试卷试题- 高等数学下册模拟试卷和答案共五套

合集下载

高等数学下册复习题模拟试卷和答案(简单实用共七套题)

高等数学下册复习题模拟试卷和答案(简单实用共七套题)

高等数学下册复习题模拟试卷和答案(简单实用共七套题) 高等数学(下)模拟试卷一一、填空题(每空3分,共15分)z,的定义域为y2yy2(1)函数(2)已知函数z arctan20zx,则 x,(x,y)ds(3)交换积分次序,dyf(x,y)dx(4)已知L是连接(0,1),(1,0)两点的直线段,则 L(5)已知微分方程y ,2y ,3y 0,则其通解为二、选择题(每空3分,共15分)x,3y,2z,1 0(1)设直线L为 2x,y,10z,3 0,平面为4x,2y,z,2 0,则( )A. L平行于B. L在上C. L垂直于D. L与斜交 (2( )xyz,(1,0,,1)处的dz ,D.dx,2A.dx,dyB.dx,2222(3)已知是由曲面4z 25(x,y)及平面z 5所围成的闭区域,将在柱面坐标系下化成三次积分为( ) A. 0C.2(x,y)dv5d20rdr dz35B.2 0d240rdr dz202532 0d rdr5dz2r235D. ,则其收敛半径)1drdr dz(4)已知幂级数A. 2B. 1C. 2D. (5)微分方程y ,3y ,2y 3x,2e的特解y的形式为y ( ) A. xx,,xxB.(ax,b)xeC.(ax,b),ceD.(ax,b),cxe三、计算题(每题8分,共48分)x,11、求过直线L1:122y,20zz,3,1且平行于直线L2:x,22y,11z1的平面方程z2、已知z f(xy,xy),求 x, y3、设D {(x,y)x,y 4}22,利用极坐标求Dxdxdy24、求函数f(x,y) e(x,y,2y)的极值x t,sint (2xy,3sinx)dx,(x,e)dy L5、计算曲线积分,其中L为摆线 y 1,cost从点2y2x2O(0,0)到A( ,2)的一段弧xy xy,y xe6、求微分方程满足x 11的特解四.解答题(共22分)1、利用高斯公式计算半球面z2xzdydz,yzdzdx,zdxdy2,其中由圆锥面z 与上(10 )2、(1)判别级数n 1(,1)n,1n3n,1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6 )n(2)在x (,1,1)求幂级数n 1nx的和函数(6 )高等数学(下)模拟试卷二一(填空题(每空3分,共15分)z(1)函数ln(1,x,y)的定义域为 ;xyelnx0(2)已知函数z e,则在(2,1)处的全微分dz ; (3)交换积分次序, 1 dxf(x,y)dy2, ;(4)已知L是抛物线y x)点B(1,1上点O(0,0与之间的一段弧,则L(5)已知微分方程y ,2y ,y 0,则其通解为 .二(选择题(每空3分,共15分)x,y,3z 0(1)设直线L为 x,y,z 0,平面为x,y,z,1 0,则L与的夹角为( ); zA. 0B. 2C. 3D. 4 (2)设z f(x,y)是由方程z,3xyz a确定,则 xyz2233( );xy2yz2x,xz2A. xy,zB. z,xyC. xy,zD. z,xy (3)微分方程y ,5y ,6y xe 的特解y的形式为y ( );,A.(ax,b)e2xB.(ax,b)xe222xC.(ax,b),ceD.(ax,b),cxe22x2x(4)已知是由球面x,y,z a所围成的闭区域, 将三次积分为( ); A2dv在球面坐标系下化成a2 0d20sin d rdra2B.2 0d220d rdra20C. 02dd rdraD. 0ndsin d rdr(5)已知幂级数n 1 2n,12xn,则其收敛半径( ).12 B.1 C.2 D.三(计算题(每题8分,共48分)5、求过A(0,2,4)且与两平面 1:x,2z 1和 2:y,3z 2平行的直线方程 . zz6、已知z f(sinxcosy,e22x,y),求 x, y .7、设D {(x,y)x,y 1,0 y x},利用极坐标计算22arctanDyxdxdy.8、求函数f(x,y) x,5y,6x,10y,6的极值. 9、利用格林公式计算2223L(esiny,2y)dx,(ecosy,2)dyxx,其中L为沿上半圆周(x,a),y a,y 0、从A(2a,0)到O(0,0)的弧段. x,16、求微分方程四(解答题(共22分)y ,y(x,1)2的通解.1、(1)(6 )判别级数n 1敛;(,1)n,12sinn3的敛散性,若收敛,判别是绝对收敛还是条件收n(2)(4 )在区间(,1,1) .2、n 3n,3n,2= .3、已知y ln(1,x),在x 1处的微分dy . 2lim(n,2)224、定积分1,1(x2006sinx,x)dx 2 .dy 5、求由方程y,2y,x,3x 0所确定的隐函数的导数dx二(选择题(每空3分,共15分)2x,3x,2的间断点 1、x 2是函数(A)可去 (B)跳跃(C)无穷 (D)振荡 57 . y x,122、积分= .(A) (B),(C) 0 (D) 1 103、函数y e,x,1在(, ,0] 。

高等数学下册试题及答案解析

高等数学下册试题及答案解析

高等数学下册试题及答案解析一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= . 2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 .3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 .4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds .5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( .6、微分方程x yxy dx dy tan+=的通解为 . 7、方程04)4(=-y y 的通解为 . 8、级数∑∞=+1)1(1n n n 的和为 .二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) yy x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 22000000=∆+∆∆'-∆'-∆→∆→∆y x y y x f x y x f z y x y x .2、设),()(x yxf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ∂∂+∂∂等于( ) (A )y x +; (B )x ; (C)y ; (D)0 .3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdVI 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdrr d d ;(B )⎰⎰⎰2012sin ππϕϕθdrr d d ;(C )⎰⎰⎰ππϕϕϕθ20213cos sin drr d d ; (D )⎰⎰⎰ππϕϕϕθ20013cos sin drr d d .4、球面22224a z y x =++与柱面ax y x 222=+所围成的立体体积V=( )(A )⎰⎰-20cos 202244πθθa drr a d ; (B )⎰⎰-20cos 202244πθθa dr r a r d ; (C )⎰⎰-20cos 202248πθθa drr a r d ;(D )⎰⎰--22cos 20224ππθθa drr a r d .5、设有界闭区域D 由分段光滑曲线L 所围成,L 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则⎰=+LQdy Pdx )((A )⎰⎰∂∂-∂∂Ddxdy x Q y P )(; (B )⎰⎰∂∂-∂∂D dxdy x P y Q )(;(C )⎰⎰∂∂-∂∂Ddxdy y Q x P )(; (D )⎰⎰∂∂-∂∂D dxdy y P x Q )(.6、下列说法中错误的是( )(A ) 方程022=+''+'''y x y y x 是三阶微分方程; (B ) 方程x y dx dy x dx dy ysin =+是一阶微分方程; (C ) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D ) 方程x y x dx dy 221=+是伯努利方程. 7、已知曲线)(x y y =经过原点,且在原点处的切线与直线062=++y x 平行,而)(x y 满足微分方程052=+'-''y y y ,则曲线的方程为=y ( )(A )x e x 2sin -; (B ))2cos 2(sin x x e x -; (C ))2sin 2(cos x x e x -; (D )x e x 2sin .8、设0lim =∞→n n nu , 则∑∞=1n nu( )(A )收敛; (B )发散; (C )不一定; (D )绝对收敛. 三、求解下列问题(共计15分)1、(7分)设g f ,均为连续可微函数.)(),,(xy x g v xy x f u +==,求y u x u ∂∂∂∂,.2、(8分)设⎰+-=t x t x dzz f t x u )(),(,求t ux u ∂∂∂∂,.四、求解下列问题(共计15分).1、计算=I ⎰⎰-2022xy dye dx .(7分)2、计算⎰⎰⎰Ω+=dVy x I )(22,其中Ω是由x 21,222===+z z z y 及所围成的空间闭区域(8分).五、(13分)计算⎰++-=L y x ydxxdy I 22,其中L 是xoy 面上的任一条无重点且分段光滑不经过原点)0,0(O 的封闭曲线的逆时针方向.六、(9分)设对任意)(,,x f y x 满足方程)()(1)()()(y f x f y f x f y x f -+=+,且)0(f '存在,求)(x f .七、(8分)求级数∑∞=++--11212)2()1(n n nn x 的收敛区间. 高等数学(下册)试卷(二)一、填空题(每小题3分,共计24分)1、设z y x z y x 32)32sin(2-+=-+,则=∂∂+∂∂y zx z .2、=+-→→xyxy y x 93lim 00 .3、设⎰⎰=202),(x xdyy x f dx I ,交换积分次序后,=I .4、设)(u f 为可微函数,且,0)0(=f 则⎰⎰≤+→=++222)(1lim 223t y x t d y x f t σπ .5、设L 为取正向的圆周422=+y x ,则曲线积分 ⎰=-++Lx x dy x ye dx ye y )2()1( .6、设→→→+++++=k xy z j xz y i yz x )()()(222,则=div .7、通解为xx e c e c y 221-+=的微分方程是 .8、设⎩⎨⎧<<<≤--=ππx x x f 0,10,1)(,则它的Fourier 展开式中的=n a .二、选择题(每小题2分,共计16分).1、设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x yx xy y x f ,则在点(0,0)处( ) (A )连续且偏导数存在; (B )连续但偏导数不存在; (C )不连续但偏导数存在; (D )不连续且偏导数不存在. 2、设),(y x u 在平面有界区域D 上具有二阶连续偏导数,且满足02≠∂∂∂y x u 及 +∂∂22x u 022=∂∂y u ,则( )(A )最大值点和最小值点必定都在D 的内部; (B )最大值点和最小值点必定都在D 的边界上;(C )最大值点在D 的内部,最小值点在D 的边界上; (D )最小值点在D 的内部,最大值点在D 的边界上. 3、设平面区域D :1)1()2(22≤-+-y x ,若⎰⎰+=Dd y x I σ21)(,⎰⎰+=Dd y x I σ32)(则有( )(A )21I I <; (B ) 21I I =; (C )21I I >; (D )不能比较. 4、设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间区域,则⎰⎰⎰Ωdxdydz z xy 32 =( )(A )3611; (B )3621; (C )3631 ; (D )3641.5、设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ )(βα≤≤t ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ, 则曲线积分⎰=L ds y x f ),(( )(A)⎰βαψϕdtt t f ))(),((; (B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22 ;(C) ⎰'+'βαψϕψϕdtt t t t f )()())(),((22; (D)⎰αβψϕdt t t f ))(),((.6、设∑是取外侧的单位球面1222=++z y x , 则曲面积分 ⎰⎰∑++zdxdyydzdx xdydz =( )(A) 0 ; (B) π2 ; (C)π ; (D)π4.7、下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是( )(A) 0)()(=++'x q y x p y ; (B) 0)()(=+'+''y x q y x p y ; (C) )()()(x f y x q y x p y =+'+''; (D) 0)()(=+'+''x q y x p y .8、设级数∑∞=1n na为一交错级数,则( )(A)该级数必收敛; (B)该级数必发散;(C)该级数可能收敛也可能发散; (D)若)0(0→→n a n ,则必收敛.三、求解下列问题(共计15分)1、(8分)求函数)ln(22z y x u ++=在点A (0,1,0)沿A 指向点B (3,-2,2)的方向的方向导数.2、(7分)求函数)4(),(2y x y x y x f --=在由直线0,0,6===+x y y x 所围成的闭区域D 上的最大值和最小值.四、求解下列问题(共计15分)1、(7分)计算⎰⎰⎰Ω+++=3)1(z y x dvI ,其中Ω是由0,0,0===z y x 及1=++z y x 所围成的立体域.2、(8分)设)(x f 为连续函数,定义⎰⎰⎰Ω++=dvy x f z t F )]([)(222,其中{}222,0|),,(t y x h z z y x ≤+≤≤=Ω,求dt dF.五、求解下列问题(15分) 1、(8分)求⎰-+-=Lx x dym y e dx my y e I )cos ()sin (,其中L 是从A (a ,0)经2x ax y -=到O (0,0)的弧.2、(7分)计算⎰⎰∑++=dxdyz dzdx y dydz x I 222,其中∑是)0(222a z z y x ≤≤=+ 的外侧.六、(15分)设函数)(x ϕ具有连续的二阶导数,并使曲线积分⎰'++-'Lx dyx ydx xe x x )(])(2)(3[2ϕϕϕ与路径无关,求函数)(x ϕ.高等数学(下册)试卷(三)一、填空题(每小题3分,共计24分)1、设⎰=yzxzt dte u 2, 则=∂∂z u .2、函数)2sin(),(y x xy y x f ++=在点(0,0)处沿)2,1(=的方向导数)0,0(lf∂∂= .3、设Ω为曲面0,122=--=z y x z 所围成的立体,如果将三重积分⎰⎰⎰Ω=dvz y x f I ),,(化为先对z再对y 最后对x 三次积分,则I= .4、设),(y x f 为连续函数,则=I ⎰⎰=+→D t d y x f t σπ),(1lim 2,其中222:t y x D ≤+.5、⎰=+Lds y x )(22 ,其中222:a y x L =+.6、设Ω是一空间有界区域,其边界曲面Ω∂是由有限块分片光滑的曲面所组成,如果函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在Ω上具有一阶连续偏导数,则三重积分与第二型曲面积分之间有关系式: , 该关系式称为 公式.7、微分方程96962+-=+'-''x x y y y 的特解可设为=*y . 8、若级数∑∞=--11)1(n pn n 发散,则p .二、选择题(每小题2分,共计16分)1、设),(b a f x '存在,则x b x a f b a x f x ),(),(lim0--+→=( )(A )),(b a f x ';(B )0;(C )2),(b a f x ';(D )21),(b a f x '.2、设2yx z =,结论正确的是( )(A )022>∂∂∂-∂∂∂x y z y x z ; (B )022=∂∂∂-∂∂∂x y zy x z ;(C )022<∂∂∂-∂∂∂x y z y x z ; (D )022≠∂∂∂-∂∂∂x y zy x z .3、若),(y x f 为关于x 的奇函数,积分域D 关于y 轴对称,对称部分记为21,D D ,),(y x f 在D 上连续,则⎰⎰=Dd y x f σ),(( )(A )0;(B )2⎰⎰1),(D d y x f σ;(C )4⎰⎰1),(D d y x f σ; (D)2⎰⎰2),(D d y x f σ.4、设Ω:2222R z y x ≤++,则⎰⎰⎰Ω+dxdydzy x)(22=( )(A )538R π; (B )534R π; (C )5158R π; (D )51516Rπ.5、设在xoy 面内有一分布着质量的曲线L ,在点),(y x 处的线密度为),(y x ρ,则曲线弧L的重心的x坐标x 为( )(A)x =⎰L dsy x x M),(1ρ; (B )x =⎰L dx y x x M ),(1ρ;(C )x =⎰L ds y x x ),(ρ; (D )x =⎰L xds M 1, 其中M 为曲线弧L的质量.6、设∑为柱面122=+y x 和1,0,0===z y x 在第一卦限所围成部分的外侧,则 曲面积分⎰⎰∑++ydxdzx xzdydz zdxdy y 22=( )(A )0; (B )4π-; (C )245π; (D )4π.7、方程)(2x f y y ='-''的特解可设为( )(A )A ,若1)(=x f ; (B )x Ae ,若x e x f =)(;(C )E Dx Cx Bx Ax ++++234,若x x x f 2)(2-=; (D ))5cos 5sin (x B x A x +,若x x f 5sin )(=.8、设⎩⎨⎧≤<<≤--=ππx x x f 010,1)(,则它的Fourier 展开式中的n a 等于( ) (A )])1(1[2n n --π; (B )0; (C )πn 1; (D )πn 4.三、(12分)设tt x f y ),,(=为由方程 0),,(=t y x F 确定的y x ,的函数,其中F f ,具有一阶连续偏导数,求dx dy.四、(8分)在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短.五、(8分)求圆柱面y y x 222=+被锥面22y x z +=和平面0=z 割下部分的面积A.六、(12分)计算⎰⎰∑=xyzdxdyI ,其中∑为球面1222=++z y x 的0,0≥≥y x 部分 的外侧.七、(10分)设xx d x df 2sin 1)(cos )(cos +=,求)(x f .八、(10分)将函数)1ln()(32x x x x f +++=展开成x 的幂级数.高等数学(下册)试卷(四)一、填空题(每小题3分,共计24分)1、由方程2222=+++z y x xyz 所确定的隐函数),(y x z z =在点(1,0,-1)处的全微分=dz .2、椭球面632222=++z y x 在点(1,1,1 )处的切平面方程是 . 3、设D 是由曲线2,2+==x y x y 所围成,则二重积分⎰⎰=+=Ddxdy x I )1(2 .4、设Ω是由4,0,422===+z z y x 所围成的立体域,则三重积分 ⎰⎰⎰Ω+=dvy x I )(22= .5、设∑是曲面22y x z +=介于1,0==z z 之间的部分,则曲面积分⎰⎰∑=+=ds y x I )(22 .6、⎰⎩⎨⎧=++=++=22222z y x a z y x ds x .7、已知曲线)(x y y =上点M(0,4)处的切线垂直于直线052=+-y x ,且)(x y 满足微分方程02=+'+''y y y ,则此曲线的方程是 .8、设)(x f 是周期T=π2的函数,则)(x f 的Fourier 系数为 .二、选择题(每小题2分,共计16分)1、函数xyx yz +=arcsin 的定义域是( )(A ){}0,|),(≠≤x y x y x ; (B ){}0,|),(≠≥x y x y x ;(C ){}0,0|),(≠≥≥x y x y x {}0,0|),(≠≤≤x y x y x Y ;(D ){}{}0,0|),(0,0|),(<<>>y x y x y x y x Y .2、已知曲面224y x z --=在点P 处的切平面平行于平面0122=-++z y x ,则点P 的坐标是( )(A )(1,-1,2); (B )(-1,1,2);(C )(1,1,2); (D )(-1,-1,2).3、若积分域D 是由曲线2x y =及22x y -=所围成,则⎰⎰D d y x f σ),(=( )(A )⎰⎰--22211),(x x dyy x f dx ; (B )⎰⎰--22211),(x x dyy x f dx ;(C )⎰⎰-y ydxy x f dy 210),(; (D )⎰⎰--112),(22dxy x f dy x x .4、设;0,:22221≥≤++Ωz R z y x0,0,0,:22222≥≥≥≤++Ωz y x R z y x , 则有( ) (A )⎰⎰⎰⎰⎰⎰ΩΩ=124xdvxdv ; (B )⎰⎰⎰⎰⎰⎰ΩΩ=124ydvydv ;(C )⎰⎰⎰⎰⎰⎰ΩΩ=124xyzdvxyzdv ; (D )⎰⎰⎰⎰⎰⎰ΩΩ=124zdvzdv .5、设∑为由曲面22y x z +=及平面1=z 所围成的立体的表面,则曲面积分⎰⎰∑+ds y x )(22=( )(A )π221+; (B )2π; (C )π22; (D )0 .6、设∑是球面2222a z y x =++表面外侧,则曲面积分⎰⎰∑++dxdy z dzdx y dydz x 333=( )(A )3512a π; (B )5512a π; (C )554a π; (D )5512a π-.7、一曲线过点(e,1),且在此曲线上任一点),(y x M 的法线斜率x y x xx k ln ln +-=,则此曲线方程为( )(A ))ln(ln x x e x y +=; (B )x x e xy ln +=;(C ))ln(ln x x ex y +=; (D ))ln(ln x e xy +=.8、幂级数∑∞=+1)1(n nxn 的收敛区间为( )(A )(-1,1); (B )),(+∞-∞; (C )(-1,1); (D )[-1,1].三、(10分)已知函数)()(x yxg y x yf u +=,其中g f ,具有二阶连续导数,求 y x u yxu x ∂∂∂+∂∂222的值.四、(10分)证明:曲面)0(3>=c c xyz 上任意点处的切平面与三坐标面所围成立体的体积为一定值.五、(14分)求抛物面224y x z ++=的切平面π,使得π与该抛物面间并介于柱面1)1(22=+-y x 内部的部分的体积为最小.六、(10分)计算⎰-++=Lx x dyx y e dx y y e I )cos ()sin (,其中L为24x y --=由A(2,0)至B(-2,0)的那一弧段.七、(8分)求解微分方程212y y y '-+''=0 .八、(8分)求幂级数∑∞=1n nn x 的和函数)(x S .高等数学(下册)试卷(五)一、填空题(每小题3分,共计24分)1、设),(y x f z =是由方程0=+----xy z xe x y z 所确定的二元函数,则 =dz .2、曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1,1,1)处的切线方程是 .3、设Ω是由1222≤++z y x ,则三重积分⎰⎰⎰Ωdve z= .4、设)(x f 为连续函数,m a ,是常数且0>a ,将二次积分⎰⎰⋅-a yx a m dxx f e dy 0)()(化为定积分为 .5、曲线积分⎰+)(AB L QdyPdx 与积分路径)(AB L 无关的充要条件为 .6、设∑为222y x a z --=,则⎰⎰∑=++ds z y x )(222 .7、方程xe y y 23=+'的通解为 .8、设级数∑∞=1n na收敛,∑∞=1n nb发散,则级数∑∞=+1)(n n nb a必是 .二、选择题(每小题2分,共计16分)1、设⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(222y x y x yx yx y x f ,在点(0,0)处,下列结论( )成立.(A)有极限,且极限不为0; (B)不连续; (C))0,0()0,0(='='y x f f ; (D)可微.2、设函数),(y x f z =有222=∂∂y f,且1)0,(=x f ,x x f y =')0,(,则),(y x f =( )(A)21y xy +-; (B)21y xy ++; (C)221y y x +-; (D)221y y x ++.3、设D:4122≤+≤y x ,f 在D 上连续,则⎰⎰+Dd y x f σ)(22在极坐标系中等于( )(A)drr rf ⎰21)(2π; (B)drr rf ⎰212)(2π;(C)⎰⎰-102202])()([2dr r f r dr r f r π; (D)⎰⎰-10222])()([2dr r rf dr r rf π.4、设Ω是由0,0,0===z y x 及12=++z y x 所围成,则三重积分⎰⎰⎰Ω=)(),,(dv z y x xf(A)⎰⎰⎰---y x ydyz y x xf dz dx 21021010),,(;(B)⎰⎰⎰--yx dzz y x xf dy dx 2101010),,(; (C)⎰⎰⎰---y x xdzz y x xf dy dx 21021010),,(;(D)⎰⎰⎰10110),,(dzz y x xf dy dx .5、设∑是由1,11,0,0,0======z y x z y x 所围立体表面的外侧,则曲面积分⎰⎰∑=++)(zdxdy ydzdx xdydz(A)0; (B)1; (C)3; (D)2.6、以下四结论正确的是( )(A)⎰⎰⎰≤++=++2222522234)(a z y x a dv z y x π;(B) ();442222222a ds z y x a z y xπ=++⎰⎰=++(C) ⎰⎰=++=++外侧222242224)(a z y x a dxdy z y x π;(D) 以上三结论均错误.7、设)(x g 具有一阶连续导数,1)0(=g .并设曲线积分⎰-Ldyx g xdx x yg )(tan )( 与积分路径无关,则⎰=-)4,4()0,0()()(tan )(ππdy x g xdx x yg(A)π22; (B)π22-; (C)π82; (D)π82-. 8、级数∑∞=---1112)1(n n n 的和等于( )(A)2/3;(B)1/3; (C)1; (D)3/2.三、求解下列问题(共计15分)1、(8分)设,zyx u =求y u x u ∂∂∂∂,z u ∂∂.(7分)设),(z y y x f u =,f 具有连续偏导数,求du .四、求解下列问题(共计15分)1、(8分)计算⎰⎰++=Dd y f x f y bf x af I σ)()()()(,其中222:R y x D ≤+.(7分)计算⎰⎰⎰Ω+++=dvz y x I )1(,其中2222:R z y x ≤++Ω.五、(15分)确定常数λ,使得在右半平面0>x 上,⎰+-+Ldyy x x dx y x xy λλ)()(224224与积分路径无关,并求其一个原函数),(y x u .六、(8分)将函数3)1(1)(x xx f -+=展开为x 的幂级数.七、(7分)求解方程096=+'-''y y y .高等数学(下册)试卷(六)一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C .0lim (,)x x f x y →及0lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xy z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B xln ln ln .ln x xy y C y ydx dyx + ln ln ln ln .x x y y y x D dx dy x y +3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ).212cos .(cos ,sin ,)A d dr f r r z dzπθθθθ⎰⎰⎰21200cos .(cos ,sin ,)B d rdr f r r z dzπθθθθ⎰⎰⎰ 212002cos .(cos ,sin ,)C d rdr f r r z dzπθπθθθ-⎰⎰⎰21cos .(cos ,sin ,)xD d rdr f r r z dzπθθθ⎰⎰⎰4. 4.若1(1)nnn a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y -+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ).A. (-1,3,4)B.(3,-1,4)C. (-1,0,3)D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)e xI dx f x y dy=⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= . 5. 函数332233z x y x y =+--的极小值点是 .三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctany z y x =, 求z x ∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量122l i j =+r r r 方向的方向导数.4. (本小题满分7分)将x x f 1)(=展开成3-x 的幂级数,并求收敛域.5.(本小题满分7分)求由方程08822222=+-+++z yz z y x 所确定的隐函数),(y x z z =的极值.6.(本小题满分7分)计算二重积分1,1,1,)(222=-=--=+⎰⎰y y y x D d y xD由曲线σ及2-=x 围成.7.(本小题满分7分)利用格林公式计算⎰-Lxy x y xy d d 22,其中L 是圆周222a y x =+(按逆时针方向).8.(本小题满分7分)计算⎰⎰⎰Ωz y x xy d d d ,其中Ω是由柱面122=+y x 及平面0,0,1===y x z 所围成且在第一卦限内的区域. .四、综合题(共16分,每小题8分)1.(本小题满分8分)设级数11,nnn n u v∞∞==∑∑都收敛,证明级数21()nn n uv ∞=+∑收敛.2.(本小题满分8分)设函数),(y x f 在2R 内具有一阶连续偏导数,且2fx x ∂=∂,证明曲线积分 2(,)L xydx f x y dy +⎰与路径无关.若对任意的t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,)t t xydx f x y dy xydx f x y dy+=+⎰⎰,求),(y x f 的表达式.高等数学(下册)试卷(一)参考答案一、1、当10<<a 时,1022≤+<y x ;当1>a 时,122≥+y x ;2、负号;3、23;110⎰⎰⎰⎰-+=Dy e eydx dy d σ; 4、dt t t )()(22ψϕ'+';5、180π;6、Cx x y=sin;7、xxe C e C x C x C y 2423212sin 2cos -+++=; 8、1;二、1、D ; 2、D ; 3、C ; 4、B ; 5、D ; 6、B ; 7、A ; 8、C ;三、1、21f y f x u '+'=∂∂;)(xy x g x y u +'=∂∂;2、)()(t x f t x f x u --+=∂∂;)()(t x f t x f t u -++=∂∂; 四、1、)1(21420200220222-----===⎰⎰⎰⎰⎰e dy ye dx e dy dy e dx y y y x y ; 2、⎰⎰⎰⎰⎰⎰=+=πππθθ2020212022132233142r dz r dr d dz r dr d I 柱面坐标; 五、令2222,y x xQ y x y P +=+-=则x Qy x x y y P ∂∂=+-=∂∂22222)(,)0,0(),(≠y x ; 于是①当L 所围成的区域D 中不含O (0,0)时,x Q y P ∂∂∂∂,在D 内连续.所以由Green 公式得:I=0;②当L 所围成的区域D 中含O (0,0)时,x Q y P ∂∂∂∂,在D 内除O (0,0)外都连续,此时作曲线+l 为)10(222<<=+εεy x ,逆时针方向,并假设*D 为+L 及-l 所围成区域,则 πε2)(222*=+∂∂-∂∂+=+-=⎰⎰⎰⎰⎰⎰⎰⎰=+++-++++y x D l l L l l L dxdy y Px Q Green I 公式六、由所给条件易得:0)0()0(1)0(2)0(2=⇒-=f f f f又x x f x x f x f x ∆-∆+='→∆)()(lim)(0 =x x f x f x f x f x f x ∆-∆-∆+→∆)()()(1)()(lim 0 x f x f x f x f x f x ∆-∆⋅∆-+=→∆)0()()()(1)(1lim 20 )](1)[0(2x f f +'= 即 )0()(1)(2f x f x f '=+' c x f x f +⋅'=∴)0()(arctan 即 ])0(tan[)(c x f x f +'= 又 0)0(=f 即Z k k c ∈=,π ))0(tan()(x f x f '=∴七、令t x =-2,考虑级数∑∞=++-11212)1(n n nn tΘ212321232lim t n t n t n n n =++++∞→ ∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散;当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛;当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛;∴级数的半径为R=1,收敛区间为[1,3].高等数学(下册)试卷(二)参考答案一、1、1; 2、-1/6; 3、⎰⎰⎰⎰+202/4222/),(),(y y y dxy x f dy dx y x f dy ; 4、)0(32f ';5、π8-;6、)(2z y x ++;7、02=-'+''y y y ; 8、0;二、1、C ; 2、B ; 3、A ; 4、D ; 5、C ; 6、D ; 7、B ; 8、C ;三、1、函数)ln(22z y x u ++=在点A (1,0,1)处可微,且)1,0,1(221z y x xu A ++=∂∂2/1=;1)1,0,1(2222=+⋅++=∂∂z y y zy x y u A ;2/11)1,0,1(2222=+⋅++=∂∂zy z zy x zu A而),1,2,2(-==所以)31,32,32(-=οl ,故在A 点沿=方向导数为: =∂∂Alu A x u ∂∂αcos ⋅+A y u ∂∂βcos ⋅+A z u∂∂γcos ⋅ .2/13121)32(03221=⋅+-⋅+⋅=2、由⎪⎩⎪⎨⎧=--==-+--='0)24(0)1()4(22y x x f xy y x xy f y x 得D 内的驻点为),1,2(0M 且4)1,2(=f , 又0)0,(,0),0(==x f y f而当0,0,6≥≥=+y x y x 时,)60(122),(23≤≤-=x x x y x f令0)122(23='-x x 得4,021==x x 于是相应2,621==y y 且.64)2,4(,0)6,0(-==f f),(y x f ∴在D 上的最大值为4)1,2(=f ,最小值为.64)2,4(-=f四、1、Ω的联立不等式组为⎪⎩⎪⎨⎧--≤≤-≤≤≤≤Ωy x z x y x 101010:所以⎰⎰⎰---++++=1010103)1(xyx z y x dzdy dx I⎰⎰--++=x dy y x dx 10210]41)1(1[21⎰-=--+=101652ln 21)4311(21dx x x 2、在柱面坐标系中⎰⎰⎰+=πθ200022)]([)(thrdz r f z dr d t F ⎰+=tdr r h r r hf 032]31)([2π所以]31)([232t h t t hf dt dF +=π]31)([222h t f ht +=π五、1、连接→OA ,由Green 公式得:。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

高等数学下考试题库(含答案)

高等数学下考试题库(含答案)

精品文档n 02《高等数学》试卷1 (下)•选择题(3分10)n 1n A. p 1B. p 1C. p 1D. p 18.幕级数n x的收敛域为().n 1nA. 1,1 B1,1C.1,1 D. 1,1A. a b 0B. a b 0C. a b 0D. a b 05屈数z 33x y3xy 的极小值是().A.2B. 2C.1D. 1z =( ).6.设zxsin y ,贝U —y1, 4昴A. 一B. ——C. <2D.42.2 2a 与b 垂直的充要条件是( 4.两个向量 17.若p 级数—收敛,则( )1.点 M 1 2,3,1 到点 M 2 2,7,4 的距离M 1M 2A.3B.4C.5D.62.向量a i 2j k,b2ij ,则有(A. a // bB. a 丄 bC. a 4 -D. : a,b3屈数y1 x2 y 2 1的定义域是A. x, y 1 x 2B. x,y 1 x 2C. x, y 1x 2D x, y 1x 29.幕级数x n在收敛域内的和函数是()n 0 21 A.1 x2 2C ・-1 x1D.-2 xB・2 x10・微分方程xy yin y0的通解为()•xB・ xxD. y eA. y cey e C. y cxe填空题(4分5)2•函数 z sin xy 的全微分是 ____________________________________1 4.^^的麦克劳林级数是 ___________________________________2 x5.微分方程y 4y 4y 0的通解为三.计算题(5分6)1.设 z e u sin v ,而 u xy, v xy ,求-^,x zy2.已知隐函数z z x, y由方程x C222y z4x 2z 50确定,求,x y/ 2 23.计算 sin 、x y d ,其中D2 2x 2 2y 4 .D 四•应用题(10分2)1•一平面过点A 0,0,3且垂直于直线 AB ,其中点B 2, 1,1,则此平面方程为 _________________________ 532^33•设 z x y 3xy2/ 小 zxy 1,贝U ------x y4•如图,求两个半径相等的直交圆柱面所围成的立体的体积( R 为半径)2x5•求微分方程y 3y e 在y xo 0条件下的特解1•要用铁板做一个体积为2 m3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线y f x上任何一点的切线斜率等于自原点到该切点的连线斜率的求此曲线方程2倍,且曲线过点1,3一.选择题 CBCAD ACCBD 二填空题1.2x y2z 6 0.2. cos xy ydx xdy .3.6x 2y9y 2 1 .三.计算题Z xy, e xsin x y cos x y yz2.— X 2 X J 1 zy2y z 1 .z 2 23.dsind 6 216 34.- R 3 . 33x 2x5. y e e四.应用题1. 长、宽、高均为3 2m 时,用料最省1 2 2. y x .3《高数》试卷2 (下)一.选择题(3分10)1.点 M 1 4,3,1,M 2 7,1,2 的距离 M 1M 2 ( ).2.设两平面方程分别为 x 2y 2z 1 0和 x y 5 0,则两平面的夹角为(试卷1参考答案4.1n2n5. yC i C 2X e2x.z xy .1. e ysin x xcos x y A. 12B. 13C. 14D. 15A. 6B.4C. 3D.?3.函数 z arcs in x 2 y 2的定义域为( A. x, y 0B. x,y 0 y 2 1C. x, y 0 x 2D. x,y 0 x 2 4•点P 1, 2,1 到平面 x 2y 2z 0的距离为( A.3 B.4 C.5 D.6 5屈数z 2xy 3x 2 2y 2的极大值为( ) A.0 B.1 C. 1 1 D.- 26.设z2 小 x 3xy y 2,则—1 x 1,2 ( ).A.6B.7C.8D.9 7.若几何级数 ar n 是收敛的,则( ).n 0A. r 1B. r 1C. ” 1D. r8.幕级数 n 1 x n 的收敛域为 ( )n 0A. 1,1B. 1,1C. 1,1D.1,1sin na 9.级数 4 疋( ). n 1 nA.条件收敛B.绝对收敛 c.发散 10.微分方程xy yl ny 0的通解为 ( A. y e cx B. x — y ceC. y x e 二填空题(4分 5) x 3 1.直线l 过点A 2,2, 1且与直线y t)•D. D.不能确定 xy cxe平行,则直线I 的方程为2t2.函数z e xy 的全微分为3•曲面z 2x2 4y2在点2,1,4 处的切平面方程为 _______________________________________________ 14. 12的麦克劳林级数是__________________________ •1 x25•微分方程xdy 3ydx 0在y x11条件下的特解为________________________________ •三•计算题(5分6)1. 设a i 2j k,b2j 3k ,求a b.四.应用题(10分2)2.设z u2v uv2,而u xcosy,v xsin y,求—z3.已知隐函数z z x,y3由x 3xyz 2确定,求5.求微分方程y 3y2ax(a 0)所围的几何体的体积4a2与圆柱面x2 2 y2y 0的通解.1.试用二重积分计算由y x,y 2 x和x 4所围图形的面积.2.如图,以初速度v。

高等数学下册试卷及答案

高等数学下册试卷及答案

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202013cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ20013cos sin dr r d d 。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

高等数学下册试题(题库)及参考答案

高等数学下册试题(题库)及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9解 ={1-1,2-0,1-2}={0,2,-1},||=5)1(20222=-++. 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4πC )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

高等数学下册试卷及答案

高等数学下册试卷及答案

高等数学下册试卷及答案高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=loga(x+y)的定义域为D={(x,y)|x+y>0}。

2、二重积分∬|x|+|y|≤1 2ln(x+y)dxdy的符号为负。

3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(e+1-x)dx dy,其值为e-1.4、设曲线L的参数方程表示为{x=φ(t)。

y=ψ(t)} (α≤t≤β),则弧长元素ds=√[φ'(t)²+ψ'(t)²]dt。

5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∫∫∑(x²+y²+1)ds=18√2.6、微分方程y'=x/(y²+1)的通解为y=1/2ln(y²+1)+1/2x²+C。

7、方程y''-4y=tanx的通解为y=C1e^(2x)+C2e^(-2x)-1/2cosxsinx。

8、级数∑n=1∞1/(n(n+1))的和为1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。

2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x²+y²等于(A)x+y。

3、设Ω:x+y+z≤1.z≥0,则三重积分I=∭ΩzdV等于(D)∫0^1∫0^(1-z)∫0^(1-x-y)zdxdydz。

4、球面x²+y²+z²=16a²与柱面x²+y²=2ax所围成的立体体积V=(C)8∫0^π/2∫0^(2acosθ)∫0^√(16a²-r²)rdzdrdθ。

注:原文章中第一题的符号“>”应该是“≥”,已进行更正。

大学高数下册试题及答案

大学高数下册试题及答案

大学高数下册试题及答案《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线及平面,则直线(A)A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交.2.二元函数在点处(C)A.连续、偏导数存在;B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在.3.设为连续函数,则=(B)A.;B.;C.D..4.设是平面由,所确定的三角形区域,则曲面积分=(D)A.7;B.;C.;D..5.微分方程的一个特解应具有形式(B)A.;B.;C.;D..二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数;5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有.三、(本题7分)设由方程组确定了,是,的函数,求及与.解:方程两边取全微分,则解出从而四、(本题7分)已知点及点,求函数在点处沿方向的方向导数.解:,从而五、(本题8分)计算累次积分).解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、(本题8分)计算,其中是由柱面及平面围成的区域.解:先二后一比较方便,七.(本题8分)计算,其中是抛物面被平面所截下的有限部分.解:由对称性从而八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线.解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、(本题8分)计算,其中为半球面上侧.解:补取下侧,则构成封闭曲面的外侧十、(本题8分)设二阶连续可导函数,适合,求.解:由已知即十一、(本题4分)求方程的通解.解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点的坐标为,则问题即在求最小值。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

精品文档高等数学(下册)考试试卷(一)一、填空题(每小题 3分,共计24分)1、 z = log a (x 2 y 2)(a 0)的定义域为 D= ____________________2 22、 二重积分 In(x y )dxdy 的符号为 _____________ 。

|x| |y| 16、 微分方程dy y tan#的通解为 ________________________dx x x7、 方程y ⑷ 4y 0的通解为 ___________________ 。

&级数的和为 ___________________ 。

n in(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y)在(x 0, y 0)处可微的充分条件是()(A ) f (x, y)在(x °, y °)处连续;f x (x, y ), f y (x, y)在(X 0,y °)的某邻域内存在;(C ) f x (x 0,y 。

)x f y (x 0,y 。

)y 当.(x)2 y)2时,是无穷小;(D ) lim xf x (x °,y °) x f y (x °,y °) y 2 2 x) ( y) 2、设U x yf (一)y y xf(),其中 xf 具有二阶连续导数,则ux 2 y xU 2 y等于(A ) x y ;(B ) x ;(C) y ;(D)0 o3、设2 :x 2 y z 2 1,z0,则二重积分 I zdV 等于()(A ) 4和2d13 . r sincos dr ; (B )"d.1 2 .d r sin0 0dr ;2 2y3、由曲线y ln x 及直线xye 1 , y 1所围图形的面积用二重积分表示为为。

4、设曲线 L 的参数方程表示为x (t) ( x ),则弧长元素dsy(t)5、设曲面刀为 2 9x y 9介于 z0及z 3间的部分的外侧,贝U (x 2 y 2 1)ds,其值(B )精品文档2 (C) d0 13o r sin cos dr;(D)2 1 •d d r sin cos dr。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(下)模拟试卷一一、 填空题(每空3分,共15分)(1)函数z =+的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2xyz +=(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰D. 22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)' 2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)模拟试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()xax b e + B.2()xax b xe + C.2()xax b ce ++ D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dv Ω⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2B. 1C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)xx Ley y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。

4、1sin xtdt⎰的一阶导数为 .(A )sin x (B )sin x - (C )cos x (D )cos x -5、向量{1,1,}a k =-与{2,2,1}b =--相互垂直则k = . (A )3 (B )-1 (C )4 (D )2三.计算题(3小题,每题6分,共18分)1、求极限123lim()21x x x x +→∞+-2、求极限30sin limx x x x →-3、已知ln cos xy e =,求dy dx四.计算题(4小题,每题6分,共24分)1、已知221t x y t ⎧=⎪⎨⎪=-⎩,求22d y dx 2、计算积分2cos x xdx⎰3、计算积分1arctan xdx ⎰4、计算积分⎰五.觧答题(3小题,共28分)1、(8)'求函数42341y x x=-+的凹凸区间及拐点。

2、(8)'设111()11xxxf xxe+⎧≥⎪⎪+=⎨⎪<⎪+⎩求2(1)f x dx-⎰3、(1)求由2y x=及2y x=所围图形的面积;(6)'(2)求所围图形绕x轴旋转一周所得的体积。

(6)'高等数学(下)模拟试卷四一.填空题(每空3分,共15分)1、函数1yx=的定义域为.2、,0ax e dx a +∞->⎰= .3、已知sin(21)y x =+,在0.5x =-处的微分dy = .4、定积分121sin 1xdx x -+⎰= .5、函数43341y x x =-+的凸区间是 . 二.选择题(每空3分,共15分)1、1x =是函数211x y x -=-的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡 2、若()0,(0)0,(0)1,limx f ax a f f x →'≠==-==(A)1 (B)a(C)-1 (D) a -3、在[0,2]π内函数sin y x x =-是 。

(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。

4、已知向量{4,3,4}a =-与向量{2,2,1}b =则a b ⋅为 . (A )6 (B )-6(C )1 (D )-35、已知函数()f x 可导,且0()f x 为极值,()f x y e =,则x x dy dx==.(A )0()f x e (B )0()f x ' (C )0 (D )0()f x三.计算题(3小题,每题6分,共18分)1、求极限10lim(1-)k xx kx +→2、求极限12cos 2sin limsin xx t dtx x→⎰3、已知1ln sinxy e=,求dy dx四. 计算题(每题6分,共24分)1、设10ye xy --=所确定的隐函数()yf x =的导数0x dydx=。

2、计算积分arcsin xdx⎰3、计算积分π⎰4、计算积分,0a >⎰五.觧答题(3小题,共28分)1、(8)'已知2223131at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩,求在2t =处的切线方程和法线方程。

2、(8)'求证当0a b >>时,1ln ln 1a b aa b b -<<- 3、(1)求由3y x =及0,2y x ==所围图形的面积;(6)'(2)求所围图形绕y 轴旋转一周所得的体积。

(6)'高等数学(下)模拟试卷五一. 填空题(每空3分,共21分)1.函数y y x z )ln(-=的定义域为 。

2.已知函数22y xez +=,则=dz 。

3.已知xy e z =,则=∂∂)0,1(xz。

4.设L 为122=+y x 上点()0,1到()0,1-的上半弧段,则=⎰ds L 2 。

5.交换积分顺序⎰⎰=x edy y x f dx ln 01),( 。

相关文档
最新文档