∥A =45°,AB 得BD=AD =4,在Rt∥BDC 中,BC =4,得,∥∥ABC 是钝角三角形时,∥∥ABC 是锐角三角形时,分别求出AC 的长,即可求解.【详解】解:过点B 作AC 边的高BD ,Rt ABD ∆中,45A ∠=︒,AB =4BD AD ∴==,在Rt BDC ∆中,5BC =,5CD ∴==,∥ABC ∆是钝角三角形时,1AC AD CD =-=,1114222ABC S AC BD ∆∴=⋅=⨯⨯=; ∥ABC ∆是锐角三角形时,7AC AD CD =+=,11741422ABC S AC BD ∆∴=⋅=⨯⨯=, 故答案为:2或14.【点拨】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.19【分析】由题意,先证明∥AEF ∥∥DEG ,则EF =EG ,12DG AF ==,利用等腰三角形的性质,求出5CG CF ==,然后得到AB =CD =92,则4BF =,利用勾股定理求出BC ,然后得到AE 的长度,即可求出FE 的长度.【详解】解:根据题意,在矩形ABCD 中,则AB =CD ,BC =AD ,∥A =∥EDG =90°,∥E 为AD 的中点,∥AE =DE ,∥∥AEF =∥DEG ,∥∥AEF ∥∥DEG ,∥EF =EG ,12DG AF ==; ∥CE ∥FG ,∥5CG CF ==,∥AB =CD =19522-=, ∥91422BF =-=, 在直角∥BCF 中,由勾股定理则3BC =,∥AD =3, ∥32AE =, 在直角∥AEF 中,由勾股定理则EF ;【点拨】本题考查了矩形的性质,全等三角形的判定和性质,垂直平分线的性质,勾股定理等知识,解题的关键是熟练掌握所学的知识,正确得到5CG CF ==.20.【分析】根据题意可知要求BM +MN 的最小值,需考虑通过作辅助线转化BM ,MN 的值,从而找出其最小值,进而根据勾股定理求出CN ,即可求出答案.【详解】解:连接CN ,与AD 交于点M ,连接BM .(根据两点之间线段最短;点到直线垂直距离最短),AD 是BC 边上的中线即C 和B 关于AD 对称,则BM +MN =CN ,则CN 就是BM +MN 的最小值.∥ABC 是等边三角形,6AB =,N 是AB 的中点,∥AC =AB =6,AN =12AB =3, CN AB ⊥,∥CN即BM +MN 的最小值为故答案为:【点拨】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.21.365 【分析】根据题意可求得AC 、AB 、BC 的长度,设点A 到BC 的距离是h ,由Rt ABC △的面积相等可列式1212AB AC BC h ••=••,从而点A 到BC 的距离即可求解. 【详解】解:∥在Rt ABC △中,90BAC ∠=︒,D ,E 分别是AB ,BC 的中点,92DE =, ∥9AC =,DE//AC ,∥∥BDE =∥BAC =90°,∥∥ADE =90°,6AD ∴==, ∥212AB AD ==,∥15BC ,设点A 到BC 的距离是h , 则1212AB AC BC h ••=••,即112915221h ⨯⨯=⨯, 解得:365h =, ∥点A 到BC 的距离是365. 故答案为:365. 【点拨】本题考查了勾股定理的应用、三角形中位线的性质,三角形的面积公式,解题的关键是用勾股定理和中位线的性质求出各线段的长度.22.67.5︒或72︒【分析】结合折叠及直角三角形斜边中线等于斜边一半的性质可得COA COA BAO ∠=∠'=∠,设COA COA BAO x ∠=∠'=∠=︒,然后利用三角形外角和等腰三角形的性质表示出2BCO x ∠=︒,902AOBx ∠'=︒-︒,90OBD x ∠=︒-︒,3BDO AOD BAO x ∠=∠+∠=︒,从而利用分类讨论思想解题.【详解】解:90POQ ∠=︒,C 为AB 的中点,OC AC BC ∴==,COA BAO ∴∠=∠,OBC BOC ∠=∠,又由折叠性质可得COA COA ∠=∠',COA COA BAO ∴∠=∠'=∠,设COA COA BAO x ∠=∠'=∠=︒,则2BCO x ∠=︒,902AOBx ∠'=︒-︒,90OBD x ∠=︒-︒,3BDO AOD BAO x ∠=∠+∠=︒,∥当OB OD =时,ABO BDO ∠=∠,903x x ∴︒-︒=︒,解得22.5x =︒,9022.567.5OBD ∴∠=︒-︒=︒;∥当BD OD =时,OBD A OB ∠=∠',90902x x ∴︒-︒=︒-︒,方程无解,∴此情况不存在;∥当OB DB =时,BDO A OB ∠=∠',3902x x ∴︒=︒-︒,解得:18x =︒,901872OBD ∴∠=︒-︒=︒;综上,OBD ∠的度数为67.5︒或72︒,故答案为:67.5︒或72︒.【点拨】此题考查折叠及直角三角形斜边中线等于斜边一半的性质,三角形外角和等腰三角形的性质,难度一般.23.【分析】利用基本作图得到∥FCB =∥B ,则FC =FB ,再利用勾股定理计算出CF =5,则AB =8,然后利用勾股定理可计算出BC 的长.【详解】解:由作法得∥FCB =∥B ,∥FC =FB ,在Rt ∥ACF 中,∥∥A =90°,AC =4,AF =3,∥CF 5,∥BF =5,∥AB =AF +BF =8,在Rt ∥ABC 中,BC故答案为【点拨】本题考查了作图﹣基本作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质作图,逐步操作即可.24.2+【分析】根据线段垂直平分线的性质得到DB =DC ,根据三角形的外角性质得到∥ADC =90°,根据含30°角的直角三角形的性质求出AD ,根据勾股定理求出DC ,进而求出AB .【详解】解:∥DE是BC的垂直平分线,∥DB=DC,∥∥DCB=∥B=45°,∥∥ADC=∥DCB+∥B=90°,∥∥A=60°,∥∥ACD=30°,AC=2,∥AD=12由勾股定理得:DC∥DB=DC=∥AB=AD+DB=2+故答案为:2+【点拨】本题主要考查了三角形外角性质,线段垂直平分线的性质,直角三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.25.见解析【分析】先在∥O的内部作∥DAB=∥O,再过B点作AD的垂线,垂足为C点.【详解】解:如图,Rt∥ABC为所作.【点拨】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.26.(1)作图见解析;(2)证明见解析【分析】(1)正确地利用尺规作出AE即可;(2)利用平行线的性质和角平分线的性质即可证明求解.【详解】解:(1)如图所示,以A为圆心,以任意长为半径画弧,分别交直线AC于M,直线AD于N,连接MN,分别以M、N为圆心,以大于MN的一半为半径画弧,两弧交于E,连接AE 即为所求;(2)∥AE∥BC,∥∥C=∥CAE,∥B=∥EAD,∥AE是∥CAD的角平分线,∥∥CAE=∥EAD,∥∥B=∥C,∥AB=AC.【点拨】本题主要考查了尺规作已知角的角平分线,平行线的性质,等腰三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。
2020年九年级数学中考复习题型 解直角三角形(带答案)
解直角三角形题型一 利用勾股定理求面积例 1.在Rt AED ∆中,90E ∠=︒,3AE =,4ED =,以AD 为边在AED ∆的外侧作正方形ABCD ,则正方形ABCD 的面积是( )A .5B .25C .7D .10【解析】根据勾股定理得到225AD AE DE =+=,根据正方形的面积公式即可得到结论.【答案】解:在Rt AED ∆中,90E ∠=︒,3AE =,4ED =,225AD AE DE ∴=+=,四边形ABCD 是正方形,∴正方形ABCD 的面积22525AD ===,故选:B .变式训练1.如图,图中所有的三角形都是直角三角形,四边形都是正方形,其中最大正方形E 的边长为10,则四个正方形A ,B ,C ,D 的面积之和为( )A .24B .56C .121D .100【解析】根据正方形的性质和勾股定理的几何意义解答即可.【答案】解:根据勾股定理的几何意义,可知:E F G S S S =+A B C D S S S S =+++100=;即四个正方形A ,B ,C ,D 的面积之和为100;故选:D .题型二 勾股定理逆定理的应用例2-1.在以线段a ,b ,c 的长三边的三角形中,不能构成直角三角形的是( )A .4a =,5b =,6c =B .::5:12:13a b c =C .2a =,3b =,5c =D .4a =,5b =,3c =【解析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【答案】解:A .222456+≠,不能构成直角三角形,故本选项符合题意;B .设三角形三边为5k ,12k ,13k ,2(5)(k +2212)(13)k k =,能构成直角三角形,故本选项不符合题意;C .(22)(+23)(=25),能构成直角三角形,故本选项不符合题意;D .222345+=,能构成直角三角形,故本选项不符合题意;故选:A .例2-2.如图,已知在四边形ABCD 中,20AB cm =,15BC cm =,7CD cm =,24AD cm =,90ABC ∠=︒.(1)连结AC ,求AC 的长;(2)求ADC ∠的度数;(3)求出四边形ABCD 的面积【解析】(1)连接AC ,利用勾股定理解答即可;(2)利用勾股定理的逆定理解答即可;(3)根据三角形的面积公式解答即可.【答案】解:(1)连接AC ,在Rt ABC ∆中,90ABC ∠=︒,20AB cm =,15BC cm =,∴由勾股定理可得:2222201525AC AB BC cm ++=;(2)在ADC ∆中,7CD cm =,24AD cm =,222CD AD AC ∴+=,90ADC ∴∠=︒;(3)由(2)知,90ADC ∠=︒,∴四边形ABCD 的面积2112015724234()22ABC ACD S S cm ∆∆=+=⨯⨯+⨯⨯=. 变式训练1.下列说法中,正确的有( )①如果0A B C ∠+∠-∠=,那么ABC ∆是直角三角形;②如果::5:12:13A B C ∠∠∠=,则ABC ∆是直角三角形; 71017ABC ∆为直角三角形;④如果三角形三边长分别是24n -、4n 、24(2)n n +>,则ABC ∆是直角三角形;A .1个B .2个C .3个D .4个【解析】根据直角三角形的判定进行分析,从而得到答案.【答案】解:①正确,由三角形内角和定理可求出C ∠为90度;②不正确,因为根据三角形的内角和得不到90︒的角;7x ,10x 17x ,则有2271017x +=;④正确,因为222(4)(4)(4)n n n -+=+.所以正确的有三个.故选:C .变式训练2.如图,在四边形ABCD 中,已知12AB =,9BC =,90ABC ∠=︒,且39CD =,36DA =.求四边形ABCD 的面积.【解析】连接AC ,在Rt ADC ∆中,已知AB ,BC 的长,运用勾股定理可求出AC 的长,在ADC ∆中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt ACD ∆与Rt ABC ∆的面积之差.【答案】解:连接AC ,90ABC ∠=︒,12AB =,9BC =,15AC ∴=,39CD =,36DA =,222215361521AC DA +=+=,22391521CD ==,ADC ∴∆为直角三角形,ACD ABC ABCD S S S ∆∆∴=-四边形1122AC AD AB BC =⨯-⨯ 11153612922=⨯⨯-⨯⨯ 27054=-216=.故四边形ABCD 的面积为216.题型三 利用勾股定理求最短路径例3.如图,一圆柱高BC 为20cm ,底面周长是10cm ,一只蚂蚁从点A 爬到点P 处吃食,且35PC BC =,则最短路线长为( )A.20cm B.13cm C.14cm D.18cm【解析】根据题意画出图形,连接AP,则AP就是蚂蚁爬行的最短路线长,根据勾股定理求出AP即可.【答案】解:如图展开,连接AP,则AP就是蚂蚁爬行的最短路线长,则90C∠=︒,11052AC cm cm=⨯=,20BC cm=,35PC BC=,12CP cm∴=,由勾股定理得:222251213()AP AC CP cm=+=+=,即蚂蚁爬行的最短路线长是13cm,故选:B.变式训练1.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm【解析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【答案】解:三级台阶平面展开图为长方形,长为8dm,宽为(23)3dm+⨯,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理得:22228[(23)3]17x =++⨯=,解得17x =.故选:B .变式训练 2.如图,长方体的底面边长为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达B ,那么所用细线最短需要( )A .12cmB .11cmC .10cmD .9cm【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【答案】解:将长方体展开,连接A 、B ',则13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=.故选:C .变式训练3.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A .73厘米B .10厘米C .82厘米D .8厘米【解析】由于小虫从外壁进入内壁,要先到杯子上沿,再进入杯子,故先求出到杯子沿的最短距离即可解答.【答案】解:如图所示:最短路径为:P A '→,将圆柱展开,2222(162)(6 1.5 1.5)10PA PE EA cm ''=+=÷+-+=,最短路程为10PA cm '=.故选:B .题型四 利用勾股定理解折叠问题例4.如图,有一块直角三角形纸片,两直角边6AC cm =,8BC cm =,将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合,求BDE ∆的面积.【解析】由勾股定理可求AB 的长,由折叠的性质可得6AC AE cm ==,90DEB ∠=︒,由勾股定理可求DE 的长,由三角形的面积公式可求解.【答案】解:6AC cm =,8BC cm =2210AB AC CB cm ∴=+=将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合,6AC AE cm ∴==,90DEB ∠=︒1064BE cm ∴=-=设CD DE x ==,则在Rt DEB ∆中,2224(8)x x +=-解得3x =,即DE 等于3cmBDE ∴∆的面积14362=⨯⨯= 答:BDE ∆的面积为26cm变式训练1.如图,把长为12cm 的纸条ABCD 沿EF ,GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,且90FPH ∠=︒,3BF cm =,求FH 的长.【解析】由翻折不变性可知:BF PF =,CH PH =,设FH x cm =,则(9)PH x cm =-,在Rt PFH ∆中,根据222FH PH PF =+,构建方程即可解决问题.【答案】解:由翻折不变性可知:BF PF =,CH PH =,设FH x cm =,则(9)PH x cm =-,在Rt PFH ∆中,90FPH ∠=︒,222FH PH PF ∴=+,222(9)3x x ∴=-+,5x ∴=,FH ∴的长是5cm .变式训练 2.如图,把长方形ABCD 沿AC 折叠,AD 落在AD '处,AD '交BC 于点E ,已知2AB cm =,4BC cm =.(长方形的对边相等,四个角都为直角)(1)求证:AE EC =;(2)求EC 的长;(3)求重叠部分的面积.【解析】(1)根据轴对称的性质和矩形的性质就可以得出EAC ECA ∠=∠,就可以得出AE CE =,(2)设EC x =,就有AE x =,4BE x =-,在Rt ABE ∆中,由勾股定理就可以求出结论;(3)根据(2)的结论直接根据三角形的面积公式就可以求出结论.【答案】解:(1)四边形ABCD 是矩形,AB CD ∴=,AD BC =,90B ∠=︒,//AD BC ,DAC BCA ∴∠=∠.ADC ∆与△AD C '关于AC 成轴对称ADC ∴∆≅△AD C ',DAC D AC ∴∠=∠',D AC ACB ∴∠'=∠,AE EC ∴=;(2)2AB cm =,4BC cm =,2CD cm ∴=,4AD cm =.设EC x =,就有AE x =,4BE x =-,在Rt ABE ∆中,由勾股定理,得224(4)x x +-=,解得: 2.5x =.答:EC 的长为2.5cm ;(3)2AEC EC AB S ∆=, 22.52 2.52AEC S cm ∆⨯==. 答:重叠部分的面积为22.5cm .题型五 勾股定理的实际应用例5.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?【解析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【答案】解:设旗杆高xm ,则绳子长为(2)x m +,旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为2228(2)x x +=+,解得15x m =,∴旗杆的高度为15米.变式训练1.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解析】在Rt ABC ∆中,利用勾股定理计算出AB 长,再根据题意可得CD 长,然后再次利用勾股定理计算出AD 长,再利用BD AB AD =-可得BD 长.【答案】解:在Rt ABC ∆中:90CAB ∠=︒,17BC =米,8AC =米, 2215AB BC AC ∴=-=(米),此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,171710CD ∴=-⨯=(米),22100646AD CD AC ∴=-=-=(米),1569BD AB AD ∴=-=-=(米),答:船向岸边移动了9米.变式训练 2.勾股定理是几何学中的明珠,它充满魅力,在现实世界中有着广泛的应用.请你尝试应用勾股定理解决下列问题:一架2.6m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 为2.4m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 向外移了多少米?(注意:3.15 1.77)≈【解析】先根据勾股定理求出OB 的长,再根据梯子的长度不变求出OD 的长,根据BD OD OB =-即可得出结论.【答案】解:Rt OAB ∆中, 2.6AB m =, 2.4AO m =,222226241OB AB AO m ∴=-=-=;同理,Rt OCD ∆中,2.6CD m =, 2.40.5 1.9OC m =-=,22222619 3.15 1.77OD CD OC m ∴=-=-=,1.7710.77()BD OD OB m ∴=-=-=.答:梯子底端B 向外移了0.77米.题型六 锐角三角函数定义例1.在Rt ABC ∆中,90C ∠=︒,3AB BC =,则sin B 的值为( )A.12B.22C.32D.223【解析】设BC为x,根据题意用x表示出AB,根据勾股定理求出BC,运用正弦的定义解答即可.【答案】解:设BC为x,则AB=3x,由勾股定理得,AC===2x,∴sin B===,故选:D.变式训练1.如图,在Rt ABC∆中,90ACB∠=︒,CD是斜边AB上的高,下列线段的比值等于cos A的值的有()个(1)ADAC(2)ACAB(3)BDBC(4)CDBC.A.1 B.2 C.3 D.4【解析】根据锐角三角函数关系的定义分析得出答案.【答案】解:∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴cos A===,故(1),(2),(4)正确.故选:C.题型七网格中的锐角三角函数值例7.如图,A,B,C是正方形网格中的格点(小正方形的顶点),则sin ACB∠的值为( )A .55B .255C .12D .33【解析】由勾股定理可求AC ,BC 的长,由三角形的面积公式可求BD 的长,即可求sin ∠ACB 的值.【答案】解:设小正方形的边长为1,过点B 作BD ⊥AC 于D ,过点B 作BF ⊥AE 于点F , ∵S △ABC =2×7﹣=5 由勾股定理可知:AC ==5, ∵AC •BD =5,∴BD =,由勾股定理可知:BC ==, ∴sin ∠ACB === 故选:A .变式训练 1.如图,在22⨯正方形网格中,以格点为顶点的ABC ∆的面积等于32,则sin (CAB ∠= )A.332B.35C.105D.310【解析】根据勾股定理,可得AC、AB、BC的长,根据三角形的面积公式,可得CD的长,根据正弦函数的定义,可得答案.【答案】解:如图:作CD⊥AB于D,AE⊥BC于E,由勾股定理,得AB=AC=,BC=.由等腰三角形的性质,得BE=BC=.由勾股定理,得AE==,由三角形的面积,得AB•CD=BC•AE.即CD==.sin∠CAB===,故选:B.题型八特殊角三角函数值的计算例8.计算:2sin60cos45sin30tan60︒+︒-︒︒.【解析】首先代入特殊角的三角函数值,再计算乘方,后算乘除,最后算加减即可.【答案】解:原式=+﹣×,=+﹣,=.变式训练1.计算:(1)222sin 30sin60sin 45cos 30︒+︒-︒+︒;(2)tan30tan 45tan 60tan 45︒+︒︒︒. 【解析】(1)直接利用特殊角的三角函数值代入求出答案;(2)直接利用特殊角的三角函数值代入求出答案.【答案】解:(1)原式=()2+﹣()2+()2=+﹣+ =+; (2)原式==.变式训练2.22cos30tan30cos60(1tan60)︒+︒︒--︒【解析】把特殊角的三角函数值代入原式,根据二次根式的加减运算法则计算.【答案】解:原式=2×+×﹣+1=+1. 题型九 解直角三角形例9.如图,在ABD ∆中,AC BD ⊥于点C ,32BC CD =,点E 是AB 的中点,tan 2D =,1CE =,求sin ECB ∠的值和AD 的长.【解析】利用已知表示出BC ,CD 的长,再利用勾股定理表示出AB 的长,进而求出sin ∠ECB 的值和AD 的长.【答案】解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°.∵点E 是AB 的中点,CE =1,∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB .∵=,∴设BC =3x ,CD =2x .在Rt △ACD 中,tan D =2,∴=2,∴AC =4x .在Rt △ACB 中,由勾股定理得AB ==5x , ∴sin ∠ECB =sin B ==. 由AB =2,得x =,∴AD ===2x =2×=.变式训练1.如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=. (1)求AD 的长;(2)求sin DBC ∠的值.【解析】(1)过点D 作DH ⊥AB 于点H ,根据等腰直角三角形的性质,勾股定理以及锐角三角形函数的定义即可求出答案.(2)由(1)可求出CD =4,根据勾股定理可求出BD 的长度,然后根据锐角三角函数的定义即可求出答案.【答案】解:(1)过点D 作DH ⊥AB 于点H ,∵等腰三角形ABC ,∠C =90°∴∠A =45°,∴AH =DH ,设AH =x ,∴DH =x ,∵tan∠DBA=,∴BH=5x,∴AB=6x,∵AC=6,∴由勾股定理可知:AB=6,∴x=,∴AH=DH=,∴由勾股定理可知:AD=2;(2)由于AD=2∴DC=4,∴由勾股定理可知:DB=2,∴,变式训练 2.如图,已知Rt ABC∠=︒,CD是斜边AB上的中线,过点A作∆中,90ACB=.AH CH⊥,AE分别与CD、CB相交于点H、E,2AE CD(1)求sin CAH∠的值;(2)如果5CD=,求BE的值.【解析】(1)由勾股定理得出AC==CH,由锐角三角函数定义即可得出答案;(2)根据sinB的值,可得出AC:AB=1:,由AB=2,得AC=2,设CE=x(x>0),则AE=x,由勾股定理得出方程,求出CE=1,从而得出BE.【答案】解:(1)∵AE⊥CD,∴∠AHC=90°,∵AH=2CH,∴由勾股定理得:AC==CH,∴sin∠CAH===;(2)∵∠ACB=90°,CD是斜边AB上的中线,∴AB=2CD=2,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∵∠ACB=90°,∴∠BCD+∠ACH=90°,∴∠B=∠BCD=∠CAH,∵sinB==sin∠CAH==,∴AC:AB=1:,∴AC=2.设CE=x(x>0),则AE=x,在Rt△ACE中,由勾股定理得:x2+22=(x)2,解得:x=1,∴CE=1,在Rt△ABC中,由勾股定理得:BC===4,∴BE=BC﹣CE=3.题型十解直角三角形的应用之坡度坡角问题例10.如图,扶梯AB坡比为1:2,滑梯CD坡比为3.若40=,某人BC mAE m=,30m≈,从扶梯上去,经过顶部BC,再沿滑梯滑下,共经过多少路径?(结果精确到0.1)(2 1.41≈3 1.73≈5 2.24)【解析】首先在直角△ABE中根据AE=40m和坡比求得AB和BE,然后得出CF的长,最后在直角△CFD中求得CD的长即可,继而求出经过的路径=AB+BC+CD的长度即可.【答案】解:∵扶梯AB的坡比为1:2,即BE:AE=1:2,AE=40m,∴BE=20m,∴AB===20(m),∵CF=BE=20米,CF:DF=1:,∴FD=CF=20(m),∴CD===40(m),∴经过的路径=AB+BC+CD=20+30+40=70+20≈114.8(m).答:共经过路径长114.8m.变式训练1.今年“五一”假期,某教学活动小组组织一次登山活动,他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示,斜坡AB的长为20013米,斜坡BC的长为2002米,坡度是1:1,已知A点海拔121米,C点海拔721米(1)求B点的海拔;(2)求斜坡AB的坡度;(3)为了方便上下山,若在A到C之间架设一条钢缆,求钢缆AC的长度.【解析】(1)根据题意和图形,可以求得点B的海波,本题得以解决;(2)根据题目中的数据可以求得AF和BF的长度,从而可以求得斜坡AB的坡度;(3)根据题目中的数据可以求得AD和CD的长度,然后根据勾股定理即可求得AC的长度.【答案】解:(1)作CD⊥AM于点D,作BE⊥CD于点E,作BF⊥AM于点F,连接AC,∵斜坡BC的长为200米,坡度是1:1,∴BE=CE=200米,∵A点海拔121米,C点海拔721米,∴CD=600米,∴BF=400米,∵121+400=521(米),∴点B的海拔是521米;(2)∵斜坡AB的长为200米,BF=400米,∴AF==600米,∴BF:AF=400:600=2:3,即斜坡AB的坡度是2:3;(3)∵CD=600米,AD=AF+FD=AF+BE=600+200=800(米),∴AC==1000米,即钢缆AC的长度是1000米.题型十一解直角三角形的应用之仰角俯角问题例11.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53︒,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45︒,已知山坡AB的坡度1:3,10AB=米,21AE=米,求广告牌CD的高度.(测角器的高度忽略不计,参考数据:4tan533︒≈,cos530.60)︒≈【解析】过B作DE的垂线,设垂足为G,BH⊥AE.在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【答案】解:过B作BG⊥DE于G,BH⊥AE,Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5米;∴AH=5米,∴BG=AH+AE=(5+21)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(5+21)米.Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE=28米.∴CD=CG+GE﹣DE=26+5﹣28=(5﹣2)m.答:宣传牌CD高为(5﹣2)米.变式训练1.如图(1),在豫西南邓州市大十字街西南方,耸立着一座古老建筑-福胜寺梵塔,建于北宋天圣十年(公元1032年),当地民谚云:“邓州有座塔,离天一丈八.”学完了三角函数知识后,某校“数学社团”的刘明和王华决定用自己学到的知识测量“福胜寺梵塔”的高度.如图(2),刘明在点C处测得塔顶B的仰角为45︒,王华在高台上的点D处测得塔顶B的仰角为40︒,若高台DE高为5米,点D到点C的水平距离EC为1.3米,且A、C、E三点共线,求该塔AB的高度.(参考数据:sin400.64︒≈,︒≈,cos400.77︒≈,tan400.84结果保留整数)【解析】作DM⊥AB于M,交CB于F,CG⊥DM于G,根据矩形的性质得到CG=DE=5,DG=EC=1.3,设FM=x米,根据正切的定义用x表示出DM、BM,结合图形列出方程,解方程得到答案.【答案】解:作DM⊥AB于M,交CB于F,CG⊥DM于G,则四边形DECG为矩形,∴CG=DE=5,DG=EC=1.3,设FM=x米,由题意得,∠BDM=40°,∠BFM=∠BCA=45°,∴∠CFG=45°,BM=FM=x,∴GF=GC=5,∴DF=DG+GF=5+1.3=6.3,在Rt△BDM中,tan∠BDM=,∴DM=≈,由题意得,DM﹣DF=FM,即﹣6.3=x,解得,x≈33.2,则BA=BM+AM=38.2≈38(米),答:该塔AB的高度约为38米.四、易错点辨析1.三角形构成问题中,忘记对构成三角形的前提(三边关系)进行检验.2.忽视直角三角形致错,题中没有说明角是直角,而直接应用正弦、余弦函数的定义.3.边角关系理解不透致错.4.记忆特殊三角函数值不准确,造成计算错误.五、直击中考1.(2017河北(11))如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( ).【答案】A.【解析】试题分析:正方形的对角线的长是10214.14,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.2.(2015河北(16))如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以【答案与解析】所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A.3.(2014河北(8))如图,将长为2,宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠【】A.2B.3C.4D.5【答案】A.【解析】4.(2019河北(19))勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.【答案】(1)20;(2)13;【解析】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.5.(2013河北(26))一透明的敞口正方体容器ABCD -A′B′C′D′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是___________,BQ的长是____________dm;(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.图1图2图3图4延伸在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.图5【答案与解析】。
专题04 几何初步与三角形中考1年模拟数学真题分项汇编
专题04几何初步与三角形5年中考真题一、单选题1.【2018年】下列图形具有稳定性的是()A.B.C.D.2.【2021年】如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.bC.c D.d3.【2020年】如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条4.【2022年】平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A.1B.2C.7D.85.【2018年】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°6.【2020年】如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是()A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l7.【2022年】要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A .Ⅰ可行、Ⅱ不可行B .Ⅰ不可行、Ⅱ可行C .Ⅰ、Ⅱ都可行D .Ⅰ、Ⅱ都不可行8.【2021年】定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理9.【2019年】下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()∠B.@代表同位角A.◎代表FEC∠D.※代表ABC.▲代表EFC10.【2022年】题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:2d≥,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整11.【2018年】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C12.【2020年】如图1,已知ABC∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在ABC∠内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.0a>,12b DE>的长C.a有最小限制,b无限制D.0a≥,12b DE<的长13.【2018年】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ14.【2020年】如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,415.【2022年】如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的()A.中线B.中位线C.高线D.角平分线16.【2022年】如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能..是()A .0B .5C .6D .717.【2021年】图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =()A .1cmB .2cmC .3cmD .4cm二、填空题18.【2021年】下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B Ð,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.19.【2022年】如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?______(填“是”或“否”);(2)AE =______.20.【2019年】勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .三、解答题21.【2019年】已知:整式()()22212A n n -=+,整式0B >.尝试:化简整式A .发现:2A B =,求整式B .联想:由上可知,222212B n n +=(﹣)(),当n >1时2,1,2,n n B -为直角三角形的三边长,如图.填写下表中B 的值:直角三角形三边21n ﹣2n B 勾股数组Ⅰ/8勾股数组Ⅱ35/22.【2020年】如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长.23.【2021年】在一平面内,线段20AB =,线段10BC CD DA ===,将这四条线段顺次首尾相接.把AB 固定,让AD 绕点A 从AB 开始逆时针旋转角()0αα>︒到某一位置时,BC ,CD 将会跟随出现到相应的位置.(1)论证如图1,当//AD BC 时,设AB 与CD 交于点O ,求证:10AO =;(2)发现当旋转角60α=︒时,ADC ∠的度数可能是多少?(3)尝试取线段CD 的中点M ,当点M 与点B 距离最大时,求点M 到AB 的距离;(4)拓展①如图2,设点D 与B 的距离为d ,若BCD ∠的平分线所在直线交AB 于点P ,直接..写出BP 的长(用含d 的式子表示);α的余弦值.②当点C在AB下方,且AD与CD垂直时,直接..写出1年模拟新题一、单选题1.(2022·河北邯郸·二模)用“垂线段最短”来解释的现象是()A.B.C.D.2.(2022·河北张家口·一模)如图,对于四条线段a,b,c,d,请借助直尺或圆规判断长度最大的为()A.a B.b C.c D.d∠的一边OB经过的点是()3.(2022·河北邯郸·一模)如图,AOBA .P 点B .Q 点C .M 点D .N 点4.(2022·河北石家庄·三模)如图是两条平行线,则表示这两条平行线间距离的线段有()A .0条B .1条C .2条D .无数条5.(2022·河北·石家庄市第四十一中学模拟预测)如图,在平整的桌面上画一条直线l ,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC 边与l 对齐,此时ABC 的内心是点P ;将纸片绕点C 顺时针旋转,使点B 落在l 上的点B '处,点A 落在点A '处,得到A B C ''V 的内心点P '.下列结论正确的是()A .PP '与l 平行,PC 与PB ''平行B .PP '与l 平行,PC 与P B ''不平行C .PP '与l 不平行,PC 与P B ''平行D .PP '与l 不平行,PC 与P B ''不平行6.(2022·河北·模拟预测)如图,已知直线AE ∥BD ,且∠C =15°,∠1=110°,则∠2的度数是()A .45°B .55°C .65°D .75°7.(2022·河北唐山·三模)如图,点O 为ABC 的内心,60B ︒∠=,BC AB ≠,点M ,N 分别为AB ,BC 上的点,且OM ON =.甲、乙、丙三人有如下判断:甲:120MON ∠=︒;乙:四边形OMBN 的面积为定值;丙:当MN BC ⊥时,MON △的周长有最小值.则下列说法正确的是()A .只有甲正确B .只有乙错误C .乙、丙都正确D .只有丙错误8.(2022·河北邯郸·三模)下列尺规作图.能得到∠ADC =2∠B 的是()A .B .C .D .9.(2022·河北保定·模拟预测)如图,在ABC 中,AB AC =,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP ,交BC 于点D ,连接PB ,PC .给出下列说法:①PB PC =;②AD 垂直平分BC ;③BC 平分ABP ∠;④PB AB =.其中正确的有()A .①②B .②③C .③④D .②④10.(2022·河北保定·三模)下列尺规作图,能确定AD 是ABC 的中线的是()A.B.C.D.11.(2022·河北石家庄·三模)已知点A和直线MN,过点A用尺规作出直线MN的垂线,下列作法中错误的是()A.B.C.D.二、填空题12.(2022·河北唐山·一模)A、B、C、D四个车站的位置如图所示.(1)C、D两站的距离为_____;(2)若a=3,C为AD的中点,b=______.13.(2022·河北邢台·一模)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是_____,根据这个思路可得∠AEC=_____°.14.(2022·河北张家口·一模)如图,Rt ABC 和Rt DCE 是一副含有30°、45︒角相互重叠的三角板,且直角顶点重合,若两直角重叠形成的角为63︒,则ACE ∠=__________︒,图中α∠的度数为__________︒;15.(2022·河北保定·一模)将一副三角尺如图所示叠放在一起,若8cm AB =,则(1)AC =________;(2)阴影部分的面积是________2cm .16.(2022·河北·石家庄市第四十一中学模拟预测)如图,ABC 中,AB AC =,30B ∠=︒,底边上的高1AD =,E 是AB 中点.P 是DC 上一点,连接PE ,将PE 绕点E 逆时针旋转60︒交DA 的延长线于点F .(1)若40AFE ∠=︒,则PED ∠=________︒;(2)若P 为DC 的中点,则AF =________.17.(2022·河北邯郸·二模)如图,在ABC 中,90,2,4ABC AB BC ∠=︒==,将ABC 绕点C 顺时针旋转90︒得到EDC △,连接AE .(1)CAE ∠=__________;(2)若F 点为AE 的中点,则BF =____________.18.(2022·河北承德·一模)一块直角三角板ABC 如图所示放置,90ACB ∠=︒,12cm BC =,8cm AC =,测得BC 边在平面的中心投影11B C 长为24cm ,则11A B 长为________cm ,111A B C △的面积是________2cm .19.(2022·河北承德·一模)如图,如果边长为1的正六边形ABCDEF 绕着顶点A 顺时针旋转60︒后与正六边形AGHMNP 重合.(1)则BD 的长是________;(2)点E 在整个旋转过程中,所经过的路径长为________(结果保留π).20.(2022·河北秦皇岛·一模)如图,在等边三角形ABC 中,点D 、点E 分别在BC ,AC 上,且∠ADE =60°,(1)写出和∠CDE 相等的角:______;(2)若AB =3,BD =1,则CE 长为______.21.(2022·河北·石家庄市第二十八中学一模)如图是数学兴趣小组研究某种在同一平面进行摆动的机械装置的示意图.支架ABC 是BC 在地面上的等边三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转.已知BC =5分米,AD =3分米,DM =1分米.(1)当A ,D ,M 三点在同一直线上时,AM 的长为________分米;(2)当AD ⊥AB 时,S △ACM 的最大值是________平方分米.三、解答题22.(2022·河北·平泉市教育局教研室二模)如图,BD BC =,点E 在BC 上,且BE AC =,DE AB =.(1)求证:ABC EDB ≌;(2)判断AC 和BD 的位置关系,并说明理由.23.(2022·河北保定·三模)如图,点D 在等边ABC 的外部,E 为BC 边上的一点,AD CD =,DE 交AC 于点F ,AB DE ∥.(1)判断CEF △的形状,并说明理由;(2)若10BC =,4CF =,求DE 的长.24.(2022·河北保定·模拟预测)将两个三角形纸板ABC 和DBE 按图所示的方式摆放,连接AD ,DC ,CE .已知DBA CBE ∠=∠,BDE BAC ∠=∠,且6AC DE ==.(1)求证:ABC DBE ≌;(2)若6DA DC ==,且EDB CDB ∠=∠.①求BED ∠的度数;②若EC //AB ,直接写出DEC S 的值.25.(2022·河北·石家庄市第四十一中学模拟预测)如图,在ABC 中,5AB AC ==,8BC =,点D 在BC 边上,以每秒2个单位的速度从点B 向点C 运动,ADE B ∠=∠,DE 交AC 于点E .设运动时间为t .(1)当DE AB ∥时,求证:DE EC =;(2)判断线段AD 和AE 的数量关系,并证明;(3)求AE 的最小值;(4)若DCE 为直角三角形,直接写出t 的值.26.(2022·河北唐山·二模)如图1,在等腰直角三角形ABC 中,∠BAC =90°,点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)证明:△AHB ≌△AGC ;(2)如图2,连接GF ,HG ,HG 交AF 于点Q .①证明:在点H 的运动过程中,总有∠HFG =90°;②若AG =QG ,AB =AC =4,求EH 的长度.27.(2022·河北保定·二模)如图,AOB 中,6OA OB ==,将AOB 绕点O 逆时针旋转得到COD △.OC 与AB 交于点G ,CD 分别交OB 、AB 于点E 、F .(1)A ∠与D ∠的数量关系是:A ∠________D ∠;(2)求证:AOG DOE △≌△;(3)当A ,O ,D 三点共线时,恰好OB CD ⊥,求此时CD 的长.28.(2022·河北保定·二模)两个完全相同的直角三角板按如图1所示方式放置,30DFE ACB ∠=∠=︒,直角顶点A 和D 重合,4AB =,连接BE ,CF .(1)论证:求证:~ABE ACF .(2)探索:如图2,M 、N 为两个三角板斜边上的两动点,且NE BM =,120EAB ∠=︒,当MN 最小时,求AM 的长.(3)拓展:将两个三角板按图3所示方式放置,直角顶点D 在BC 上,两三角板的直角边分别交于P 、Q 两点,当DPQ V 与ABC 相似时,求CD 的长.29.(2022·河北邯郸·二模)如图,点E 是ABC 的边BC 上一点,DAB DEB CAE ∠∠∠==,AD AB =,AB DE 、相交于点F .(1)求证:ADE ABC ≌;(2)若70C ∠= .①当AE BE =时,求DAE ∠的度数;②当ABC 的外心在其内部时,直接写出B Ð的取值范围.30.(2022·河北·石家庄市第二十八中学二模)如图(1)和图(2),在同一平面内,线段10AB =+线段10BC CD DE EA ====,将这五条线段顺次首尾相接.把AB 固定,点D 在AB 上可以左右移动,让AE 绕点A 从AB 开始逆时针旋转角α到某一位置时,BC ,CD 将会跟随到AB 的上方或下方.(1)如图(2),当点C ,D ,E 在同一条直线上时,求证:AD BD =;(2)当α最大时,求cos α;(3)连接CE,则①CE长度的最小值为;α=︒时,求出CE长度的所有可能值.②当旋转角60。
最新中考数学专题复习解直角三角形(含详细参考答案)
最新中考数学专题复习解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、cosA、tanA表示的是一个整体,是两条线段的比,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt△ABC中,∠C=900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=h l=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点二:特殊角的三角函数值例2 (2012•孝感)计算:cos245°+tan30°•sin60°=.对应训练(2012•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形对应训练3.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.考点四:解直角三角形的应用例 4 (2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=米,请据此解答如下问题:(1)求该岛的周长和面积;)(2)求∠ACD的余弦值.考点:解直角三角形的应用.对应训练6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小时≈16.7米/秒)【聚焦山东中考】A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定5.(2012•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.6.(2012•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B、F、C在一条直线上)(1)求教学楼AB的高度;(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)6.考点:解直角三角形的应用.分析:(1)首先构造直角三角形△AEM,利用tan22°=AM ME,求出即可;(2)利用Rt△AME中,cos22°=MEAE,求出AE即可.【备考真题过关】一、选择题A.1 B C D.24.A考点:特殊角的三角函数值.5.(2012•乐山)如图,在Rt △ABC 中,∠C=90°,AB=2BC ,则sinB 的值为( )A .12 B C D .15.C考点:特殊角的三角函数值. 6.(2012•杭州)如图,在Rt △ABO 中,斜边AB=1.若OC ∥BA ,∠AOC=36°,则( ) A .点B 到AO 的距离为sin54° B .点B 到AO 的距离为tan36° C .点A 到OC 的距离为sin36°sin54° D .点A 到OC 的距离为cos36°sin54°6.考点:解直角三角形;点到直线的距离;平行线的性质.点评:本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是①找出点A 到OC 的距离和B 到AO 的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.7.(2012•宜昌)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( ) A .24米 B .20米 C .16米 D .12米考点:解直角三角形的应用.8.(2012•广安)如图,某水库堤坝横断面迎水坡AB 的坡比是1BC=50m ,则应水坡面AB的长度是()A.100m B.C.150m D.8.考点:解直角三角形的应用-坡度坡角问题.1.(2012•泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()0米米2.(2012•深圳)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()23.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()0020(二、填空题9.(2012•宁夏)在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.(2012•武汉)tan60°= .11.(2012•常州)若∠a=60°,则∠a的余角为,cosa的值为.12.(2012•南京)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)4.(2012•广西)如图,为测量旗杆AB的高度,在与B距离为8米的C处测得旗杆顶端A 的仰角为56°,那么旗杆的高度约是12米(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题ctanα= =415.(2012•遵义)为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,,精确到个位)16.(2012•六盘水)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.17.(2012•新疆)如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为15°,且OA=OB=3m.(1)求此时另一端A离地面的距离(精确到0.1m);(2)若跷动AB,使端点A碰到地面,请画出点A运动的路线(不写画法,保留画图痕迹),并求出点A运动路线的长.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)5.(2012•资阳)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).6.(2012•绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼于二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,con32°=0.8480,tan32°=6249.7.(2012•郴州)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:≈1.414,≈1.732)8.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退.2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)解决问题如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.×=70,AD=70,∠AD=140船赶往出事地点所需时间为=718.(2012•苏州)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请讲下面2小题的结果都精确到0.1).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?18.考点:解直角三角形的应用-坡度坡角问题.分析:(1)根据题意得出,∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=12AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=12BD=15,故:DE=DF-EF=15-1)≈11.0;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=12AD=12×30=15,PA=AD•cos30°=2×30=15 .在矩形DPGM中,MG=DP=15,,在Rt△DMH中,()≈45.6.答:建筑物GH高为45.6米.点评:此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.。
最新中考数学总复习考点强化练习:第四单元 图形初步与三角形 19 解直角三角形及其应用
考点强化练19 解直角三角形及其应用夯实基础1.(2018·云南)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3B.C.D.答案A解析根据正切的意义得tan A==3.2.(2018·湖南益阳)如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A.300sin αB.300cos αC.300tan αD.答案A解析∵sinα=,∴BC=AB sinα=300sinα,故选A.3.(2018·吉林长春)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sin α米B.800tan α米C.米D.米答案D解析由题中条件可知,在Rt△ABC中,∠ABC=α,AC=800米,由tanα=,可得AB=米. 4.(2018·江苏苏州)如图,某海监船以20海里/时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里答案D解析本题解答时要利用直角三角形的边角关系和勾股定理来进行计算.由题意可知AB=20,∠APB=30°,∴PA=20,∵BC=2×20=40,∴AC=60,∴PC==40(海里),故选D.5.(2018·长丰一模)计算:2cos 60°+4sin 60°·tan 30°-cos245°=.答案解析原式=2×+4×=1+2-.6.(2018·山东枣庄)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)(参考数据:sin 31°=0.515,cos 31°=0.857,sin 31°=0.601)答案6.2解析在Rt△ABC中,=sin∠BAC,即=sin31°,BC=12×0.515=6.18≈6.2(米),故填6.2.7.(2018·吉林)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺.请帮助组长林平完成方格内容,用含a,b,c的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤(1)用测得∠ADE=α;(2)用测得BC=a米,CD=b米计算过程解测量步骤:(1)测角仪(2)皮尺计算过程:如题图,∠ADE=α,DE=BC=a,BE=CD=b,在Rt△ADE中,∠AED=90°,∵tan∠ADE=,∴DE=AE·tan∠ADE=a·tanα.∴AB=AE+BE=(b+a·tanα)(米).8.(2018·辽宁抚顺)如图,BC是路边坡角30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A,B,C,D,M,N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)解(1)延长DC交AN于E,∵∠DBN=60°,BC=10米,∠CBN=30°,∠DCM=90°,CM∥AN,∴∠BDE=30°,∠DEB=90°.∴CE=BC=5(米),BE=BC=5(米).∴tan∠DBE=,解得CD=10(米).(2)由(1)可知,DE=15米,BE=5米.∵AE=AB+BE,tan∠DAN=,∠DAN=37°,∴≈0.75,解得AB≈11.4(米).9.(2018·江苏徐州)如图,1号楼在2号楼的南侧,两楼的高度均为90 m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42 m.(1)求楼间距AB;(2)若2号楼共有30层,层高均为3 m,则点C位于第几层?(参考数据:sin 32.3°≈0.53,cos 32.3°≈0.85,tan 32.3°≈0.63,sin 55.7°≈0.83,cos 55.7°≈0.56,tan 55.7°≈1.47)解(1)过点C,D分别作CE⊥PB,DF⊥PB,垂足分别为E,F.则有AB=CE=DF,EF=CD=42.由题意可知:∠PCE=32.3°,∠PDF=55.7°,在Rt△PCE中,PE=CE×tan32.3°=0.63CE.在Rt△PDF中,PF=CE×tan55.7°=1.47CE.∵PF-PE=EF,∴1.47CE-0.63CE=42,∴AB=CE=50(m).答:楼间距为50m.(2)由(1)得:PE=0.63CE=31.5(m),∴AC=BP-PE=90-31.5=58.5(m),58.5÷3=19.5,∴点C位于第20层.答:点C位于第20层.10.(2017·内蒙古包头)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA 交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)解(1)在△ABC中,∵∠C=90°,∠B=30°,∴∠BAC=60°.∵AD是△ABC的角平分线,∴∠CAD=∠BAD=∠BAC=30°.在Rt△ACD中,∵∠CAD=30°,CD=3,∴CD=AD,∴AD=6.(2)∵DE∥BA,DF∥CA,∴四边形AEDF为平行四边形,∠BAD=∠EDA.∵∠CAD=∠BAD,∴∠CAD=∠EDA,∴AE=DE.∴四边形AEDF为菱形.∵DE∥BA,∴∠CDE=∠B=30°,在Rt△CDE中,∠C=90°,∴cos∠CDE=,∴ED==2.∴四边形AEDF的周长为4ED=4×2=8.提升能力11.(2018·北京)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”“=”或“<”)答案>解析如图,取格点N,点H,连接NH、BC,过N作NP⊥AD于P,S△ANH=2×2-×1×2×2-×1×1=AH·NP,PN,PN=,Rt△ANP中,sin∠NAP==0.6,Rt△ABC中,sin∠BAC=>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE.12.(2018·内蒙古通辽)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地的海拔高度约为1 000米,山顶B处的海拔高度约为1 400米,由B 处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一条隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732).解作BD⊥AC,垂足为D,如图所示.由题意可得BD=1400-1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米).在Rt△BCD中,∵∠BCA=45°,∴DC=DB=400(米).∴AC=AD+DC=400+400≈1092.8≈1093(米).答:隧道最短约为1093米.13.(2018·山东莱芜,20)在小水池旁有一盏路灯,已知支架AB的长是0.8 m,A端到地面的距离AC为4 m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角为45°,在水池的内沿E测得支架A端的仰角为50°(点C,E,D在同一直线上),求小水池的宽DE.(结果精确到0.1 m)(sin 65°≈0.9,cos 65°≈0.4,tan 50°≈1.2)解过点B作BF⊥AC于F,BG⊥CD于G.在Rt△BAF中,∠BAF=65°,BF=AB sin∠BAF=0.8×0.9=0.72,AF=AB cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32.由题意可知四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72.∵∠BDG=45°,∴∠DBG=∠GDB,∴GD=GB=4.32,∴CD=CG+GD=5.04.在Rt△ACE中,∠AEC=50°,CE=≈3.33,∴DE=CD-CE=5.04-3.33=1.71≈1.7.答:小水池的宽是1.7m.14.(2018·江苏扬州)问题呈现:如图1,在边长为1的正方形网格中,连接格点D、N和E、C,DN 和EC相交于点P,求tan∠CPN的值.方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.解(1)由勾股定理得:DM=2,MN=,DN=,∵(2)2+()2=()2, ∴DM2+MN2=DN2,∴△DMN是直角三角形.∵MN∥EC,∴∠CPN=∠DNM.∵tan∠DNM==2,∴tan∠CPN=2.(2)法1:如图,cos∠CPN=cos∠QCM=.法2:如图中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠CDM=45°,∴cos∠CPN=cos∠DCM=.(3)法1:如图,∠CPN=∠CMQ=45°.法2:如图,∠CPN=∠QAN=45°.法3:如图中,取格点Q,连接AQ、NQ.∵PC∥QN,∴∠CPN=∠ANQ.∵AQ=QN,∠AQN=90°,∴∠ANQ=∠QAN=45°,∴∠CPN=45°.15.(2018·山东莱芜)如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点.三角形的布罗卡尔点是法国数学家和教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC=.答案1+解析如图,由“布罗卡尔点”的定义,设∠PAC=∠PCB=∠PBA=α,又CA=CB,∠ACB=120°,∴∠ABC=∠BAC=30°,∴∠CBP=∠PAB=30°-α=β,∴△BCP∽△ABP,∴,而在△ABC中,作CD⊥AB于D,则BD=AB,而cos B=,∴,∴,∴PB=1,PC=,∴PB+PC=1+.故答案为1+.创新拓展16.在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作PM⊥AB,PN⊥AC,M,N 分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)求当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.(1)证明连接AP,∵△ABC是等边三角形,故不妨设AB=BC=AC=a,其中BC边上的高记作h,∵PM⊥AB,PN⊥AC,∴S△ABC=S△ABP+S△ACP=AB·MP+AC·PN=a(PM+PN),又∵S△ABC=BC·h=ah,∴PM+PN=h.即不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高.(2)解设BP=x,在Rt△BNP中,∠BMP=90°,∠B=60°,BP=x,∴BM=BP·cos60°=x,MP=BP·sin60°=x,∴S△BMP=BM·MP=x·x=x2;∵PC=2-x,同理可得S△PNC=(2-x)2,又∵S△ABC=×22=,∴S四边形AMPN=S△ABC-S△BMP-S△PNC=x2-(2-x)2=-(x-1)2+,∴当BP=1时,四边形AMPN的面积最大,是.。
中考数学-第1部分教材同步复习第四章三角形4.5解直角三角形课件
中考金题·精析
解直角三角形解决相关图形问题
【例 1】 (2015·哈尔滨)如图,点 D 在△ABC 的边 BC 上, ∠C+∠BAD=∠DAC,tan∠BAD=47,AD= 65,CD=13, 则线段 AC 的长为__4__1_3__.
【解答】 作∠DAE=∠BAD 交 BC 于 E,作 DF⊥AE 交 AE 于 F,作 AG⊥BC 交 BC 于 G.
方位角:从标准方向的北端起,顺时针方向到直线的水平 角称为该直线的方位角,方位角的范围为0°~360°.如图③, A点位于O点的东偏北30°方向,而B点位于O点的东南方向.
【注意】 东北方向指北偏东45°方向,东南方向指南偏 东45°方向,西北方向指北偏西45°方向,西南方向指南偏西 45°方向,我们一般画图的方位为上北下南,左西右东.
大家好
1
第四章 三角形 4.5 解直角三角形
知识要点·归纳
知识点一 锐角三角函数
1.锐角三角函数的定义 在 Rt△ABC 中,∠C=90°,如图所示: 正弦:sinA=∠A斜的边对边=___ac___; 余弦:cosA=∠A斜的边邻边=___bc___; 正切:tanA=∠∠AA的的邻对边边=___ab___.
∵∠C+∠BAD=∠DAC, ∴∠CAE=∠ACB,∴AE=EC, ∴tan∠BAD=74,∴设 DF=4x,则 AF=7x, 在 Rt△ADF 中,AD2=DF2+AF2,即( 65)2=(4x)2+(7x)2, 解得 x1=-1(不合题意舍去),x2=1, ∴DF=4,AF=7,
利用锐角三角形函数求边长或角度是初中阶段常用的方 法,通常是在一个直角三角形中,知道其中的两个量就可以求 出另外的三个量.初中阶段的锐角三角函数有三种:正弦sin, 余弦cos,正切tan,都是在直角三角形中研究结论.
2024成都中考数学第一轮专题复习之第四章 第四节 解直角三角形的实际应用 练习课件
解:如图,设BD的延长线与EF交于点G,由题意可得∠FDG=65°,
∠FGD=90°,
∴∠DFG=25°.
AB=CD=EG=1米,AC=BD=38米,
设FG=x米,
G
在Rt△BFG中,∠FBG=30°,
第11题图
第四节 解直角三角形的实际应用
tan 30°= FG x 3 ,
BG BG 3
解得BG= 3 x, 在Rt△DFG中,∠DFG=25°, tan 25°= DG DG ≈0.47,
第四节 解直角三角形的实际应用
课题 工具
检测新生物到皮肤的距离 医疗仪器等
示意图 解直角三角形的实际应用
如图②,新生物在A处,先在皮肤上选择最大限度地避开器官 的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再 说明 在皮肤上选择距离B处9 cm的C处照射新生物,检测射线与皮 肤MN的夹角为∠ECN. 测量数据 ∠DBN=35°,∠ECN=22°,BC=9 cm
第12题解图
第四节 解直角三角形的实际应用
13.
雨量监测站是一款以物联网为基础的现代型雨量站,通
过这款设备,人们能远程获得降雨量的数据,并能根据当地环境气象判
断出未来雨量情况,从而安排合理的农业作业.如图①是雨量监测站的
实物图,如图②是该监测站的简化示意图,
其中支杆AB,CD与支架MN的夹角分别为
BG=BD·cos ∠DBG=BD·cos 40°≈0.77BD,
∴AE=BE=BG+GE=(0.77BD+16)cm.
∵AF=AE+EF=AC+CF,
F
∴0.77BD+16+0.64BD=14+16 3 ,
E
解得BD≈18.2 cm.
答:支杆AB,CD的端点B,D之间的距离
中考专题复习系列(4)--解直角三角形(课件+配套练习)
a b a ③边角关系: sin A= ,cos A= , tan A= . c c b 1 1 ④面积:S△ ABC= ab= chc,hc 为斜边上的高. 2 2
2.仰角、俯角、坡度、坡角和方向角 上方 的角叫仰 (1)仰角:视线在水平线_____ 角. 俯角:视线在水平线下方的角叫俯角 ____. (2)坡度:坡面的铅直高度和水平宽度 ________的比叫做坡度(或 坡比 ,用字母i表示. 叫_____) 坡角 ,用α表示,则有i 坡角:坡面与水平面的夹角叫_____ tan α . =______
式化简,负整数指数幂5个考点分别进行计算,然 后根据实数的运算法则求得计算结果.
3 解 原式=2× +3-2 3-3=- 3. 2
【例题 2】(2012· 浙江宁波)如图, 在 Rt△ABC 2 中,∠C= 90°, AB= 6, cos B= ,则 3 BC 的长为 ( )
A.4 18 13 C. 13 B.2 5
锐角三角函数
b a 余弦 cos A=__ c ,cos B=__ c.
b a 正切 tan A=__ a. b ,tan B=__
2.特殊角的三角函数值:
正弦 30° 45° 60° 余弦 正切
1 __ 2 2 __ 2 3 2 __
3 2 __
3 __ 3
2 __ 2 1 2 __
1 __
3 __
年份
2011年
近三 年 中考 2012年 情况 2013年
考情分析 考查点 解直角三角形——仰角俯 角问题(4分) 特殊角的三角函数值(3分) 三角函数的定义(3分) 解直角三角形——坡度问 题(10分) 解直角三角形——方向角 问题(10分) 解直角三角形(3分)
人教版九年级数学下册《解直角三角形》训练
《解直角三角形》基础训练知识点1已知两边解直角三角形1.在Rt△ABC中,AB=4,的度数为( )A.30°B.40°C.45°D.60°2.在Rt△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°,a=5,则∠B=____,b=____.3.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且.知识点2已知一边及一锐角解直角三角形4.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( )A.5.[2018河南信阳羊山中学期中]如图,三角形ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( )A.3.5B.4.2C.5.8D.6.56.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.求下列直角三角形中的未知量.(1)∠B=60°,c=25;(2)∠A=30°,知识点3解直角三角形的综合运用7.[2018黑龙江哈尔滨香坊区期末]在△A BC中,∠A,∠B均为锐角,且sinA=12,cosB=2,AC=40,则△ABC的面积是( )8.如图,已知在△A BC中,AD是边BC上的高,BC=14,AD=12,sinB=45,则线段DC 的长为( )A.3B.4C.5D.69.如图,平面直角坐标系中有正方形ABCD ,B(0,∠BA0=60°,那么点C 的坐标为____.10.在△ABC 中,AC=6,BC=5,sinA=23,∠A,∠B 为锐角,求tanB 的值. 11.如图,已知四边形ABCD 中,∠ABC =90°,∠ADC=90°,AB=6,CD=4,BC 的延长线与AD 的延长线交于点E (1)若∠A=60°,求BC 的长; 若sinA=45,求AD 的长. (注意:本题中的计算过程和结果均保留根号)参考答案1.C 【解析】在R t△ABC 中,∵AB=4,∠C=90°,∴cosA=AC AB ∴∠A=45°.故选C.2.45° 5【解析】因为sinA=ac 5=2,所以∠A=45°,所以∠B=90°-∠A=45°,所以∠B =∠A,所以b=a=5.归纳总结:(1)解直角三角形要注意每个三角形都有6个元素,即3个角和3条边.(2)解直角三角形时要注意发现已知和未知之间的联系,充分利用三角函数的定义来列式求值,正弦、余弦、正切三种函数都涉及两边一角,要正确选择,不能将它们弄混.(3)直角三角形中两锐角互余,三边之间满足勾股定理.3.【解析】在Rt△ABC 中,∵∠C=90°,∴tanA=ab∴∠A=60°,∴∠B=90°-∠A=30°,∴故.4.D 【解析】在Rt△ABC 中,∵∠C=90°,∠B=30°,AB=8,∴BC=ABcos B=8×2故选D. 5.D 【解析】根据垂线段最短,可知AP 的长不可能小于3.在三角形ABC 中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP 的长不可能大于6.故选D. 6.【解析】(1)在Rt△ABC 中,∠C=90°,∠B=60°,∴∠A=30°,∴sinA=a c =12, ∵c=25,∴a=252.∵cos A=b c =2,c=25,∴b=2.综上a=252,,∠A=30°. (2)∵∠C=90°,∠A=30°,∴∠B=60°.在Rt△ABC 中,cosA=b cc=2,∴a=12c=1.综上,a=l ,c=2,∠B=60°.名师点睛:解直角三角形的过程,就是把所有未知元素求出来的过程,不是只求单独的一条未知边或一个未知角.7.D 【解析】∴sinA=12,cosB=2,∴∠A=∠B=30°,∴BC=AC.如图,过点C 作CD ⊥AB 于点D ,则CD=12AC=20,∴S △ABC =12故选D.8.C 【解析】∵AD 是边BC 上的高,∴AD⊥BC.在Rt△BDA 中,∠BDA=90°,AD=12,sinB=AD AB =45,∴AB=15,DC=BC -BD=14-9=5.故选C.9.(1)【解析】过点C 作CE ⊥y 轴于点E ,则易证Rt△CEB≌Rt△BOA,BE=AO=BOtan ∠BAO=l ,所以OE=OB +BE=1因此点C 的坐标为(-1) .10.【解析】如图,过点C 作CD ⊥AB 于点D ,则sinA=CD AC =23,∴CD=23AC=4. 在Rt△BCD,BC=5,CD=4,∴BD=3,∴tanB=CD BD =43. 11.【解析】(1)∵∠A=60O ,∠AB E =90°,∴∠E=30°. 在Rt△AB E 中,∵AB=6,tanA=BEAB,∴BE=AB·tan ∵∠CDE=90°,CD=4,sinE=CD CE ,∴CE=CDsin E =412=8,BC=BE-8.(2)∵∠ABE=90°,AB=6,sinA=BEAE=45,∴设BE=4x,AE=5x,则AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE=ABBE=68=CDDE=4DE,解得DE=163,∴AD=AE-DE=lO-163=143.归纳总结:本题考查解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.《解直角三角形》提升训练1.[2018陕西延安市实验中学课时作业]如图,在菱形ABCD中,AE⊥BC于点E,EC=4,sinB=45,则菱形ABCD的周长是( )A.10B.20C.40D.282.[2018河南省第二实验中学课时作业]如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )3.[2017贵州安顺中考]如图,⊙O的直径AB=4,BC切⊙0于点B,OC平行于弦AD,0C=5,则AD的长为( )A. 65B. 85C. 5D. 54.[2017贵州铜仁中考]如图,在Rt△ABC 中,∠C=90°,点D 是AB 的中点,ED⊥AB 交AC 于点E.设∠A=a ,且tana=13,则tan2a=____.5.[2018河北邯郸二十三中课时作]如图,在等腰直角三角形ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=15,则AD 的长是____.6.[2017上海中考]如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米.其中D 是BC 的中点,且AD ⊥BC. (1)求sinB 的值;(2)现需要加装支架DE ,EF ,点E 在AB 上,BE=2AE.且EF ⊥BC ,垂足为点F ,求支架DE 的长.7.[2018吉林九中课时作业]如图,在四边形ABCD 中,对角线AC ,BD 交于点0,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,s 角线AC 的长.8.[2018广东深圳中学课时作业]如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BA C =90°,∠CED=45°,∠DCE=30°,CD 的长和四边形ABCD 的面积.参考答案1.C 【解析】由sinB=45,易知cosB=35.∵在菱形ABCD 中,AE⊥BC 于点E ,EC=4,cosB=BE AB =BC EC BC =35,∴BC=10,则菱形ABCD 的周长为4BC=40.故选C. 2.D 【解析】∵点D ,E 分别是边AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE∥BC,∴∠ABC=∠ADE=30°,∵AF⊥BC ,∴∠AFB=90°.在Rt△AFB 中,∵DF 是斜边AB 上的中线,∴AB=2DF=8,∵∠ABC=30°,∴BF=A B cos 故选D. 3.B 【解析】如图,连接BD.∵AB 是⊙O 的直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙0于点B,∴OB⊥BC,∴cos∠BOC=OBOC=25,∴cos∠A= cos∠BOC=25.又cos∠A=ADAB,AB=4,∴AD=85.故选B.4.34【解析】如图,连接BE,∵点D是AB的中点,ED⊥AB,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=a,∴∠BEC=2a.∴tana=DEAD=13,∴设DE=a,AD=3a,则a,AB=6a.设BC=x,CE=y,则222222x+yx+(y)=36a=ìïïíïïî,∴BC=x=5,CE=y=5,∴tan2a=BCCE34.5.2【解析】过点D作DE⊥AB于点E,∵tan∠DBA=15=DEBE,∴B E=5DE.∵△ABC为等腰直角三角形,∠C=90°,∴∠A=45°,∴AE=DE,∴BE=5AE.∵AC=6,BE=AE+∴在等腰直角三角形ADE中,由勾股定理,得=2.6.【解析】(1)∵点D是BC的中点,∴BD=12BC=9米.∵AD⊥BC,∴△ABD是直角三角形,∴米),∴sinB=ADAB . (2)∵EF ⊥BC ,AD ⊥BC ,∴EF∥AD,∴△BEF∽△BAD,∴EF BF BE 2AD BD AB 3===,∴EF=23AD=4米,BF=23BD=6米,则DF=BD -BF=9-6=3(米).在Rt△DEF 中,米).7.【解析】如图,过点D 作DE ⊥BC 交BC 的延长线于点E ,则∠E=90°,∵sin∠DBC=DE BD =3,在Rt△CD E 中,∵CD=3,E=CD 2-DE 2=1,在Rt△BDE ,∴BC=3,BC=CD ,∴∠CBD=∠CDB,∵BD 平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB∥CD. 同理AD∥BC,∴四边形ABCD 是菱形.∴AC ⊥BD ,A0=CO ,8.【解析】如图,过点D 作DH ∥⊥AC 于点H.∵∠CED=45°,EH=DEcos45°,∴DH=1.又∠DCE=30°,∴HC=DH tan 30︒CD=DHsin 30︒=2.∵∠AEB=∠CED=45°,∠BAC=90°,AB=AE=2,∴AC=AE +EH +HC=2+1∴S 四边形ABCD =S △ABC +S △ADC =12+1292+.。
中考数学一轮复习第四章几何初步与三角形第四节解直角三角形
条直线上,放置方式如图所示,AB=4,
BC=6,则tan α的值等于( )
A. 2 B. 3 C. 4 D. 3
34
3
2
第十一页,共二十九页。
【分析】 过点C作CE⊥l4于点E,延长(yáncháng)EC交l1于点F,证明 △BEC∽△CFD,然后在Rt△BCE中求出tan α的值即可. 【自主解答】 如图,过点C作CE⊥l4于点E, 延长EC交l1于点F. ∵∠α+∠BCE=90°,∠BCE+∠DCF=90°, ∴∠α=∠DCF. 又∵∠BEC=∠CFD=90°,∴△BEC∽△CFD,
((设3)R边t△角A关BC系中为,∠__C_s=_i_9n_0_°A_=,__a,ac ,cbo,s cA分=别为,bc A,__B_,__tC_a_的n__对A_=_边.)ab
第六页,共二十九页。
3.解直角三角形的基本类型 (1)已知直角、斜边和一个锐角,求其他(qítā)边和角;
(2)已知直角、一直角边和一个锐角,求其他边和角; (3)已知直角、斜边和一直角边,求其他边和角;
知识点二 解直角三角形 1.解直角三角形
由直角三角形中已知的元素,求出所有未知元素的过程(guòchéng), 叫做解直角三角形.
第五页,共二十九页。
2.直角三角形中的边角(biān jiǎo)关系 (1)三边关系为 ____a_2_+__b_2_=.c2 (2)三角的关系为 ____∠__A_+__∠__B_=__∠.C
(4)已知直角、两条直角边,求其他边和角.
第七页,共二十九页。
知识点三 解直角三角形的应用(yìngyòng)
第八页,共二十九页。
第九页,共二十九页。
第十页,共二十九页。
考点(kǎo diǎn)一 锐角三角函数 (5年4考)
初中数学湘教版九年级上册第四章4.4解直角三角形的应用练习题
初中数学湘教版九年级上册第四章4.4解直角三角形的应用练习题一、选择题1.如图,某同学用圆规BOA画一个半径为4cm的圆,测得此时,为了画一个半径更大的同心圆,固定A端不动,将B端向左移至处,此时测得,则的长为.A. B. C. D.2.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是,若,则此斜坡的水平距离AC为A. 75mB. 50mC. 30mD. 12m3.如图,山上有一座高塔,山脚下有一圆柱形建筑物平台,高塔及山的面与建筑物平台的剖面ABCD在同一平面上,在点A处测得塔顶H的仰角为处测得塔顶H的仰角为,又测得圆柱形建筑物的上底面直径AD为6m,高CD为,则塔顶端H到地面的高度HG为参考数据:,,,A. B. 14m C. D.4.如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到的位置,已知AO的长为4米.若栏杆的旋转角,则栏杆A端升高的高度为A. 米B. 米C. 米D. 米5.如图,一艘轮船从位于灯塔C的北偏东方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东方向上的B处,这时轮船B 与小岛A的距离是A. B. 60nmileC. 120nmileD.6.如图,河坝横断面迎水坡AB的坡比为1:,坝高,则AB的长度为A. 6mB.C. 9mD.7.如图,两根竹竿AB和AD斜靠在墙CE上,量得,,则竹竿AB与AD的长度之比为A.B.C.D.8.小明沿着坡角为的山坡向上走,他走了1000m,则他升高了A. B. 500m C. D. 1000m9.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度,斜坡CD的坡角为30度,则坝底AD的长度为A. 56米B. 66米C. 米D. 米10.如图,从点C观测点D的仰角是A. B. C. D.二、填空题11.如图,我市在建高铁的某段路基横断面为梯形ABCD,长6米,坡角为,AD的坡角为,则AD长为______米结果保留根号.12.小凡沿着坡角为的坡面向下走了2米,那么他下降______米.13.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东方向上.在渔船B上测得海岛A位于渔船B的北偏西的方向上,此时海岛C恰好位于渔船B的正北方向处,则海岛A,C之间的距离为______.14.如图,从甲楼底部A处测得乙楼顶部C处的仰角是,从甲楼顶部B处测得乙楼底部D处的俯角是,已知甲楼的高AB是120m,则乙楼的高CD是______结果保留根号三、解答题15.为庆祝改革开放40周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为,如图已知C、D、B三点在同一水平直线上,且米,米.求大厦DE的高度;求平安金融中心AB的高度;参考数据:,,,,16.根据道路交通法规规定:普通桥梁一般限速为了安全,交通部门在桥头竖立警示牌:“请勿超速”,并监测摄像系统监控,如图,在某直线公路L路桥段BC内限速,为了检测车辆是否超速,在距离公路L500米旁的A处设立了观测点,从观测点A 测得一小车从点B到达点C行驶了30秒钟,已知,,此车超速了吗?请说明理由.参考数据:,17.某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为和即,求隧道AB的长.结果保留根号18.如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角,在离建筑物CD,25米远的F点观测办公楼顶A点,测得的仰角F,C在一条直线上.求办公楼AB的高度;若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.参考数据:,,结果保留整数答案和解析1.【答案】A【解析】【分析】此题考查了解直角三角形的应用,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.根据是等腰直角三角形,利用三角函数即可求得OA的长,过作于点D,在直角中利用三角函数求得AD的长,则,然后根据即可求解.【解答】解:在等腰直角中,,则,如图,过作于点D,,则.则,故BB.故选:A.2.【答案】A【解析】【分析】本题考查解直角三角形的应用坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:,,,,解得,,故选A.3.【答案】C【解析】解:延长AD交HG于M,则,设,在中,,在中,,,即,,即..故选:C.延长AD交HG于M,则,设,根据三角函数的概念用含x的代数式表示HM,根据题意列出方程,解方程即可.本题考查了解直角三角形的应用坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.4.【答案】B【解析】解:过点作于点C,由题意可知:,,,故选:B.过点作于点C,根据锐角三角函数的定义即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.5.【答案】D【解析】解:过C作于D点,,,.在中,,.在中,,,.答:此时轮船所在的B处与灯塔P的距离是.故选:D.过点C作,则在中易得AD的长,再在直角中求出BD,相加可得AB的长.此题主要考查了解直角三角形的应用方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.6.【答案】A【解析】解:迎水坡AB的坡比为1:,,即,解得,,由勾股定理得,,故选:A.根据坡度的概念求出AC,根据勾股定理求出AB.本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度的概念是解题的关键.7.【答案】B【解析】【分析】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.在两个直角三角形中,分别求出AB、AD即可解决问题.【解答】解:在中,,在中,,::,故选:B.8.【答案】B【解析】【试题解析】解:设他升高了xm,山坡的坡角为,,故选:B.根据坡角的概念,直角三角形的性质计算即可.本题考查的是解直角三角形的应用坡度坡角问题,掌握坡角的概念是解题的关键.9.【答案】C【解析】【分析】本题考查了坡度及坡角的知识,过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.【解答】解:作,,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,米,米,斜坡AB的坡度i为1:,在中,,米,在中,,米,米.故选C.10.【答案】B【解析】解:从点C观测点D的视线是CD,水平线是CE,从点C观测点D的仰角是,故选:B.根据仰角的定义进行解答便可.本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.11.【答案】【解析】【分析】本题考查解直角三角形的应用坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.过点D作于E,过点C作于首先证明,解直角三角形求出CF,再根据直角三角形30度角的性质即可解决问题.【解答】解:过点D作于E,过点C作于F.,,,,在中,米,,在中,,,米,故答案为.12.【答案】1【解析】解:如图,,,.他下降的高度米.故答案为:1.利用所给角的正弦函数求解.本题考查了三角函数定义的应用,解题的关键是熟练掌握三角函数的定义.13.【答案】【解析】解:作于D,设海里,在中,,则,在中,,则,解得,,答:A,C之间的距离为海里.故答案为:作于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.14.【答案】【解析】解:由题意可得:,则,又,在中,,解得:,故答案为:.利用等腰直角三角形的性质得出,再利用锐角三角函数关系得出答案.此题主要考查了解直角三角形的应用,正确得出是解题关键.15.【答案】解:在中,,,米,米.故大厦DE的高度约为248米;如图,作于F.由题意,得米,米,.在中,,米,米.故平安金融中心AB的高度约为594米.【解析】在中,根据正切函数的定义即可求出大厦DE的高度;作于由题意,得米,,在中,根据正切函数的定义得出,那么.此题考查了解直角三角形的应用仰角俯角问题.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.16.【答案】解:此车已超速.理由如下:过A作,垂足为D,则,,,.又,.车速为.,又,此车已超速.【解析】根据题意结合锐角三角函数关系得出BD,BC的长,进而求出汽车的速度,进而得出答案.此题主要考查了勾股定理以及锐角三角函数关系的应用,得出BC的长是解题关键.17.【答案】解:由题意得,,,,.答:隧道AB的长为.【解析】易得,,利用相应的正切值可得BO,AO的长,相减即可得到AB的长.本题考查了解直角三角形的应用俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.18.【答案】解:如图,过点E作于点M,设AB为中,,,,在中,,,,则,解得:.即办公楼AB的高度为20米;由可得:.在中,.米;即A、E之间的距离约为48米.【解析】过点E作于点M,设,在中,由可知,在中,利用锐角三角函数的定义求出x 的值即可;在中,根据可得出结论.本题考查的是解直角三角形仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 解直角三角形1.(2017·云南)sin 60°的值为( ) A. 3B.32C.22D.122.(2017·湖州)如图,已知在Rt△ABC 中,∠C=90°,AB =5,BC =3,则cos B 的值是( )A.35B.45C.34D.433.(2016·广东)如图,在平面直角坐标系中,点A 的坐标为(4,3),那么 cos α的值是( )A.34B.43C.35D.454.(2016·兰州)在Rt△ABC 中,∠C=90°,sin A =35,BC =6,则AB =( )A .4B .6C .8D .105.(2016·南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10 m ,∠B=36°,则中柱AD(D 为底边中点)的长是( )A .5sin 36° mB .5cos 36° mC .5tan 36° mD .10tan 36° m6.(2016·福州)如图,以点O 为圆心,1为半径的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)7.(2016·岳阳)如图,一山坡的坡度i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则小辰上升了__________m.8.(2017·广州)如图,Rt△ABC 中,∠C=90°,BC =15,tan A =158,则AB =________.9.(2017·白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB =132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin 65°≈0.91,cos 65°≈0.42,tan 65°≈2.14)10.(2017·宜昌)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列选项中,错误的是( )A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=111.(2017·益阳)如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB=α,则拉线BC 的长度为(A ,D ,B 在同一条直线上)( )A.hsin αB.hcos αC.h tan αD .h·cos α12.如图,在Rt△ACB 中,∠ACB=90°,AC =8,BC =6,CD⊥AB,垂足为D ,则tan∠BCD 的值是________.13.(2017·黑龙江)△ABC 中,AB =12,AC =39,∠B=30°,则△ABC 的面积是_____________.14.(2017·邵阳)如图,运载火箭从地面L 处垂直向上发射,当火箭到达A 点时,从位于地面R 处的雷达测得AR 的距离是40 km ,仰角是30°,n 秒后火箭到达B 点,此时仰角是45°,则火箭在这n 秒中上升的高度是________km.15.如图,AD 是△ABC 的中线,tan B =13,cos C =22,AC = 2.求:(1)BC 的长;(2)sin∠ADC 的值.16.(2016·达州)如图,在一条笔直的东西向海岸线l上有一长为1.5 km的码头MN和灯塔C,灯塔C距码头的东段N有20 km.一轮船以36 km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12 km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:2≈1.4,3≈1.7)要题加练7 解直角三角形的应用1.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为__________米.2.(2016·宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10 m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1 m,则旗杆高BC为_____ m.(结果保留根号)3.(2016·大连)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为________海里.(结果取整数)(参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)4.(2016·荆州)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为11°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为________米.(参考数据:tan 78°12′≈4.8)5.如图1,滨海广场装有可利用风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6 m,DE=1.8 m,∠CDE=60°,且根据我市的地理位置设定太阳能板AB 的倾斜角为43°,AB=1.5 m,CD=1 m.为保证长为1 m的风力发电机叶片无障碍旋转,叶片与太阳能板顶端A的最近距离不得少于0.5 m,求灯杆OF至少要多高?(利用科学计算器可求得sin 43°≈0.682 0,cos 43°≈0.731 4,tan 43°≈0.932 5,结果保留两位小数)6.(2017·菏泽)如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42 m高的楼顶A处,测得C点的仰角为30°,请你帮李明计算⑪号楼的高度CD.7.(2017·青岛)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地.已知B地位于A 地北偏东67°方向,距离A 地520 km ,C 地位于B 地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)(参考数据:sin 67°≈1213,cos 67°≈513,tan 67°≈125,3≈1.73)参考答案【夯基过关】1.B 2.A 3.D 4.D 5.C 6.C 7.100 8.179.解:如图,过点D 作DE⊥AC,垂足为E ,设BE =x ,在Rt△DEB 中,tan∠DBE=DEBE,∵∠DBC=65°,∴DE=xtan 65°. 又∵∠DAC=45°,∴AE=DE.即132+x =xtan 65°,解得x≈116, ∴DE≈248.答:观景亭D 到南滨河路AC 的距离约为248米. 【高分夺冠】10.C 11.B 12.34 13.213或15 3 14.203-2015.解:(1)如图,过点A 作AE⊥BC 于点E ,∵cos C=22,∴∠C=45°. 在Rt△ACE 中,CE =AC ·cos C=1, ∴AE=CE =1.在Rt△ABE 中,tan B =13,即AE BE =13,∴BE=3AE =3,∴BC=BE +CE =4. (2)∵AD 是△ABC 的中线,∴CD=12BC =2,∴DE=CD -CE =1. ∵AE⊥BC,DE =AE , ∴∠ADC=45°, ∴sin∠ADC=22. 16.解:(1)如图,延长AB 交海岸线l 于点D ,过点B 作BE⊥l 于点E ,过点A 作AF⊥l 于点F ,∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°, ∴∠ECB=30°,∠ACF=60°, ∴∠BCA=90°.∵BC=12 km ,AB =36×4060=24(km),∴AB=2BC ,∴∠BAC=30°,∠ABC=60°. ∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC =12 km , ∴所需时间为1236 h =13h =20 min.即轮船照此速度与航向航行,11:00到达海岸线.(2)∵BD=BC ,BE⊥CD,∴DE=EC. ∵BC=12 km ,∠BCE=30°,∴BE=6 km ,EC =63≈10.2 km,∴CD=20.4 km. ∵20<20.4<21.5,∴轮船不改变航向,可以停靠在码头.要题加练7 解直角三角形的应用 1.100 2.103+1 3.11 4.585.解:在Rt△ACB 中,AC =sin B·AB, ∵AB 的倾斜角为43°,AB =1.5 m , ∴AC≈0.682 0×1.5=1.023(m).如图,过点E 作EG⊥地面于G ,过点D 作DH⊥EG 于点H.∵∠CDE=60°,∴EH=cos∠CDE·DE=cos 60°×1.8=0.5×1.8=0.9(m), ∴DF=6-0.9=5.1(m). 由题意得OA≥1.5,∴OF=DF +CD +AC +OA≥5.1+1+1.023+1.5=8.623(m). 答:灯杆OF 至少要8.63 m.6.解:如图,作AE⊥CD,则AE =BD ,AB =ED.∵CD=BD·tan 60°=3BD , CE =BD·tan 30°=33BD , ∴AB=CD -CE =233BD ,∴BD=213,∴CD=BD·tan 60°=3BD =63. 答:⑪号楼的高度CD 为63 m.7.解:如图,过B 作BD⊥AC 交AC 于点D.由题意可得∠ABD=67°,∠CBD=30°,AB =520. 在Rt△ABD 中,∵sin∠ABD=ADAB,∴AD=AB·sin 67°=520×1213=480.∵cos∠ABD=BDAB,∴BD=AB·cos 67°=520×513=200.在Rt△BCD 中,∵tan∠CBD=CDBD ,∴CD=BD·tan 30°=200×33≈115, ∴AC=AD +CD =480+115=595.答:A 地到C 地之间高铁线路的长约为595 km.。