微分方程 PPT课件

合集下载

全版微分方程.ppt

全版微分方程.ppt
将 y 和 y 代入原方程得C( x)e P( x)dx Q( x),
积分得 C( x) Q( x) e P( x)dxdx C,
.精品课件.
24
C( x) Q( x) e P( x)dxdx C,
故一阶线性非齐次微分方程的通解为:
y
C(
x)e
P(
x )dx
[ Q( x)e P( x)dxdx C]e P( x)dx
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
.精品课件.
1
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
x
微分方程的解为 sin y ln x C. x
.精品课件.
19
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.

dy dx
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
.精品课件.
17
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
dx

高等数学全微分方程精品PPT课件

高等数学全微分方程精品PPT课件

dx x
dy y
0
即 d 1 d( ln x ) d( ln y ) 0
xy
1
因此通解为 1 ln x ln C , 即 x C e xy
xy y
y
因 x = 0 也是方程的解 , 故 C 为任意常数 .
练习题 解方程 y d x ( y x) d y 0.
解法1 积分因子法. 原方程变形为
2
3
因此方程的通解为
y (x, y)
x5 3 x2 y2 xy3 1 y3 C
2
3
o (x,0) x
例2. 求解
(
x
y x2
)
dx
1 x
dy
0
解:
P y
1 x2
Q , x
∴ 这是一个全微分方程 .
用凑微分法求通解. 将方程改写为
x
dx
x
d
y x2
y
dx
0

d 1 x2 d y 0, 或 d 1 x2 y 0
为全微分方程 ( 又叫做恰当方程 ) .
判别: P, Q 在某单连通域D内有连续一阶偏导数, 则
① 为全微分方程 求解步骤:
P Q , (x, y) D y x
1. 求原函数 u (x, y)
方法1 凑微分法;
方法2 利用积分与路径无关的条件.
2. 由 d u = 0 知通解为 u (x, y) = C .
第二节 一阶微分方程
第十二章
一、可分离变量方程 二、齐次型微分方程 三、可化为齐次型的微分方程 四、一阶线性微分方程 五、全微分方程
五、全微分方程
若存在 u(x, y) 使 d u(x, y) P (x, y) dx Q (x, y) dy

高等数学-第七章 微分方程ppt课件

高等数学-第七章 微分方程ppt课件

练习: 求方程 dy ex y 的通解. dx
解法 1 分离变量 e ydy exdx
积分
ey ex C

(exC)ey1 0 ( C < 0 )
解法 2 令u x y, 则u 1 y
故有
u 1 eu
积分
1
d
u eu
x
C
(1 eu ) eu 1 eu
du
u ln (1 eu ) x C
解: 设所求曲线方程为 y = y(x) , 则有如下关系式:
dy 2x

dx
y x1 2

由 ① 得 y 2x dx x2 C (C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 y x2 1.
引例2. 列车在平直路上以 20 m s 的速度行驶, 制动时
获得加速度 a 0.4 m s2 , 求制动后列车的运动规律.
解: 设列车在制动后 t 秒行驶了s 米 , 即求 s = s (t) .
已知
d2 dt
s
2
0.4 d
s
s t0 0 , d t
t
0 20
由前一式两次积分, 可得 s 0.2 t 2 C1 t C2
利用后两式可得
C1 20, C2 0
因此所求运动规律为 s 0.2 t 2 20 t
ln y x3 ln C
y Cex3
( C 为任意常数 )
( 此式含分离变量时丢失的解 y = 0 )
x ydx ( x2 1) dy 0
例2. 解初值问题 y(0) 1
解: 分离变量得
dy y
1
x x
2
dx
两边积分得 ln y ln 1 ln C x2 1

高数微分方程PPT

高数微分方程PPT

应用
描述了许多自然现象,如生态模型、化学反应等。
二阶常系数线性微分方程
定义
形如 $y'' + py' + qy = 0$ 的微分方程称为二阶常系数 线性微分方程。
解法
通过求解特征方程,得到通 解。
应用
在物理学、工程学等领域有 广泛应用,如弹簧振动、电 磁波等。
04
高阶微分方程
BIG DATA EMPOWERS TO CREATE A NEW
参数法
总结词
通过引入参数,将微分方程转化为更易于求 解的形式。
详细描述
参数法是通过引入参数,将微分方程转化为 更易于求解的形式。这种方法适用于具有特 定形式的高阶微分方程。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分 方程,简化求解过程。
详细描述
积分因子法是通过寻找积分因子,将微分方 程转化为积分方程,从而简化求解过程。这 种方法适用于具有特定形式的一阶线性微分
高阶微分方程
包含多个导数的微分方程。
微分方程的应用
物理问题
描述物理现象的变化规律,如 振动、波动、流体动力学等。
经济问题
描述经济现象的变化规律, 如供求关系、市场均衡等。
工程问题
在机械、航空、化工等领域中 ,微分方程被用来描述各种动 态过程。
生物问题
描述生物种群的增长规律、 生理变化等。
02
一阶微分方程
经济增长模型
在经济学中,微分方程可以用来描述一个国家或地区的经济增长率 与人口、技术、资本等因素之间的关系。
生物问题中的应用
1 2 3
种群动态
微分方程可以用来描述种群数量的变化规律,如 Logistic增长模型、捕食者-猎物模型等。

《微分方程 》课件

《微分方程 》课件
总结词
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。

第六章微分方程第二节一阶微分方程PPT课件

第六章微分方程第二节一阶微分方程PPT课件

说明由②确定的隐函数 y=(x) 是①的解. 同样,当F(x)
= f (x)≠0 时, 由②确定的隐函数 x=(y) 也是①的解.
称②为方程①的隐式通解, 或通积分.
-4-
第二节 一阶微分方程
例1. 求微分方程
的通解.
解: 分离变量得 dy 3x2 dx 说明: 在求解过程中
y
每一步不一定是同解
第二节 一阶微分方程
第二节 一阶微分方程

第 十 二 章

分 方


可分离变量方程 一阶线性方程
三 全微分方程
-1-
第二节 一阶微分方程
一阶微分方程的一般形式 yf(x,y)
也可表示为
第 十
P ( x ,y ) d Q x ( x ,y ) d 0 y

章 一阶微分方程初始值问题
微 分
y f (x, y)

ab
二 章
定常数),
则 d x d X ,d y d Y ,原方程化为

ahbkc
分 方
a1hb1kc1


, 解出 h , k
(齐次方程)
- 13 -
第二节
求出其解后,
一阶微分方程
即得原方
程的解.
2)当 . a1b1时,原方程可化为
ab
第 十 二 章 微
d dxy(aaxxbbyy )cc1 (b0)
第 十
两边积分

lnC|
C1
|
变形, 减解.
因此可能增、



lnyx3C1

分 方


令CeC1

《高数全微分方程》课件

《高数全微分方程》课件

参数方程法
总结词
参数方程法是通过引入参数,将全微分 方程转化为参数微分方程,然后求解参 数的微分,最后得到原全微分方程的解 。
VS
详细描述
参数方程法的步骤包括引入参数、将全微 分方程转化为参数微分方程、求解参数的 微分、将参数的解代回原方程,最后得到 原全微分方程的解。这种方法适用于具有 参数形式的全微分方程,能够简化求解过 程。
变量分离法
总结词
变量分离法是将全微分方程转化为可分离变量的微分方程,然后分别求解每个变量的微分,最后得到 原全微分方程的解。
详细描述
变量分离法的步骤包括将全微分方程转化为可分离变量的微分方程、分别求解每个变量的微分、将各 个变量的解代回原方程,最后得到原全微分方程的解。这种方法适用于具有可分离变量形式的全微分 方程,能够简化求解过程。
总结词
全微分方程描述了曲线的斜率在各个方向上的变化情 况。
详细描述
全微分方程可以表示曲线上任意一点的切线斜率的变 化情况,即该点处曲线在各个方向上的弯曲程度。通 过求解全微分方程,可以了解曲线的弯曲程度,从而 更好地理解曲线的几何特性。
曲线的弯曲程度与全微分方程
总结词
全微分方程描述了曲线的弯曲程度在各个方向上的变 化情况。
二阶全微分方程实例
总结词
二阶全微分方程是描述物理现象和工程问题的重要工具,具有丰富的数学性质和实际应 用价值。
详细描述
二阶全微分方程的一般形式为 d²y/dx² = f(x, y, dy/dx),其中 f(x, y, z) 是关于 x、y 和 z 的函数。通过求解二阶全微分方程,可以找到满足特定边界条件的解,从而解决实际
高数全微分方程目录来自• 全微分方程简介 • 全微分方程的求解方法 • 全微分方程的实例分析 • 全微分方程的几何意义 • 全微分方程的扩展知识

高等数学第十一章微分方程

高等数学第十一章微分方程
我们主要讨论的二阶微分方程为 yf(x,y,y)
的几种特殊类型。
1、 yf(x)型
例1。求微分y方 ex程 6x满足初始条件
y 3,y 2的特解。
x0
x0
完整版课件ppt
14
2、 yf(x,y)型 这类微分方程的含 右y, 端令 不y p则ydp, dx 二阶微分方程降变 为量 关 x、于 p的一阶微分方
例 4 。求(微 x 1 )y 分 (x 1 )y 方 2 y 程 0的通
完整版课件ppt
20
2。二阶非齐次线性微分方程解的结构
形如 yp(x)yq(x)yf(x)的微分方程称 二阶非齐次线 程性 。微分方
定理4。设y* 为非齐次线性微分方程 y p(x)yq(x)y f (x) 的一个特解, 而Y c1y1 c2y2 为对应齐次线性微程 分方 y p(x)yq(x)y 0的通解,则 y Y y* 是非齐次微分方程解 的。 通
(4 )y2y2y0
二阶常系数线性微分方程解的结论可以推广到 n 阶 常系数线性微分方程。
y (n ) p 1 y (n 1 ) p n 1 y p n y 0
完整版课件ppt
28
特征根的情况
通解中包含函数
k重实根 r
y(n) p1(x) y(n1) pn1(x) y pn (x) y f (x) 的通解。
完整版课件ppt
25
§5。常系数线性微分方程
1。二阶常系数齐次线性微分方程
二阶常系数齐次线性 分微 方程 y pyqy0(1)
其中p, q 为常数
r2 prq 0(2) 称为微分方程的特程 征。 方 这方程的两个r1根,r2 称为特征根。
dy f (x)g(y) dx

微分方程解法ppt课件

微分方程解法ppt课件

阶段汽车运动规律的函数S=S(t),应满足方程:
4
d 2s
dt2 4
(5)
及条件
S
t0
0, v t0
ds dt
t 0
10
(6)
对(5)式两端积分一次,得
v
ds dt
4t
c1
(7)
在积分一次,得S 2t 2 c1t c2
(8)
将条件v t0 10代入(7)式中,将条件S t0 0代入(8)式,
原方程,经整理得 C(x) ex
y C(x) 代入 x
解得
C(x) ex C
于是原方程的通解为 y 1 (ex C) x
方法二 直接利用非齐次方程的通解公式(5),得
23
y
e
1 x
dx
(
e
x
e
1 x
dx
dx
C
)
x
eln x ( e x eln xdx C) x
1 x
( exdx
b N
N Ceabt bN
于是
N
Cbeabt 1 Ceabt
1
b 1 eabt
C
这就是种群的生长规律 。
15
8.3 一阶线性微分方程
形如
y P(x)y Q(x)
(1)
的方程叫做一阶线性微分方程(linear differential equation of first
Order),它的特点为左端是关于未知函数y及一阶导数
curve).如 y x2 c 是方程(1)的积分曲线族,而 y x2 1只是其中过(1,2)点的一条积分曲线。
10
8.2 可分离变量的一阶微分方程

微分方程PPT(罗兆富等编)第五章 偏微分方程的概念

微分方程PPT(罗兆富等编)第五章 偏微分方程的概念

2
机动 目录 上页 下页 返回 结束
和欧拉同时代的瑞士数学家丹尼尔· 伯努利也研究了 数学物理方面的问题, 提出了解弹性系振动问题的一般 方法, 对偏微分方程的发展起了比较大的影响, 拉格朗 日也讨论了一阶偏微分方程, 丰富了这门学科的内容 . 偏微分方程得到迅速发展是在十九世纪, 那时候,数学 物理问题的研究繁荣起来了, 许多数学家都对数学物理 问题的解决做出了贡献. 这里应该提一提法国数学家傅 里叶, 他年轻的时候就是一个出色的数学学者. 在从事热 流动的研究中, 写出了《热的解析理论》, 在书中他提出 了三维空间的热方程, 也就是一种偏微分方程. 他的研究 对偏微分方程的发展的影响是很大的 .
utt a 2uxx 0, x , t 0, u ( x, 0) ( x), ut ( x, 0) ( x).
所描述的是无限长弦或边界对弦的振动的影响可忽略不 计的弦振动规律 .
16
机动 目录 上页 下页 返回 结束
初始条件的提法只有一种,而是边界条件的提法则有 三种 . (1)狄立克莱边界条件 在这种情形, 对未知函数u在有界区域的边界上给出 其值. 例如
utt a 2u xx 0 utt a 2 (u xx u yy ) 0 utt a 2 (u xx u yy u zz ) 0
10
机动 目录 上页 下页 返回 结束
(5.1.04)
例3. 拉普拉斯(Laplace)方程
u xx u yy 0 u xx u yy u zz 0
完全非线性偏微分方程
如果一个偏微分方程具有不含有未知函数及其偏导数 的项, 则称其为非齐次偏微分方程, 否则称其为齐次偏微 分方程 .
x2uxx 2xyuxy y 2uyy 1 e y

高等数学微分方程总结ppt课件.pptx

高等数学微分方程总结ppt课件.pptx
y py qy 0,
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0

微分方程PPT(罗兆富等编)第六章 线性方程的Adomian分解法

微分方程PPT(罗兆富等编)第六章 线性方程的Adomian分解法

计算得到
1 2 u0 ( x, y ) x xy 2 1 2 u1 ( x, y ) - x 2 uk ( x, y) 0 (k 2)
所以方程的精确解为
u ( x, y) un ( x, y)
xy
n 0 n 0

再将未知函数的级数展式 u( x, y) un ( x, y) 代入, 得到
解: 将方程写成算子形式
Lxu Lyu x y
其中 Lx
, Ly , x y
且Lx是可逆的, 将其逆算子 L 0 ()dx
-1 x
x
作用于方程的两端, 并注意到初始条件 u(0, y) 0, 得到 再将未知函数的级数展式 u( x, y) un ( x, y) 代入, 得到
机动 目录 上页 下页 返回
12
结束
三、修正的Adomian分解法 在Adomian分解法中, 有时若将(6.1.03)或(6.1.04)中 的项f分裂成两项, 即
f f1 f 2(来自.1.07)利用(6.1.07), 我们可将un的递推公式作稍许改变而使 得计算更容易, 就是令u0=f1, 而将f2配给u1,其它项不作改 变. 这样, un的递推公式就成为 u0 f1 ,
所以方程的精确解为
u ( x, y) un ( x, y)
u ( x, y) 1 y sinh x
代入方程验证后知, 它是方程的解, 故方程的精确解为
u ( x, y) 1 y sinh x.

计算得到
u0 ( x, y) 1 - y y sinh x y cosh x
u1 ( x, y) xy - y sinh x - y cosh x y

《数学分析微分方程》课件

《数学分析微分方程》课件

III. 高阶微分方程的解法
特征方程法
将高阶齐次微分方程转化为特征方程,通过解特征方程得到齐次部分的解。
待定系数法
假设解为某些未知函数,代入原方程得到待定系数,通过求导和代入原方程求解未知函数。
常数变易法
假设解为常数的函数,通过求导和代入原方程得到常数的解。
IV. 常系数线性微分方程的解法
特征根法
2
方程得到常数的解。
假设解为某些未知函数,代入原方程得到
待定系数,通过求导和代入原方程求解未
知函数。
3
求解自由项
通过求解无齐次项情况下的特解,再加上 通解,得到非齐次线性微分方程的解。
VI. 傅里叶级数方法
傅里叶级数方法可以将周期函数表示成正弦和余弦函数的无穷级数,通过求解系数得到函数的展开式。
VII. 拉普拉斯变换方法
通过求解特征方程的根,得到齐 次线性微分方程的通解。
待定系数法
假设解为某些未知函数,代入原 方程得到待定系数,通过求导和 代入原方程求解未知函数。
常数变易法
假设解为常数的函数,通过求导 和代入原方程得到常数的解。
V. 变系数线性微分方程的解法
1
常数变易法
假设解为常数的函数,通过求导和代入原
待定系数法
《数学分析微分方程》 PPT课件
欢迎来到《数学分析微分方程》PPT课件。本课件将深入介绍微分方程的基本 概念,并详细讲解一阶、高阶、常系数线性、变系数线性微分方程的解法, 以及傅里叶级数和拉普拉斯变换方法的应用。
I. 介绍微分方程的基本概念
学习微分方程前,我们先了解微分方程的基本概念和意义,掌握微分方程的 分类和形式,并探讨微分方程在实际问题中的应用。
拉普拉斯变换方法是一种将时间域函数转换为复频域函数的方法,通过求解 拉普拉斯变换的积分得到函数的解析表达式。

微分方程ppt

微分方程ppt
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个VI月P,生发效起放每数量月发由放您一购次买,赠 V不 我I送 清 的P生每 零 设效月 。 置起自 随1每5动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我IP送 清的生每 零设效月 。置起1自随每5次动时月共续取发享费消放文,。一档前次下往,载我持特的续权账有,号效自-
分 方 程
z z xy z2 x y
zx 5z4 0
常微分方程
偏微分方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此处C1,C2 就不是独立的任意常数. 例 y y , 通解 y Ce x;
y y 0, 通解 y C1 sin x C2 cos x .
(2)特解: 不包含任何任意常数的解.
解的图象: 微分方程的积分曲线. 通解的图象: 微分方程的积分曲线族. 初始条件: 用来确定任意常数的条件.
初值问题: 求微分方程满足初始条件的解的问题.
一阶:
y f (x, y),

y(
x0
)

y0
.
过定点的积分曲线;
y f ( x, y, y),
过定点且在定点的切线
二阶:

y(
x0
)

y0 ,
y(x0 )
y0
.
的斜率为定值的积分曲线.
n
阶:

f
(
x,
y,
y,
的什么解?
思考题解答
y 6e2x , y 12e2 x ,
y 4 y 12e2x 4 3e2x 0,
y 3e2x 中不含任意常一阶微分方程的一般形式是
F( x, y, y) 0
如果一阶导数可解出,则可写为
I 上的一个解.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且独立任
意常数的个数与微分方程的阶数相同.
n 个常数C1,C2 , ,Cn 独立指的是:它们不能 通过四则运算合并而使得常数的个数减少. 例如
C1 xC2 , C1 sin x C2 cos x 中C1,C2 是独立的. 而C1 C2 x C x , C1 C2 x C x ,
dy f ( x, y), dx 或 P( x, y)dx Q( x, y)dy 0
一. 可分离变量的微分方程
如果一个一阶微分方程F( x, y, y) 0 或
dy f ( x, y) 或 P( x, y)dx Q( x, y)dy 0 dx
能写成: g( y)dy f ( x)dx (*) 的形式,
阶导数的阶数称之为微分方程的阶.
一阶微分方程: F( x, y, y ) 0, 或 y f ( x, y);
注意: 在一阶微分方程中,y 必须出现.
高阶微分方程:
F ( x, y, y, , y(n) ) 0 或
( n 2, n N ) y(n) f ( x, y, y, , y(n1) ).

k2
x

0的解.
并求满
足初始条件 x t 0

A,
dx dt
t 0

0的特解.


dx dt

kC1
sinkt

kC2
cos kt,
d2x dt 2

k 2C1
cos
kt

k 2C2
sinkt,

d2 dt
x
2
和x的表达式代入原方程,
k 2 (C1 cos kt C2 sinkt) k 2 (C1 cos kt C2 sinkt) 0.
y及y, y, , y(n) 的一次有理整式则,称此方程 为n 阶线性微分方程.
不是线性方程的方程称为非线性微分方程.
例如 y P( x) y Q( x) 是一阶线性微分方程.
x( y)2 2 yy x 0, y 7sin y 0 .
都是非线性微分方程.
故 x C1 cos kt C2 sinkt 是原方程的解.
x A, dx 0,
t 0
dt t0
C1 A,

dx dt

kC1
s in kt

kC2
cos kt,
C2 0.
所求特解为 x Acoskt.
注意: 1. 有些方程可能无解.
( y)2 y2 1 0 无实函数解.
2. 方程可能有解而无通解. ( y)2 y2 0 只有特解 y 0 . 3. 通解不一定能包含所有的解.
( y)2 xy y 0 有通解 y Cx C 2 ,
另一方面解y x2 不在通解内(不能由通解得到). 4
思考题
函数 y 3e2x 是微分方程 y 4 y 0
(t 2 x)dt xdx 0,
2z x y.
xy
如果在微分方程中,自变量的个数只有一(个即未知函
数是一元函数), 则称这种微分方常程微分为方程.
一般形式为F( x, y, y, , y(n) ) 0
自变量的个数为两个或两个以上的微分方程称为
偏微分方程 .
微分方程的阶: 微分方程中出现的未知函数的最高
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
注意: 在n 阶微分方程中,y(n) 必须出现, 而 x, y, y, y, , y(n1) 等变量可以不出现. 例如n 阶微分方程y(n) 1 0 中,除 y(n) 外, 其他变量都没有出现.
线性与非线性微分方程:
如果方程F( x, y, y, , y(n) ) 0 的左端为
y(n) ) 0,
y( x0 ) y0 , y( x0 ) y0 ,
,
y(n1) ( x0 )

y0(n1) .
其中 x0 ,
y0 ,
y0 ,
,
y ( n1) 0
是n
1
个已知常数.
例 1 验证:函数 x C1 cos kt C2 sin kt
是微分方程 d 2 x dt 2
微分方程的解: 代入微分方程能使方程成为恒 等式的函数称之为微分方程的解.
设 y ( x) 在区间I 上有直到n 阶的导数,
如果把( x) 代入方程F( x, y, y, , y(n) ) 0 使其在I 上为恒等式即,
F( x,( x),( x), , (n)( x)) 0 . ( x I ) 则称 y ( x) 为方程F( x, y, y, , y(n) ) 0 在
相关文档
最新文档