解三角形、数列测试题
解三角形与数列-2024金考卷专题题选(45+45 共90题)
解三角形(适合高二高三复习)1(1/45 2023届济南摸底考试)在△ABC 中, 2sin ∠ACB =3sin ∠ABC , AB =23,BC 边上的中线长为13.(1)求 AC 的长;(2)求 △ABC 的面积.2已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 且a cos B +3a sin B =b +c .(1)求A ;(2)若a =4,△ABC 的面积为43, 求△ABC 的周长.3在平面四边形ABCD 中, ∠ABD =45°, AB =6,AD =32. 对角线AC 与BD 交于点E ,且AE =EC ,DE =2BE .(1)求BD 的长;(2)求cos ∠ADC 的值.4在△ABC 中, 角A ,B ,C 所对的边分别为a ,b ,c , 且满足a cos C +3a sin C =b +2c .(1)求角A 的大小;(2)D 为BC 边上一点, DA ⊥BA ,且BD =4DC , 求cos C .5记△ABC 的内角A ,B ,C 的对边分别为a ,b , c , 已知点D 为AB 的中点, 点E 满足AE=2EC, 且a cos A +a cos (B -C )=23b cos (π-A )sin C .(1)求A ;(2)若BC =19,DE =7, 求△ABC 的面积.6已知锐角△ABC 中, 角A ,B ,C 所对的边分别为a ,b ,c , 且tan B +tan C +3tan B tan C=3.(1)求角A ;(2)若a =4, 求b +c 的取值范围.7在△ABC 中, 内角A ,B ,C 所对的边分别是a ,b ,c , 已知c =2b cos B ,C =2π3.(1)求角B 的大小.(2)在下列两个条件中选择一个作为已知, 求BC 边上的中线AM 的长度.①△ABC 的面积为334;②△ABC 的周长为4+23.注:如果选择两个条件分别解答, 按第一个解答计分.8在△ABC 中, 角A ,B ,C 所对的边分别是a ,b ,c . 已知2cos A bc =cos B ab+cos Cac .(1)求A ;(2)若a =3, 求△ABC 周长的取值范围.9在锐角△ABC 中, 角A ,B ,C 所对的边分别为a ,b ,c , 已知锐角△ABC 同时满足下列四个条件中的三个:①cos A =22;②cos C =223;③a =5;④c =3.(1)请指出这三个条件,并说明理由;(2)求△ABC 的面积.10设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,3b cosB +C2=a sin B .(1)若a =2, 求△ABC 面积的最大值;(2)若B =π3, 在△ABC 边AC 的外侧取一点D (点D 在△ABC 外部), 使得DC =1,DA =2,且四边形ABCD 的面积为534+2, 求∠ADC 的大小.11在△ABC 中, 内角A ,B ,C 所对的边分别是a ,b ,c ,2sin A +11-2cos A=sin2C 1+cos2C .(1)若B =π6, 求C ;(2)若B ∈π6,π4 , 求cb的取值范围.12已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c , 且满足a cos B -b cos A =a -c .(1)求B ;(2)若b =7,a =2,M 为边AC 的中点, 求BM 的长.13记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 已知cos C +(cos B -22sin B )cos A =0.(1)求cos A 的值;(2)若b +c =1, 求a 的取值范围.14在△ABC 中, 内角A ,B ,C 的对边分别为a ,b ,c ,已知2c +b =2a cos B .(1)求A ;(2)若∠BAC 的平分线与BC 交于点M ,BM =47,CM =27, 求线段AM 的长.15在锐角△ABC 中, 内角A ,B ,C 所对应的边分别为a ,b ,c , 已知sin A -sin B3a -c=sin C a +b .(1)求角B 的值;(2)若a =2, 求△ABC 的周长的取值范围.16在△ABC 中, ∠BAC =120°,AB =1, AC =3, 点D 在线段BC 上, 且BD =12DC .(1)求AD 的长;(2)求cos ∠DAC .17已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边. 且cos C +3sin C =b +ca.(1)求A ;(2)若a =2,△ABC 的面积为3, 求b ,c .18已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , 且tan B tan C -3(tan B +tan C )=1.(1)求角A 的大小;(2)若a =1,2c -(3+1)b =0, 求△ABC 的面积.19记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知b 2-a 2=2c 2.(1)求tan Btan A的值;(2)求C 的最大值.20△ABC 的内角A ,B ,C 的对边长分别为a ,b ,c , 设a +b c -b =sin C +sin B sin A.(1)求C ;(2)若(3+1)a +2b =6c , 求sin A .21已知在锐角△ABC 中, 1+sin2B -cos2B1+sin2B +cos2B=3.(1)求角B ;(2)若a =2,求△ABC 的面积S 的取值范围.22记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知a cos 2C 2+c cos 2A2=32b .(1)证明:sin A +sin C =2sin B ;(2)若b =2,AB ⋅AC=3, 求△ABC 的面积.23在△ABC 中, AC =2,∠BAC =π3,P 为△ABC 内的一点, 满足AP ⊥CP ,∠APB =2π3.(1)若AP =PC , 求△ABC 的面积;(2)若BC =7, 求AP .24已知在△ABC 中, 角A ,B ,C 所对的边分别为a ,b ,c ,sin (B -A )sin A+sin Asin C =1.(1)证明:a ,b ,c 成等比数列;(2)求角B 的最大值.25已知△ABC的内角A,B,C所对边的长分别为a,b,c, 且b2+2c2-2a2=0.(1)若tan C=13, 求A的大小;(2)当A-C取得最大值时, 试判断△ABC的形状.26在锐角三角形ABC中, 内角A,B,C的对边分别为a,b,c, 已知cos C sin(A-B)= cos B sin(C-A).(1)求tan A的最小值;(2)若tan A=2,a=45, 求c.27记△ABC的内角A,B,C的对边分别为a,b,c, 已知a2-b2c2=a2+b2-c2ab.(1)若C=π4, 求A,B;(2)若△ABC为锐角三角形, 求ab cos2B的取值范围.28记锐角△ABC的内角A,B,C的对边分别为a,b,c, 已知sin(A-B)cos B=sin(A-C)cos C.(1)求证:B=C;(2)若a sin C=1, 求1a2+1b2的最大值.29在△ABC中, 角A,B,C所对的边分别为a,b,c, 且满足2sin A+π6=a+b c.(1)求C;(2)若△ABC内切圆的面积为3π,b=a+3, 求△ABC的周长.30在△ABC中, 内角A,B,C的对边分别为a,b,c,c=2b,2sin A=3sin2∠ACB.(1)求sin∠ACB;(2)若△ABC的面积为372, 求AB边上的中线CD的长.31已知△ABC中, 角A,B,C所对的边分别为a,b,c, 且(a+b)(sin A-sin B)=b sin C.(1)证明:A=2B;(2)若a=3,b=2, 求△ABC的面积.32在△ABC中, 角A,B,C所对的边分别为a,b,c, 且满足2b cos C=2a-c.(1)求角B;(2)若b=6,D为边AC的中点, 且BD=92, 求△ABC的面积.33设△ABC的内角A,B,C所对的边分别为a,b,c, 且有2sin B+π6=b+c a.(1)求角A;(2)若BC边上的高h=34a, 求cos B cos C.34如图,在四边形ABCD 中, ∠DAB =2π3, AB =AD =3,AC 与BD 相交于点E ,AC =4AE ,DE =2BE .(1)求AE 的长;(2)求△BCD 的面积.35△ABC 的内角A ,B ,C 的对边分别为a , b ,c , 且b =2c sin A +π6.(1)求C ;(2)若c =1,D 为△ABC 的外接圆上的点, BA . BD =BA2, 求四边形ABCD 面积的最大值.36已知函数f (x )=2cos 2ωx +sin2ωx (ω>0),x 1,x 2是f (x )的两个相邻极值点, 且满足x 1-x 2 =π.(1)求函数f (x )图象的对称轴方程;(2)若f (α)=13, 求sin2α.37在△ABC 中, 内角A ,B ,C 的对边分别为a ,b ,c ,cos B +sin A +C2=0.(1)求角B 的大小;(2)若a :c =3:5, 且AC 边上的高为15314, 求△ABC 的周长.38在△ABC 中, 角A ,B ,C 的对边分别为a ,b , c , 已知cos2A +cos2B -cos2C =1-2sin A sin B .(1)求角C 的大小;(2)求sin A +sin B +sin C 的取值范围.39在△ABC中, 角A,B,C的对边分别为a, b,c,2c=b(sin A-cos A).(1)若sin B=10sin C, 求sin A的值.(2)在下列条件中选择一个, 判断△ABC是否存在. 如果存在, 求b的最小值;如果不存在, 说明理由.①△ABC的面积S=2+1;②bc=42;③a2+b2=c2.注:若选择多个条件分别解答, 按第一个解答计分.40已知函数f(x)=sin(ωx+φ)在区间π6 ,π2 单调, 其中ω为正整数, |φ|<π2, 且fπ2=f2π3.(1)求y=f(x)图象的一条对称轴;(2)若fπ6 =32, 求φ.41已知△ABC的内角A,B,C所对的边分别为a,b,c,c2=a2+ab.(1)证明:C=2A;(2)若a=3,sin A=13, 求△ABC的面积.42设△ABC的内角A,B,C的对边分别为a,b,c, 且cos A=2cos B cos C.(1)求ab sin C的最小值;(2)若B=π4,b=2, 求△ABC的面积.43在△ABC中, 角A,B,C所对的边分别为a, b,c,a=9,D为边BC上一点, DB=DA=3.(1)若3b sin C+c cos B=9, 求△ABC的面积;(2)若AD为∠BAC的平分线, 求△ABC的周长.44在△ABC中, 角A,B,C的对边分别为a, b,c,2a cos B-b=c.(1)求证:cos B=a2b;(2)若c=1,a b=32, 求△ABC的面积.45记△ABC的内角A,B,C的对边分别为a,b,c, 已知sin A sin(B-C)=sin2C.(1)若b2-c2=ac, 求角C;(2)若A=π4,a=2, 求△ABC的面积.数列(适合高二高三复习)1(金考卷15/45 长沙2023适应性考试)已知数列a n为等差数列, 数列b n为等比数列, 且满足b1=2a1=2,b2=2a2,a3+b3=11.(1)求数列a n,∣b n 的通项公式;的前n项和S n.(2)求数列 a n⋅b n2已知数列a n的前n项和为S n,n∈N+, 现有如下三个条件:条件① a5=5;条件②a n+1-a n=2;条件③S2=-4.请从上述三个条件中选择能够确定一个数列的两个条件,并完成解答.您选择的条件是和(1)求数列a n的通项公式;(2)设数列b n满足b n=1a n⋅a n+1, 求数列b n的前n项和T n.3已知数列a n满足a1=1,a2=1,a n-a n-1=a n-2n≥3,n∈N∗,S n表示数列a n的前n项和.(1)求证:a n=S n-2+1;(2)求使得a kS k-2-1≥1100成立的正整数k(k≥3,k∈N∗ 的最大值.4已知数列 a n满足 a1=1,a2=3, 数列 b n等比数列, 且满足 b n a n+1-a n=b n+1.(1)求数列 a n的通项公式;(2)已知数列 b n的前 n 项和为 S n, 若 记数列 c n满足 c n=a n,n 为奇数b n,n 为偶数求数列 cn的前 2n 项和 T2n.在① 2S2=S3-2;②b2,2a3,b4 成等差数列;③S6=126 这三个条件中任选一个, 补充在 第 (2) 问中, 并对其求解.5 欧拉函数 φ(n)n∈N∗的函数值等于所有不超过正整数 n, 且与 n 互质的正整数的个 数, 例如:φ(1)=1,φ(4)=2.(1)求 φ32 ,φ33 ;(2)令 a n=12φ3n, 求数列log3a na n的前 n 项和.6已知等差数列 a n 的前 n 项和为 S n (n ∈N ∗) , 满足 3a 2+2a 3=S 5+6.(1)若数列 S n 为单调递减数列, 求 a 1 的取值 范围;(2)若 a 1=1, 在数列 a n 的第 n 项与第 n +1 项 之间插入首项为 1 , 公比为 2 的等比数列的前 n 项, 形成新数列 b n , 记数列 b n 的前 n 项和为 T n , 求 T 95.7已知数列 a n 中, a 1=1,a n3n -1是公差 为 1 的等差数列.(1)求数列 a n 的通项公式;(2)求数列 a n 的前 n 项和.8已知数列 a n 的前 n 项和为 S n , 且 S n +2n =2a n +1.(1)求 a 1, 并证明数列 a n2n 是等差数列;(2)若 2a 2k <S 2k , 求正整数 k 的所有取值.9已知数列 ∣a n 满足 a 1=3,a n +1=3a n -4n ,n ∈N ∗.(1)判断数列 ∣a n -2n -1 是否是等比数列, 并 求 a n 的通项公式;(2)若 b n =(2n -1)2na n a n +1, 求数列 b n 的前 n 项 和 S n .10已知正项数列 a n , 其前 n 项和 S n 满足 a n 2S n -a n =n ,n ∈N ∗.(1)求 a n 的通项公式;(2)证明:1S 21+1S 22+⋯+1S 2n<2.11已知数列 a n 为公差不为零的等差数 列, 其前 n 项和为 S n ,a 5=2a 2,S 3=a 22.(1)求 a n 的通项公式 a n ;(2)求证:1a 21+1a 22+1a 23+⋯+1a 2n<1n ∈N ∗ .12已知正项数列 a n 满足 a 1=1,a n +1a n +2 =2a 2n +5a n +2n ∈N ∗.(1)证明: 数列 a n +1 是等比数列, 并求数列 a n 的通项公式;(2)设 b n =(-1)n log 4a n +1 , 数列 b n 的前 n 项和为 T n , 求 T n .13记 S n 为数列 a n 的前 n 项和, 已知 a n >1,S n -12a 2n 是公差为12 的等差数列.(1)证明:a n 是等差数列;(2)若 a 1,a 2,a 6 可构成三角形的三边, 求 S 13a 14的取值范围.14已知数列 a n 是等差数列, a 1=1, 且 a 1, a 2,a 5-1 成等比数列. 给定 k ∈N ∗, 记集合n ∣k ≤a n ≤2k ,n ∈N ∗ 的元素个数为 b k .(1)求 b 1,b 2 的值;(2)求最小自然数 n 的值, 使得 b 1+b 2+⋯+b n >2022.15已知数列 a n 满足 1a 1+2a 2+3a 3+⋯+n a n=2n -1.(1)求数列 a n 的通项公式;(2)若数列 b n 满足 b n =a 2n , 求数列 b n 的前 n 项和.16已知等差数列 a n 的前 n 项和为 S n , 且 S 6=4S 3,a 2n =2a n +1n ∈N ∗ .(1)求数列 a n 的通项公式;(2)设 b n =2n -1a n , 求数列 b n 的前 n 项和 T n .17各项均为正数的数列 a n , 其前 n 项和 记为 S n , 且满足对任意 n ∈N +, 都有 2S n =a 2n +a n .(1)求数列 a n 的通项公式;(2)设 T n =1a 21+1a 22+1a 23+⋯+1a 2n, 证明:T n <74.18已知等差数列 a n 的前 n 项和为 S n , 且 S n 是等差数列, S 3=9.(1)求数列 a n 的通项公式;(2)若数列 b n 满足 S n b n =a n +1S n +1, 求数列 1b n的前 20 项和 T 20.19记数列 a n 的前 n 项和为 S n , 对任意 n ∈N ∗, 有 S n =n a n +n -1 .(1)证明:a n 是等差数列;(2)若当且仅当 n =7 时, S n 取得最大值,求 a 1 的取值范围.20在①S n +S n -1=a 2n -2(n ≥2), ②a 2n +a n -1S n -1=S n a n -1+a n -1+1(n ≥2),③S 2=5, 当 n ≥2 时,(n -1)a n -1-(n -2)a n 为常数列这 三个条件中任选一个, 补充在下面问题中, 并给 出解答.已知数列 a n 的前 n 项和为 S n ,a n >0,a 1=2, 且(1)求数列 a n 的通项公式;(2) 设 b n =1a n a n +1, 数列 b n 的前 n 项和为 T n , 若 T k =4a k +1, 求正整数 k 的值.注: 如果选择多个条件分别解答,按第一个解答计分.21 已知数列 a n 满足:a 1=1,a 2=8,a 2n -1+a 2n +1=log 2a 2n ,a 2n a 2n +2=16a 2n +1.(1)证明:a 2n -1 是等差数列;(2)记 a n 的前 n 项和为 S n ,S n >2023, 求 n 的最小值.22已知等差数列 a n 的前 n 项和为 S n , 公差 d ≠0,S 2,S 4,S 5+4 成等差数列, a 2,a 4,a 8 成等比数列.(1)求 S n ;(2)记数列 b n 的前 n 项和为 T n ,2b n -T n =n +2S n , 证明数列 b n -1S n为等比数列, 并求 b n 的通项公式.23设公差不为 0 的等差数列 a n 的前 n 项 和为 S n ,S 5=20,a 23=a 2a 5.(1)求数列 a n 的通项公式;(2)若数列 b n 满足 b 1=1,b n +b n +1=(2)a n, 求 数列 b 2n 的前 n 项和.24已知各项都是正数的数列 a n , 其前 n 项和 S n 满足 a 2n =2S n -a n n ∈N ∗ .(1)求数列 a n 的通项公式.(2)记 P n 是数列 1S n的前 n 项和, Q n 是数列1a 2n -1的前 n 项和. 当 n ≥2 时, 试比较 P n与 Q n 的大小.25在数列 a n 中, 若 a n +1-a 1a 2a 3⋯⋯a n =d n ∈N ∗ , 则称数列 a n 为“泛等差数列”, 常数 d 称为 “泛差”. 已知数列 a n 是一个“泛等差数 列”, 数列 b n 满足 a 21+a 22+⋯+a 2n =a 1a 2a 3⋯.a n -b n .(1)若数列 a n 的 “泛差” d =1, 且 a 1,a 2,a 3 成等 差数列, 求 a 1;(2)若数列 a n 的 “泛差” d =-1, 且 a 1=12, 求 数列 b n 的通项公式.26记数列 a n 的前 n 项和为 T n , 且 a 1=1, a n =T n -1(n ≥2).(1)求数列 a n 的通项公式;(2)设 m 为整数, 且对任意 n ∈N ∗,m ≥1a 1+2a 2+⋯+n a n, 求 m 的最小值.27已知数列 a n 的各项均不为零, a 1=1, 前 n 项和 S n 满足 12S 2n=1S n -1a n n ≥2,n ∈N ∗.(1)求证:数列 1S n是等差数列;(2)记 b n =S n S n +1, 求数列 b n 的前 n 项和 T n .28已知数列 a n 满足 a 2=34,a n +12-a n =1.(1)证明: 数列11-a n是等差数列, 并求数列 a n 的通项公式;(2)记 b n =(-1)n a n -1a n, 求数列 b n 的前 n 项和 S n .29已知数列 a n 的前 n 项和为 S n ,a 1=1, S n +a n 是公比为 12的等比数列.(1)证明:2n a n 为等差数列, 并求 a n 的通项 公式;(2)求数列 S n 的前 n 项和 T n .30已知数列 a n 的前 n 项和为 S n , 且 S n +1=S n +2a n +3,a 1=1.(1)证明: 数列 a n +3 是等比数列, 并求数列 a n 的通项公式;(2)若 b n =a n ⋅log 2a n +3 , 求数列 b n 的前 n 项和 T n .31已知等差数列 a n 的前 n 项和为 S n , a 1=1,S 5=25. 数列 b n 的前 n 项积为 T n , 且满 足 T n =2S n.(1) 求数列 a n ,b n 的通项公式;(2) 设 c n =a n b n , 求 c n 的前 n 项和 R n .32已知正项数列 a n 满足 a 1=1, 且 a 2n +1-a n ⋅a n +1-a n -1=0.(1) 求数列 a n 的通项公式;(2) 求数列 2n a n 的前 n 项和 S n .33任取一个正整数, 若是奇数, 就将该数乘 3 再加上 1; 若是偶数, 就将该数除以 2 . 反复进行 上述两种运算, 经过有限次步骤后, 必进人循环圈 “ 1→4→2→1 ”, 这就是数学史上著名的 “冰雹猜 想” (又称 “角谷猜想” ). 比如取正整数 m =6, 根据上述运算法则得出 6→3→10→5→16→8→4→2→1, 共需经过 8 个步骤变成 1(简称为 8 步 “雹程”). 现给出冰雹猜想的递推关系如下:已知数 列 a n 满足 a 1=m (m 为正整数), a n +1=a n2,(a n 为偶数)3a n +1,(a n 为奇数)(1) 当 m =7 时, 试确定使得 a n =1 需要多少步雹程;(2) 若 a 7=1, 求 m 所有可能的取值集合 M .34已知数列 a n 中, a 1=6,a 2=12,a 3=20, 且数列 a n +1-a n 为等差数列, n ∈N ∗.(1) 求数列 a n 的通项公式;(2) 设数列 1a n 的前 n 项和为 S n , 证明:S n <1235记数列 a n 的前 n 项和为 S n , 已知 S n =-n +12,n 为奇数n 2,n 为偶数(1) 求数列 a n 的通项公式;(2) 求数列 1a n a n +1 的前 n 项和 T n .36已知等差数列 a n 的前 n 项和为 S n , 且 S 4=3a 3+1,S 5=25.(1) 求数列 a n 的通项公式;(2) 令 b n =2a n, 求数列 b n 的前 n 项和 T n37已知数列 a n 的前 n 项和为 S n , 且 a 2=20,S n =4n 2+kn .(1) 求数列 a n 的通项公式;(2) 若数列 b n 满足 b 1=3,b n -b n -1=a n -1(n ≥2), 求数列 1b n的前 n 项和 T n38已知数列 a n 的前 n 项和为 S n , 且满足 a 1=1,2S n =na n +1,n ∈N ∗.(1) 求数列 a n 的通项公式;(2) 设数列 b n 满足 b 1=1,b n b n +1=2n ,n ∈N ∗, 按照如下规律构造新数列 c n :a 1,b 2,a 3,b 4, a 5,b 6,a 7,b 8,⋯, 求数列 c n 的前 2n 项和.39已知数列 a n 的各项均为正数, 且 a 1=2,a 2n +1-2a n +1=a 2n +2a n .(1) 求 a n 的通项公式;(2) 设 b n =(-1)n a n , 求 b 1+b 2+b 3+⋯+b 20.40已知 S n 为等比数列 a n 的前 n 项和, 若 4a 2,2a 3,a 4 成等差数列, 且 S 4=8a 2-2.(1) 求数列 a n 的通项公式;(2) 若 b n =a n a n +2 a n +1+2, 且数列 b n 的前 n 项和为 T n , 证明 :112≤T n <14.41已知等比数列 a n 的公比为 q , 前 n 项和为 S n , 且满足:q >1,S 3=13,a 24=3a 6.(1) 求 a n 的通项公式;(2) 设 b n =a n ,n 为奇数b n -1+n ,n 为偶数, 求数列 b n 的前 2n 项和 T 2n .42定义: 在数列 a n 中, 若存在仩整数 k , 使 得 ∀n ∈N ∗, 都有 a n +k =a n , 则称数列 a n 为“ k 型数列”. 已知数列 a n 满足 a n +1=-1a n +1.(1) 证明: 数列 a n 为 “ 3 型数列”;(2) 若 a 1=1, 数列 b n 的通项公式为 b n =2n -1 , 求数列 a n b n 的前 15 项和 S 15.43已知数列 a n 的前 n 项和为 S n , 且 a 1=1,S n =a n +1-1, 数列 b n 为等差数列, 且 2a 4=3b 3+1,S 6=7b 5.(1) 求 a n 与 b n 的通项公式;(2) 记 c n =b na n, 求 c n 的前 n 项和 T n .44已知数列 a n 的前 n 项和为 S n , 满足 a 1=12,S n +1=S n +a n 2a n +1.(1) 证明数列 1a n是等差数列, 并求数列 a n 的 通项公式;(2) 若数列 b n 满足 b n =(2n +1)2⋅a n ⋅a n +1, 求数列 b n 的前 n 项和 T n .45已知等比数列 a n 的前 n 项和为 S n , 且 a n +1=3S n +1, 数列 b n 满足 b 1=6,(n +3)b n =(n +1)b n +1, 其中 n ∈N ∗.(1) 求数列 a n 和 b n 的通项公式;(2) 若 c n =a n b nn +2, 求数列 c n 的前 n 项和 T n .。
解三角形和数列
数列和解三角形大题专练1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a,并证明数列是等差数列;1(2)若,求正整数k的所有取值.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.6.(2023•宁波模拟)y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n(b≠0)的一条线段.已知{a n}由定义.(1)用b表示a1,a2;(2)若b=2,记T n=a1+2a2+⋯+na n,求证:.7.(2023•邵阳二模)已知S n为数列{a n}的前n项和,a1=2,S n+1=S n+4a n-3,记b n=log2(a n-1)+3.(1)求数列{b n}的通项公式;(2)已知,记数列{c n}的前n项和为T n,求证:.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a2及数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.118.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.参考答案与试题解析一.解答题(共20小题)1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.【解答】解:(1)证明:∵na n+1=2S n+n,+n-1,n≥2,∴(n-1)a n=2S n-1两式相减得:na n+1-(n-1)a n=2a n+1,∴na n+1=(n+1)a n+1,+1)=(n+1)(a n+1),∴n(a n+1∴,(n≥2),又a2=2S1+1=2a1+1=3,∴,上式也成立,∴数列为常数列;(2)由(1)得,∴a n=2n-1,∴=,∴,两式相减得=,∴.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.【解答】解:(1)a2=7,对任意的自然数n,恒有,可得n=1时,a1=2a1-3,解得a1=3;n=2时,2a2=2S2-6=2(a1+a2)-6,解得a1=3;n=3时,3a3=2S3-9=2(a1+a2+a3)-9,解得a3=11.当n≥2时,na n=2S n-3n变为(n-1)a n-1=2S n-1-3(n-1),两式相减可得(n-2)a n=(n-1)a n-1-3,当n≥3时,上式变为(n-3)a n-1=(n-2)a n-2-3,上面两式相减可得a n+a n-2=2a n-1,且a1+a3=2a2,所以数列{a n}是首项为3,公差为4的等差数列,可得a n=3+4(n-1)=4n-1;(2)集合A={x|x=4n-1,n∈N*},B={x|x=3n,n∈N*},集合A∪B中的所有元素的最小值为3,且3,27,243三个元素是{b n}中前102项中的元素,且是A∩B中的元素,所以T102=(a1+a2+a3+...+a100)+9+81=×100×(3+400-1)+90=20190.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).【解答】解:(1)T n为正项数列{a n}的前n项的乘积,且a1=3,=,可得n≥2时,==,即为=,两边取3为底的对数,可得(n-1)log3a n=n log3a n-1,即为==...==1,所以log3a n=n,则a n=3n,对n=1也成立,所以a n=3n,n∈N*;(2)b n===1-,数列{b n}的前n项和为S n=n-(++...+)>n-2(++...+)=n-1+,所以S2023>2023-1+=2022+>2022,又S2023=2023-(+...+)<2023,所以[S2023]=2022.4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a1,并证明数列是等差数列;(2)若,求正整数k的所有取值.【解答】解:(1)证明:∵①,∴当n=1时,S1+2=2a1+1,解得a1=1,当n≥2时,S n-1+2n-1=2a n-1+1②,由①-②得a n+2n-1=2a n-2a n-1,即a n-2a n-1=2n-1,∴-=,又,∴数列{}是首项为,公差为的等差数列;(2)由(1)得=+(n-1)=n,即a n=n•2n-1,∴S n=1+2×2+3×22+...+n•2n-1③,2S n=2+2×22+3×23+...+n•2n④,由③-④得-S n=1+2+22+...+2n-1-n•2n=-n•2n=(1-n)2n-1,∴S n=(n-1)•2n+1,则S2k=(2k-1)•22k+1,2=k2•22k-1,∵,∴k2•22k-1<(2k-1)•22k+1,即k2-4k+2-<0,令f(x)=x2-4x+2-,∵y=x2-4x+2=(x-2)2-2在(2,+∞)上单调递减,y=-在(2,+∞)上单调递减,∴f(x)=x2-4x+2-在(2,+∞)上单调递减,又f(1)=1-4+2-=-<0,f(2)=4-8+2-=-<0,f(3)=9-12+2-=-<0,f(4)=2->0,要使,即f(x)<0,故正整数k的所有取值为1,2,3.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.【解答】解:(1)∵,∴n≥2时,S1+2S2+⋯+(n-1)S n-1=(n-1)3,相减可得:nS n=n3-(n-1)3,可得S n=3n-3+,n=1时,a1=S1=1.n≥2时,a n=S n-S n-1=3n-3+-[3(n-1)-3+]=3+-,n=1时,上式不满足,∴a n=.(2)证明:n=1时,b1=1,n≥2时,b n=na n=3n+1-=3n-,当n≥3时,数列{b n}的前n项和为T n=1+6-1+3×(3+4+⋯+n)-(++⋯+)=6+3×-(++⋯+)=-3-(++⋯+),要证明当n≥3时,,即证明当n≥3时,1≤++⋯++,令f(n)=++⋯++-1,n=3时,f(3)=0成立,而f(n)单调递增,因此当n≥3时,1≤++⋯++成立,即当n≥3时,.6.(2023•宁波模拟)函数y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n (b ≠0)的一条线段.已知数列{a n }由定义.(1)用b 表示a 1,a 2;(2)若b =2,记T n =a 1+2a 2+⋯+na n ,求证:.【解答】解:(1)由题意可得,,,解得:,;证明:(2)当b =2时,由,得,∴,则,∴T n =a 1+2a 2+⋯+na n =(1+2+...+n )-()=(),令P n =,则,∴==,∴,则>.7.(2023•邵阳二模)已知S n 为数列{a n }的前n 项和,a 1=2,S n +1=S n +4a n -3,记b n =log 2(a n -1)+3.(1)求数列{b n }的通项公式;(2)已知,记数列{c n }的前n 项和为T n ,求证:.【解答】解:(1)由S n +1=S n +4a n -3,可得S n +1-S n =4a n -3,即a n +1=4a n -3,即有a n +1-1=4(a n -1),可得a n -1=(a 1-1)•4n -1=4n -1,则b n =log 2(a n -1)+3=log 24n -1,+3=2n +1;(2)证明:=(-1)n +1•=(-1)n +1•(+),当n为偶数时,T n=(+)-(+)+...-(+)=(-),由{-}在n∈N*上递增,可得T n≥T2=(-)=;当nn为奇数时,T n=(+)-(+)+...+(+)=(+),由>0,可得T n>>.所以.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.【解答】解:(1)∵a i=n2,b i=()n2+n,∴n≥2时,a n=n2-(n-1)2=2n-1,b n===3n.n=1时,a1=1,b1=3,满足上式,∴a n=2n-1,b n=3n.(2)a n b n=(2n-1)3n.∴a i b i=T n=3+3×32+5×33+⋯+(2n-1)3n,3T n=32+3×33+⋯+(2n-3)3n+(2n-1)3n+1,相减可得:-2T n=3+2(32+33+⋯+3n)-(2n-1)3n+1=3+2×-(2n-1)3n+1,化为:T n=(n-1)3n+1+3,即a i b i=(n-1)3n+1+3.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.【解答】解:(1)因为a n+1=S n+1-S n,所以由,得,所以,所以,即.在中,令n=1,得,所以a1=1.所以数列是首项为1,公差为1的等差数列,所以,即:.当n≥2时,,a1=1也适合上式,所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知,,所以,因为b n>0,所以T n随着n的增大而增大,所以,又显然,所以,即T n的取值范围为.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a及数列{a n}的通项公式;2(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.【解答】解:(1)由题意,当n=1时,S1+2=a1+2=2a1,解得a1=2,当n=2时,S2+2=2a2,即a1+a2+2=2a2,解得a2=4,当n≥2时,由S n+2=2a n,可得S n-1+2=2a n-1,两式相减,可得a n=2a n-2a n-1,整理,得a n=2a n-1,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2•2n-1=2n,n∈N*.(2)由(1)可得,,,在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,则有a n+1-a n=(n+1)d n,∴,∴,∴T n=++•••+=+++•••+,,两式相减,可得T n=+++•••+-=1+-=-,∴T n=3-.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.【解答】解:(1)S n=2a n-n+1⋯①,则S n+1=2a n+1-(n+1)+1⋯②,②-①,得a n+1=2a n+1-2a n-1,即a n+1=2a n+1,∴a n+1+1=2(a n+1),即,令S n=2a n-n+1中n=1,得S1=a1=2a1-1+1,解得a1=0,则a1+1=1,∴{a n+1}是首项为1,公比为2的等比数列.(2)由(1)知,则,∴,且,∴当n为偶数时,,即,∴b1+b2+⋯+b14=b1+(b2+b3)+(b4+b5)+⋯+(b12+b13)+b14=1+21-1+23-1+⋯+211-1+212-1=.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.【解答】解:(1)∵2c sin A cos B+2b sin A cos C=a,∴由正弦定理得2sin C sin A cos B+2sin B sin A cos C=3sin A,∵sin A>0,∴sin C cos B+sin B cos C=,∴sin(B+C)=,∵A+B+C=π,∴sin A=,∵c>a,∴;(2)∵,则,b=2,BC边上中线AD=,故,解得,∴.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.【解答】解:(1)∵sin2A=sin B sin C,∴在锐角△ABC中,由正弦定理得a2=bc,∴,∵0<A≤,故角A的最大值为;(2)由(1)得,则C=-B,则=,在锐角△ABC中,<B<,∴B+∈(,),∴sin(B+)∈(,),故2cos B+cos C的取值范围为(,).14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.【解答】解:(1)因为=1,∴b cos C+b sin C-a-c=0,根据正弦定理可得:sin B cos C+sin B sin C-sin A-sin C=0又A+B+C=π,∴sin B cos C+sin B sin C-sin(B+C)-sin C=0,∴sin B sin C-cos B sin C-sin C=0,又C∈(0,π),∴sin C>0,∴,∴,又B∈(0,π),∴,∴,∴;(2)∵△ABC内切圆的面积为π,所以内切圆半径r=1.由于,∴,①由余弦定理得,b2=(a+c)2-3ac,∴b2=48-3ac,②联立①②可得,即,解得或(舍去),∴.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.【解答】解:(1)△ABC中,,所以+=,由正弦定理得,=,因为sin(A+B)=sin(π-C)=sin C,所以=;又因为C∈(0,π),所以sin C≠0,所以sin B=cos B,即tan B=,又因为B∈(0,π),所以B=.(2)因为D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,所以∠BDC=2θ,AD=BD=3,DC=1,AC=4,在△ABC中,由正弦定理得,=,所以BC==8sinθ,在△BDC中,由余弦定理得,BC2=BD2+CD2-2BD•CD cos2θ=10-6cos2θ,所以64sin2θ=10-6cos2θ,所以52sin2θ=4,解得sin2θ=,又因为θ∈(0,),所以sinθ=.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.【解答】解:(1)由,得2sin B sin(A+)=sin A+sin C=sin A+sin A cos B+ cos A sin B,∴sin A sin B+sin B cos A=sin A+sin A cos B+cos A sin B,∴sin B-cos B=2sin(B-)=1,又B∈(0,π),∴B-=,∴B=,∵,∴∠ADB=,在△ABD中,由正弦定理得=,∴=,解得AD=;(2)设CD=t,则BD=2t,又S△ABC=3,∴×2×3t×=3,解得t=2,∴BC=3t=6,又AC===2,在△ABD中,由正弦定理可得=,∴sin∠BAD=2sin∠ADB,在△ACD中,由正弦定理可得=,∴sin∠CAD=sin∠ADC,∵sin∠ADB=sin(π-∠ADC)=sin∠ADC,∴==2.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.1【解答】解:(1)∵BC⊥CD,∴,,,,,∴sin∠ADC=sin(∠BDC+∠ADB)=sin∠BDC cos∠ADB+cos∠BDC sin∠ADB=;(2)设∠BAD=α,∠BCD=β,∴,∴,∴①,==,当且仅当,时取最大值,综上,,的最大值是.18.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.【解答】证明:(1)∵a,∴,∴a(1+cos C)+c(1+cos A)=3b,∴由正弦定理可得,sin A(1+cos C)+sin C(1+cos A)=3sin B,∴sin A+sin A cos C+sin C+sin C cos A=3sin B,∴sin A+sin C+sin(A+C)=3sin B,∵A+B+C=π,∴sin A+sin C+sin B=3sin B,∴sin A+sin C=2sin B;(2)∵sin A+sin C=2sin B,∴a+c=2b,∵b=2,∴a+c=4①,∵,∴bc cos A=3,∴a2=b2+c2-2bc•cos A,即a2=4+c2-6,∴c2-a2=2,即(c-a)(c+a)=2,∴c-a=②,联立①②解得,a=,c=,∴,∴sin A=,∴S△ABC===.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.【解答】解:(1)左边=,右边=,由题意得⇒sin(B+C)+cos(B +C)=0⇒tan(B+C)=-1,即tan A=1,又因为0<A<π,所以;(2)由,由余弦定理得,,,当且仅当b=c 时取“等号”,而,故.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.【解答】证明:(1)∵c-2b cos A=b,∴由正弦定理可得,sin C-2sin B cos A=sin B,∵A+B+C=π,∴sin(A+B)=sin C,∴sin(A+B)-2sin B cos A=sin A cos B+cos A sin B-2sin B cos A=sin B,∴sin(A-B)=sin B,∵△ABC为锐角三角形,∴A∈(0,),B∈(0,),∴A-B∈,∵y=sin x在(-,)上单调递增,∴A-B=B,即A=2B;(2)解:∵A=2B,∴在△ABD中,∠ABC=∠BAD,由正弦定理可得,=,∴AD=BD=,∴=,∵△ABC为锐角三角形,∴,解得,∴,∴△ABD面积的取值范围为().。
(典型题)高中数学必修五第二章《解三角形》检测题(有答案解析)
一、选择题1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,c =S =( )A .4B C .16D .122.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( )AB .CD .3.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若3,60a b A ===︒,则边c =( ) A .1B .2C .4D .64.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .5.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .,12⎛⎫⎪⎪⎝⎭B .12⎛⎝⎭ C .,22⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭6.在ABC 中,若2a =,b =30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒7.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形 8.在ABC 中,tansin 2A BC +=,若2AB =,则ABC 周长的取值范围是( )A .(2,B .(4⎤⎦C .(4,2+D .(2⎤+⎦9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( )A .35mB .10mC .490013m D .10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒11.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1B .2C D 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .BC .32D 二、填空题13.已知在锐角ABC ,且212tan tan sin A B A +=,其内角A ,B ,C 所对边分别为a ,b ,c ,则边c 的 最小值为_____________.14.在ABC 中,2AB =,4AC =,则C ∠的取值范围为______.15.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________. 16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .18.如图,为了测量山坡上灯塔CD 的高度,某人从高为40h =的楼AB 的底部A 处和楼顶B 处分别测得仰角为60β=︒,30α=︒,若山坡高为32a =,则灯塔高度是________.19.在平面四边形ABCD 中,∠A =∠B =∠C =α(0<α<2π),已知AB 的取值范围是(1,2),则cos α的值为_____.20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++=⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.22.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5a =,6c =,3sin 5B =.(1)求b 和sin A 的值;(2)求三角形BC 边的中线AD 长; (3)求πsin(2)4A +的值. 23.已知在△ABC 中,a ∶b ∶c =2∶6∶3+1),求角A 的大小.24.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD .25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 22C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.2.C解析:C【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=, sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=, 222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =3.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.4.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴22222a cb ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.5.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+, 由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.6.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭, 所以23131cos 23sin sin sin cos sin 2322444B B B B B B B π⎛⎫-⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 32cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭, 即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.8.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.9.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h,由已知可知,OA OB h ==,且150AOB ∠=,在三角形AOB中,由余弦定理得222352cos15033h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得h =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.10.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.11.D解析:D 【分析】根据()2243S a b c =+-3cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭122224=+⨯=. 故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a>0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC 故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.2【分析】先化切为弦结合正余弦定理将角化边再由面积公式求得构造函数再用导数求得最值【详解】由得即结合正弦定理得再由余弦定理可得整理又由余弦定理可得代入上式得又锐角的面积所以时所以设函数求导可得由得所解析:2 【分析】先化切为弦,结合正、余弦定理将角化边,再由面积公式求得)22cos 3sin A c A-=,构造函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,再用导数求得最值.【详解】 由212tan tan sin A B A +=,得2cos sin cos sin 2sin sin sin A B B A A B A+=, 即2cos sin cos sin 2sin A B B A B +=,结合正弦定理得2cos cos 2b A a B b +=,再由余弦定理可得2222222222b c a a c b b a b bc ac+-+-⋅+⋅=,整理22234c b a bc +-=.又由余弦定理可得2222cos b a bc A c -=-,代入上式得()22cos c bc A =-,又锐角ABC 的面积1sin 2bc A =bc =)22cos 3sin A c A-=, 设函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,求导可得()212cos sin xf x x-'=,由()212cos 0sin x f x x -'==,得3x π=,所以在0,3π⎛⎫ ⎪⎝⎭上单调递减,在,32ππ⎛⎫⎪⎝⎭上单调递增,所以()3f x f π⎛⎫≥= ⎪⎝⎭于是24c =≥,即2c ≥,当且仅当3A π=时,等号成立. 故答案为:2 【点晴】结合正、余弦定理将角化边,构造函数求最值是本题解题的关键.14.【分析】先根据三角形任意两边之和大于第三边求出的范围再结合余弦定理可以用表示求出的范围进而求得的取值范围【详解】解:在中内角的对边分别是由题意得即令所以所以根据导数与函数单调性的关系得:函数在上单调解析:π0,6⎛⎤⎥⎝⎦【分析】先根据三角形任意两边之和大于第三边求出a 的范围,再结合余弦定理可以用a 表示cos C ,求出cos C 的范围,进而求得C ∠的取值范围. 【详解】解:在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c , 由题意得2c =,4b =, b c a b c -<<+,即26a <<,2222123cos 2882a b c a a C ab a a+-+===+, 令()382x f x x =+,所以()2221312'828x f x x x-=-=, 所以根据导数与函数单调性的关系得:函数()f x 在(2,上单调递减,在()上单调递增,所以当26x <<时,()f x 的取值范围为2⎫⎪⎢⎪⎣⎭.所以cos C ⎫∈⎪⎪⎣⎭又因为0πc <<, 所以π0,6C ⎛⎤∈ ⎥⎝⎦.故答案为:π0,6⎛⎤⎥⎝⎦.【点睛】本题考查余弦定理解三角形,三角形的性质,考查运算能力与化归转化思想,是中档题.15.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题解析:3【分析】利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABCS ab C =,即可求出三角形的面积.【详解】由()224c a b =-+可得:22224c a b ab =+-+, 在ABC 中,由余弦定理得:2222cos c a b ab C =+-, 即222c a b ab =++, 所以24ab ab -+=, 即43ab =,所以114sin 223ABCSab C ==⨯=,【点睛】本题主要考查了余弦定理,面积公式的应用,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C . 【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-= 即222sin sin sin sin sin A B C A B +-= 根据正弦定理得222a b c ab +-=故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈得3C π=故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题.17.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.18.28【分析】作于延长线交地面于则由求得从而可得然后即得【详解】如图于延长线交地面于则而所以即所以故答案为:28【点睛】本题考查解三角形的应用掌握仰角概念是解题基础测量高度问题常常涉及到直角三角形因此解析:28 【分析】作BN DC ⊥于N ,DC 延长线交地面于M ,则AM BN =,AM DM ⊥,tan DM AM β=,tan DN BN α=,由40DM DN -=求得BN ,从而可得DM ,然后即得DC . 【详解】如图,BN DC ⊥于N ,DC 延长线交地面于M ,则tan DN BN α=,tan DM AM β=,而BN AM =,所以tan tan BN BN h βα-=,即(tan 60tan 30)40BN ︒-︒=,40203tan 60tan 30BN ==︒-︒,所以tan 60tan 603220333228DC AM CM BN =︒-=︒-=⨯-=. 故答案为:28.【点睛】本题考查解三角形的应用,掌握仰角概念是解题基础.测量高度问题常常涉及到直角三角形,因此掌握直角三角形中的三角函数定义是解题关键,有时还需要用三角函数恒等变换公式.19.【分析】延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在与中分别运用正弦定理可得关于的方程联立可得答案【详解】解:如图延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在中由正弦定理可得 解析:24【分析】延长BA ,CD 交与E 点,过点C 作CFAD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==,设BC x =,在BCE ∆与BCF ∆中,分别运用正弦定理可得关于cos α的方程,联立可得答案. 【详解】解:如图,,延长BA ,CD 交与E 点,过点C 作CF AD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==, 设BC x =,在BCE ∆中,由正弦定理可得:sin sin BC BEE BCE=∠∠,即:2sin(2)sin x παα=-,可得22cos xα=, 同理,在BCF ∆中,由正弦定理可得:sin sin BC BFBFC BCF=∠∠,即:1sin sin(2)x απα=-,可得2cos 1x α=, 故可得:2124cos α=,可得21cos 8α=,又02<<πα,故2cos α=, 故答案为:24. 【点睛】本题主要考查利用正弦定理解三角形,考查学生数学建模的能力与运算能力,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中 解析:7【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.答案见解析 【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=,则1cos 2A =,故3A π=, 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++=⎪⎝⎭,则cos2cos 0A A +=,故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=. 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 22.(113;(2)2;(3)26. 【分析】(1)确定B 锐角,求得cos B ,由余弦定理求得b ,再由正弦定理得sin A ; (2)在ABD △中由余弦定理求得中线AD ,(3)确定A 是锐角,求得cos A ,由二倍角公式求得sin 2,cos 2A A ,然后由两角和的正弦公式求值. 【详解】(1)在ABC 中,因为a b >,故由3sin 5B =,可得cos 45B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b = 由正弦定理sin sin a b A B =,得sin sin a B A b ==. 所以,bsin A(2)设BC 边的中点为D ,在ABD △中,cos 45B = 由余弦定理得:2AD ===, (3)由(1)及a c <,得cos A =,所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 444A A A +=+=.【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,解题时根据已知条件选用正弦定理或余弦定理求解,注意在用平方关系求得角的余弦时,先确定角的范围,然后计算.23.45A =︒【分析】利用余弦定理可求A 的大小. 【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 2k k k b c aA bc+-+-===, 而A 为三角形内角,故45A =︒. 24.(1)π4A =;(2)a =AD = 【分析】(1()sin sin sin tan cos C BA C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD . 【详解】解:(1()sin sin sin tan cos C BA C A C -=-, ()()sin sin sin tan cos C A CA C A C -+=-, ∴2sin sin cos cos sin sin sin cos cos AC A C A C C A C A--=-,∵sin 0C ≠,∴2sincos cos AA A+=∴cos 2A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A=+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==, 又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴AD = 【点睛】 关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.25.2+【分析】 利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长.【详解】 由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。
(典型题)高中数学必修五第二章《解三角形》测试卷(含答案解析)
一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且3CD =,3a b =,则c 的值为( )A .72B .473C .3D .232.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .3 B .36C .16D .3 3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且7c =,3C π=,则a =( )A .1B .221C .1或221D .21 4.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1 B .2C .4D .65.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .D .7.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .158.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( )A .63B .3C .3D .139.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A .4B .2C .1D .210.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭11.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .D .二、填空题13.如图,点A 是半径为1的半圆O 的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.14.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.15.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.16.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin :sin :sin 3:5:7A B C =,则ABC 的最大角的大小是________.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.23.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知)cos cos A c a C =.(1)求c b;(2)若cos 2c A b =,且ABC 的面积为4,求a . 24.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.25.请从下面三个条件中任选一个,补充在下面的横线上,并解答.()cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,a b c =+=ABC 的面积.26.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 2sin 0b A -=. (1)求角B ;(2)若b =,5a c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值.【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以13cos ,sin 2C C ==.由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴sin3a ==②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.5.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.8.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性9.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.10.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D.【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.11.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦,当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.14.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π) 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.15.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=, ∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的, 可得6x x=, 解得6x =BC 6,6. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.16.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦 解析:23),【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围. 【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<23,cos ()64A A ππ∴<<∴∈ sin 2sin cos 2cos (2,3)sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得c =,进而可得a =,再由余弦定理即可求得cos B =,利用平方关系求得sin B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-,又22212b a c -=,所以2212c c =-,所以3c =, 222222145299a b c b b b =-=-=,所以a =,所以22222258cos 233b b ba cb B ac +-+-===,所以sin B ==, 所以sin tan 3cos BB B==, 故答案为:3. 【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.19.【分析】根据设根据大角对大边确定角C 是最大角再利用余弦定理求解【详解】因为所以设所以角C 是最大角因为所以则的最大角是故答案为:【点睛】本题主要考查正弦定理余弦定理的应用还考查了运算求解的能力属于中档题 解析:23π 【分析】根据sin :sin :sin 3:5:7A B C =,设()3,5,7,0a t b t c t t ===>,根据大角对大边,确定角C 是最大角,再利用余弦定理求解. 【详解】因为sin :sin :sin 3:5:7A B C =, 所以设()3,5,7,0a t b t c t t ===>,所以角C 是最大角2221cos 22a b c C ab +-==-,因为()0,C π∈,所以23C π=, 则ABC 的最大角是23π. 故答案为:23π 【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 45CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.(1)3π;(2) 【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解. 【详解】 (1)∵(A +B )=1+2sin 22C,且A +B +C =π, ∴C =1+1﹣cos C =2﹣cos C C +cos C =2,∴sin (C +6π)=1.∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB∠=sin 3AB π=2×2=4,∴AB =23, ∵∠ACB =3π,∴∠ABC +∠BAC =23π,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π, 在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠=232sin3π=4, ∴BI =4sin (3π﹣θ),AI =4sin θ, ∴△ABI 的周长为3+4sin (3π﹣θ)+4sin θ=33θ﹣12sin θ)+4sin θ =33θ+2sin θ=4sin (θ+3π)3 ∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3,故△ABI 的周长的最大值为3. 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.22.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③.因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.23.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果; (2)根据三角形的面积公式以及余弦定理可求得结果. 【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos 6A =,则sin 6A =,又ABC 的面积为21sin 244bc A c ==,则3c =,b =由余弦定理得2222cos 2792327a b c bc A =+-=+-⨯=,解得a =. 【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键. 24.(1)120︒;(2)等腰钝角三角形. 【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++, 所以22(2)(2)a b c b c b c =+++, 即222b c a bc +-=-,所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1cos sin sin 60122B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.25.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=; 方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A =又()0,A π∈,所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C=-=+-=+-所以2cos sin sin 0,A C C -=即2cos sin sin ,A C C =又()0,C π∈,所以sin 0,C ≠ 所以1cos 2A =所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅- ()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 22ABC S bc A == 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.26.(1)3B π=;(2)2. 【分析】(12sin 0b A -=2sin sin 0A B A -=求解.(2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解. 【详解】(1)∵2sin 0b A -=, ∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角, ∴3B π=.(2)由余弦定理得2222cos3=+-b a c ac π,整理得2()37a c ac +-=,∵5a c +=,∴6ac =,∴ABC 的面积1sin 2S ac B ==. 【点睛】 方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.。
不等式解三角形数列高考试题精选
不等式解三角形数列高考试题精选一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0 4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>05.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.9.若a,b∈R,ab>0,则的最小值为.10.设x,y满足约束条件,则z=3x﹣2y的最小值为.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.13.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.30.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.31.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.32.设数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .(1)求{a n }的通项公式;(2)求数列{}的前n 项和.33.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.34.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列的前n 项和T n .35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.不等式解三角形数列高考试题精选参考答案与试题解析一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.5.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是log25.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.【解答】解:直线=1(a>0,b>0)过点(1,2),则+=1,由2a+b=(2a+b)×(+)=2+++2=4++≥4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,∴2a+b的最小值为8,故答案为:8.9.若a,b∈R,ab>0,则的最小值为4.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.10.设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.=2a n,【解答】解:∵a n+1∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:613.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【解答】解:∵a n=S n+1S n,+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=75°.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sinB==,∵b<c,∴B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为:75°.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为8.【解答】解:∵A∈(0,π),∴sinA==.==bc=,化为bc=24,∵S△ABC又b﹣c=2,解得b=6,c=4.由余弦定理可得:a2=b2+c2﹣2bccosA=36+16﹣48×=64.解得a=8.故答案为:8.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S==1.△ABC22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos (2A ﹣)的值.【解答】解:(Ⅰ)将sinB=sinC ,利用正弦定理化简得:b=c ,代入a ﹣c=b ,得:a ﹣c=c ,即a=2c ,∴cosA===;(Ⅱ)∵cosA=,A 为三角形内角, ∴sinA==,∴cos2A=2cos 2A ﹣1=﹣,sin2A=2sinAcosA=,则cos (2A ﹣)=cos2Acos+sin2Asin=﹣×+×=.30.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知bcosC +ccosB=2b ,则= 2 .【解答】解:将bcosC +ccosB=2b ,利用正弦定理化简得:sinBcosC +sinCcosB=2sinB , 即sin (B +C )=2sinB , ∵sin (B +C )=sinA , ∴sinA=2sinB ,利用正弦定理化简得:a=2b , 则=2. 故答案为:231.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【解答】解:(1)设等比数列{a n }首项为a 1,公比为q , 则a 3=S 3﹣S 2=﹣6﹣2=﹣8,则a 1==,a 2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣(2+(﹣2)n+1),则S n+1=﹣(2+(﹣2)n+2),S n+2=﹣(2+(﹣2)n+3),由S n+1+S n+2=﹣(2+(﹣2)n+2)﹣(2+(﹣2)n+3)=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×+(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.32.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.33.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n.﹣1【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.34.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;=b n b n+1,求数列(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,所以S2n=(2n+1)b n+1,+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2(S n﹣S n﹣1)=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1=3a n,满足a n+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.。
解三角形专项练习(含解答题)
解三角形专练1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为2.在ABC ∆中,若0120,2==A b ,三角形的面积3=S ,则三角形外接圆的半径为( )A.B .2 C..43.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 1504.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B. C. D.5.在三角形ABC 中,若1tan tan tantan ++=B A B A ,则C cos 的值是B. 22C. 21D. 21-6.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( )A .直角三角形B .等腰或直角三角形C .不能确定D .等腰三角形7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若22265b c a bc+-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.358.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形9.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,︒=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个10.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221sin cos 2A A -=,则下列各式正确的是( )A. 2b c a +=B. 2b c a +<C. 2b c a +≤D. 2b c a +≥11.在ABC ∆中,已知30,4,34=∠==B AC AB ,则ABC ∆的面积是A .34B .38 C.34或38D .312.在ABC ∆中,角角,,A B C 的对边分别为,,a b c ,若22a b -=且sin C B =,则A 等于A .6πB .4π C .3πD .23π13.若∆ABC 的三角A:B:C=1:2:3,则A 、B 、C 分别所对边a :b :c=( )A.1:2:3B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30B .60C 90 D.12015.在∆ABC 中,三边a ,b,c 与面积S 的关系式为2221()4Sa b c =+-,则角C 为( )A .30B 45C .60D .90 16.△ABC 中,a b sin B =2,则符合条件的三角形有( ) A .1个 B .2个 C .3个D .0个17.设∆ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=( ) A .3πB .23πC .34π D.56π18.若三角形ABC 中,sin(A +B)sin(A -B)=sin 2C ,则此三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形19.已知两座灯塔A 、B 与C 的距离都是a ,灯塔A 在C 的北偏东20°,灯塔B 在C 的南偏东40°,则灯塔A 与灯塔B 的距离为 ( )A .a B.2aD20.在△ABC 中,若cos cos A bB a =,则△ABC 的形状( ) A .直角三角形 B .等腰或直角三角形C .不能确定D .等腰三角形21.已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,且120c b B ==︒,则ABC ∆的面积等于________.22.在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. 则角B 的大小为_______;23.在△ABC 中,sin :sin :sin 3:2:4A B C =,则cos C 的值为________. 24.在ABC ∆中.若1b =,c =23C π∠=,则a=___________。
大题 解三角形(精选30题)(学生版)-2024届新高考数学大题
大题 解三角形(精选30题)1(2024·江苏·一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos B +1=c a.(1)证明:B =2A ;(2)若sin A =24,b =14,求△ABC 的周长.2(2024·湖南常德·三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A +sin 2B +sin A sin B =sin 2C .(1)求角C ;(2)若a ,b ,c 成等差数列,且△ABC 的面积为1534,求△ABC 的周长.3(2024·江苏·一模)在△ABC 中,sin B -A +2sin A =sin C .(1)求B 的大小;(2)延长BC 至点M ,使得2BC =CM .若∠CAM =π4,求∠BAC 的大小.4(2024·浙江温州·二模)记△ABC的内角A,B,C所对的边分别为a,b,c,已知2c sin B=2b.(1)求C;(2)若tan A=tan B+tan C,a=2,求△ABC的面积.5(2024·浙江嘉兴·二模)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2cos A-3cos2A= 3.(1)求cos A的值;(2)若△ABC为锐角三角形,2b=3c,求sin C的值.6(2023·福建福州·模拟预测)在△ABC中,角A,B,C的对边分别是a,b,c,且a sin C=c sin B,C= 2π3.(1)求B;(2)若△ABC面积为334,求BC边上中线的长.7(2024·山东淄博·一模)如图,在△ABC中,∠BAC=2π3,∠BAC的角平分线交BC于P点,AP=2.(1)若BC=8,求△ABC的面积;(2)若CP=4,求BP的长.8(2024·安徽·模拟预测)如图,在平面四边形ABCD中,AB=AD=4,BC=6.(1)若A=2π3,C=π3,求sin∠BDC的值;(2)若CD=2,cos A=3cos C,求四边形ABCD的面积.9(2024·浙江·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知c2b2+c2-a2=sin Csin B.(1)求角A;(2)设边BC的中点为D,若a=7,且△ABC的面积为334,求AD的长.10(2024·湖北·一模)在△ABC中,已知AB=22,AC=23,C=π4.(1)求B的大小;(2)若BC>AC,求函数f x =sin2x-B-sin2x+A+C在-π,π上的单调递增区间.11(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,△ABC的面积为S,三个内角A、B、C所对的边分别为a,b,c,且sin C=2Sc2-b2.(1)证明:△ABC是倍角三角形;(2)若c=9,当S取最大值时,求tan B.12(2024·福建漳州·模拟预测)如图,在四边形ABCD中,∠DAB=π2,B=π6,且△ABC的外接圆半径为4.(1)若BC=42,AD=22,求△ACD的面积;(2)若D=2π3,求BC-AD的最大值.13(2024·山东济南·二模)如图,在平面四边形ABCD中,BC⊥CD,AB=BC=2,∠ABC=θ,120°≤θ<180°.(1)若θ=120°,AD=3,求∠ADC的大小;(2)若CD=6,求四边形ABCD面积的最大值.14(2024·湖北武汉·模拟预测)已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2 -(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.15(2024·湖南邵阳·模拟预测)在△ABC中,角A,B,C的对边分别为a,b,c,且△ABC的周长为a sin Bsin A+sin B-sin C.(1)求C;(2)若a=2,b=4,D为边AB上一点,∠BCD=π6,求△BCD的面积.16(2024·广东梅州·二模)在△ABC中,角A,B,C所对应的边分别为a,b,c,3a cos B-b sin A= 3c,c=2,(1)求A的大小:(2)点D在BC上,(Ⅰ)当AD⊥AB,且AD=1时,求AC的长;(Ⅱ)当BD=2DC,且AD=1时,求△ABC的面积S△ABC.17(2024·广东广州·一模)记△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S.已知S=-34(a2+c2-b2).(1)求B;(2)若点D在边AC上,且∠ABD=π2,AD=2DC=2,求△ABC的周长.18(2024·广东佛山·模拟预测)在△ABC中,角A,B,C所对的边分别为a,b,c,其中a=1,cos A= 2c-12b.(1)求角B的大小;(2)如图,D为△ABC外一点,AB=BD,∠ABC=∠ABD,求sin∠CABsin∠CDB的最大值.19(2024·河北石家庄·二模)在△ABC中,角A,B,C所对的边分别为a,b,c,设向量m=(2sin A,3sin A+3cos A),n =(cos A,cos A-sin A),f(A)=m ⋅n ,A∈π6,2π3.(1)求函数f A 的最大值;(2)若f(A)=0,a=3,sin B+sin C=62,求△ABC的面积.20(2024·广东·一模)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,已知b-c cos A= 2a cos B cos C.(1)求cos B;(2)若点D在AC上(与A,C不重合),且C=π4,∠ADB=2∠CBD,求CDAD的值.21(2024·辽宁·二模)在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.22(2024·黑龙江齐齐哈尔·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知B=π4,4b cos C=2c+2a.(1)求tan C;(2)若△ABC的面积为32,求BC边上的中线长.23(2024·重庆·模拟预测)如图,某班级学生用皮尺和测角仪(测角仪的高度为1.7m )测量重庆瞰胜楼的高度,测角仪底部A 和瞰胜楼楼底O 在同一水平线上,从测角仪顶点C 处测得楼顶M 的仰角,∠MCE =16.5°(点E 在线段MO 上).他沿线段AO 向楼前进100m 到达B 点,此时从测角仪顶点D 处测得楼顶M 的仰角∠MDE =48.5°,楼尖MN 的视角∠MDN =3.5°(N 是楼尖底部,在线段MO 上).(1)求楼高MO 和楼尖MN ;(2)若测角仪底在线段AO 上的F 处时,测角仪顶G 测得楼尖MN 的视角最大,求此时测角仪底到楼底的距离FO .参考数据:sin16.5°sin48.5°sin32°≈25,tan16.5°≈827,tan48.5°≈87,40×35≈37.4,24(2024·重庆·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b =2b cos 2π12-A 2 -a sin B 2cos B 2 .(1)求角A 的大小;(2)若BP =PC ,且b +c =2,求AP 的最小值.25(2024·山西朔州·一模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c2的最小值.26(2024·河南开封·二模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b cos A =2a sin B .(1)求sin A ;(2)若a =3,再从条件①,条件②,条件③中选择一个条件作为已知,使其能够确定唯一的三角形,并求△ABC 的面积.条件① :b =6c ;条件② :b =6;条件③ :sin C =13.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.27(2024·河南·一模)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b 2-a 2=ac .(1)求证:B =2A ;(2)若△ABC 为锐角三角形,求sin (C -A )-sin B sin A的取值范围.28(2023·河南·三模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a c =a 2+b 2-c 2b2,且a ≠c .(1)求证:B =2C ;(2)若∠ABC 的平分线交AC 于D ,且a =12,求线段BD 的长度的取值范围.29(2024·湖北·二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c a <b ,c =2a cos A cos B -b cos2A .(1)求A ;(2)者BD =13BC ,AD =2,求b +c 的取值范围.30(2024·河北·二模)若△ABC 内一点P 满足∠PAB =∠PBC =∠PCA =θ,则称点P 为△ABC 的布洛卡点,θ为△ABC 的布洛卡角.如图,已知△ABC 中,BC =a ,AC =b ,AB =c ,点P 为的布洛卡点,θ为△ABC 的布洛卡角.(1)若b =c ,且满足PB PA=3,求∠ABC 的大小.(2)若△ABC 为锐角三角形.(ⅰ)证明:1tan θ=1tan ∠BAC +1tan ∠ABC +1tan ∠ACB .(ⅱ)若PB 平分∠ABC ,证明:b 2=ac .。
“平面向量、三角函数、解三角形、数列”跟踪训练
平平面面向向量量㊁㊁三三角角函函数数㊁㊁解解三三角角形形㊁㊁数数列列 跟跟踪踪训训练练ʏ河南省商丘市实验中学马春林一、选择题1.已知角θ的终边在直线y=-22x 上,则8s i n2θ-1c o sθ等于()㊂A.6B.6或12C.-6或12D.-6或-122.已知әA B C的三个内角A,B,C所对的边分别为a,b,c,且a=2b c o s C,b-ac-a= s i n A+s i n Cs i n B,则әA B C是()㊂A.等边三角形B.钝角三角形C.直角三角形D.等腰直角三角形3.已知等比数列{a n}中,a2=3,a5=81,b n=l o g3a n,数列{b n}的前n项和为T n,则T8=()㊂A.36B.28C.45D.324.已知在әA B C中,3s i n A,3,4c o s B 成等差数列,3c o s A+4s i n B=l o g66,则角C 的大小为()㊂A.5π6B.π2C.π6D.π6或5π65.已知向量a=(c o s2α,s i nα),b=(1, 2s i nα-1),αɪπ2,π,若a㊃b=25,则t a nα+π4的值为()㊂A.23B.13C.27D.176.已知α,β为锐角,且3c o sα(s i nβ+1) =2s i nα-12c o sα,c o s5π2-α-c o sα-3π=6s i nπ-βs i nπ2+α,则s i nβs i nα等于()A.3105B.2109C.109D.1067.在әA B C中,点P满足B Pң=3P Cң,过点P的直线与A B,A C所在的直线分别交于点M,N,若A Mң=λA Bң,A Nң=μA Cң(λ> 0,μ>0),则λ+μ的最小值为()㊂A.22+1B.32+1C.32D.528.已知G是әA B C的重心,A Gң=λ㊃A Bң+μA Cң(λ,μɪR),若øA=120ʎ,A Bң㊃A Cң=-2,则|A Gң|的最小值是()㊂A.33B.22C.23D.349.已知әA B C是边长为2的等边三角形,且A Eң=E Bң,A Dң=2D Cң,则B Dң㊃C Eң= ()㊂A.-3B.-2C.-1D.310.定义一种运算:a⊗b=a,aɤb,b,a>b,令f(x)=(c o s2x+s i n x)⊗54,且xɪ0,π2,则函数y=f x-π2+34的最大值是()㊂A.54B.74C.2D.311.已知әA B C的内角A,B,C所对的边分别为a,b,c,且s i n2(B+C)=s i n2B+ s i n2C+s i n B s i n C,a=6,则当әA B C的面积最大时,әA B C的周长L等于()㊂A.6+23B.26+3C.6+22D6+23212.已知函数f(x)=s i n(ωx+φ)ω>0,|φ|ɤπ2,x=-π4为f(x)的零点, x=π4为y=f(x)图像的对称轴,且f(x)在π18,5π36内单调,则ω的最大值为()㊂A.11B.9C.7D.513.若M是边长为2的正六边形A B C-D E F内及边界上一动点,则A Bң㊃A Mң的最大值与最小值之差为()㊂A.2B.4C.6D.814.已知f(x)=2s i n2ωx+π3-1(ω>0),给出下列结论:①若f(x1)=1,f(x2)=-1,且|x1-x2|m i n=π,则ω=1;②存在ωɪ(0,2),使得f(x)的图像向左平移π6个单位长度后得到的图像关于y轴对称;③若f(x)在[0,2π]上恰有7个零点,则ω的取值范围为4124,4724;④若f(x)在-π6,π4上单调递增,则ω的取值范围为0,23㊂其中,所有正确结论的编号是()㊂A.①②B.②③C.①③D.②④二㊁填空题15.已知向量a=(1,3),向量b为单位向量,且a㊃b=1,则2b-a与2b的夹角为㊂16.设数列{a n}是首项为1的正项数列,且(n+1)a2n+1-n a2n+a n+1a n=0(n=1,2, 3, ),则数列{a n}的通项公式是㊂17.已知数列a n c o s nπ3的前n项和为S n,S2017=5710,S2018=4030,若数列{a n}为等差数列,则S2019=㊂18.若s i n3θ-c o s3θ>c o s5θ-s i n5θ7,且θɪ(0,2π),则θ的取值范围是㊂19.已知S n为数列{a n}的前n项和,a1 =a2=1,平面内三个不共线的向量O Aң,O Bң, O Cң,满足O Cң=(a n-1+a n+1)O Aң+(1-a n)㊃O Bң,nȡ2,nɪN*,若A,B,C在同一条直线上,则S2018=㊂20.已知数列{a n}中,a1=2,a n+1=a n+1n,若对于任意的nɪN*,a n<λ2+2λ恒成立,则实数λ的取值范围是㊂21.已知首项为正数的等比数列{a n}的公比为q,曲线C n:a n x2+a n+1y2=1,则下列叙述正确的为㊂①q=1,C n为圆;②q=-1,C n的离心率为2;③q>1,C n的离心率为1-1q;④q<0,C n为共渐近线的双曲线㊂22.在әA B C中,A C=6,B C=7,c o s A =15,O是әA B C的内心,若O Pң=x O Aң+ y O Bң,其中0ɤxɤ1,0ɤyɤ1,则动点P的轨迹所覆盖的面积为㊂23.已知数列{a n}的前n项和为S n,且a n>0,2S n=a2n+a n,若不等式2S n+9ȡ(-1)n k a n对任意的nɪN*恒成立,则k的取值范围是㊂24.已知等差数列{a n}的前n项和为S n,若S7<0,S8>0,则a5a4的取值范围是㊂三㊁解答题25.设递增数列{a n}满足a1=1,a1,a2, a5成等比数列,且对任意的nɪN*,函数f(x)=a n+2-a n+1-(a n-a n+1)c o s x-a n s i n x满足f(π)=0㊂(1)求数列{a n}的通项公式;(2)若数列{a n}的前n项和为S n,b n= 1S n,数列{b n}的前n项和为T n,证明:T n<2㊂26.在平面直角坐标系x O y中,已知点A-12,0,B32,0,锐角α的终边与单位圆O交于点P㊂(1)当A Pң㊃B Pң=-14时,求α的值㊂(2)试问:在x轴上是否存在定点M,使得|A Pң|=12|M Pң|恒成立若存在,求出点M的横坐标;若不存在,请说明理由㊂27.在әA B C中,a,b,c分别为内角A,B ,C 的对边,且2s i n A c o s C =2s i n B -s i n C ㊂(1)求A 的大小;(2)在锐角әA B C 中,若a =3,求b +c 的取值范围㊂28.已知函数f (x )的图像是由函数g (x )=c o s x 的图像经如下变换得到:先将g (x )图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得的图像向右平移π2个单位长度㊂(1)求函数f (x )的解析式,并求其图像的对称轴方程㊂(2)已知关于x 的方程f (x )+g (x )=m 在[0,2π)内有两个不同的解α,β㊂①求实数m 的取值范围;②请用含m 的式子表示c o s (α-β)㊂29.已知等差数列{a n }的公差不为零,a 1=11,且a 2,a 5,a 6成等比数列㊂(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+|a 3|+ +|a n|,求S n ㊂30.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ɪN *㊂(1)求数列{a n }的通项公式;(2)证明:对一切正整数n ,有1a 1+1a 2++1a n<74㊂31.某地区森林原有木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材的存量㊂(1)求a n 的表达式㊂(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗若会,需要经过多少年?(参考数据:l g 2ʈ0.3)32.已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9㊂(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0,记{b n }的前n 项和为T n ,若T n ɤλb n 对任意的n ɪN *恒成立,求λ的取值范围㊂33.已知向量m =(s i n x ,1),n =3A c o s x ,A 2c o s 2x(A >0),函数f (x )=m ㊃n 的最大值为6㊂(1)求A 的值,以及函数图像的对称轴方程和对称中心;(2)将函数y =f (x )的图像向左平移π12个单位长度,再将所得图像上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y =g (x )的图像,求y =g (x )在0,5π24上的值域㊂参考答案:一㊁选择题1.B2.A3.B4.C5.D6.B7.B8.C9.B 10.C 11.C 12.B 13.D 14.D 二㊁填空题15.π3 16.a n =1n 17.666 18.π4,5π419.2 20.(-ɕ,-3]ɣ[1,+ɕ) 21.①③④ 22.106323.[-7,7.25] 24.(-ɕ,-1)三㊁解答题25.(1)因为f (x )=a n +2-a n +1-(a n -a n +1)c o s x -a n s i n x ,所以f (π)=a n +2-a n +1+a n -a n +1=0,即2a n +1=a n +a n +2,故{a n }是以1为首项的等差数列㊂设数列{a n }的公差为d ,则d >0㊂因为a 1,a 2,a 5成等比数列,所以a 22=a 1a 5,即(a 1+d )2=a 1(a 1+4d ),又a 1=1,解得d =2,所以a n =2n -1㊂(2)由(1)可得S n =(a 1+a n )n 2=n 2,所以b n =1n2,因此T 1=b 1=1<2㊂又因为当n ȡ4时,1n 2<1n (n -1)=1n -1-1n ,所以T n =b 1+b 2+b 3+ +b n =112+122+132+ +1n 2<112+11ˑ2+12ˑ3+ +1n n -1 =1+1-12+ +1n -1-1n =2-1n<2㊂综上所述,T n <2㊂26.(1)由题意知P (c o s α,s i n α),则A P ң=c o s α+12,s i n α ,B P ң=c o s α-32,s i n α㊂所以A P ң㊃B Pң=c o s α+12㊃c o s α-32+s i n 2α=c o s 2α-c o s α-34+s i n 2α=14-c o s α=-14,即c o s α=12㊂又因为α为锐角,所以α=π3㊂(2)存在㊂设M (m ,0),则M P ң=(c o s α-m ,s i n α)㊂所以|A P ң|2=c o s α+122+s i n 2α=1+c o s α+14=c o s α+54;|M P ң|2=(c o s α-m )2+s i n 2α=1-2m c o s α+m 2㊂因为|A P ң|=12|M P ң|,所以c o s α+54=14(1-2m c o s α+m 2),即1+m 2c o s α+1-m 24=0对任意的αɪ0,π2 恒成立,所以1+m 2=0,1-m24=0,解得m =-2,即点M 的横坐标为-2㊂27.(1)在әA B C 中,因为B =π-A +C,所以2s i n A c o s C =2s i n B -s i n C =2s i n A c o s C +2c o s A s i n C -s i n C ⇒2c o s A s i n C =s i n C ㊂又因为s i n C ʂ0,所以c o s A =12,故A =π3㊂(2)在锐角әA B C 中,a =3,由(1)知A =π3,B +C =2π3㊂由正弦定理得a s i n A =332=2,b +c =2s i n B +2s i n C =2s i n B +2s i n B +π3=3s i n B +3c o s B =23s i n B +π6 ㊂因为B ɪ0,π2 ,C =2π3-B ɪ0,π2,所以B ɪπ6,π2 ,B +π6ɪπ3,2π3 ,s i n B +π6 ɪ32,1,所以b +c =23㊃s i n B +π6 ɪ(3,23]㊂28.(1)将g (x )=c o s x 的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y =2c o s x 的图像,再将y =2c o s x 的图像向右平移π2个单位长度后得到y =2c o s x -π2的图像,故f (x )=2s i n x ㊂所以函数f (x )=2s i n x 图像的对称轴方程为x =k π+π2,k ɪZ ㊂(2)①f (x )+g (x )=2s i n x +c o s x =5s i n (x +φ),其中s i n φ=15,c o s φ=25㊂依题意,s i n (x +φ)=m5在区间[0,2π)内有两个不同的解α,β,当且仅当m5<1时成立,故m 的取值范围是(-5,5)㊂②因为α,β是方程5s i n (x +φ)=m 在区间[0,2π)内的两个不同的解,所以s i n (α+φ)=m5,s i n (β+φ)=m5㊂当1<m <5时,α+β=2π2-φ,即α-β=π-2(β+φ);当-5<m <1时,α+β=23π2-φ ,即α-β=3π-2(β+φ)㊂所以c o s (α-β)=-c o s 2(β+φ)=2s i n 2(β+φ)-1=2m 52-1=2m 2-55㊂29.(1)设{a n }的公差为d (d ʂ0),由题意得a 25=a 2a 6,即(a 1+4d )2=(a 1+d )㊃(a 1+5d ),化简得2a 1d +11d 2=0,又因为a 1=11,所以d =-2或d =0(舍去),所以a n =-2n +13㊂(2)由(1)知,当n ɤ6时,a n >0;当n ȡ7时,a n <0㊂当n ɤ6时,S n =|a 1|+|a 2|+|a 3|+ +|a n |=a 1+a 2+a 3+ +a n =n a 1+n (n -1)2=12n -n 2;当n ȡ7时,S n =|a 1|+|a 2|+|a 3|+ +|a n |=a 1+a 2+a 3+ +a 6-(a 7+a 8+ +a n )=2S 6-S n =72-(12n -n 2)=n 2-12n +72㊂综上可得,S n =12n -n 2,n ɤ6,n 2-12n +72,n ȡ7㊂30.(1)因为2S n n =a n +1-13n 2-n -23,n ɪN *,所以2S n =n a n +1-13n 3-n 2-23n =n a n +1-n (n +1)(n +2)3㊂所以当n ȡ2时,2S n -1=(n -1)a n -(n -1)n (n +1)3㊂故2a n =2S n -2S n -1=n a n +1-(n -1)㊃a n -n (n +1)⇒a n +1n +1-a nn=1㊂所以数列a nn是首项为a 11=1,公差为1的等差数列,故a nn=1+1ˑ(n -1)=n ,所以a n =n 2(n ȡ2)㊂当n =1时,上式显然成立㊂综上可得,a n =n 2(n ɪN *)㊂(2)由(1)知,a n =n 2(n ɪN *)㊂当n =1时,1a 1=1<74,即原不等式成立㊂当n =2时,1a 1+1a 2=1+14<74,即原不等式也成立㊂当n ȡ3时,因为n 2>(n -1)(n +1),所以1n2<1(n -1)(n +1)=121n -1-1n +1㊂所以1a 1+1a 2+ +1a n=112+122+ +1n2<1+11ˑ3+12ˑ4+ +1(n -2)n +1(n -1)(n +1)=1+1211-13 +1212-14 + +121n -2-1n+121n -1-1n +1 =1+121-13+12- 14+ +1n -2-1n +1n -1-1n +1 =1+121+12-1n -1n +1=74+12㊃-1n -1n +1 <74㊂所以当n ȡ3时,原不等式成立㊂综上可得,对一切正整数n ,有1a 1+1a 2++1a n<74㊂31.(1)设第一年森林的木材存量为a 1,第n 年后森林的木材存量为a n ,所以a 1=a 1+14-b =54a -b ,a 2=54a 1-b =54 2a -54+1b ,a 3=54a 2-b =54 3a -54 2+54+1 b , ,a n=54 na -54 n -1+54 n -2+ +1b =54 na -454 n-1b ,n ɪN *㊂(2)依题意可知,当b =1972a 时,由a n <79a ,得54n a -454n-1ˑ1972a <79a ,化简得54 n>5,所以n >l g 5l g 5-2l g 2=1-l g 21-3l g 2ʈ7㊂故该地区今后会发生水土流失,需要经过8年㊂32.(1)当n =1时,4(a 1+a 2)=3a 1-9,又a 1=-94,故4a 2=-a 1-9=94-9=-274⇒a 2=-2716㊂当n ȡ2时,由4S n +1=3S n -9,得4S n =3S n -1-9,所以4S n +1-4S n =4a n +1=3a n ,得a 2=34a 1=-2716ʂ0,所以a n ʂ0,故a n +1a n=34㊂又因为a 2a 1=34,所以{a n }是首项为-94,公比为34的等比数列㊂所以a n =-94㊃34n -1=-3㊃34n㊂(2)由3b n +n -4 a n =0,得b n =-n -43a n =(n -4)34n㊂所以T n =(-3)ˑ34+(-2)ˑ342+(-1)ˑ343+0ˑ344+ +(n -4)ˑ34n㊂所以34T n =(-3)ˑ342+(-2)ˑ34 3+(-1)ˑ34 4+0ˑ34 5+ +(n -4)34 n +1㊂所以14T n =T n -34T n =(-3)ˑ34+342+343+344+ +34n-(n -4)34n +1=-94+9161-34 n -11-34-(n -4)34n +1=-n34n +1㊂所以T n=-4n34n +1㊂由T n ɤλb n 恒成立,得-4n 34n +1ɤλ(n -4)34n恒成立,即λ(n -4)+3n ȡ0恒成立㊂当n =4时,不等式恒成立;当n <4时,λɤ-3n n -4=-3-12n -4,得λɤ1;当n >4时,λȡ-3n n -4=-3-12n -4,得λȡ-3㊂综上可得,-3ɤλɤ1㊂所以λ的取值范围是[-3,1]㊂33.(1)因为m =(s i n x ,1),n =3A c o s x ,A 2c o s 2x(A >0),所以f (x )=m ㊃n =3A s i n x c o s x +A 2c o s 2x =A s i n 2x +π6㊂由函数f (x )=m ㊃n 的最大值为6⇒A =6㊂由2x +π6=π2+k π,k ɪZ ⇒x =π6+k π2,k ɪZ ,即对称轴方程为x =π6+k π2,k ɪZ ㊂当2x +π6=k π时,y =0,即对称中心为-π12+k π2,0,k ɪZ ㊂(2)由(1)知函数f (x )=6s i n 2x +π6㊂将函数y =f (x )的图像向左平移π12个单位长度,再将所得图像上各点的横坐标缩短为原来的12,纵坐标保持不变,得到g (x )=6s i n 4x +π3㊂因为x ɪ0,5π24,所以4x +π3ɪπ3,7π6 ,所以s i n 4x +π3 ɪ-12,1 ,所以g (x )ɪ[-3,6]㊂所以g (x )的值域为[-3,6]㊂(责任编辑 王福华)。
解三角形练习题及答案
解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
《解三角形》《数列》复习测试题
高一数学必修5《解三角形》《数列》复习测试题一、选择题:(每小题5分,共50分)1.ΔABC 中, a = 1, b =3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( )A .9B .18C .93D .1833.已知{a n }是等比数列,且公比,240,2100321=++++=a a a a q 若则=++++1001284a a a a ( )A .15B .128C .30D .604.一个等差数列共有3n 项,若前2n 项的和为100,后2n 项的和为200,则中间n 项的和为( )A .75B .100C .50D .1255.△ABC 中,∠A 、∠B 的对边分别为a 、b ,5,4a b ==,且∠A=60°,那么满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定6.在△ABC 中,若3a = 2b sin A , 则B 为( )A . 3πB . 6πC . 6π或65πD . 3π或32π 7.等比数列===302010,10,20,}{M M M M n a n n 则若项乘积记为前 ( )A .1000B .40C .425D .81 8.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰 好3km ,那么x 的值为( )A . 3B . 23C . 23或3D . 39.在等差数列{a n }中,前n 项和为S n ,若S 16—S 5=165,则1698a a a ++的值是( )A .90B .90-C .45D .45-10.设数列{}n a 的前n 项和为n S ,令12n n S S S T n+++= ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .2008二、填空题:请把答案填在题中横线上(每小题5分,共20分). 11.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60 ,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15 ,这时船与灯塔的距离为 km .12. 已知△ABC 的三边分别是a, b ,c ,且面积S =4222c b a -+,则角C =___ __.13.设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95S S = . 14.已知数列{a n }中,)(2,12111n n a a a a a +++==+ ,则通项=n a .15. 在等差数列}{n a 中,10a <,912S S =,该数列前_______项的和最小.三、解答题:解答应写出文字说明、证明过程或演算步骤(共80分).16.(12分)a ,b ,c 为△ABC 的三边,其面积S △ABC =123,b c =48,b - c =2,求角A 及边长a .17. (12分)已知数列{}n a 的前项和为n S ,且*1111,,3n n a a S n N +==∈. (Ⅰ)求234,,a a a 的值及数列{}n a 的通项公式;(Ⅱ) 求2462...n a a a a ++++的和.18.(12分)已知二次函数2()32f x x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13+=n n n a a b ,求数列{}n b 的前n 项和n T .19.(13分) 在△ABC 中,a b c <<,60B = ,面积为2,周长为20 cm ,求此三角形的各边长.20.(13分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2b ac =,43cos =B . (Ⅰ)求CA tan 1tan 1+的值; (Ⅱ)设c a BC BA +=→⋅→求,23的值.21.(13分)已知数列{}.21,5),2(12211n n n n n n n a b a n a a a -==≥-+=-满足 (Ⅰ)证明:{}n b 为等差数列;(Ⅱ)求数列{}n a 的前n 项和S n .高一数学必修5《解三角形》《数列》复习测试题参考答案一、选择题1-5、BCBAA 6-10、DDCCA二、填空题11. 12.450 13.1 14.⎩⎨⎧∈≥⋅=*-)2(,32)1(,12N n n n n 且 15.10和11 三、解答题 16.解:由S △ABC =21b c sin A ,得 123=21×48×sin A ∴ sin A =23 ∴ A =60°或A =120° a 2=b 2+c 2-2bc cos A =(b -c )2+2bc (1-cos A )=4+2×48×(1-cos A )当A =60°时,a 2=52,a =213; 当A =120°时,a 2=148,a =237.17.解(1)由题设条件可知,313112==a a ;94)(31312123=+==a a S a 2,311≥=-n S n a n .18.解(1)19.解:依题意得, 1sin 60402ac ac =⇒= ;b c a c b a -=+⇒=++2020 由余弦定理得,2222cos60b a c ac =+- ,即22()22cos60b a c ac ac =+--21402402)20(22⨯⨯-⨯--=∴b b 解锝 7=b 13720=-=+∴c a 又 40=ac 且a b c <<解得5a =, 8c = ∴5a =,7b =,8c =.20.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得 由b 2=a c 及正弦定理得 .s i n s i ns i n 2C A B = 于是BC A C A A C A C C C A A C A 2sin )sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+=+ .774sin 1sin sin 2===B BB (Ⅱ)由.2,2,43cos ,23cos 232====⋅=⋅b ca B B ca 即可得由得 由余弦定理 b 2=a 2+c 2-2a ccosB 得a 2+c 2=b 2+2a c ·cos B=5.3,9452)(222=+=+=++=+c a ac c a c a .21. (Ⅰ)证明:1111212222221-----+=-+=-=n n n n n n n n n a a a b ),2(1121111≥+=+-=---n b a n n n ),2(11≥=-∴-n b b n n{}n b ∴是公差为1,首项为22111=-=a b 的等差数列 (Ⅱ)解:由(Ⅰ)知,11)1(2+=⋅-+=n n b n 即12)1(,121++=∴+=-n n n nn a n a , ,]2)1(242322[32n n S n n ++++⋅+⋅+⋅=∴ 令,2)1(2232212n n n n n T ++⋅++⋅+⋅=- ,2)1(222212+++⋅++⋅=∴n n n n n T 122)1(212122++-⋅++⋅+⋅=-∴n n n n T112)1(21)21(44+-+---+=n n n ,2224241111++++⋅-=-⋅--+=n n n n n n ,21+⋅=∴n n n T .21n n S n n +⋅=∴+。
大题 解三角形(精选30题)(解析版)1
大题 解三角形(精选30题)1(2024·江苏·一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos B +1=ca.(1)证明:B =2A ;(2)若sin A =24,b =14,求△ABC 的周长.【答案】(1)证明见解析(2)7+14【分析】(1)利用正弦定理边化角结合角范围可证;(2)利用倍角公式求得sin C ,然后利用正弦定理可得【详解】(1)2cos B +1 sin A =sin C =sin A +B =sin A cos B +cos A sin B ⇒sin A =sin B cos A -cos B sin A =sin B -A 因为A ,B ∈0,π ,∴B -A ∈-π,π∴A =B -A 或A +B -A =π(舍),∴B =2A .(2)由sin A =24,结合(1)知A +B =3A ∈0,π ,则A ∈0,π3 ,得cos A =1-sin 2A =1-242=144sin B =sin2A =2sin A cos A =2×24×144=74,cos B =cos2A =1-2sin 2A =1-2×18=34,∴sin C =sin A +B =sin A cos B +cos A sin B =24×34+144×74=10216=528,由正弦定理得a sin A=b sin B =c sin C ⇒a 24=1474=c528⇒a =2c =5 ∴△ABC 的周长为a +b +c =7+14.2(2024·湖南常德·三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A +sin 2B +sin A sin B =sin 2C .(1)求角C ;(2)若a ,b ,c 成等差数列,且△ABC 的面积为1534,求△ABC 的周长.【答案】(1)2π3(2)15【分析】(1)先利用正弦定理角化边得出a 2+b 2+ab =c 2;再结合余弦定理得出cos C =-12即可求解.(2先根据a ,b ,c 成等差数列得出a +c =2b ;再利用三角形的面积公式得出ab =15;最后结合(1)中的a 2+b 2+ab =c 2,求出a ,b ,c 即可解答.【详解】(1)因为sin 2A +sin 2B +sin A sin B =sin 2C ,由正弦定理a sin A=b sin B =csin C 可得:a 2+b 2+ab =c 2.由余弦定理可得:cos C =a 2+b 2-c 22ab =a 2+b 2-(a 2+b 2+ab )2ab=-12.又因为C ∈(0,π),所以C =2π3.(2)由a ,b ,c 成等差数列可得:a +c =2b ①.因为三角形ABC 的面积为1534,C =2π3,∴12ab sin C =1534,即ab =15②.由(1)知:a 2+b 2+ab =c 2③由①②③解得:a =3,b =5,c =7.∴a +b +c =15,故三角形ABC 的周长为15.3(2024·江苏·一模)在△ABC 中,sin B -A +2sin A =sin C .(1)求B 的大小;(2)延长BC 至点M ,使得2BC =CM .若∠CAM =π4,求∠BAC 的大小.【答案】(1)B =π4;(2)∠BAC =π12或5π12.【分析】(1)由sin C =sin A +B ,代入已知等式中,利用两角和与差的正弦公式化简得cos B =22,可得B 的大小;(2)设BC =x ,∠BAC =θ,在△ABC 和△ACM 中,由正弦定理表示边角关系,化简求∠BAC 的大小.【详解】(1)在△ABC 中,A +B +C =π,所以sin C =sin A +B .因为sin B -A +2sin A =sin C ,所以sin B -A +2sin A =sin A +B ,即sin B cos A -cos B sin A +2sin A =sin B cos A +cos B sin A 化简得2sin A =2cos B sin A .因为A ∈0,π ,所以sin A ≠0,cos B =22.因为0<B <π,所以B =π4.(2)法1:设BC =x ,∠BAC =θ,则CM =2x .由(1)知B =π4,又∠CAM =π4,所以在△ABM 中,∠AMC =π2-θ.在△ABC 中,由正弦定理得BC sin ∠BAC =AC sin B ,即x sin θ=ACsin π4①.在△ACM 中,由正弦定理得CM sin ∠CAM =AC sin M ,即2x sin π4=ACsin π2-θ②.①÷②,得222sin θ=cos θ22,即2sin θcos θ=12,所以sin2θ=12.因为θ∈0,3π4,2θ∈0,3π2,所以2θ=π6或5π6,故θ=π12或5π12.法2:设BC=x,则CM=2x,BM=3x.因为∠CAM=π4=B,所以△ACM∽△BAM,因此AMBM=CMAM,所以AM2=BM⋅CM=6x2,AM=6x.在△ABM中,由正弦定理得BMsin∠BAM=AMsin B,即3xsin∠BAM=6x22,化简得sin∠BAM=3 2.因为∠BAM∈0,3π4,所以∠BAM=π3或2π3,∠BAC=∠BAM-π4,故∠BAC=π12或5π12.4(2024·浙江温州·二模)记△ABC的内角A,B,C所对的边分别为a,b,c,已知2c sin B=2b.(1)求C;(2)若tan A=tan B+tan C,a=2,求△ABC的面积.【答案】(1)C=π4或3π4(2)43【分析】(1)根据正弦定理,边化角,结合三角形中角的取值范围,可得sin C,从而确定角C.(2)根据条件求角求边,再结合三角形面积公式求面积.【详解】(1)由2c sin B=2b 得2sin C sin B=2sin B,而B为三角形内角,故sin B>0,得sin C=22,而C为三角形内角,∴C=π4或3π4(2)由tan A=-tan B+C=tan B+tan C得-tan B+tan C1-tan B tan C=tan B+tan C,又tan B+tan C≠0,∴tan B tan C=2, ,故B,C∈0,π2,由(1)得tan C=1,故tan B=2,∴tan A=tan B+tan C=3,而A为三角形内角,∴sin A=31010.又asin A=csin C即231010=c22⇒c=203,又tan B=2,而B为三角形内角,故sin B=255,∴S=12ac sin B=12×2×203×255=43.5(2024·浙江嘉兴·二模)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2cos A-3cos2A= 3.(1)求cos A的值;(2)若△ABC为锐角三角形,2b=3c,求sin C的值.【答案】(1)cos A=13或cos A=0;(2)429.【分析】(1)根据题意,利用二倍角余弦公式化简求解;(2)解法一,由2b =3c ,利用正弦定理边化角得2sin B =3sin C ,结合sin A +C =sin B 和cos A =13,化简运算并结合平方关系求得答案;解法二,根据条件利用余弦定理可得c =23a ,再利用正弦定理边化角并结合条件求得答案.【详解】(1)由题可得2cos A -32cos 2A -1 =3,即3cos 2A -cos A =0,解得cos A =13或cos A =0.(2)解法一:因为2b =3c ,由正弦定理得2sin B =3sin C ,即2sin A +C =3sin C ,即2sin A cos C +2sin C cos A =3sin C ,因为cos A =13,所以sin A =223;所以423cos C +23sin C =3sin C ,又sin 2C +cos 2C =1,且△ABC 为锐角三角形,解得sin C =429.解法二:由余弦定理得cos A =b 2+c 2-a 22bc=13,因为2b =3c ,所以9c 24+c 2-a 23c2=13,即c 2=49a 2,所以c =23a ,所以sin C =23sin A ,又cos A =13,所以sin A =223,所以sin C =23sin A =429.6(2023·福建福州·模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a sin C =c sin B ,C =2π3.(1)求B ;(2)若△ABC 面积为334,求BC 边上中线的长.【答案】(1)B =π6(2)212【分析】(1)由正弦定理边化角即可得到角B ;(2)根据A =B ,得a =b ,结合三角形面积公式即可得到a =b =3,再由正弦定理得边c ,以及2AD =AB +AC ,即可得到答案.【详解】(1)∵a sin C =c sin B ,由正弦定理边化角得sin A sin C =sin C sin B ,∵sin C ≠0,∴sin A =sin B ,∴A =B 或A +B =π(舍),又∵C =2π3,∴B =π6;(2)∵B =π6,C =2π3,A =π6,∴a =b ,∴S △ABC =12ab sin C ,即334=12a 2⋅32,解得a =b =3,由正弦定理a sin A=csin C ,得c =a sin Csin A=3,设BC 边的中点为D ,连接AD ,如下图:∵2AD =AB +AC ,即(2AD )2=(AB +AC)2,即4AD 2=c 2+b 2+2bc cos A =9+3+2×3×3×32,解得AD =212.7(2024·山东淄博·一模)如图,在△ABC 中,∠BAC =2π3,∠BAC 的角平分线交BC 于P 点,AP =2.(1)若BC =8,求△ABC 的面积;(2)若CP =4,求BP 的长.【答案】(1)3+1952(2)2+2133【分析】(1)利用余弦定理和三角形面积公式即可求出答案;(2)首先利用余弦定理求出AC =1+13,再利用正弦定理求出sin C ,再根据三角恒变换求出sin B ,最后再根据正弦定理即可.【详解】(1)△ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,在△ABC 中由余弦定理得BC 2=AB 2+AC 2-2AB ⋅AC ⋅cos ∠CAB ,即64=c 2+b 2+b ⋅c ①因S △ABC =S △MBP +S △MCP ,即bc 2⋅32=2c 2⋅32+2b 2⋅32,整理得b ⋅c =2b +2c ②①②解得b ⋅c =2+265,所以S △ABC =12bc sin ∠BAC =3+1952.(2)因为AP =2,CP =4,∠PAC =π3,所以在△APC 中由余弦定理可得CP 2=AP 2+AC 2-2AP ⋅AC ⋅cos ∠CAP ,所以16=4+AC 2-2AC解得AC =1+13,由正弦定理得APsin C =PCsin ∠CAP,即2sin C=432,解得sin C =34,所以cos C =1-sin 2C =134,sin B =sin (∠BAC +C )=sin ∠BAC cos C +cos ∠BAC sin C =39-38,△ABC 中由正弦定理得AC sin B =BC sin ∠BAC,则1+1339-38=BC32,解得BC =14+2133,所以PB =BC -PC =14+2133-4=2+2133.8(2024·安徽·模拟预测)如图,在平面四边形ABCD 中,AB =AD =4,BC =6.(1)若A =2π3,C =π3,求sin ∠BDC 的值;(2)若CD =2,cos A =3cos C ,求四边形ABCD 的面积.【答案】(1)34(2)162+853【分析】(1)△ABD 中求出BD ,在△BCD 中,由正弦定理求出sin ∠BDC 的值;(2)△ABD 和△BCD 中,由余弦定理求出cos A 和cos C ,得sin A 和sin C ,进而可求四边形ABCD 的面积.【详解】(1)在△ABD 中,AB =AD =4,A =2π3,则∠ADB =π6,BD =2AD cos ∠ADB =2×4×cos π6=43,在△BCD 中,由正弦定理得BC sin ∠BDC =BDsin C ,sin ∠BDC =BC sin C BD =6sin π343=34.(2)在△ABD 和△BCD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ⋅AD cos A =42+42-2×4×4×cos A =32-32cos A ,BD 2=CB 2+CD 2-2CB ⋅CD cos C =62+22-2×6×2×cos C =40-24cos C ,得4cos A -3cos C =-1,又cos A =3cos C ,得cos A =-13,cos C =-19,则sin A =223,sin C =459,四边形ABCD 的面积S =S △ABD +S △BCD =12AB ⋅AD ⋅sin A +12CB ⋅CD ⋅sin C=12×4×4×223+12×6×2×459=162+853.9(2024·浙江·一模)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知c 2b 2+c 2-a2=sin Csin B .(1)求角A ;(2)设边BC 的中点为D ,若a =7,且△ABC 的面积为334,求AD 的长.【答案】(1)A =π3(2)132【分析】(1)根据正弦定理和题中所给式子化简计算得到b 2+c 2-a 2=bc ,再结合余弦定理即可求出角A ;(2)根据三角形面积公式得到bc =3和b 2+c 2=10,再结合中线向量公式计算即可.【详解】(1)在△ABC 中,由正弦定理得,sin C sin B =cb,因为c 2b 2+c 2-a 2=sin C sin B ,所以c 2b 2+c 2-a 2=cb ,化简得,b 2+c 2-a 2=bc ,在△ABC 中,由余弦定理得,cos A =b 2+c 2-a 22bc=12,又因为0<A <π,所以A =π3(2)由S △ABC =12bc sin A =34bc =334,得bc =3,由a 2=b 2+c 2-2bc cos A ,得7=b 2+c 2-3,所以b 2+c 2=10.又因为边BC 的中点为D ,所以AD =12AB +AC,所以AD =12(AB +AC )2=12b 2+c 2+2bc cos A =12×10+2×3×12=13210(2024·湖北·一模)在△ABC 中,已知AB =22,AC =23,C =π4.(1)求B 的大小;(2)若BC >AC ,求函数f x =sin 2x -B -sin 2x +A +C 在-π,π 上的单调递增区间.【答案】(1)B =π3或B =2π3(2)-π,-7π12 ,-π12,5π12 ,11π12,π【分析】(1)利用正弦定理及三角函数的特殊值对应特殊角即可求解;(2)利用大边对大角及三角形的内角和定理,再利用诱导公式及三角函数的性质即可求解.【详解】(1)在△ABC 中,由正弦定理可得:AB sin C=AC sin B ,即2222=23sin B ,解得sin B =32,又0<B <π,故B =π3或B =2π3.(2)由BC >AC ,可得A >B ,故B =π3,A +C =2π3.f x =sin 2x -π3 -sin 2x +2π3 =sin 2x -π3 -sin 2x +π-π3=2sin 2x -π3,令-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z .由于x∈-π,π,取k=-1,得-π≤x≤-7π12;取k=0,得-π12≤x≤5π12;取k=1,得11π12≤x≤π,故f x 在-π,π上的单调递增区间为-π,-7π12,-π12,5π12,11π12,π.11(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,△ABC的面积为S,三个内角A、B、C所对的边分别为a,b,c,且sin C=2Sc2-b2.(1)证明:△ABC是倍角三角形;(2)若c=9,当S取最大值时,求tan B.【答案】(1)证明见解析(2)23-3【分析】(1)由三角形面积公式化简条件,结合余弦定理及正弦定理进一步化简即可证明;(2)由正弦定理结合题中条件得到a=9sin3Bsin2B,结合三角形面积公式S=12×ac sin B化为关于tan B的表达式,构造函数,利用导数求得最大值即可.【详解】(1)因为sin C=2Sc2-b2=2×12ab sin Cc2-b2=ab sin Cc2-b2,又sin C≠0,所以abc2-b2=1,则b2=c2-ab,又由余弦定理知,b2=a2+c2-2ac cos B,故可得2c cos B=a+b,由正弦定理,2sin C cos B=sin A+sin B,又sin A=sin B+C=sin B cos C+cos B sin C,代入上式可得sin C cos B=sin B cos C+sin B,即sin C cos B-sin B cos C=sin B,sin C-B=sin B,则有C-B=B,C=2B,故△ABC是倍角三角形.(2)因为C=2B,所以A=π-B-C=π-3B>0,故0<B<π3,则tan B∈0,3,又c=9,又asin A=csin C,则a=9sin Asin C=9sinπ-3Bsin2B=9sin3Bsin2B,则S=12×ac sin B=92a sin B=92×9sin3Bsin2B×sin B=814⋅sin3Bcos B,=814⋅sin2B cos B+cos2B sin Bcos B=814×sin2B+cos2B tan B=8142tan B1+tan2B+1-tan2B1+tan2B⋅tan B=814×3tan B-tan3B1+tan2B设x=tan B∈0,3,f x =3x-x31+x2,则f x =3-3x21+x2-3x-x3⋅2x1+x22=-x4-6x2+31+x22令f x =0得x2=23-3或者x2=-23-3(舍),且当0<x2<23-3时,f x >0,当23-3<x2<3时,f x <0,则f x 在0,23-3上单调递增,在23-3,3上单调递减,故当x=23-3时,f x 取最大值,此时S也取最大值,故tan B=23-3为所求.12(2024·福建漳州·模拟预测)如图,在四边形ABCD中,∠DAB=π2,B=π6,且△ABC的外接圆半径为4.(1)若BC=42,AD=22,求△ACD的面积;(2)若D=2π3,求BC-AD的最大值.【答案】(1)4;(2)833.【分析】(1)在三角形ABC中,根据正弦定理求得AC,∠CAB,再在三角形ADC中,利用三角形面积公式即可求得结果;(2)设∠DAC=θ,在三角形ADC,ABC中分别用正弦定理表示BC,AD,从而建立BC-AD关于θ的三角函数,进而求三角函数的最大值,即可求得结果.【详解】(1)因为B=π6,△ABC的外接圆半径为4,所以ACsin B=8,解得AC=4.在△ABC中,BC=42,则BCsin∠CAB=42sin∠CAB=8,解得sin∠CAB=22.又∠CAB∈0,π2,所以∠CAB=π4;在△ACD中,AC=4,∠DAC=π2-∠CAB=π4,AD=22,所以SΔACD=12×4×22×22=4.(2)设∠DAC=θ,θ∈0,π3.又D=2π3,所以∠ACD=π3-θ.因为∠DAB=π2,所以∠CAB=π2-θ.在△DAC中,AC=4,由正弦定理得ACsin D=ADsin∠ACD,即432=ADsinπ3-θ,解得AD=833sinπ3-θ=83332cosθ-12sinθ=4cosθ-433sinθ.在△ABC中,AC=4,由正弦定理得ACsin B=BCsin∠CAB,即412=BCsinπ2-θ,解得BC=8sinπ2-θ=8cosθ,所以BC-AD=4cosθ+33sinθ=833sinθ+π3.又θ∈0,π3,所以θ+π3∈π3,2π3,当且仅当θ+π3=π2,即θ=π6时,sinθ+π3取得最大值1,所以BC-AD的最大值为83 3.13(2024·山东济南·二模)如图,在平面四边形ABCD中,BC⊥CD,AB=BC=2,∠ABC=θ,120°≤θ<180°.(1)若θ=120°,AD=3,求∠ADC的大小;(2)若CD=6,求四边形ABCD面积的最大值.【答案】(1)∠ADC=45°(2)3+2【分析】(1)在△ABC中,利用余弦定理可得AC=6,由等腰三角形可得∠BCA=30°,然后在△ADC中利用正弦定理即可求解;(2)利用勾股定理求得BD=22,然后四边形面积分成S△BCD+S△ABD即可求解.【详解】(1)在△ABC中,AB=BC=2,θ=120°,所以∠BCA=30°,由余弦定理可得,AC2=22+22-2×2×2×-1 2=6,即AC=6,又BC⊥CD,所以∠ACD=60°,公众号:慧博高中数学最新试题在△ADC中,由正弦定理可得3sin60°=6sin∠ADC,得sin∠ADC=22,因为AC<AD,所以0°<∠ADC<60°,所以∠ADC=45°.(2)在Rt△BCD中,BC=2,CD=6,所以BD=22,所以,四边形ABCD的面积S=S△BCD+S△ABD=12×2×6+12×2×22sin∠ABD=3+2sin∠ABD,当∠ABD =90°时,S max =3+2,即四边形ABCD 面积的最大值为3+2.14(2024·湖北武汉·模拟预测)已知锐角△ABC 的三内角A ,B ,C 的对边分别是a ,b ,c ,且b 2+c 2-(b ⋅cos C +c ⋅cos B )2=bc ,(1)求角A 的大小;(2)如果该三角形外接圆的半径为3,求bc 的取值范围.【答案】(1)π3(2)6,9【分析】(1)由余弦定理将cos B ,cos C 化成边,化简再结合余弦定理可求得答案;(2)利用正弦定理,将边化角,再利用角的范围即可得出结果.【详解】(1)∵b 2+c 2-b cos C +c cos B 2=bc ,由余弦定理可得b 2+c 2-b ⋅a 2+b 2-c 22ab+c ⋅a 2+c 2-b 22ac 2=bc ,化简整理得b 2+c 2-a 2=bc ,又b 2+c 2-a 2=2bc cos A ,∴cos A =12,又0<A <π2,所以A =π3.(2)因为三角形外接圆半径为R =3,所以b =23sin B ,c =23sin C ,∴bc =12sin B sin C ,由(1)得B +C =2π3,所以bc =12sin B sin C =12sin B sin 2π3-B =12sin B 32cos B +12sin B =63sin B cos B +6sin 2B =33sin2B +31-cos2B=632sin2B -12cos2B +3=6sin 2B -π6+3,因为△ABC 是锐角三角形,且B +C =2π3,所以π6<B <π2,∴π6<2B -π6<5π6,∴12<sin 2B -π6≤1,∴6<6sin 2B -π6+3≤9,即6<bc ≤9.所以bc 的取值范围为6,9 .15(2024·湖南邵阳·模拟预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且△ABC 的周长为a sin Bsin A +sin B -sin C .(1)求C ;(2)若a =2,b =4,D 为边AB 上一点,∠BCD =π6,求△BCD 的面积.【答案】(1)C =2π3;(2)235.【分析】(1)根据给定条件,利用正弦定理角化边,再利用余弦定理求解即得.(2)由(1)的结论,利用三角形面积公式,结合割补法列式求出CD ,再求出△BCD 的面积.【详解】(1)在△ABC 中,a +b +c =a sin B sin A +sin B -sin C,由正弦定理得a +b +c =aba +b -c ,整理得a 2+b 2-c 2=-ab ,由余弦定理得cos C =a 2+b 2-c 22ab=-12,而0<C <π,所以C =2π3.(2)由D 为边AB 上一点,∠BCD =π6及(1)得∠ACD =π2,且S △ACD +S △BCD =S △ABC ,即有12b ⋅CD sin π2+12a ⋅CD sin π6=12ab sin 2π3,则4CD +CD =43,解得CD =435,所以△BCD 的面积S △BCD =12a ⋅CD sin π6=14×2×435=235.16(2024·广东梅州·二模)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,3a cos B -b sin A =3c ,c =2,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD ⊥AB ,且AD =1时,求AC 的长;(Ⅱ)当BD =2DC ,且AD =1时,求△ABC 的面积S △ABC .【答案】(1)A =2π3(2)AC =83+411;S △ABC =32+34【分析】(1)利用正弦定理,三角函数恒等变换的应用化简已知等式可得tan A 的值,结合A ∈(0,π)即可求解A 的值;(2)(Ⅰ)根据锐角三角函数和差角公式可得cos ∠ABC =AB BD =25,sin ∠ABC =AD BD =15,sin C =-510+155正弦定理即可求解.(Ⅱ)采用面积分割的方法以及正弦定理即可解决.【详解】(1)因为3a cos B -b sin A =3c ,所以由正弦定理可得3sin A cos B -sin B sin A =3sin C ,又sin C =sin (A +B )=sin A cos B +cos A sin B ,所以-sin B sin A =3cos A sin B ,因为B 为三角形内角,sin B >0,所以-sin A =3cos A ,可得tan A =-3,因为A ∈(0,π),所以A =2π3;(2)(Ⅰ)此时AB =2=2AD ,AD ⊥AB ,所以DB =AB 2+AD 2=5,所以cos ∠ABC =AB BD =25,sin ∠ABC =AD BD =15,sin C =sin B +2π3 =15×-12 +25×32=-510+155,在△ABC 中,由正弦定理可得AC sin ∠ABC =AB sin C ⇒AC =AB sin ∠ABC sin C =2×15-510+155=83+411;(Ⅱ)设∠CAD =α,由S △ABC =S △BAD +S △CAD ,可得3b =2sin 2π3-α +b sin α,化简可得3b -b sin α=2sin 2π3-α 有b sin ∠ADC =CD sin α,2sin ∠ADB =BDsin 2π3-α,由于BD =2DC ,所以b sin αsin ∠ADC ×sin ∠ADB 2sin 2π3-α =12,所以b =sin 2π3-α sin α=12×3b -b sin αsin α⇒sin α=33,b =6+12,则S △ABC =12bc sin A =32+34.17(2024·广东广州·一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .已知S =-34(a 2+c 2-b 2).(1)求B ;(2)若点D 在边AC 上,且∠ABD =π2,AD =2DC =2,求△ABC 的周长.【答案】(1)2π3;(2)3+23【分析】(1)根据三角形面积公式和余弦定理,化简已知条件,结合B 的范围,即可求得结果;(2)利用平面向量的线性运算及数量积运算,求得AB ,BC ,即可求得三角形周长.【详解】(1)由S =-34(a 2+c 2-b 2),则12ac ⋅sin B =-34×2ac ⋅cos B ,tan B =-3又B ∈0,π ,故B =2π3.(2)由(1)可知,B =2π3,又∠ABD =π2,则∠CBD =π6;由题可知,AD =2DC =2,故BD =BC +CD =BC +13CA =BC +13BA -BC =23BC+13BA ,所以BA ⋅BD =BA ⋅23BC +13BA =13c 2-13ac =0,因为c ≠0,所以a =c ,A =C =π6,在Rt △ABD 中,c =AD ⋅cos π6=3,故△ABC 的周长为AB +BC +AC =3+3+3=3+2 3.18(2024·广东佛山·模拟预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a =1,cos A =2c -12b.(1)求角B 的大小;(2)如图,D 为△ABC 外一点,AB =BD ,∠ABC =∠ABD ,求sin ∠CABsin ∠CDB的最大值.【答案】(1)B =π3(2)3【分析】(1)根据题意,由正弦定理将边化为角,可得角的方程,化简计算,即可得到结果;(2)根据题意,由正弦定理可得sin ∠CAB sin ∠CDB =CDAC,再由余弦定理分别得到AC 2,CD 2,再由基本不等式代入计算,即可得到结果.【详解】(1)因为a =1,所以cos A =2c -a2b,由正弦定理a sin A=b sin B =c sin C ,可得cos A =2sin C -sin A2sin B ,整理可得2sin B cos A =2sin C -sin A ,又因为sin C =sin A +B =sin A cos B +sin B cos A ,化简可得sin A =2sin A cos B ,而sin A ≠0,则cos B =12,又B ∈0,π ,则B =π3(2)在△BCD 中,由BC sin ∠CDB =CDsin ∠CBD 可得sin ∠CDB =sin 23πCD,在△ABC 中,由BC sin ∠CAB =AC sin ∠ABC 可得sin ∠CAB =sin π3AC,所以sin ∠CAB sin ∠CDB =CD AC ,设AB =BD =t t >0 ,由余弦定理CD 2=BA 2+BC 2-2BA ⋅BC ⋅cos ∠CBD ,AC 2=BA 2+BC 2-2BA ⋅BC ⋅cos ∠CBA ,可得CD 2=t 2+1+t ,AC 2=t 2+1-t ,因此CD 2AC 2=t 2+1+t t 2+1-t =1+2t t 2+1-t ≤1+22t ⋅1t -1=3,当且仅当t =1t时,即t =1等号成立,所以sin ∠CAB sin ∠CDB的最大值为3,此时AB =BD =1.19(2024·河北石家庄·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设向量m=(2sin A ,3sin A +3cos A ),n =(cos A ,cos A -sin A ),f (A )=m ⋅n ,A ∈π6,2π3.(1)求函数f A 的最大值;(2)若f (A )=0,a =3,sin B +sin C =62,求△ABC 的面积.【答案】(1)3(2)S △ABC =34【分析】(1)由平面向量的数量积与三角恒等变换知识计算可得f (x )=2sin 2A +π3,再结合三角函数的值域计算即可求得;(2)由题中条件计算可得A =π3,再由正弦定理得b +c =6,由余弦定理可得bc =1,再由三角形的面积公式计算即可求得.【详解】(1)f (x )=m ⋅n=2sin A cos A +(3sin A +3cos A )(cos A -sin A )=sin2A +3(cos 2A -sin 2A )=sin2A +3cos2A =2sin 2A +π3因为A ∈π6,2π3 ,所以2A +π3∈2π3,5π3,所以当2A +π3=2π3,即A =π6时,f (x )有最大值2×32=3;(2)因为f A =0,所以2sin 2A +π3 =0,所以2A +π3=k π,k ∈Z ,因为A ∈π6,23A ,所以A =π3,由正弦定理得:2R =a sin A =332=2,所以sin B =b 2R =b 2,sin C =c 2R=c2,又因为sin B +sin C =62,所以b 2+c 2=62,所以b +c =6,由余弦定理有:a 2=b 2+c 2-2bc cos A ,即3=(b +c )2-3bc ,所以bc =1,所以S △ABC =12bc sin A =12×1×32=34.20(2024·广东·一模)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c cos A =2a cos B cos C .(1)求cos B ;(2)若点D 在AC 上(与A ,C 不重合),且C =π4,∠ADB =2∠CBD ,求CD AD的值.【答案】(1)12(2)2+3【分析】(1)根据条件,边转角得到sin B -sin C cos A =2sin A cos B cos C ,再利用sin B =sin A cos C +cos A sin C 即可求出结果;(2)根据题设得到∠DBC =C =π4,进而可求得A =5π12,∠ABD =π12,再利用CDAD=S △BCD S △ABD ,即可求出结果.【详解】(1)由b -c cos A =2a cos B cos C ,得到sin B -sin C cos A =2sin A cos B cos C ,又sin B =sin (π-A -C )=sin (A +C )=sin A cos C +cos A sin C ,所以cos C sin A=2sin A cos B cos C,又三角形ABC为锐角三角形,所以sin A≠0,cos C≠0,得到1=2cos B,即cos B=1 2 .(2)因为∠ADB=2∠CBD,又∠ADB=∠ACB+∠CBD,所以∠ACB=∠CBD,则BD=CD,所以∠DBC =C=π4,由(1)知,B=π3,则A=π-π3-π4=5π12,∠ABD=π-π2-5π12=π12,则CDAD=S△BCDS△ABD=12BC⋅BD sinπ412AB⋅BD sinπ12=sin A⋅sinπ4sin C⋅sinπ12=sin5π12⋅sinπ4sinπ4⋅sinπ12=cosπ12sinπ12=1tanπ12,又tan π12=tanπ4-π3=1-331+33=3-33+3,所以CDAD=3+33-3=2+ 3.21(2024·辽宁·二模)在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【答案】(1)1(2)54,+∞【分析】(1)根据三角形面积公式,结合余弦定理进行求解即可;(2)根据余弦定理、二倍角的余弦公式求出AB,AD的表达式,最后根据正弦定理求出sin∠ADBsin B的表达式,利用余弦函数的最值性质进行求解即可.公众号:慧博高中数学最新试题【详解】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos 2θ-1 =2cos θ,AB =12+32 2-2×1×32⋅cos π-2θ =134+3cos2θ=134+32cos 2θ-1 =6cos 2θ+14,在△ABD 中,因为θ∈0,π2 ,所以由正弦定理可知:AB sin ∠ADB =AD sin B ⇒sin ∠ADB sin B =ABAD =6cos 2θ+142cos θ=14×24cos 2θ+1cos 2θ=14×24+1cos 2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B的取值范围为54,+∞ ..22(2024·黑龙江齐齐哈尔·一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =π4,4b cos C =2c +2a .(1)求tan C ;(2)若△ABC 的面积为32,求BC 边上的中线长.【答案】(1)tan C =12(2)52.【分析】(1)利用正弦定理以及三角恒等变换的知识求得tan C .(2)根据三角形ABC 的面积求得ac ,根据同角三角函数的基本关系式求得sin A ,cos A ,利用正弦定理、向量数量积运算来求得BC 边上的中线长.【详解】(1)由正弦定理可得c sin C=bsin B ,所以4sin B cos C =2sin C +2sin A ,即22cos C =2sin C +2sin A ,又A +B +C =π,所以22cos C =2sin C +2sin π4+C =22sin C +2cos C ,整理得2cos C =22sin C ,解得tan C =12;(2)依题意,12ac sin B =12ac ×22=32,解得ac =32,又tan A =tan 3π4-C =-1-tan C1-tan C =-3,所以A 为钝角,所以由sin A cos A=-3sin 2A +cos 2A =1 ,解得sin A =310,cos A =-110,由正弦定理可得c a =sin C sin A=15310=23,又ac =32,所以a =3,c =2,b =c sin Bsin C=2×2215=5,设BC 的中点为D ,则AD =12AB +AC,所以AD 2=14(AB +AC )2=b 2+c 2+2bc cos A 4=2+5+2×2×5×-1104=54,所以BC 边上的中线长为52.23(2024·重庆·模拟预测)如图,某班级学生用皮尺和测角仪(测角仪的高度为1.7m )测量重庆瞰胜楼的高度,测角仪底部A 和瞰胜楼楼底O 在同一水平线上,从测角仪顶点C 处测得楼顶M 的仰角,∠MCE =16.5°(点E 在线段MO 上).他沿线段AO 向楼前进100m 到达B 点,此时从测角仪顶点D 处测得楼顶M 的仰角∠MDE =48.5°,楼尖MN 的视角∠MDN =3.5°(N 是楼尖底部,在线段MO 上).(1)求楼高MO 和楼尖MN ;(2)若测角仪底在线段AO 上的F 处时,测角仪顶G 测得楼尖MN 的视角最大,求此时测角仪底到楼底的距离FO .参考数据:sin16.5°sin48.5°sin32°≈25,tan16.5°≈827,tan48.5°≈87,40×35≈37.4,【答案】(1)41.7m ,5m (2)FO 为37.4m【分析】(1)法一:在△CDM 中,由正弦定理得,可得CM =100sin48.5°sin32°,进而求得ME ,MO ,进而求得CE ,计算可求得楼离MO 和楼尖MN ;法二:利用CE =ME tan ∠MCE,DE =MEtan ∠MDE ,可求得ME ,进而计算可求得楼离MO 和楼尖MN ;(2)设FO =xm ,tan ∠MGE =40x ,tan ∠NGE =35x,进而可得tan ∠MGN =tan ∠MGE -∠NGE =40x -35x1+40x ⋅35x,利用基本不等式可求得楼尖MN 的视角最大时x 的值.【详解】(1)法一:∠MCE =16.5°,∠MDE =48.5°,∴∠DMC =32°.在△CDM 中,由正弦定理得,CM =CD sin ∠CDMsin ∠DMC,又CD =100m ,∴CM =100sin 180°-48.5° sin32°=100sin48.5°sin32°.∴ME =CM sin ∠MCE =100sin48.5°sin16.5°sin32°=40m ,∴MO =ME +EO =40m +1.7m =41.7m .CE =ME tan ∠MCE =40tan16.5°=40827=135(m ).∴DE =CE -CD =35m .∵∠NDE =∠MDE -∠MDN =45°,∴NE =DE =35m ,MN =ME -NE =5m .法二:CE =ME tan ∠MCE,DE =MEtan ∠MDE ,∴CE -DE =ME tan ∠MCE-MEtan ∠MDE =100,即ME ×278-78=100,∴ME =40m ,∴MO =ME +EO =40m +1.7m =41.7m .CE =ME tan ∠MCE =40tan16.5°=40827=135m .∴DE =CE -CD =35m .∵∠NDE =∠MDE -∠MDN =45°,∴NE =DE =35m ,MN =ME -NE =5m .(2)设FO =xm ,tan ∠MGE =40x ,tan ∠NGE =35x,∴tan ∠MGN =tan ∠MGE -∠NGE =tan ∠MGE -tan ∠NGE1+tan ∠MGE ⋅tan ∠NGE=40x -35x1+40x ⋅35x =5x +40×35x ≤52x ⋅40×35x =5240×35,当且仅当x =40×35x,即x ≈37.4时,等号成立.∴测角仪底到楼底的距离FO 为37.4m 处时,测得楼尖MN 的视角最大.24(2024·重庆·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b =2b cos 2π12-A 2 -a sin B 2cos B 2 .(1)求角A 的大小;(2)若BP =PC ,且b +c =2,求AP 的最小值.【答案】(1)A =π3;(2)32.【分析】(1)根据题意,由正弦定理代入计算,结合三角恒等变换公式代入计算,即可得到结果;(2)根据题意,由平面向量数量积的运算律代入计算,结合基本不等式代入计算,即可得到结果.【详解】(1)在△ABC 中,由正弦定理a sin A=bsin B ,可得a sin B =b sin A又由b =2b cos 2π12-A 2 -a sin B 2cos B 2 知2a sin B 2cos B 2=b ⋅2cos 2π12-A 2-1 ,即a sin B =b cos π6-A ,得b sin A =b cos π6-A ,得sin A =cos π6-A =32cos A +12sin A ,得12sin A =32cos A ,所以tan A =3;又因为A ∈0,π ,所以A =π3.(2)由BP =PC ,得AP =12AB +12AC ,所以AP 2=12AB +12AC 2=14AB 2+14AC2+12AB ⋅AC=14c 2+14b 2+12bc cos A =14c 2+14b 2+14bc =14b +c 2-bc ≥14b +c 2-b +c 2 2 =316b +c 2=34,当且仅当b =c b +c =2 ,即b =c =1时等号成立,故AP 的最小值为32.25(2024·山西朔州·一模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n=sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c2的最小值.【答案】(1)B =π3(2)12【分析】(1)利用向量共线的坐标形式可得a 2+c 2-b 2=ac ,结合余弦定理可求B ;(2)利用基本不等式可求最小值.【详解】(1)因为m ⎳n,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b 2a 2+c 2=a 2+c 2-ac a 2+c 2=1-aca 2+c2,1-ac a 2+c2≥1-ac 2ac =1-12=12,当且仅当a =c 时等号成立,故b 2a 2+c2的最小值为12.26(2024·河南开封·二模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b cos A =2a sin B .(1)求sin A ;(2)若a =3,再从条件①,条件②,条件③中选择一个条件作为已知,使其能够确定唯一的三角形,并求△ABC 的面积.条件① :b =6c ;条件② :b =6;条件③ :sin C =13.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)sin A =33;(2)答案见解析.【分析】(1)利用正弦定理边化角,结合同角公式计算即得.(2)选择条件①,利用余弦定理及三角形面积公式计算求解;选择条件②,利用正弦定理计算判断三角形不唯一;选择条件③,利用正弦定理计算判断,再求出三角形面积.【详解】(1)由b cos A =2a sin B 得:sin B cos A =2sin A sin B ,而sin B ≠0,则cos A =2sin A >0,A 为锐角,又sin 2A +cos 2A =1,解得sin A =33,所以sin A =33且A 为锐角.(2)若选条件①,由sin A =33,A 为锐角,得cos A =63,由余弦定理得a 2=b 2+c 2-2bc cos A ,又b =6c ,则3=6c 2+c 2-4c 2,解得c =1,b =6,△ABC 唯一确定,所以S △ABC =12bc sin A =22.若选条件②,由正弦定理得a sin A =b sin B ,则sin B =6×333=63<1,由b =6>a =3,得B >A ,因此角B 有两解,分别对应两个三角形,不符合题意.若选条件③,由sin A =33,A 为锐角,得cos A =63,又sin A =33>sin C =13,得a >c ,A >C ,则cos C =223,因此sin B =sin (A +C )=sin A cos C +cos A sin C =63,△ABC 唯一确定,由正弦定理得a sin A=c sin C ,则c =3×1333=1,所以S △ABC =12ac sin B =22.27(2024·河南·一模)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b 2-a 2=ac .(1)求证:B =2A ;(2)若△ABC 为锐角三角形,求sin (C -A )-sin Bsin A的取值范围.【答案】(1)证明见解析(2)(-2,0)【分析】(1)用正弦定理边化角,再利用和差化积公式与诱导公式进行化简,得sin (B -A )=sin A ,从而用等量关系即可得证;(2)由(1)知,锐角三角形△ABC 中B =2A ,利用角A ,B ,C 关系求得角A 的范围,再把式子sin (C -A )-sin Bsin A用角A 的三角函数来表示并利用两角和差的正弦公式进行化简,进而用三角函数的取值范围即可求解.【详解】(1)证明:由条件b 2-a 2=ac ,根据正弦定理可得sin 2B -sin 2A =sin A sin C ,1-cos2B 2-1-cos2A2=sin A sin C ,即cos2A -cos2B =2sin A sin C ,cos2A -cos2B =cos A +B +A -B -cos A +B -A -B =-2sin (A +B )sin (A -B )=2sin A sin C ,又△ABC 中sin (A +B )=sin π-C =sin C ≠0,进行化简得sin (B -A )=sin A ,所以B -A =A ,即B =2A 或B -A =π-A ,即B =π(舍去),所以B =2A .(2)若△ABC 为锐角三角形,根据(1)B =2A ,则B =2A <π2C =π-A -B <π2 ⇒2A <π2π-3A <π2 ,得π6<A <π4,式子sin (C -A )-sin B sin A =sin (π-A -B -A )-sin B sin A =sin4A -sin2Asin A ,=sin (3A +A )-sin (3A -A )sin A=2cos3A ,由π6<A <π4得π2<3A <3π4,又易知函数y =cos x 在π2,3π4内单调递减,所以cos3A ∈-22,0,因此sin (C -A )-sin B sin A =2cos3A ∈(-2,0).28(2023·河南·三模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a c =a 2+b 2-c 2b 2,且a ≠c .(1)求证:B =2C ;(2)若∠ABC 的平分线交AC 于D ,且a =12,求线段BD 的长度的取值范围.【答案】(1)证明见解析(2)(43,62)【分析】(1)根据正余弦定理边角互化可得sin B =sin2C ,即可利用三函数的性质求解,(2)根据正弦定理以及角的范围即可利用三角函数的范围求解.【详解】(1)证明:由余弦定理可得a c =2ab cos C b 2=2a cos Cb , 故b =2c cos C ,由正弦定理得sin B =2sin C cos C =sin2C .所以在△ABC 中,B =2C 或B +2C =π.若B +2C =π,又B +A +C =π,故A =C ,因为a ≠c ,所以A ≠C ,故B +2C =π不满足题意,舍去,所以B =2C .(2)在△BCD 中,由正弦定理可得a sin ∠BDC =BD sin C ,即12sin ∠BDC =BDsin C所以BD =12sin C sin ∠BDC =12sin C sin2C =6cos C因为△ABC 是锐角三角形,且B =2C ,所0<C <π20<2C <π20<π-3C <π2 得π6<C <π4,22<cos C <32 所以43<BD <62.所以线段BD 长度的取值范围是(43,62).29(2024·湖北·二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c a <b ,c =2a cos A cos B -b cos2A .(1)求A ;(2)者BD =13BC ,AD =2,求b +c 的取值范围.【答案】(1)A =π3(2)1277<b +c <6【分析】(1)借助正弦定理、三角形内角和与两角差的正弦公式计算即可得;(2)借助向量的模长与平方的关系,结合数量积公式计算可得(b +c )2+3c 2=36,借助三角函数的性质,可令b +c =6cos α,3c =6sin α,结合余弦定理计算可得1277<6cos α<6,即可得解.【详解】(1)由正弦定理得sin C =2sin A cos A cos B -sin B cos2A ,则sin C =sin2A cos B -sin B cos2A ,则sin C =sin 2A -B ,∵C =π-A +B ,∴sin A +B =sin 2A -B .即A +B =2A -B 或A +B =π-2A -B ,解得A =2B 或A =π3.因为a <b ,所以A <B ,所以A =2B 舍去,即A =π3;(2)由BD =13BC 得AD -AB =13AC -AB ,则AD =13AC +23AB ,则|AD |2=19b 2+49c 2+49bc cos A ,则4=19b 2+49c 2+29bc ,则b 2+4c 2+2bc =36,即(b +c )2+3c 2=36.令b +c =6cos α,3c =6sin α,因为c >0,b +c >0,所以0<α<π2.因为b =6cos α-23sin α>0,所以tan α<3,解得0<α<π3.由(1)得A =π3,则a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ,又因为a <b .所以a 2<b 2,所以7b 2+c 2-bc <b 2,解得c <b ,所以23sin α<6cos α-23sin α,解得tan α<32,所以0<tan α<32.令tan α1=32,则0<α<α1<π3,则cos α1<cos α<1.因为cos α1=277,所以1277<6cos α<6,即1277<b +c <6.30(2024·河北·二模)若△ABC 内一点P 满足∠PAB =∠PBC =∠PCA =θ,则称点P 为△ABC 的布洛卡点,θ为△ABC 的布洛卡角.如图,已知△ABC 中,BC =a ,AC =b ,AB =c ,点P 为的布洛卡点,θ为△ABC 的布洛卡角.。
必修五解三角形数列测试题
必修五解三角形数列测试题一、填空题:1. {a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9= .2. 设函数f (x )满足f (n+1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)= . 3. 设a n =-n 2+10n+11,则数列{a n }中最大的项为 . 4.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20= . 5.在等差数列{a n }中,若S 9=18,S n =240,4n a -=30,则n= . 6.在ABC ∆中,若2cos sin sin 2AC B =,则ABC ∆是 三角形. 7.数列{a n }满足a 1=1, a 2=32,且nn n a a a 21111=++- (n ≥2),则a n = . 8.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n = 。
9. 已知△ABC 中,AB =1,BC =2,则角C 的取值范围是_______. 10.等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若n n T S =132+n n ,则1111b a=_______.11.数列}{n a 满足⎩⎨⎧>-≤≤=+)1(1)10(21n n n n n a a a a a 且761=a ,则=2010a _______。
12.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差列,030=B ,ABC ∆的面积为23 ,则b =____.13.在△ABC 中,若B =30°,AB =23,AC =2,则△ABC 的面积是______.14.在圆225x y x +=内,过点53()22,有n 条弦的长度成等差数列,最短弦长为数列的首项1a ,最长弦长为n a ,若该数列的公差1163d ⎛⎤∈ ⎥⎝⎦,,则n 的取值集合为 .三、解答题15.(本小题满分12分)已知数列}{n a 满足:111,2n n a a a n -=-=且.(1)求 (2)求数列}{n a 的通项n a432,a a a ,16.在ABC ∆中,角A 、B 、C 的对边分别为,,a b c ,已知向量33(cos ,sin ),22A A m = (cos ,sin ),22A An = 且满足m n += (1)求角A 的大小;(2)若,b c +=试判断ABC ∆的形状。
数学解三角形和数列填空18题
数学解三角形和数列填空题:18题,每题6分1.已知ABC V 的面积等于1,若1BC =,则当这个三角形的三条高的乘积取最大值时,sin A =______2.在圆心为O ,半径为2的圆内接ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()4222442220a a b c c b b c -++++=,则OBC ∆的面积为__________. 3.在ABC ∆中,内角,,A B C 的对边分别为,,a b c 且,a b a c >>.ABC ∆的外接圆半径为1, a =若边BC 上一点D 满足3BD DC =u u u r u u u r ,且090BAD ∠=,则ABC ∆的面积为______4.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2A C π-=.,,a b c 成等差数列,则cos B =________.5.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG ===,120EGF ∠=o ,在球C 内任取一点,则该点落在三棱锥P EFG -内的概率为__________.6.已知O 为ABC △的外心,其外接圆半径为1,且BO BA BC u u u v u u u v u u u v λμ=+.若60ABC ∠=o ,则λμ+的最大值为__________.7.已知ABC ∆的内角A B C 、、的对边分别为a b c 、、,若2A B =,则2c b b a +的取值范围为__________.8.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角)。
若15,25,30AB m AC m BCM ==∠=︒,则tan θ的最大值为_______.9.数列{}n a 的前m 项为()12,,,m a a a m N *∈L ,若对任意正整数n ,有n m n a a q +=(其中q 为常数,0q ≠且1q ≠),则称数列{}n a 是以m 为周期,以q 为周期公比的似周期性等比数列,已知似周期性等比数列{}n b 的前4项为1,1,1,2,周期为4,周期公比为3,则数列{}n b 前42t +项的和等于__________.(t 为正整数)10.已知数列{}n a 的前n 项和为n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是首项为3,公差为2的等差数列,若2n n b a =,数列{}n b 的前n 项和为n T ,则使得268n n S T +≥成立的n 的最小值为__________.11.已知12,,,n a a a ⋅⋅⋅是1,2,,n ⋅⋅⋅满足下列性质T 的一个排列(2n ≥,n *∈N ),性质T :排列12,,,n a a a ⋅⋅⋅有且只有一个1i i a a +>({1,2,,1}i n ∈⋅⋅⋅-),则满足性质T 的所有数列的个数()f n =________12.已知数列{}n a 中,22a =,对任意*k N ∈,2k a ,21k a +,22k a +成等差数列,公差为21k +,则101a =__.13.已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________.14.(2016安徽模拟改编)已知数列{}n a 的前n 项和为n S , 1(1)32n n n n S a n =-++-,若n a M …对任意的*n N ∈恒成立,则实数M 的取值范围是_______.15.等差数列{a n }前n 项和为S n ,公差d<0,若S 20>0,S 21<0,,当S n 取得最大值时,n 的值为_______.16.对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[12121111S S S ++⋯+]=______. 17.已知数列{}n a 是公差不为0的等差数列,对任意大于2的正整数n ,记集合{},,,1i j x x a a i N j N i j n =+∈∈≤<≤的元素个数为n c ,把{}nc 的各项摆成如图所示的三角形数阵,则数阵中第17行由左向右数第10个数为___________.18.等差数列{}n a 的公差d ≠0,a 3是a 2,a 5的等比中项,已知数列a 2,a 4,1k a ,2k a,……,n k a ,……为等比数列,数列{}n k 的前n 项和记为Tn ,则2Tn +9=_______参考答案1.817【解析】【分析】设三条高分别为,,a b c h h h ,根据面积计算出三条高,并将三条高的乘积的最大值问题,转化为sin A 最大来求解.【详解】依题意可知1a =,三条高分别为,,a b c h h h ,根据三角形面积公式有112112112a b c ah bh ch ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,故2a h =,88a b c h h h abc bc ⋅⋅==,而1sin 12bc A =,即1sin 2A bc =,所以84sin a b c h h h A bc⋅⋅==.故当sin A 取得最大值时,三条高的乘积取得最大值.作平行于BC 且与BC 距离为2的平行直线l ,作BC 的垂直平分线AD ,交直线l 于A .过AD 上一点O 作圆O ,使圆经过,,A B C 三个点,由于由于圆外角小于圆周角,故此时BAC ∠取得最大值,也即sin BAC ∠取得最大值.在三角形ABC中,1AB AC BC ===,由余弦定理得1717115cos 1722BAC +-∠==,8sin 17BAC ∠==.即三角形的三条高的乘积取最大值时8sin 17A =.【点睛】本小题主要考查三角形的面积公式,考查余弦定理解三角形,考查同角三角函数的基本关系式,考查数形结合的数学思想方法,属于难题.2【解析】【分析】已知条件中含有22()b c +这一表达式,可以联想到余弦定理2222cos a b c bc A =+-进行条件替换;利用同弧所对圆心角为圆周角的两倍,先求出角A 的三角函数值,再求BOC ∠的正弦值,进而即可得解.【详解】 ()4222442220a a b c c b b c -++++=Q ,()()24222222220a a b c b c b c -++-∴+=,(1)L在ABC ∆中,2222222cos 2cos a b c bc A b c a bc A =+-⇒+=+代入(1)式得: ()()242222222cos 2cos 0a a a bc A a bc A b c -+++-=,整理得:211cos ,cos ,sin 42A A A =⇒=±= Q 圆周角等于圆心角的两倍,2BOC A ∴∠=,(1)当1cos 2A =时, 3A π=,23BOC π=∴∠,121sin 22232OBC S OB OC π∆∴=⋅⋅=⋅⋅=. (1)当1cos 2A =-时,23A π=,点O 在ABC ∆的外面,此时,23BOC π∠=,OBC S ∆∴= 【点睛】本题对考生的计算能力要求较高,对解三角形和平面几何知识进行综合考查.3【解析】∵△ABC 的外接圆半径R 为1,a =∴由正弦定理22sin a R A==,可得: ∵边BC 上一点D 满足BD=3DC ,且∠BAD=90°,∴A=120°,∠CAD=30°, BD=34CD=14, ∴如图,由正弦定理可得:342113sin 222b c b c =∴=∠=∠==∠, 所以2229311232()42219c c c c c =+-⨯⨯-∴=所以13122219ABC S c c ∆=⨯⨯==4.34【解析】分析:根据三角形内角和定理及其关系,用∠C 表示∠A 与∠B ;根据a ,b ,c 成等差,得到2b a c =+,利用正弦定理实现边角转化.得到关于∠C 的等式;由cos cos 2sin 22B C C π⎛⎫=-= ⎪⎝⎭即可得到最后的值. 详解:A B C π++= ;2A C π-= 所以2A C π=+ ,22B C π=- 同取正弦值,得sin sin()cos 2A C C π=+=sin sin(2)cos 22B C C π=-= 因为a ,b ,c 成等差,所以2b a c =+ ,由正弦定理,边化角 2cos2cos sin C C C =+ ,根据倍角公式展开()()2cos sin cos sin cos sin C C C C C C +-=+ 所以1cos sin 2C C -=,等式两边同时平方得 ()21cos sin 4C C -= ,化简32sin cos 4C C = ,即3sin 24C =而3cos cos 2sin 224B C C π⎛⎫=-== ⎪⎝⎭点睛:本题考查了三角函数正弦定理的应用,三角函数求值中各个边角转化和角的形式变化,需要熟练掌握各个式子的相互转化,属于难题.5.32π. 【解析】分析:根据△GEF 中的边角数值,可以求出△GEF 的面积;因为PE EF ⊥,PE EG ⊥,所以可以求得143P GEF V -==。
解三角形、数列2020年全国数学高考分类真题(含答案)
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,﹣b n)a n=4n﹣1,则(b n+1即有b n﹣b n=(4n﹣1)•()n﹣1,+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
数学解三角形试题
数学解三角形试题1.在中,分别是角的对边,若,且,则的值为.【答案】3.【解析】,解得.【考点】本题考查正弦定理和余弦定理应用等知识,意在考查考生的推理论证能力、运算求解能力.2.在中,已知向量,,则的面积等于()A.B.C.D.【答案】A【解析】由已知得,,,,故,所以,故,所以的面积等于.【命题意图】本题向量的模、向量的夹角、三角形的面积等基础知识,意在考查学生逻辑思维能力和基本运算能力.3.在,三个内角、、所对的边分别为、、,若内角、、依次成等差数列,且不等式的解集为,则边上的高等于()A.B.C.D.【答案】B【解析】由已知得,在中,,又,故.又不等式的解集为,知是方程的两根,由根与系数关系得,,,在中,由余弦定理得,,则,设边上的高为,则,又,故.【命题意图】本题考查等差中项、二次不等式解法、三角形面积等基础知识,意在考查运算求解能力.4.在△ABC中,角ABC的对边分别为a、b、c,若,则角B的值为()A.B.C.或D.或【答案】D【解析】由得,即,,又在△中所以B为或。
5.如果的三个内角的余弦值分别等于的三个内角的正弦值,则A.和都是锐角三角形B.和都是钝角三角形C.是钝角三角形,是锐角三角形D.是锐角三角形,是钝角三角形【答案】D【解析】解:的三个内角的余弦值均大于0,则是锐角三角形,若是锐角三角形,由,得,那么,,所以是钝角三角形。
故选D。
6.在△ABC中,a、b、c分别是角A、B、C的对边,且.(1)求角B的大小;(2)若b=,a+c=4,求a的值.【答案】(1)(2)a=1或a=3【解析】本小题主要考查正弦定理、余弦定理、两角和的三角函数等基础知识和利用三角公式进行恒等变形的技能,考查运算能力和逻辑思维能力(1)解法一:由正弦定理===2R,得a=2RsinA,b=2R si nB,c=2R si nC,代入中,得,即,,∵A+B+C=,∴ sin(B+C)=A∴∵ sinA≠0,∴ cos B=-,又角B为三角形的内角,故B=.解法二:由余弦定理cos B=,cos C=,代入中,得·=,整理,得,∴c os B===-,又角B为三角形的内角,故B=.(2)将b=,a+c=4,B=,代入余弦定理,得,整理得,解得a=1或a=3.7.在锐角△ABC中,角A,B,C的对边分别为a,b,c,若+=,则+的值是________.【答案】4【解析】方法一取a=b=1,则=,由余弦定理得c2=a2+b2-=,所以c=,在如图所示的等腰三角形ABC中,可得==,又=,=,所以+=4.方法二由+=6cos C,得=6·,即a2+b2=c2,所以+=tan C===4.8.在中,已知,b,c是角A、B、C的对应边,则①若,则在R上是增函数;②若,则ABC是;③的最小值为;④若,则A=B;⑤若,则,其中错误命题的序号是_____【答案】③⑤【解析】【错解分析】:③④⑤中未考虑.【正解】①②.③时最小值为.显然.得不到最小值为.④或(舍),.⑤错误命题是③⑤.【点评】对三角形中问题的复习,主要是正、余弦定理以及解三角形,要掌握基本知识、概念、公式,理解其中的基本数量关系,对三角形中三角变换的综合题要求不必太难.9.在中,。
解三角形。数列周测题(含答案)
解三角形.数列周测题一选择题:(5′×10=50′)1、 已知ABC ∆的三边满足ab c b a 3222-=+,则此三角形的最大的内角为( )A 、︒150B 、︒135C 、︒120D 、︒602、等腰三角形的一个腰长是底边长的2倍,则它的顶角的正切值为( ) A 、23 B 、3 C 、815 D 、7153、已知ABC ∆的三边c b a ,,成等差数列,ABC ∆的面积为︒=∠30,23B ,那么=b ( )A 、231+ B 、31+ C 、232+ D 、32+4、已知钝角三角形三内角的度数成等差数列,若其最大边长与最小边长的比值为m ,则m 的取值范围是( )A 、)2,1(B 、),2(+∞C 、),3(+∞D 、),3[+∞5、数列}{n a 中,11=a ,对于所有的*,2N n n ∈≥都有221n a a a n =⋅⋅⋅ ,则53a a +等于( ) A 、1661 B 、925 C 、1625 D 、15316、已知数列}{n a 的前n 项和n n S n 92-=,第k 项满足85<<k a ,则=k ( )A 、9B 、8C 、 7D 、67等差数列}{n a 的前n 项和n S 满足4020S S =,下列结论中正确的是( )A 、 30S 是n S 中的最大值B 、30S 是n S 中的最小值C 、030=SD 、060=S 8、已知d c b a ,,,成等比数列,且抛物线322+-=x x y 的顶点是(c b ,),则ad 等于( ) A 、3 B 、2 C 、1 D 、-29、设)(x f 是定义在R 上恒不为0的函数,对任意R y x ∈,,都有)()()(y x f y f x f +=⋅,若n n f a a n (),(,211==为常数),则数列}{n a 的前n 项和n S 的取值范围是( )A 、 )2,21[B 、]2,21[C 、]1,21[D 、)1,21[10若}{n a 是等差数列,首项0,0,020042003200420031<⋅>+>a a a a a ,,则使前n 项和0>n S 成立的最大自然数n 是( )二、填空题:(5′×4=20′) 11、已知ABC ∆的面积)(41222c b a S -+=,则C ∠的度数为___。
(完整版)三角函数、数列测试题
三角函数、解三角形、平面向量、数列专题测试题班级: 姓名: 学号:一、选择题 1. 若,且为第四象限角,则的值等于( ) A . B . C . D .2. sin20°cos10°-con160°sin10°= (A )(B(C ) (D ) 3. 函数f(x)=的部分图像如图所示,则f (x )的单调递减区间为 (A)(),k (b)(),k(C)(),k(D)(),k4. 设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5sin 13α=-αtan α125125-512512-12-125. 已知 ,若 点是 所在平面内一点,且,则 的最大值等于( )A .13B .15C .19D .21 6.已知M (x 0,y 0)是双曲线C :上的一点,F1、F 2是C 上的两个焦点,若<0,则y 0的取值范围是 (A )(-,) (B )(-,) (C )()(D )()7. 等比数列{a n }满足a 1=3, =21,则 ( )(A )21 (B )42 (C )63 (D )84 8. 设{}n a 是等差数列. 下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->9. 设为等比数列的前项和,若,且成等差数列,则 .A, . B.2n-3 C. -3n-2 D. 3n-210 已知数列中,,(),则数列的前9项和等于 。
A. 17B. 27C. 37D. 471,,AB AC AB AC t t⊥==P ABC ∆4AB AC AP ABAC=+PB PC ⋅2212x y -=1MF •2MF 3366n S {}n a n 11a =1233,2,S S S n a =32+n -}{n a 11=a 211+=-n n a a 2≥n }{n a11. 在等差数列中,若,则= A. 5 B.6 C. 8 D .12.(15年福建理科)若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( ) A .6 B .7 C .8 D .10 二、填空题13.(15年江苏)已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 14.(15北京理科)在ABC △中,4a =,5b =,6c =,则sin 2sin A C=.15.(15北京理科)在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN x AB y AC =+,则x =;y = .16.(15年江苏)数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 三、解答题17. 的内角,,所对的边分别为,,.向量与平行. (I )求;(II )若求的面积.18. 在ABC ∆中,已知 60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值.{}n a 2576543=++++a a a a a 82a a +10,a b ()()20,0f x x px q p q =-+>>,,2a b -p q +C ∆AB A B C a b c (),3m a b =()cos ,sin n =A B A a =2b =C ∆AB19.已知函数2()cos 222x x x f x =.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.20. 已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?21. 设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T . 22. 已知数列是递增的等比数列,且 (1)求数列的通项公式; (2)设为数列的前n 项和,,求数列的前n 项和{}n a 14239,8.a a a a +=={}n a n S {}n a 11n n n n a b S S ++={}n b n T。
三角函数60题
解三角形60题1. 在△ABC中,已知c=,A=,a=2,则角C=()A. B. C. 或 D. 或2. 在三角形ABC中,分别根据下列条件解三角形,其中有两个解的是()A. a=8b=16A=30°B. a=25b=30A=150°C. a=30b=40A=30°D. a=72b=60A=135°3. △ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A. B. C. 2 D. 34. 在△ABC中,a=8,b=7,A=45°,则此三角形解的情况是()A. 一解B. 两解C. 一解或两解D. 无解5. 在△ABC中,已知sin2A=sin2B+sinBsinC+sin2C,则A等于()A. 30°B. 60°C. 120°D. 150°6. 在△ABC中,若sinC+sin(B-A)=sin2A,则△ABC的形状为()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形7. 在△ABC中,若sinA:sinB:sinC=:4:,则△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定8. 已知△ABC中,角A、B、C的对边分别是a、b、c,若+=2c,则△ABC是()A. 等边三角形B. 锐角三角形C. 等腰直角三角形D. 钝角三角形9. 若三角形的三条边长分别为3,4,5,则将每条边长增加相同的长度后所得到的新三角形为()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定10. 已知平行四边形ABCD的周长为18,又AC=,BD=,则该平行四A. 32B. 17.5C. 18D. 1611. 圆内接四边形ABCD中,AB=3,BC=4,CD=5,AD=6,则cosA等于()A. B. C. D.12. 若•+||2=0,则△ABC为()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形13. 在△ABC中,如果(b+c+a)(b+c-a)=bc,那么A等于()A. 30°B. 120°C. 60°D. 150°14. 在△ABC中,B=45°,C=30°,c=1,则b=()A. B. C. D.15. 在△ABC中,∠A=60°,b=1,S△ABC=,则△ABC的外接圆直径为()A. B. C. D.16. 已知△ABC中,sin2A=sin2B+sin2C且b•cosB-c•cosC=0,则△ABC为()A. 直角三角形B. 等腰三角形C. 等腰直角三角形D. 等边三角形17. 在△ABC中,a2=b2+c2+bc,则∠A等于()A. 60°B. 45°C. 120°D. 150°18. 若△ABC中,a:b:c=2:3:4,那么cosC=()A. B. C. D.19. 符合下列条件的三角形有且只有一个的是()A. a=1,b=2,c=3B. b=c=1,∠B=45°C. a=1,b=2,∠A=100°D. a=1,b=20. 在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.则△ABC是()A. 直角三角形B. 等腰直角三角形C. 等边三角形D. 钝角三角形21. 在△ABC中,a=2,A=30°,C=45°,那么ABC的面积是()A. B. C. D.A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形23. 设△ABC的角A,B,C所对的边分别是a,b,c,若a=8,B=60°,C=75°,则b等于()A. B. C. D.24. 在△ABC中,内角A,B,C所对的边长分别是a,b,c.若c-acosB=(2a-b)cosA,则△ABC的形状为()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形25. 在△ABC中,若sinA>sinB,则()A. a≥bB. a>bC. a<bD. b的大小关系不定26. 已知△ABC的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为()A. B. C. D.27. 已知在△ABC中,2cosBsinC=sinA,则△ABC一定为()A. 等腰三角形B. 直角三角形C. 钝角三角形D. 正三角形28. 在△ABC中,B=,BC边上的高等于BC,则cosA=()A. B. C. - D. -29. 在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=4,A=,则该三角形面积的最大值是()A. 2B. 3C. 4D. 430. 在三角形ABC 中,,,,则等于()A. B.C. 或D. 或31. 在中,,则A. B. C. D.的面积之比是()A. B. C. D.33. 在△ABC中,∠A=,a=c,则= ______ .34. △ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= ______ .35. 在△ABC中,AB=,A=45°,C=60°,则BC= ______ .36. 已知△ABC的内角A、B、C的对边分别为a,b,c,若a,b,c满足(a+b+c)(b+c-a)=3bc,则A= ______ .37. △ABC中,∠C=90°,点M在边BC上,且满足BC=3BM,若,则sin∠BAC= ______ .38. 在△ABC中,若A=30°,,则= ______ .39. 在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,若,且,则∠C= ______ .40. 在△ABC中,如果sinA:sinB:sinC=5:6:8,那么此三角形最大角的余弦值是______ .41. 在△ABC中,若a=7,b=8,,则最大角的余弦值是______ .42. △ABC中,AB=5,BC=6,AC=8,则△ABC的形状是______ .43 若的面积为,,,则边的长度等于___________.45. 已知中,,,,则的面积为46. 在锐角△ABC中,cosB+cos(A-C)=sinC.(Ⅰ)求角A的大小;(Ⅱ)当BC=2时,求△ABC面积的最大值.47. 在△ABC中,三个内角A,B,C所对的边分别为a,b,c,且满足=2cosC.(1)求角C的大小;(2)若△ABC的面积为2,a+b=6,求边c的长.48. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.49. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.50. △ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.51. 如图,D是直角△ABC斜边BC上一点,.(I)若∠DAC=30°,求角B的大小;(Ⅱ)若BD=2DC,且,求DC的长.52. 在锐角△ABC中,角A、B、C所对的边分别为a、b、c,且=.(Ⅰ)求角A;(Ⅱ)若a=2,求△ABC的面积的最大值.53. 在△ABC中,(角A,B,C的对应边分别为a,b,c),且.(1)求角B的大小;54. 设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA.(1)求B的大小;(2)若a=3,c=5,求b和三角形ABC的面积S.55. △ABC中,角A、B、C的对边a、b、c,且3acosA=(bcosC+ccosB).(1)求cosA的值;(2)若,c=2,求△ABC的面积.56. 已知函数f(x)=.设△ABC的三个内角A,B,C 的对边分别为a,b,c,且c=,f(C)=0.(1)求角C;(2)若向量与向量共线,求a,b的值.57. 己知a,b,c分别是△ABC的三个内角A、B、C所对的边,A,B,C成等差数列.(1)若a=1,b=,求sin C;58. 在△ABC中,内角A,B,C所对边长分别为a,b,c,已知(a+b+c)(b+c-a)=3bc,且•=-1.(1)求角A的值;(2)若b-c=1,求a的值.59. 在△ABC中,a、b、c分别为角A、B、C所对的边,已知a=2.求c.60. (本题满分12分)在△ABC中,,.(Ⅰ)求sinA的值;(Ⅱ)设△ABC的面积,求BC的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形、数列测试题 2012.5.9
班级 学号 姓名 评分 一、选择题(8小题,每题6分,共48分)
1.△ABC 中, a = 1, b =3,A =30°,则B 等于( ) A .60° B .60°或120°
C .30°或150°
D .120°
2.边长为5、7、8的三角形的最大角与最小角之和为 ( ) A 、90° B 、 120° C 、 135° D 、150°
3.已知数列{a n } 中的首项11a =,且满足111
22n n a a n +=+,则此数列的第三项是( )
A 、1
B 、
12 C 、 3
4 D 、5
8
4.已知{}n a 是等比数列,22=a ,4
1
5=
a ,则公比q = ( ) A . 2
1- B .2- C .2 D .21
5.如果等差数列{}n a 中,12543=++a a a ,那么=+++721a a a ( ) A .14 B .21 C .28 D .35
6.设{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2
C .2±
D .4
7.△ABC
三边满足222a b c +=,则此三角形的最大内角为( ) A .150°
B . 135°
C . 120°
D .60°
8.在等比数列{a n } 中,572106,5,a a a a =+=,则
18
10
a a 等于( ) A .2332--或 B .23
C .
32 D .23
32
或 二、填空题(3小题,共18分)
9.在1与101之间顺次插入三个数a ,b ,c ,使这5个数成等差数列,则插入这三个数依次为
10.在△ABC 中,若B =30°,AB =23,AC =2,则△ABC 的面积是___ ___
11.等差数列{a n } 中,14725839,33a a a a a a ++=++=,则369a a a ++= 三、解答题(3小题,共34分)
12.(本题满分10分) 已知等差数列{}n a 中,53-=a ,15-=a ,试求 (1)数列{}n a 的通项a n ;(2)前n 项和n S 的最小值。
13.(本题满分10分) 在△ABC 中,已知2a b c =+,2
sin sin sin A B C =,试判断△ABC 的形状。
14.(本题满分14分)等比数列{a n } 中,已知12a =,416a = (1)求数列{a n } 的通项公式;
(2)若35,a a 分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和n S
(3)证明:数列{}
n b a 是等比数列。
(以b n 为数列{a n } 的序号)
第14周周测:解三角形、数列答案 2012.5.9
一、选择题(8小题,每题6分,共48分)
1~5 B B C D C 6~8 B A D 二、填空题(3小题,共18分) 9. 26,51,76 10.
11. 27 三、解答题(3小题,共34分) 12、解:设{}n a 的公差为d ,则⎩⎨⎧-=+=-=+=1
45
21513d a a d a a ,∴⎩⎨⎧=-=291d a …….4分
∴9(1)2211n a n n =-+-⨯=-
…….5分 ∴ 2(1)
92102
n n n S n n n -=-+
⨯=-
…….7分
2(5)25n =--。
…….9分
∴当5=n 时,n S 取得最小值25-。
…….10分 13、解:由正弦定理2sin sin sin a b c
R A B C ===得:
sin 2a A R =,sin 2b B R =,sin 2c
C R =。
…….2分
所以由2sin sin sin A B C =可得:2()222a b c R R R
=⋅,即:2
a bc =。
…….4分 又已知2a
b
c =+,所以224()a b c =+,
所以2
4()bc b c =+,即2
()0b c -=,因而b c = …….7分 故由2a b c =+得:22a b b b =+=,a b =。
…….9分 所以a b c ==,△ABC 为等边三角形。
…….10分 14解:(1)依题意得131
216a a q =⎧⎨=⎩,解得12
2a q =⎧⎨=⎩
…….4分
所以112n n n a a q -==
…….5分 (2)由(1)得358,32a a ==,所以358,32b b ==,设公差为d
…….7分
则11
28432b d b d +=⎧⎨+=⎩,解得11612b d =-⎧⎨=⎩
…….9分
所以1612(1)1228n b n n =-+-=- 所以21()(161228)
62222
n n n b b n n S n n +-+-=
==- …….10分
(3)当2n ≥时,
11
1
11n
n n n n n b b b b d b b a a q q q a a q
----===(常数) …….13分
所以数列{}
n b a 是等比数列 …….14分。