初中数学轴对称图形知识点加习题总结
八年级轴对称数学知识点
八年级轴对称数学知识点
轴对称是数学中比较基础的概念之一,对数学学习的深入和有效应用有很大帮助。
在初中数学学习中,八年级轴对称是一个非常重要的知识点。
本文将就八年级轴对称这个知识点进行详细的介绍。
一、什么是轴对称
轴对称是指图形对某条直线具有对称性。
具体的表现形式是:图形关于某一直线对称之后,在原图形的基础上能“翻转”到副本的位置,并且重叠相拼即可得到。
二、轴对称的性质
1、轴对称图形的对称轴是唯一的。
2、轴对称图形中的任意一点,关于对称轴的对称点必然满足在对称轴同侧。
3、轴对称图形的内部点对称于对称轴上的点,整体上左右对称。
三、常见八年级轴对称问题类型
1、求轴对称的轴线:当给出轴对称图形时,需要从图形上分
析出轴对称的轴线。
2、用轴对称复制图形:当给出了一个图形和它的对称轴时,
需要求出轴对称的图形。
3、判断轴对称图形:当给出来了几个图形时,需要判断哪些
是轴对称图形。
4、证明轴对称性:当给出一个轴对称图形时,需要证明这个
图形具有轴对称性。
四、轴对称的应用
1、绘画:许多艺术作品都运用了轴对称的特性,如某些建筑物、雕塑等,能够更加精确和美观的呈现在人们面前。
2、工程:在设计一些具有轴对称性质的工程中能够更好地满
足实际需求,如建筑、桥梁等。
3、其他学科:在生物、化学等学科中都涉及到轴对称的概念。
五、本章小结
八年级轴对称是一个相对比较基础且重要的知识点,对于学习几何以及正方形、矩形、圆等问题都有着一定的应用。
掌握了轴对称的性质及应用,能够更好地促进数学的学习效果,提高学生的综合素质。
新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析
新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。
八年级上册数学轴对称知识点总结
八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
初中数学轴对称的几何知识点总结
初中数学轴对称的几何知识点总结轴对称是初中数学中一个重要的几何概念,它涉及到点、线、图形等方面的内容。
下面是数学轴对称的几个重要知识点的总结:1.轴对称的定义:轴对称是指一个图形相对于一些轴线对称,即图形的一部分可通过轴线翻折到另一部分,使得两部分完全重合。
轴线称为对称轴,对称轴上的任意一点,在翻折过程中仍停留在轴上。
轴对称的图形呈镜像对称。
2.轴对称的性质:a.轴对称图形中对称轴的选择不唯一,同一个图形可以有多个对称轴。
b.轴对称的图形上的点经过对称轴翻折后所得的点和原来的点相等。
c.轴对称的图形是封闭的,对称轴上的点保持不变。
d.轴对称的图形上的点和它们的对称点关于对称轴对称。
3.对称图形的判断:判断一个图形是否轴对称有以下几种方法:a.通过纸张折叠法,将图形的一部分折到另一部分,看是否重合。
b.通过将图形看作由简单的基本图形组成,判断每个基本图形是否对称,进而判断整个图形是否对称。
c.观察图形在对称轴上的点,通过比较对称点之间的距离、角度等属性,判断图形是否对称。
4.常见轴对称图形:初中数学中常见的轴对称图形包括:a.点的轴对称:点是轴对称的,即任意一点相对于自身对称。
b.线的轴对称:直线在自身的中点处对称。
c.图形的轴对称:正方形、矩形、正五边形、圆等都是轴对称的图形。
5.轴对称图形的性质:a.轴对称图形的对称中心可以在图形内部或外部。
b.轴对称图形的对称轴通常是图形的中垂线或对角线等。
6.轴对称与平移的关系:轴对称是平移的一种特殊情况,当平移的向量等于对称轴上的一个向量时,平移的结果就是轴对称图形。
7.轴对称的应用:轴对称在几何题目中的应用非常广泛。
例如:a.用轴对称的方法来求图形的面积、周长等属性。
b.利用对称轴的性质来证明等式的成立。
c.利用轴对称的性质来解决几何问题,如寻找图形的对称中心等。
通过以上的总结,希望能够帮助你对初中数学轴对称的几何知识点有一个更全面和深入的了解。
轴对称图形知识点
轴对称图形知识点轴对称图形是初中数学中一个很重要的知识点,也是应用十分广泛的一个概念。
轴对称图形可以用于建模、美术、建筑等领域,是我们生活中不可或缺的一部分。
一、轴对称图形的定义及性质轴对称图形,顾名思义,就是指如果平面上一个图形经过一条直线对称后,得到的图形与原来的图形完全一致,那么这个图形就是轴对称图形。
这条直线就被称为轴对称线或对称轴。
轴对称图形的一个显著性质是:对于图形上的任意一对点,它们关于轴对称线是对称的。
我们可以通过画出一条虚线,把两个关于它对称的点连起来,以此获得轴对称图形的对称性。
二、轴对称图形的制作方法制作轴对称图形的方法有几种。
其中一种方法是通过“折纸法”制作轴对称图形。
我们可以把待制作的图形剪下来,然后将其沿着轴对称线对折,再将两部分黏在一起,就可以得到轴对称的图形。
另一种制作轴对称图形的方法是通过使用计算机绘图软件,例如Photoshop、Illustrator等。
这些软件可以帮助我们轻松地制作各种轴对称图形,并且可以灵活地改变图形的颜色、大小等因素。
三、轴对称图形的应用轴对称图形在各个领域中都有很重要的应用。
例如,在美术领域中,我们经常使用轴对称图形进行将来建构,特别是在双面画和复合画中,更是少不了轴对称图形。
建筑领域中,轴对称图形被广泛应用于大厦、广场、宫殿等建筑的设计和建造中。
此外,在语言和文字领域,轴对称图形也被用于设计会标、字体等。
四、轴对称图形的实例以下是一些常见的轴对称图形实例:1. 五角星五角星是一个非常常见的轴对称图形。
它由两个重叠的正五角形所组成。
2. 心形心形是一个非常常见的轴对称图形。
它由两个相似的弧形线条组成,以轴对称线为轴对称。
3. 十字架十字架也是一个经典的轴对称图形,由一个直线和一条相交的线段组成。
它在基督教和天主教中有着非常深厚的象征意义。
总的来说,轴对称图形是一个非常重要的初中数学知识点,也是不可或缺的一个概念,可以应用于各个领域。
这个概念的掌握对我们日常生活和工作中的许多方面都会产生巨大的影响。
初中数学对称知识点总结
初中数学对称知识点总结一、对称的定义1. 点的对称:如果图形中任意一点关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
2. 图形的对称:如果图形关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
当一个图形关于一个点对称时,这个点称为图形的中心。
3. 对称性质:对称可以分为轴对称和中心对称。
轴对称是指图形可以关于一条直线对称,中心对称是指图形可以关于一个点对称。
4. 对称图形:轴对称的图形称为轴对称图形,中心对称的图形称为中心对称图形。
轴对称图形有对称轴,中心对称图形有对称中心。
二、对称的性质1. 对称性质是指图形、函数、方程等在平移、旋转或翻转后的性质不变。
2. 对称性质通常包括镜像对称、轴对称、中心对称等。
3. 对称性质在代数、几何、组合等数学领域中有着广泛的应用。
三、对称图形1. 关于坐标系的对称图形:在平面直角坐标系中,可以通过坐标变换和对称变换来研究对称图形的性质。
常见的对称图形包括点、直线、圆等。
2. 关于轴对称的图形:轴对称图形是指图形可以关于一条直线对称的图形。
常见的轴对称图形包括正方形、矩形、菱形等。
3. 关于中心对称的图形:中心对称图形是指图形可以关于一个点对称的图形。
常见的中心对称图形包括正圆、正多边形等。
四、对称的应用1. 对称在代数中的应用:对称性质在代数中有着重要的应用,可以简化问题的求解和证明过程。
2. 对称在几何中的应用:对称性质在几何中有着广泛的应用,可以帮助求解几何问题和证明几何定理。
3. 对称在组合中的应用:对称性质在组合问题中有着重要的应用,可以帮助求解排列组合和图形的对称性质等问题。
总之,对称是数学中一个非常重要的概念,它在数学的各个领域都有着广泛的应用。
对称性质可以帮助简化问题的求解和证明过程,可以帮助学生更好地理解和掌握数学的知识。
因此,学生应该认真学习对称的知识,掌握对称的定义、性质和应用,以便更好地应用对称来解决问题和证明定理。
初中数学轴对称知识点
初中数学轴对称知识点初中数学轴对称知识点1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的.点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是"一个图形与一条直线的对称关系" ;轴对称讨论的是"两个图形与一条直线的对称关系"。
(2)联系。
把轴对称图形中"对称轴两旁的部分看作两个图形"便是轴对称;把轴对称的"两个图形看作一个整体"便是轴对称图形。
学习方法1.注重预习培养自学能力在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。
上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。
预习可以用“一划、二批、三试、四分”的预习方法。
一划:就是圈划知识要点,基本概念。
二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
三试:就是尝试性地做一些简单的练习,检验自己预习的效果。
四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
2、把握课堂,提高学习效果课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。
另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。
初中数学知识点:轴对称
初中数学知识点:轴对称轴对称知识点一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
初中数学轴对称知识点总结归纳
初中数学轴对称知识点总结归纳轴对称是几何学中的一个重要概念,关于轴对称的知识在初中数学中有着广泛的应用。
下面是初中数学轴对称的知识点总结归纳。
一、轴对称的定义及性质轴对称即物体围绕条线旋转180度后仍然与原来位置重合。
1.定义:轴对称是指平面内的点、线、图形等围绕条线旋转180度后仍然与原来位置重合。
2.性质:a.旋转中心即轴对称的轴上的任意点保持不动。
b.旋转中心与轴对称的物体上的任意点之间的距离保持不变。
二、轴对称的判断判断一个图形是否轴对称的方法有以下几种:1.观察法:观察图形是否看起来关于条线对称。
2.折叠法:将图形沿着条疑似对称轴对折,观察是否能够将两部分完全重合。
3.旋转法:将图形围绕一个疑似对称轴旋转180度,观察是否与原来位置完全重合。
4.对称性质法:观察图形是否具有对称性质,例如左右对称、上下对称等。
三、轴对称的应用1.确定轴对称图形:a.线段的中点是线段轴对称的轴。
b.两个且只有两个端点在同一直线上的线段是轴对称的轴。
c.两条平行线是轴对称的轴。
d.三个且只有三个顶点都在同一直线上的三角形是轴对称的轴。
e.按顺时针方向给出的相邻边相等的凸多边形是轴对称的轴。
f.所有与自己相似的图形都是轴对称的轴。
2.轴对称图形的性质:a.轴对称图形是左右对称的,即图形的左半部分和右半部分完全一样。
b.轴对称图形的最小单位即轴上的点称为轴对称图形的旋转中心。
c.轴对称图形的每个点的两边都有另一个对称点。
d.轴对称图形上的点与旋转中心距离相等的点是该图形上的点与旋转中心的对称点。
3.构造轴对称图形:a.已知轴对称图形的一部分,可以使用对称性质构造其他部分。
b.可以将点在轴上折叠,或者将线段、角度在轴上旋转,得到图形的对称部分。
四、轴对称图形的操作1.旋转:将轴对称的物体沿着轴旋转180度,使得物体的每个点都与轴上的对称点相重合。
2.平移:将轴对称的物体沿着与轴垂直的平行线平移,使得物体与原来位置的对称关系保持不变。
人教版初中数学八年级上册第十三章 轴对称
两者的联系: 把成轴对称的两个图形看成一个整体,它就是一个轴对称图
形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于 这条轴对称.
探究新知
比较归纳
13.1 轴对称/
轴对称图形
两个图形成轴对称
区别
是
不是
是
链接中考
13.1 轴对称/
1.下列图形具有两条对称轴的是( C )
A.等边三角形
B.平行四边形
C.矩形
D.正方形
2.下列四个图案中,不是轴对称图案的( B )
A.
B.
C.
D.
课堂检测
基础巩固题
13.1 轴对称/
1.被誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方
古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四
与直线MN 有什么关系? 想一想
M
A
A′
P
你能说明其中的道理吗?
B
B′
C
C′
N
探究新知
13.1 轴对称/
【思考】上面的问题说明“如果△ABC 和△A′B′C′关于直
线MN 对称,那么,直线MN 垂直于线段AA′,BB′和CC′,
并且直线MN 还平分线段AA′,BB′和CC′”.如果将其中的
“三角形”改为“四边形”“五边形”……其他条件不变,
轴对称图形的对称轴,是任 A
何一对对应点所连线段的垂直平
分线.
B
A′ B′
巩固练习
13.1 轴对称/
下列图形是轴对称图形吗?如果是,指出它的对称轴.
人教版初中数学《轴对称》知识点总结及经典题型解法
轴对称一、轴对称:1、轴对称图形:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
这时我们就说这个图形关于这条直线对称。
2、成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;简称中垂线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
4、轴对称的性质:①关于某条直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点必在对称轴上。
5、成轴对称和轴对称图形的区别和联系:区别:①轴对称是指两个图形关于某条直线对称,而轴对称图形是一个图形关于某条直线对称。
②轴对称的对应点分别在两个图形上,而轴对称图形中的对应点都在这一个图形上。
③轴对称中的对称轴可能在两个图形的外边,而轴对称图形中的对称轴一定过这个图形。
联系:①都是沿着某一条直线翻折后两边能够完全重合。
②如果把轴对称的两个图形看成是一个整体,那么这个整体反映出的图形便是一个轴对称图形;反过来,如果把一个轴对称图形中关于对称轴的两边部分看成是两个图形,那么这两部分对应的两个图形则关于这条对称轴而成轴对称。
二、轴对称变换:由一个平面图形得到它的轴对称图形叫做轴对称变换.两个图形成轴对称或一个轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
轴对称图形上对应线段相等、对应角相等。
对称轴的画法:找到一对对应点,作出连接它们的线段的垂直平分线,就得到对称轴。
画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
八年级上轴对称知识点总结
八年级上轴对称知识点总结轴对称是初中数学中非常重要的一个概念,它不仅是基础知识,还是学好高中数学的必备逻辑推理方法。
在八年级上学期,轴对称这一概念得到了进一步的发展和应用。
本篇文章将对八年级上轴对称知识点进行一一总结。
一、轴对称的基本概念轴对称是平面中的一种特殊变换,通过将图形绕轴旋转180°,得到的图形称为轴对称图形。
在轴对称中,轴是图形的中心对称线,轴对称图形左右对称。
二、轴对称图形的特征1. 轴对称图形内部不受影响,仍旧相同。
2. 轴对称图形的任何两点关于轴对称图形中心对称。
3. 轴对称图形的任何一个点到轴线的距离与它的对称点到轴线的距离相等。
三、确定轴对称图形的轴1. 图形本身具有轴对称性,轴对称中心就是图形的中心。
2. 图形的边界线或部分边界线是轴对称的,则轴对称中心在轴线上。
四、在轴对称中绘制图形在轴对称中,我们不仅可以根据轴对称中心绘制图形,还可以通过一些图形构建方法绘制出轴对称图形。
例如,我们可以将图形分成左右两个部分,然后将左半部分绕中心点旋转180度,得到一个完整的轴对称图形。
五、判断轴对称图形的对称特征判断轴对称图形的对称特征,可以用以下方法:1. 判断图形中是否存在轴对称中心。
2. 将两个同名点之间的距离与轴的距离进行比较,判断其是否相等。
六、轴对称图形的性质1. 轴对称图形中,任何两个对称点的坐标相同。
2. 轴对称图形中,通过轴对称中心的直线被轴分成两段,且两段的长度相等。
3. 轴对称图形中,若点P关于直线L对称的对称点为P',则L 为点P与点P'中点的轴对称中心。
七、轴对称与坐标系我们可以将轴对称与坐标系结合起来,使用坐标系的有关知识推导出轴对称图形的方程和性质。
例如,我们可以通过坐标系求出一个平面图形的中心点,进而找到其轴对称中心。
我们还可以利用坐标系求出两个轴对称图形的交点和角度。
八、轴对称的应用轴对称不仅是数学理论中的一个基础概念,也是一种实用的工具。
八年级上册轴对称的知识点
八年级上册轴对称的知识点轴对称是几何中常见的概念,也是初中数学中必须掌握的一个知识点。
在此,我们将对八年级上册轴对称的相关知识进行详细介绍,以便同学们更好地掌握。
一、轴对称的定义
轴对称,指平面上存在一条直线,将图形对称折叠后,两边完全重合,那么这条直线就叫做轴对称线,这种图形就是轴对称图形。
二、轴对称的性质
1.轴对称线是图形的对称轴,对称轴上任意一点到图形两边的距离相等。
2.轴对称图形中,如果一条线段与对称轴垂直,那么它与对称轴的交点一定在对称轴的中点。
3.轴对称图形中,如果一条线段与对称轴平行,那么它对称后
的线段与原线段的距离相等。
三、轴对称的判定方法
1.对称中心法:将图形折叠后,查看两边是否完全重合,确定
对称中心及轴对称线。
2.寻找轴对称点法:通过寻找具有对称性的点,确定轴对称线。
四、轴对称的常见图形
1.正方形:正方形具有4条对称轴,分别是4个边的中垂线和
2条对称线。
2.矩形:矩形具有2条对称轴,分别是2条相邻边的中垂线。
3.等边三角形:等边三角形具有3条对称轴,分别是3条中线。
4.等腰三角形:等腰三角形具有1条对称轴,即过顶点与底边中点的中线。
5.圆:圆具有无数条对称轴,都是其直径。
五、轴对称的应用
轴对称不仅在几何学中有广泛的应用,而且在现实生活中也有很多应用。
比如对称艺术品、镜像照片等。
六、总结
轴对称作为初中几何中的基础知识,是我们往后学习更高级几何学知识的基础。
通过本篇文章的介绍和总结,相信同学们已经对轴对称有了更深入的理解和掌握。
七年级上册对称图形知识点
七年级上册对称图形知识点对称图形是初中数学中的一个重要概念,也是一项基本技能。
这篇文章将介绍七年级上册对称图形知识点,帮助学生更好地掌握这一知识点。
一、对称的概念对称图形是指当图形中的一条直线把它分成两个部分时,左、右两部分完全一致或者镜像对称。
这条直线被称为对称轴。
对称轴将图形分成两部分,称为对称部分。
二、对称形和轴对称形是指通过对称轴把原图形变换后得到的图形。
如果图形与它的对称形一模一样,则称它是对称图形。
对称轴可以是垂直轴、水平轴或斜轴。
三、关于对称图形的性质1.对称图形中的任何一点在对称轴的对称点也存在。
2.对称图形中的任何线段在对称轴上的对称线段的长度相等。
3.对于一个连续的图形,如果对图形进行了对称操作,则得到的结果仍然是连续的图形。
4.对称图形中,所有的角度和对应角度相等。
四、对称图形的分类对称图形可以分为以下几种:1.旋转对称图形:指一个图形沿着一个旋转轴旋转固定的角度后,得到与原图形重合或相似的图形。
2.平移对称图形:指一个图形在平面内的任意位置平移后,得到与原图形重合或相似的图形。
3.轴对称图形:指一个图形沿着中心直线对称后,得到与原图形重合或相似的图形。
五、实例分析:三角形和正方形的对称性三角形和正方形是初中数学中极为重要的知识点,它们在对称图形中占有重要地位。
1.三角形的对称性三角形最基本的对称形式是关于中心点对称。
三角形的中心点位于其重心、外心、内心或垂心处。
如果三角形是等边三角形,则所有的中心点都是同一点。
此外,三角形还可以绕其中一条边或中心点旋转得到对称形。
2.正方形的对称性正方形是一种具有四条对称轴的图形。
它们通过正方形的中心点、每个角、每个中点和每个相对面的交点分别形成了四条对称轴。
除此之外,正方形还有一些其它的对称特性,如旋转对称、平移对称和轴对称。
六、总结对称图形的概念是初中数学重要的知识点之一。
掌握对称轴、对称形和对称部分的概念是理解对称图形的关键所在。
了解对称图形的性质,可以帮助学生更好地理解和解决相关问题。
2020中考数学:初中数学知识点总结之对称轴
2020中考数学:初中数学知识点总结之对称轴轴对称定义:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线轴对称,这条直线就是它的对称轴。
折叠后重合的点叫对称点。
轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫轴对称图形,这条直线就是它的对称轴轴对称的性质:①轴对称的两个图形是全等图形;轴对称图形的两个部分也是全等图形。
②轴对称(轴对称图形)对应线段相等,对应角相等。
③如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
④轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
⑤两个图形关于某条直线对称,那么如果它们的对应线段或延长线相交,那么交点一定在在对称轴上。
常见图形的对称轴:①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。
②角有一条对称轴,是角平分线所在的直线。
③等腰三角形有一条对称轴,是顶角平分线所在的直线。
④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。
⑤矩形有两条对称轴,是相邻两边的垂直平分线。
⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。
⑦菱形有两条对称轴,是对角线所在的直线。
⑧等腰梯形有一条对称轴,是两底垂直平分线。
⑨正多边形有与边数相同条的对称轴。
⑩圆有无数条对称轴,是任何一条直径所在的直线。
对称轴的画法:①找出一对对称点②连对称点线段③做出对称点所连线段的垂直平分线。
2019-2020学年数学中考模拟试卷一、选择题1.如图,点A 在反比例函数ky x=(x <0)的图象上,过点A 的直线与x 轴、y 轴分别交于点B 、C ,且AB BC =,若BOC ∆的面积为1.5,则k 的值为( )A .3-B . 4.5-C .6D .6-2.如图,已知点A (-6,0),B (2,0),点C 在直线3233y x =-+上,则使△ABC 是直角三角形的点C 的个数为( )A.1B.2C.3D.43.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为( ) A .1.361×104B .1.361×105C .1.361×106D .1.361×1074.岳池医药招商保持良好态势,先后签约成都百裕制药、济南爱思、重庆泰濠、四川源洪福科技、四川恒康科技、成都天瑞炳德、南充金方堂、药融园8个亿元以上医药项目和科伦药业、人福药业CS0两个医贸项目,协议投资额约51.5亿元。
初中数学轴对称知识点总结归纳
初中数学轴对称知识点总结归纳单选题1、如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°答案:C解析:∠1,再根据三角形内角和定理可得.根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∠1=22°,∴∠BAC=∠ACD=∠B′AC=12∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故选C.小提示:本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.2、如图,E是∠AOB平分线上的一点.EC⊥OA于点C,ED⊥OB于点D,连结∠ECD=25°,则∠AOB=()A.50°B.45°C.40°D.25°答案:A解析:根据角平分线的性质得到ED=EC,得到∠EDC=∠ECD=25°,求出∠ODC=∠OCD=65°,利用三角形内角和定理求出答案.解:∵OE是∠AOB的平分线,EC⊥OA,ED⊥OB,∴ED=EC,∠ODE=∠OCE=90°,∴∠EDC=∠ECD=25°,∴∠ODC=∠OCD=65°,∴∠AOB=180°−∠ODC−∠OCD=50°,故选:A.小提示:此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键.3、如图,△ABC中,AB=AC,DE是AB的垂直平分线交AB于点E,交AC于点D,连接BD;若BD⊥AC,则∠CBD的度数是()A.22°B.22.5°C.24°D.24.5°答案:B解析:先利用线段垂直平分线的性质、等腰三角形的性质求得∠A、∠ABD、∠ABC,最后利用三角形内角和定理求解即可.解:∵BD⊥AC,DE是AB的垂直平分线,∴∠ADB=90°,DA=DB,∴∠A=∠ABD=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBD=∠ABC-∠ABD=67.5°-45°=22.5°,.故选B.小提示:本题主要考查了线段垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,明确题意、灵活应用相关知识点成为解答本题的关键.4、下面四个手机应用图标中是轴对称图形的是()A.B.C.D.答案:D解析:分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.小提示:本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.5、如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm,则BC的长为().A.8cm B.12cm C.15cm D.16cm答案:B解析:根据等腰三角形性质求出∠B,求出∠BAC,求出∠DAC=∠C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案.∵AB=AC,∠C=30°,∴∠B=30°,∵AB⊥AD,AD=4cm,∴BD=8cm,∵∠ADB=60°∠C=30°,∴∠DAC=∠C=30°,∴CD=AD=4cm,∴BC=BD+CD=8+4=12cm.故选B.小提示:本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长.6、如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B度数为()A.30°B.60°C.90°D.120°答案:C解析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C .小提示:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7、如图,Rt △ACB 中,∠ACB =90°,△ABC 的角平分线AD 、BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:①∠APB =135°;②BF =BA ;③PH =PD ;④连接CP ,CP 平分∠ACB ,其中正确的是( )A .①②③B .①②④C .①③④D .①②③④答案:D解析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD+∠ABE=12(∠BAC+∠ABC)=12(180°-∠ACB)=12(180°-90°)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB ,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.连接CP,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.小提示:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.8、如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B度数为()A.30°B.60°C.90°D.120°答案:C解析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.小提示:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.填空题9、如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.答案:13解析:已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,所以答案是:13.10、已知∠MON=50∘,点P为∠MON内一点,点A为OM上一点,点B为ON上一点,当ΔPAB的周长取最小值时,ΔPAB的度数为_______________.答案:80°解析:如图,分别作P关于OM、ON的对称点,然后连接两个对称点即可得到A、B两点,由此即可得到△PAB的周长取最小值时的情况,并且求出∠APB度数.解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点,∴△PAB即为所求的三角形,根据对称性知道:∠APO=∠AP1O,∠BPO=∠BP2O,还根据对称性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案为80°.11、如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.答案:45解析:试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.考点:1.等腰三角形的性质;2.三角形内角和定理.12、如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA 方向各剪一刀,则剪下的△DEF的周长是_____ .答案:6解析:先说明△DEF是等边三角形,再根据E,F是边BC上的三等分求出BC的长,最后求周长即可.解:∵等边三角形纸片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等边三角形∴DE=EF=DF∵E,F是边BC上的三等分点,BC=6∴EF=2∴DE=EF=DF=2∴△DEF= DE+EF+DF=6故答案为6.小提示:本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键.13、如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.答案:13解析:已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,所以答案是:13.解答题14、已知△ABC三边长a,b,c满足a2+b2+c2−6a−6b−10c+43=0,试判断△ABC的形状并求周长.答案:等腰三角形,周长为11解析:根据完全平方公式变形,再根据非负性求出a,b,c,故可求解.∵a2+b2+c2−6a−6b−10c+43=0∴a2−6a+9+b2−6b+9+c2−10c+25=0∴(a−3)2+(b−3)2+(c−5)2=0∴a-3=0,b-3=0,c-5=0,∴a=3、b=3、c=5∵a=b∴△ABC为等腰三角形,C△ABC=3+3+5=11.小提示:此题主要考查等腰三角形的判定,解题的关键是熟知完全平方公式的特点、非负性的运用.15、已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.答案:(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.解析:分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF 即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.详解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD ;(2)设DE=a ,则AE=2DE=2a ,EG=DE=a ,∴S △ADE =12AE×DE=12×2a×a=a 2, ∵BH 是△ABE 的中线,∴AH=HE=a ,∵AD=CD 、AC ⊥BD ,∴CE=AE=2a ,则S △ADC =12AC•DE=12•(2a+2a )•a=2a 2=2S △ADE ;在△ADE 和△BGE 中,∵{∠AED =∠BEGDE =GE ∠ADE =∠BGE,∴△ADE ≌△BGE (ASA ),∴BE=AE=2a ,∴S △ABE =12AE•BE=12•(2a )•2a=2a 2, S △ACE =12CE•BE=12•(2a )•2a=2a 2,S △BHG =12HG•BE=12•(a+a )•2a=2a 2,综上,面积等于△ADE 面积的2倍的三角形有△ACD 、△ABE 、△BCE 、△BHG .点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。
知识点2 对称轴的性质1.对称轴是一条直线。
2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。
例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为()A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A.ED=CDB.∠DAC=∠BC .∠C >2∠BD .∠B+∠ADE=90°分析:∵DE 是线段AB 的垂直平分线,∴AD=BD .∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A ,B 关于直线a 对称,P 是直线a 上的任意一点,下列说法不正确的是( )A .直线AB 与直线a 垂直B .直线a 是点A和点B 的对称轴C .线段PA 与线段PB 相等D .若PA=PB ,则点P 是线段AB 的中点2.三角形中到三边的距离相等的点是( )A .三条边的垂直平分线的交点B .三条高的交点C .三条中线的交点D .三条角平分线的交点3.已知A 和B 两点在线段EF 的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB 等于( )A 、95°B 、15°C 、95°或15°D 、170°或30°4.已知:如图,线段AB 垂直平分线段CD 则AC = 。
若线段AB,CD 互相垂直平分,则AC= 。
D第四题第五题5.已知:如图,∠O=34°,BD垂直平分AO,求∠ABC的度数.6.已知:如图,AC=BC,AD=BD,求证:AE=BE知识点1 画轴对称图形例1已知直线AB和直线l,要画出AB关于l的对称图形只需要在直线AB上选两个不同的点,这两点关于l的对称点就可以确定直线AB的对称图形CD。
点构成线,线构成面,类似的,作出构成这个平面图形的直线的轴对称图形即可确定这个平面的对称图形。
例2.△ABC在平面直角坐标系中如图所示,(1)作出△ABC关于x轴对称的图形△A1B1C1;若P(a,b)是△ABC内一点,请用a,b 表示出点P关于x轴对称的点P1的坐标;(2)作出△ABC关于原点对称的图形△A2B2C2,写出点C2的坐标.(3)△A2B2C2能否由△A1B1C1通过某种变换而得到?若能,请指出是何种变换.分析:(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可,根据关于x轴对称的点的横坐标相同,纵坐标互为相反数写出点P1的坐标;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点C2的坐标;(3)观察图形可知关于y轴对称.解:(1)△A1B1C1如图所示,点P1的坐标为(a,-b);(2)△A2B2C2如图所示,点C2的坐标(2,0);(3)△A2B2C2能由△A1B1C1通过变换得到,是关于y轴对称.知识点3 用坐标表示轴对称坐标轴对称点P(x,y)关于x轴对称的点的坐标是(x,-y)点P(x,y)关于y轴对称的点的坐标是(-x,y)原点对称点P(x,y)关于原点对称的点的坐标是(-x,-y)坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(-y,-x)例3在平面直角坐标系中,A点的坐标(-4,3)(1)求出点A关于y轴对称的点B的坐标;答案(1)∵A点的坐标(-4,3),B与A关于y轴对称,∴二者纵坐标相同,横坐标互为相反数故B点坐标为B(4,3);课堂练习21.点 A(-3 ,2)关于 y 轴对称点的坐标是( )A (-3 ,-2)B (3 ,2)C (-3 ,2)D (2 ,-3)2.点P(a,b)关于 x 轴的对称点为P'(1,-6),则A、B的值分别为( )A 1 ,6B -1 ,-6C -1 ,6D 1 ,-63.点P 关于 x 轴对称点P'的坐标为(4,-5),那么点P 关于 y 轴对称点P" 的坐标为:A (-4,5)B (4,-5)C (-4,-5)D (-5,-4)4.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个5.已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是( )A.(0,-2)B.(0,0)C.(-2,0) D.(0,4)6.平面内点A(-1,2)和点B(-1,6)的对称轴是( )A.x轴B.y轴C.直线y=4D.直线x=-17.下列关于直线 x=1 对称的点是( )A 点(0 ,-3)与点(-2 ,-3)B 点(2 ,3)与点(-2 ,3)C 点(2 ,3)与点(0 ,3)D 点(2 ,3)与点(2 ,-3 )二、填空题:8.已知A(-1,-2)和B(1,3),将点A向______平移_______个单位长度后得到的点与点B 关于y轴对称.9.一个点的纵坐标不变,把横坐标乘以-1,得到的点与原来的点的关系是__________.10.点M(-2,1)关于x轴对称的点N的坐标是_______,直线MN与x•轴的位置关系是________.11.如下图:若正方形 ABCD 关于 x 轴与 y 轴均成轴对称图形,点A的坐标为(2,1),标出点 B 、C 、D 的坐标分别为:B( , ),C( , ),D( , )。
12. 若A(m-1,2n+3)与B(n-1,2m+1)关于y轴对称,则m= ,n=13.已知a<0,那么点P(-a²-2,2-a)关于x轴对称的对应点P'在第象限三、解答题14.已知点M(1-a,2a+2),若点M关于x轴的对称点在第三象限,求a的取值范围?15.已知点A的坐标为(2x+y-3,x-2y)。
它关于x轴对称的点A'的坐标为(x+3,y-4),求点A关于y轴对称的点的坐标。
知识点1 等腰三角形有两边相等的三角形叫等腰三角形。
等腰三角形中,相等的两个边称为这个三角形的腰,另一边叫做底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
知识点2等腰三角形的性质1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰大于高知识点3 等腰三角形的判定定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
例1如图,△ABC中,点D在边AC上,且∠A=36°,∠DBC=36°,∠C=72°,(1)找出图中图中所有的等腰三角形:(2)请在你第(1)小题所找的三角形中,说明它是等腰三角形的理由.解:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°-36°-72°=72°,∴AB=AC,∴△ABC是等腰三角形,∵∠DBC=36°,∠C=72°,∴∠BDC=72°,∴DB=CB,∴△DBC是等腰三角形,∵∠BDC=72°,∴∠ABD=36°,∴AD=DB,∴△ABD是等腰三角形,故答案为:△ABC,△DAB,△BCD;知识点4 等边三角形三条边都相等的三角形叫做等边三角形,又叫做正三角形,等边三角形是特殊的等腰三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
知识点5 等边三角形的性质⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
知识点6 等边三角形的判定⑴三边相等的三角形是等边三角形(定义)。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷ 有两个角等于60度的三角形是等边三角形。
例2 如图:△ABC和△ADE是等边三角形.证明:BD=CE.证明:∵△ABC和△ADE是等边三角形(已知),∴AB=AC,AD=AE,∠BAC=∠DAE=60°(等边三角形的性质).∴∠BAD=∠CAE(等式的性质).在△BAD与△CAE中,∵AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△BAD≌△CAE(SAS).∴BD=CE(全等三角形的对应边相等).知识点7 含30º角的直角三角形的性质在直角三角形中,有一个锐角是30°,那么它所对的直角边等于斜边的一半。
例3如果直角三角形的一个锐角为30°,而斜边与较短的直角边之和为18cm,那么斜边长为()A.6cm B.9cm C.12cm D.14cm解析::设直角三角形的30°角对的边为a,另一直角边为b,斜边为2a,由题意知,3a=18,∴a=6,2a=12cm.答案C课堂练习31.已知等腰三角形一个内角的度数为30°,那么它的底角的度数是_________.2.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.3.等腰三角形的两边长分别为3厘米和6厘米,这个三角形的周长为_________.4.如图,在中,平分,则D 点到AB的距离为________.5.如图,在中,平分,若,则.6.如图,,AB的垂直平分线交AC于D,则.7.等边三角形是轴对称图形,它有_________条对称轴。