第一章 从自然数到有理数
完整版)最新版浙教版数学七年级上册各章节重难点
完整版)最新版浙教版数学七年级上册各章节重难点第一章有理数1.1 从自然数到有理数正数是指大于零的数,负数是指小于零的数,而零既不是正数也不是负数。
正整数、零和负整数统称为整数,而负分数和正分数则统称为分数。
整数和分数合在一起就是有理数。
1.2 数轴数轴是指规定了原点、单位长度和正方向的直线。
任何一个有理数都可以用数轴上的点来表示。
如果两个数符号不同,其中一个数称为另一个数的相反数。
在数轴上,互为相反数(零除外)的两个点位于原点的两侧,并且到原点的距离相等。
1.3 绝对值绝对值是指一个数在数轴上对应的点到原点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,而零的绝对值是它本身。
互为相反数的两个绝对值相等。
需要注意的是,任何数的绝对值都大于或等于零(非负数)。
1.4 有理数的大小比较一般地,我们可以得出以下结论:在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
第二章有理数的运算2.1 有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加等于零,一个数与零相加仍得这个数。
在有理数运算中,加法的交换律和结合律仍然成立。
2.2 有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。
2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,积为零。
若两个有理数的乘积为1,就称这两个有理数互为倒数。
在有理数的乘法中,乘法交换律、分配律和结合律仍然成立。
2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数都等于零。
代数式的值有时需要用“整体”代入的技巧来求解,特别是当无法求出字母的值时。
浙教版数学七年级上册1.1《从自然数到有理数》教学设计
浙教版数学七年级上册1.1《从自然数到有理数》教学设计一. 教材分析《从自然数到有理数》是浙教版数学七年级上册第一章第一节的内容。
本节内容主要介绍了有理数的概念,包括整数和分数,以及它们之间的关系。
教材通过具体的例子,让学生理解有理数的定义,掌握有理数的运算方法,为后续学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经掌握了自然数的相关知识,但对有理数的概念和运算可能还比较陌生。
因此,在教学过程中,需要通过生动的例子和实际操作,让学生理解和掌握有理数的概念和运算方法。
三. 教学目标1.知识与技能:让学生理解有理数的概念,掌握有理数的运算方法。
2.过程与方法:通过实际操作和思考,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:有理数的概念和运算方法。
2.难点:有理数的运算规律和应用。
五. 教学方法1.情境教学法:通过具体的例子和实际操作,让学生理解和掌握有理数的概念和运算方法。
2.问题驱动法:引导学生提出问题,通过思考和讨论,找到解决问题的方法。
3.小组合作学习:学生分组讨论和解决问题,培养团队合作意识和自主学习能力。
六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。
2.准备教学工具,如黑板、粉笔、投影仪等。
3.准备一些实际的例子,如购物场景、运动会等,用于引导学生理解和应用有理数的概念和运算方法。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际的例子,如购物场景、运动会等,引导学生思考和讨论其中的数学问题。
通过这些例子,激发学生的兴趣,引入有理数的概念。
2.呈现(10分钟)利用PPT呈现有理数的概念和运算方法,结合具体的例子,让学生理解和掌握有理数的概念和运算方法。
在此过程中,引导学生提出问题,通过思考和讨论,找到解决问题的方法。
3.操练(10分钟)学生分组进行练习,教师提供一些有关有理数的运算题目,让学生通过实际操作,巩固所学知识。
1.1 从自然数到有理数七年级上册数学浙教版
将有理数分为正有理数和负有理数就漏掉了0;
(3)标准要统一——必须按同一分类标准进行分类,如将有
理数分为正有理数、零和负分数,分类标准就不统一。
典例7 把下列各数填在相应的横线上。
5
7
+203,0,+6.4,−9,− ,2.6,−0.1。
正整数:_
_;
负分数:_
_;
非正数:_
_;
有理数:_
_。
在典例7的条件下。
中心成功发射。若运载火箭发射点火前5秒记为−5秒,那么运载火
+10秒(注意带单位)
箭发射点火后10秒记作_____________________。
(2)如果某蓄水池的水位比标准水位高2米,记作+2米,那么比
−0.5米
标准水位低0.5米,应记作________;恰好等于标准水位,应记作
0米
_____。
-9
负整数:________;
+6.4,2.6
正分数:________;
+203,0,+6.4,2.6
非负数:___
_____;
+203,0
自然数:________。
负数前的“-”不
能省略不写。
数的
分类
定义
举例
(1)0是正数与负数的分界;
0
(2)0不仅可以表示“没有”,还可以表示
某种量的基准,如0 ℃表示实际温度为冰
点时的计量结果。
注意
0既不是正
数,也不是负
数。
典例5 (宁波镇海区校级期中)下列各数−1,2,−3,0,π 中,
负数有( B )
A.1个
B.2个
(3)手机移动支付给生活带来便捷,若规定收款为正,则+37元
1.1从自然数到有理数(1)
问题情境
问题1:怎样找班级? 问题2:怎样点名?(不允许叫名字) 问题3:怎样确定某位同学的位置? 问题4:怎样了解学生人数、身高、体重情况?
应怎样表示?
在小学里,我们已经学习了分数和小数,它 们是由于测量和分配等实际需要产生的,在解答 上面的问题时,你会选用哪一类数?为什么?
巩固新知
判断: (1)最小的自然数是0;( ) (2)所有的分数都可以化成小数;( ) (3)所有的小数都可以化成分数. ( )
合作学习
当堂检测
1.请阅读下面这段报道: 这是世界上最长的跨海大桥---杭州湾大桥于
罗素(英国数学家,1872-1970)曾说过: “不知要经过多少年,人类才发现一对锦鸡和两 天同含一个数字二.”抽象对于古人实在是太难了!
罗马数字
罗马数字常在钟表里出现. 细心的你一定发现了
罗马数字中没有“0”.其实 在公元5世纪时,“0”已经 传入罗马,但罗马教皇凶 残而且守旧.他不允许任何 人使用“0”.有一位罗马学 者在笔记中记载了关于使 用“0”的一些好处和说明, 就被教皇召去,施行了拶 (zā)刑,使他再也不能 握笔写字.
碑文上 ◆进位制是人类共同财产
数的发展
发展到阿拉伯数字为止,我们发现这些数 字都是自然数.出现分数以后,又解决了人们许 多难题.但是,在生活中我们还见到过不少具有 相反意义的量:前进和后退,向上和向下等等. 这些又怎么表示呢?于是,人类又将这些具有 相反意义的数称为“负数” .
数的发展
又有学者发现了一些无法用自然数和负数表示 的数.有这样一个故事:一个叫希帕索斯的学生画 了一个边长为1的正方形,设对角线为x ,根据勾 股定理x2=12+12=2,可见对角线的长度是存在的, 可它是多少?又该怎样表示它呢?
从自然数到有理数
1.1从自然数到有理数负数:我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。
如:“+2”读做“正2”、“-3.3”读做“负3.3”等。
这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。
填空:1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。
汽车向北行驶75km ,记做________km (或_______km ),汽车向南行驶100km ,记做________km ;4)下降153-米记做153-米,则上升1102米记做__________米;5)如果向银行存入50元记为50元,那么-30.50元表示__________; 6)规定增加的百分比为正,增加25%记做__________,-12%表示__________. 利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的.例如我们可以把向南100米记做+100km ,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。
正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零自然数负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 零是整数,零既不是正数,也不是负数.基础训练一、填空1、 如果零上28度记作280C ,那么零下5度记作2、 2、若上升10m 记作10m ,那么-3m 表示3、比海平面低20m 的地方,它的高度记作海拔 二、选择题4、在-3,-121,0,-73,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个5、下列既不是正数又不是负数的是( ) A 、-1 B 、+3 C 、0.12 D 、06、飞机上升-30米,实际上就是( )A 、上升30米B 、下降30米C 、下降-30米D 、先上升30米,再下降30米。
七年级上数学教材分析全
第一章从自然数到有理数一、第一章安排了“从自然数到有理数”。
本章的主要内容有:回顾前两学段学过的关于“数”的知识,进一步理解自然数、分数的产生和发展的实际背景,通过学生身边的例子体验自然数与分数的意义和在计数、测量、排序、编码等方面的应用;从相反意义的量的表示,理解有理数产生的必然性,合理性;学习有关有理数、数轴、相反数、绝对值等知识,初步理解有理数可以用数轴上的点表示,为以后的进一步学习打下基础。
数在大小比较是今后学习不等式的重要基础,数轴在各个数学领域里都有重要的应用。
正数、负数的概念对有理数概念的建立起了关键性的作用,数轴不仅能直观解释其余的相关概念,而且是解决许多数学问题的重要工具。
因此,正数、负数及数轴是本章才学中的重点。
正数、负数概念的建立需要一个学生从未经历过的数学抽象过程,数轴涉及数和形两个方面,绝对值涉及较复杂的符号问题,这些是本章教学中的难点。
本章教学要求①使学生初步体验数学与现实世界的密切联系,生活中处处有数学。
②初步了解自然数的各种应用及从自然数、分数扩充到有理数是来源于生活实践。
③在具体情景中理解具有相反意义的量的含义,会用有理数表示相反意义的量。
感受用有理数表示具有相反意义的量时,规定正、负的相对性。
④能用数轴上的点表示有理数,借助数轴理解相反数、绝对值及比较有理数的大小,体会从数与形两个方面考虑问题的方法。
二、本章编写特点(1)体现数学来源于生活,素材与学生现实紧密结合从学生身边的现实例子说起,外出乘车、购买彩票等是学生亲身经历、感受过的,比较亲切、容易接受。
这些素材来源于现实,且经过提练,体现了一定的教育价值,体现了数系扩充的必要性。
月球表面温度的变化、关于跨海大桥的报道、5个城市气温的比较等无一不是学生所熟悉和感兴趣的,使新知识的引入有了比较扎实的基础。
从解决实际问题的欲望而促进对数学学习的兴趣。
(2)重视内容承上启下,突出知识形成与应用过程为了引出有理数的概念,教材从新回顾了自然数、分数的产生过程,起到与前两个学段衔接的作用,也进一步说明了数的产生与发展是与生产、生活紧密相连的。
七年级上册从自然数到有理数
第一章有理数1.1 从自然数到有理数1、自然数、分数、小数的意义自然数在计数、测量、标号和排序中有着广泛的运用,但在生活中仅有自然数是不够的,因分配、测量等实际需要而产生了分数及小数.例题:下面关于第17届亚洲运动会的简介中用了很多自然数,请找出这些书,并说明它们哪些表示技术,哪些表示排序或标号.第17届亚洲运动会于2014年9月19日至10月4日在韩国仁川举行.从此届亚运会开始,亚运会的规模将缩减至35个大项,其中包括28个奥运项目和7个非奥运项目.2、自然数、分数、小数的运算伴随着实际问题的比较,便产生了数的运算,数的运算是人们分析、判断和解决实际问题的重要手段.3、具有相反意义的量在日常生活和生产时间中,我们经常会遇到具有相反意义的量.如盈利、零上、收入、增加等,与之意义相反的为亏损、零下、支出、减少等.例题:(1)如果气温上升3℃记做+3℃,那么下降5℃记做-5℃,那么下列各量分别表示什么?①+5℃;②-6℃;③0℃(2)如果-10元表示支出10元,那么+30元表示 .(3)在一条东西向的跑道上,小亮先向东走了8米,记做+8米,又向西走了10米,此时他的位置可记做( )A.+2米B.-2米C.+18米D.-18米4、正数和负数及其相关的概念为了表示具有相反意义的量,我们把一种意义的量规定为正,用大于零的数,如123,36,等来表示,这样的数叫做正数.把另一种与之意义相反的量规定为负,用大于零的数前面放上负号“-”来表示,如-123,-36等,这样的数叫做负数.0既不是正数也不是负数5、有理数的相关概念正整数、零和负整数统称为整数,如1,2,0,-1,-2等正分数和负分数统称为分数整数和分数统称为有理数6、有理数的分类按有理数的定义分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 按正数、负数与零的关系分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数例题:把下列各数填在相应的横线上:-6,0,2,3,1311-,25,513+,43-. 正整数: ;负整数: ; 正分数: ;负分数: ; 正有理数: ;负有理数: ; 有理数: .题型练习:例题1:某商店以每件60元的价格出售两件上衣,其中一件赚了25%,另一件亏了25%,那么这两件上衣卖出后是盈利还是亏损?例题2:观察-1,21,-3,41,-5,61,-7,81, , , ,…依次排列的一列数,请接着写出后面三个数,第15个数,第2014个数,第2015个数.1.1从自然数到有理数练习1、下列语句中,出现自然数表示排序的是()A.她家有1只小花猫B.奥运会中某国家得了10枚奖牌C.这是他入学以来第3次取得满分D.一个直径为2米的球2、某商店在一次交易中同时卖出两种货物,每种货物的售价均为1200元,若按成本计算,一种货物盈利20%,另一种货物亏本20%,则这次交易商店()A.赔100元B.赚100元C.赚50元D.不赔不赚3、下列说法正确的是()A.前进与后退是具有相反意义的量B.亏损20万元是具有相反意义的量C.收入80元与后退100米是具有相反意义的量D.向南走500米与向北走10米是具有相反意义的量4、李白出生于公元701年,我们记作+701年,那么秦始皇出生于公元前259年,可记作()A.259年B.-960年C.-259年D.442年5、如果火箭发射点火前5秒记作-5秒,那么火箭发射点火后10秒应记为()A.-10秒B.-5秒C.+5秒D.+10秒6、下列说法中,错误的是()A.整数一定是自然数B.自然数一定是整数C.自然数一定是非负整数D.自然数一定是有理数7、与盈利-900元是同一意义的量为()A.亏损-900元B.盈利900元C.亏损+900元D.不能确定8、在数3.0,01.0,45,3,0,8--中,属于非负整数的有( )A.2个B.3个C.4个D.5个9、下列具有相反意义的量的是( )A.向西走2米与向南走3米B.胜2局与负3局C.气温升高3℃与气温为-3℃D.盈利3万元与支出3万元10、如果高出海平面20米记作+20米,那么-30米表示( )A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米11、向东行驶3km 记作+3km ,则向西行驶2km 记作( )A.+2kmB.-2kmC.+3kmD.-3km12、如图,每筐杨梅以5千克为基准,超过的千克数记为整数,不足的千克数记为负数,则这4筐杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克13、小亮在看报纸时,收集到以下信息:(1)某地的国民生产总值位列全国第五;(2)某城市有16条公共汽车路线;(3)小刚乘T32次火车去北京;(4)小风在校运动会上获得跳远比赛第一名.其中用到自然数排序的有 .14、某工厂的45号机器每小时加工85个零件,其中45与85分别表示什么?15、将分数73用除法表示为 . 16、将0.3化成分数为 .17、搬进为10cm ,高为30cm 的圆柱形水桶中装满了水,小明先将桶里的水倒满2个底面半径为3cm ,高为6cm 的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm ,30cm 和20cm 的长方体容器内,长方体容器内的水的高度大约是 cm (π取3,容器的厚度不计).18、若用黑白两色涂料刷出如图1所示的装饰图案,其中黑色部分的面积占总面积的比用分数可表示 .19、杰杰爷爷病了,需要挂100毫升的药液,杰杰守候在旁边,观察到点滴流量是每分钟3.5毫升,输液10分钟后,吊瓶空出部分的容积是50毫升(如图2),利用这些数据可计算整个吊瓶的容积是 毫升.20、如图所示,将若干个正三角形、正方形和圆按一定的规律从左向右排列,那么第2014个图形是 .△△□□□△○○□□□△○○□□□△○○□……21、写出一个与“盈利500元”构成相反意义的量: .22、在数0,31,2,2,3--π中,负有理数有 个. 23、观察下列各数,找出规律并填空:1,2,-3,-4,5,6,-7,-8, , , , ,…, (第50个),…, (第2017个),….24、如果收入100元记作+100元,那么支出300元记作 元.25、汽车在一条东西走向的高速公路上行驶,如果向东行驶10km 记作+10km ,那么向西行驶15km 记作 km.26、下列各组中,哪些是具有相反意义的量?哪些不是?(1)某山脉高出海平面800米,某盆地低于海平面1200米;(2)汽车前进80米,汽车下降30米;(3)向南走400米,向西走1250米;(4)某工厂今年增产30%,去年减产11%.27、七年级派出12名同学参加数学竞赛,老师以75分为基准,把分数超过75分的部分记作整数,不足的部分记为负数.评分记录如下:+15,+20,-5,-4,-3,+4,+6,+2,+3,+5,+7,-8.这12名同学中,最高分和最低分各是多少?28、把下列各数填在相应的大括号内:6,74 ,-20,0,3.2,+2,722,-2.03 正 数{ …}非负数{ …}整 数{ …}负分数{ …}有理数{ …}29、假日公司的西湖一日游价格如下:A 种:成人每位160元,儿童每位40元;B 种:5人以上团体,每位100元.现在有三对夫妇各带1小孩,共9人,参加西湖一日游,最少要多少钱?30、王丽父亲上个月从工作单位取得当月工资2400元,按照个人所得税法规定,每月的个人收入超过2000元的部分要纳税,超过部分少于或等于500元的,应按照5%的税率征收个人所得税,请你解答下面问题:(1)王丽的父亲上个月应缴纳个人所得税多少元?(2)如果杨洁的父亲上个月缴纳个人所得税是25元,那么王丽的父亲与杨洁的父亲上个月哪个人的工资高?杨洁的父亲上个月工资是多少元?31、观察下面一组数据,探求其规律:21-,32,43-,54,65-,76,…. (1)写出第7、第8、第9个数;(2)第2015个数是什么?(3)如果这一组数据无限排列下去,会与哪两个数越来越接近?1.2 数轴1、数轴定义:规定了原点、单位长度和正方向的直线叫做数轴.画法:1、画直线;2、定原点;3、定方向;4、统一单位长度2、有理数与数轴上的点的关系任何一个有理数都可以用数轴上的点表示,表示正有理数的点都在原点右侧,表示负有理数的点都在原点左侧,表示0的点就是原点。
浙教版七年级数学上册第一章从自然数到有理数复习课件
两个正数比较大小,绝对值大的数大。两个负数 比较大小,绝对值大的数反而小。
18.用“>”或“<”填空
-3_<__1 3.15 __>___ -0.1__<___0.01
19.把有理数 2, 2 , 0, 1 用“<”连
接
2
2 0 1 2
2
2 _>___ 5
3
7
综合练习
21.下列说法错误的是
2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5 求这10名同学的总质量。 506千克
7.把下列各数填入相应的括号内:
2.3,13,1 ,0,1 ,0.15, 2, 2, 5
6
3
自然数: {13,0,1}
负整数: { 2, 5}
正有理数: {13,1 ,1 ,0.15} 6
正分数: { 1 ,0.15} 6
( B)
A.任何有理数都有相反数
B.-1是最大的负有理数
C.任何有理数都有绝对值
D.零是最小的自然数
22.甲、乙两数在数轴上表示如图,下列说法正确的是( C )
甲
0乙
A.甲数的相反数比0小,乙数的相反数比0大 B.甲数的相反数小于乙数的相反数,都比0小 C.甲数的相反数比0大,乙数的相反数比0小 D.甲数的相反数大于乙数的相反数,都比0大
正整数 零 负整数
正分数 负分数
自然数
注:所有的有理数都 可以写成有限小数或 无限循环小数情势.
3.请你按正数,负数的标准对有理数进行分类。 正整数
正有理数
有理数
零 负有理数
正分数 负整数 负分数
注:零既不是正数 也不是负数
4.具有相反意义的量
我们把两个具有 相反意义 的量,规定一种意义 的量为正的,另一种意义的量为 负 的.
新浙教版七年级上册数学第一章《有理数》复习要点(知识点+例题+练习)
第一章从自然数到有理数的复习课一、目的要求进一步理解并运用有理数、数轴、相反数、绝对值等概念,会比较有理数的大小.二、内容分析小结与复习分作三部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,还有近似数与有效数字的问题,从而给出全章内容的大致轮廓,第二部分围绕有理数运算这一中心,提出了全章的三条教学要求,第三部分针对这一章新出现的思想、内容、方法等提出了5点应注意的问题。
三、教学过程我们已经学过了有理数全章内容。
概括起来说,这一章我们学的是有理数的概念及其运算。
这节课我们将复习有理数的意义及其有关概念。
复习提问:1.为什么要引入负数?温度为-4℃是什么意思?答:为了表示具有相反意义的量。
温度为-4℃表示温度是零下4摄氏度。
2.什么是有理数?有理数集包括哪些数?答:整数和分数统称为有理数。
有理数集包括:3.什么叫数轴?画出一个数轴来。
答:规定了正方向、原点和单位长度的直线叫数轴。
图略。
4.有理数和数轴上的点有什么关系?答:每一个有理数都可以用数轴上唯一确定的点来表示.但反过来以后可以看到,数轴上任一点并不一定表示有理数。
表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。
5.怎样的两个数叫互为相反数?零的相反数是什么?a的相反数是什么?两个互为相反数的和是什么?答:只有符号不同的两个数叫做互为相反数;并说其中一个是另一个的相反数。
零的相反数是零,a的相反数是-a。
两个互为相反数的和为零。
6.有理数的绝对值的意义是什么?如果两个数互为相反数,那么它们的绝对值有什么关系?试举例说明。
答:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作|a|。
如]|-6|=6,|6|=6;一般地,一个正数的绝对值是它本身。
一个负数的绝对值是它的相反数。
0的绝对值是0。
用式子表示就是:如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那以|a|=0.如果两个数互为相反数,那么它们的绝对值相等。
从自然数到有理数(解析版)--暑假自学课
第01讲 从自然数到有理数1.掌握正数和负数的定义和实际应用;2.掌握有理数的概念,认识带“非”字的有理数;3、认识0的实际含义;知识点一、自然数的概念自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
自然数由0开始,一个接一个,组成一个无穷的集体。
自然数有有序性,无限性。
分为偶数和奇数,合数和质数等知识点二、正数与负数1)正数:像3,1.8%,3.5这样大于0的数叫做正数.正数都大于0.2)负数:像3−, 2.7−这样在正数前加上符号“−”(负)号的数叫做负数.负数都小于0. 3)符号:一个数前面的“+”,“−”号叫做它的符号.正数前面的“+”号可以省略,注意3与3+表示是同一个正数.负数前面的“−” 号不可以省略. 注:不能简单的根据符号来判断正负,而需要根据正负数的定义判别.,0,00,0a a a a < −=> =正数负数知识点三、用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.比如:用正数表示向南,那么向北3km −可以用负数表示为3km −.“相反意义的量”包括两个方面的含意:一是相反意义;二是要有量.知识点四、.“0”的特殊性1)0既不是正数,也不是负数;2)0是正数与负数的分界;3)0是自然数;4)0的意义:0有时表示没有,比如文具盒中有0支铅笔,表示没有铅笔;0有时是一个数,比如0℃是一个确定的温度;0有时也作为基准,比如海拔高度为0m 表示的是海平面的平均高度.知识点五、有理数的概念与分类1)整数:正整数、0、负整数统称为整数.所有的正整数组成正整数集合,所有的负整数组成负整数集合.2)分数:正分数、负分数统称为分数.有限小数和无限循环小数可以化为分数,所以我们也把它们看成分数.3)有理数:整数和分数统称为有理数.4)有理数的分类:(1)()正整数自然数整数零有理数按定义分类负整数正分数分数负分数 (2)()(,)正整数正有理数正分数有理数按符号分类零零既不是正数也不是负数负整数负有理数负分数 注意:1)会对整数和分数进行简单分类;2)整数与分数都是有理数的范畴,有限小数、无限循环小数是有理数;5)常用数学概念的含义1)正整数:既是正数,又是整数;2)负整数:既是负数,又是整数3)正分数:既是整数,又是分数;4)负分数:既是负数,又是分数5)非正数:负数和0;6)非负数:正数和07)非正整数:负整数和0;8)非负整数:正整数和0考点一:正负数的意义例【变式训练】考点二:正负数的实际应用例2.(2023·云南昆明·统考一模)中国是最早采用正负数表示相反意义的量,并使用负数进行运算的国家.当前,手机移动支付已经成为新型的消费方式,节日当天妈妈收到微信红包80元记作80+元,则妈妈微信转账支付67元可以表示为( )A .80+元B .80−元C .67+元D .67−元 【答案】D【分析】根据正数和负数表示相反意义的量,可得答案.【详解】解:如果微信红包80元记作80+元,那么微信转账支付67元记为67−元.故选:D .【点睛】本题考查了正数和负数,理解相反意义的量是解题关键.【变式训练】1.(2022秋·福建漳州·七年级统考期末)“英寸”是电视机常用尺寸,如图,“1时”即“1英寸”约为中学生大拇指第一节的长,则7英寸长相当于( )A .一支粉笔的长度B .课桌的长度C .教室门的宽度D .数学课本的宽度【答案】D 【分析】1英寸约为大拇指第一节的长大约有3~4厘米,7英寸长是它的7倍.【详解】解:根据题意可得1英寸约为大拇指第一节的长,大约有3~4厘米,所以7英寸长相当于数学课本的宽度.故选:D .【点睛】本题考查了数学常识,基本的计算能力和估算的能力,属于基础题,解答时可联系生活实际去解.2.(2022秋·七年级单元测试)一袋食品的包装袋上标有300g 5g ±的字样,它的含义是______.【答案】这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g【分析】利用生活中的数学知识,利用±表示比标准质量可能多也可能少解决本题即可.【详解】解:5±表示比300g 超重不超过5g ,不足也不超过5g .故答案为:这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g .【点睛】本题考查了有理数中正负数的实际应用,把正数和负数与日常生活相联系是解答本题的关键. 3.(2022秋·安徽蚌埠·七年级校考阶段练习)下表是某班5名同学某次数学测试成绩,根据信息回答问题:姓名王芳 刘兵 张沂 李聪 江文 成绩89 84 与全班平均分之差+2 0 6− 2−(1)把表格补充完整;(2)若不低于平均分的成绩是合格,求5名同学的合格率?【答案】(1)86,78,82,+5(2)60%【分析】根据有理数加减法在实际问题中的应用,可知高于基准为正,低于基准为负,有张沂可知,平均分为84 分,由此即可求出其他同学的成绩,由合格人数除以总人数乘以百分比即可求出答案.【详解】(1)解:由表格中张沂的信息可得出,平均分为84分,∴刘兵成绩:84286+=(分),李聪成绩:84678−=(分),江文成绩:84282−=(分),王芳成绩:89845−=+,故答案是:86,78,82,+5;(2)解:平均分为84 分,合格有刘兵,张沂,王芳,∴合格率是:(35)100%60%÷×=, 故答案是:60%.【点睛】本题主要考查有理数的加减法的应用,以及合格率的计算,解题的关键的找出“基准”,且“高于基准为正,低于基准为负”.考点三:认识0的实际意义 例【变式训练】1.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是( )A .0既不是正数也不是负数B .0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.2.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.3.(2022秋·全国·七年级专题练习)“不是正数的数一定是负数,不是负教的数一定是正数”的说法对吗?为什么?【答案】不对,因为0既不是正数也不是负数.【分析】举反例进行说明即可.【详解】不对.因为0既不是正数也不是负数.【点睛】本题主要考查了0的意义,掌握“0既不是正数也不是负数”是解题的关键.考点四:有理数的概念与分类例4.(2022秋·云南昆明·七年级校考期中)下列说法中正确的是()A.0既不是整数也不是分数B.绝对值等于本身的数是0和1C.一个数的绝对值一定是正数D.整数和分数统称有理数【答案】D【分析】根据有理数、绝对值等相关概念进行判断.【详解】A选项:0是整数,故A选项错误;B选项:非负数的绝对值等于本身,故B选项错误;C选项:一个数的绝对值是正数或0(即非负数),故C选项错误;D选项:整数和分数统称为有理数,故D选项正确.故选:D【点睛】本题考查有理数、绝对值等相关概念,正确理解有理数、绝对值等概念是解题的关键.【变式训练】考点五:带“非”字的有理数例错误的说法为()A.①②③④⑤B.①②③④C.②③④⑤D.①②④⑤【答案】B【变式训练】−.故答案为:5【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的.8.(2020·湖北宜昌·中考真题)向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加_______kg”.【答案】-1.5【分析】根据负数在生活中的应用来表示.【详解】减少1.5kg可以表示为增加﹣1.5kg,故答案为:﹣1.5.【点睛】本题考查负数在生活中的应用,关键在于理解题意.9.(2020·福建·统考中考真题)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为+米,根据题意,“海斗基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100一号”下潜至最大深度10907米处,该处的高度可记为_________米.−【答案】10907【分析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.+米,【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.【点睛】本题考查了正数,负数的意义及其应用,解题的关键是掌握正数、负数的意义.1.(2023·吉林·统考一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家. 若气温上升7℃,记作:7+℃,那么气温下降10℃可记作()A.7℃B.10℃C.D.7−℃这一年上述四国中服务出口增长的国家是()A.美国B.德国C.英国D.中国【答案】D【分析】根据正负数的意义,进行判断即可.【详解】解:由表格可知,美国,德国,英国的增长率为负数,服务出口降低,中国的增长率为正数,服务出口增长;故选D.【点睛】本题考查正负数的意义.熟练掌握正负数的意义,是解题的关键.6.(2023秋·河北邯郸·七年级统考期末)北京与柏林的时差为7小时,例如,北京时间14:00,同一时刻的柏林时间是7:00.小丽和小红分别在北京和柏林,她们相约在各自当地时间8:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.9:30 B.11:30 C.13:30 D.15:30【答案】D【分析】根据柏林时间比北京时间早7小时解答即可.【详解】解:由题意得,柏林时间比北京时间早7小时,当柏林时间为8:00,则北京时间为15:00;当北京时间为17:00,则柏林时间为10:00;所以这个时间可以是北京时间的15:00到17:00之间,故选:D.【点睛】本题考查了正数和负数,解此题的关键是根据题意写出算式,即把实际问题转化成数学问题.7.(2023秋·山东日照·七年级日照市新营中学校考阶段练习)如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.29.8mm B.30.03mm C.30.02mm D.29.98mm【答案】A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm.∵29.8mm不在该范围之内,∴不合格的是A.故选:A.【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.8.(2023秋·河南郑州·七年级校考阶段练习)小强在笔记上整理了以下结论,其中错误的是()A.有理数可分为正数、零、负数三类B.一个有理数不是整数就是分数C.正有理数分为正整数和正分数D.负整数、负分数统称为负有理数【答案】A【分析】根据有理数的分类逐一分析即可.【详解】解:A.有理数可分为正有理数、零和负有理数,故该项结论错误;B.整数和分数统称为有理数,所以一个有理数不是整数就是分数,故该项结论正确;C.正有理数分为正整数和正分数,故该项结论正确;【答案】6【分析】直接根据正负数的意义计算即可.【详解】∵当天最高气温∴这一天我市的温差是故答案为:6.【答案】4天后,甲水库水位上升12cm ,乙水库水位下降20cm【分析】根据甲、乙水库水位每天的升高和下降的量,即可计算总的变化量【详解】∵甲水库的水位每天升高3cm ,∴4天后,甲水库水位总的变化量是:()3412cm ×=∵乙水库的水位每天下降5cm ,∴4天后,乙水库水位总的变化量是:()5420cm −×=−答:4天后,甲水库水位上升12cm ,乙水库水位下降20cm【点睛】本题考查了正负数的实际应用,读懂题意是解决问题的关键17.(2023春·上海·六年级专题练习)某班级抽查了10名同学的期末成绩,以80分为基准,超出的分数记为正数,不足的分数记为负数,记录的结果如下(单位:分):+8、﹣3、+12、﹣7、﹣10、﹣3、﹣8、+1、5、+10.这10名同学中,(1)最高分是多少?(2)最低分是多少?(3)10名同学的平均成绩是多少?【答案】(1)92分(2)70分(3)80.5分【分析】(1)根据正负数的意义,可得答案;(2)根据正负数的意义,可得答案;(3)根据平均数的意义,可得答案.【详解】(1)最高分是801292+=分; (2)最低分是801070−=分; (3)10名同学的平均成绩是()8083127103815101080.5+−+−−−−+++÷=分. 【点睛】本题考查了正数和负数,利用正负数的意义超出的分数记为正数,不足的分数记为负数是解题关键.18.(2023秋·山东滨州·七年级统考期末)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g) 5 2 0 1 3 6袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为500克,则抽样检测的总质量是多少?【答案】这批样品的平均质量比标准质量多,多1.2克,抽样检测的总质量是10024克.【分析】根据表格中的数据计算与标准质量的差值的总数,再除以20,如果是正数,即多,如果是负数,即少;根据标准质量结合前边的结论进行计算抽样检测的总质量.【详解】与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(500+1.2)×20=10024(克).【点睛】本题考查了正数和负数,掌握有理数的加法是解题关键.。
从自然数到有理数复习
下课了!
6、在-4,-9,- 1 , 100
-0.1中,最大的数是(
)
(A)-4 (B) -9 (C) - 1 (D) -0.1
100
8、一种数不大于它的绝 对值,那么这个数是( )
(A)正数 (B)负数 (C)整数 (D)零
9、某数的绝对值不大 于2,在数轴上,这个 数表达的点到-0.6表达 的点的距离是1.5个单位, 求这个数。
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
②数轴:
规定了原点,正方向和单位长度 的直线叫做数轴
③相反数:
只有符号不同的两个数 叫做互为相反数.
互为相反数的性质: 1.互为相反数的两个数的和为零. 即:若a, b互为相反数,则a+b=0 b = ?-a
因此任意给你一种数a ,那么它的相反数是?
2.它们在数轴上的原点两旁,且到 原点的距离相等。
绝对值: lal≥0
概念:一种数的绝对值是指----在数轴 上表达这个数的点到原点的距离。
性质: ⒈正数的绝对值是它的本身, ⒉零的绝对值是零,
⒊负数的绝对值是它的相反数。
(互为相反数的两个数,绝对值相等)
即:l al=l-al
有理数大小 比较法则:
或=) 1 (1) - 3
<____- 0.3;
(2)|-
1 3
|_=__-(-
1 3
)
比较下列各组数的大小
(1)0____-0.001 (2)-5____-4
(3)3.14____
(4)0.81____-|- 0.1 |
二选择题: 5、下列说法不含有相反意义的量 的是( )
(A)向东2.5千米和向西2千米 (B)上升3米和下降1.5米 (C)零上6 ℃ 和零下5 ℃ (D)收入5000元和亏损5000元
浙教版初中数学教材总目录
浙教版初中数学教材总目录七年级上册第1章从自然数到有理数1.1从自然数到分数1.2有理数1.3数轴1.4绝对值1.5有理数的大小比较第2章有理数的运算2.1有理数的加法2.2有理数的减法2.3有理数的乘法2.4有理数的除法2.5有理数的乘方2.6有理数的混合运算2.7准确数和近似数2.8计算器的使用第3章实数3.1平方根3.2实数3.3立方根3.4用计算器进行数的开方3.5实数的运算第4章代数式4.1用字母表示数4.2代数式4.3代数式的值4.4整式4.5合并同类项4.6整式的加减第5章一元一次方程5.1一元一次方程5.2一元一次方程的解法5.3一元一次方程的应用5.4问题解决的基本步骤第6章数据与图表6.1数据的收集与整理6.2统计表6.3条形统计图和折线统计图6.4扇形统计图第7章图形的初步知识7.1几何图形7.2线段、射线和直线7.3线段的长短比较7.4角与角的度量7.5角的大小比较7.6余角和补角7.7相交线7.8平行线七年级下册第1章三角形的初步知识1.1 认识三角形1.2 三角形的角平分线和中线1.3 三角形的高1.4 全等三角形1.5 三角形全等的条件1.6 作三角形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性3.2 可能性的大小3.3 可能性和概率第4章二元一次方程组4.1 二元一次方程4.2 二元一次方程组4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4 乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式法6.3 用乘法公式分解因式6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1同位角、内错角、同旁内角1.2平行线的判定1.3平行线的性质1.4平行线之间的距离第2章特殊三角形2.1等腰三角形2.2等腰三角形的性质2.3等腰三角形的判定2.4等边三角形2.5直角三角形2.6探索勾股定理2.7直角三角形全等的判定第3章直棱柱3.1认识直棱柱3.2直棱柱的表面展开图3.3三视图3.4由三视图描述几何体第4章样本与数据分析初步4.1抽样4.2平均数4.3中位数和众数4.4方差和标准差4.5统计量的选择与应用第5章一元一次不等式5.1认识不等式5.2不等式的基本性质5.3一元一次不等式5.4一元一次不等式组第6章图形与坐标6.1探索确定位置的方法6.2平面直角坐标系6.3坐标平面内的图形变换第7章一次函数7.1常量与变量7.2认识函数7.3一次函数7.4一次函数的图象7.5一次函数的简单应用八年级下册第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率3.2 频数分布直方图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4 中心对称5.5 平行四边形的判定5.6 三角形的中位线5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形6.2 菱形6.3 正方形6.4 梯形九年级上册第1章反比例函数1.1 反比例函数1.2 反比例函数的图象和性质1.3 反比例函数的应用第2章二次函数2.1 二次函数2.2 二次函数的图象● 阅读材料用计算机画二次函数的图象2.3 二次函数的性质2.4 二次函数的应用第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角● 阅读材料生活离不开圆3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积第4章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及其应用4.5 相似多边形4.6 图形的位似● 课题学习精彩的分形九年级下册第1章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形● 课题学习会徽中的数学第2章简单事件的概率2.1 简单事件的概念2.2 估计概率2.3 概率的简单应用第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系第4章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图。
浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计
浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计一. 教材分析《从自然数到有理数》是浙教版数学七年级上册第一章的内容,主要包括有理数的概念、分类、运算以及应用。
本章内容是学生初步接触数学符号和运算规则的阶段,对于培养学生对数学的兴趣和基本运算能力具有重要意义。
二. 学情分析七年级的学生刚刚从小学升入初中,对于数学的概念和运算规则有一定的了解,但还需要进一步的巩固和提高。
他们在学习过程中需要直观、生动的实例来帮助理解抽象的概念,同时也需要通过大量的练习来熟练掌握运算规则。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的运算规则,包括加、减、乘、除、乘方等。
3.能够运用有理数解决实际问题,提高学生的应用能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则。
3.有理数在实际问题中的应用。
五. 教学方法1.采用直观、生动的实例讲解有理数的概念和分类,帮助学生理解抽象的概念。
2.通过大量的练习,让学生熟练掌握有理数的运算规则。
3.结合实际问题,让学生运用有理数解决问题,提高学生的应用能力。
六. 教学准备1.准备相关的基础知识PPT,用于导入和呈现。
2.准备相关练习题,用于操练和巩固。
3.准备实际问题,用于拓展和应用。
七. 教学过程1.导入(5分钟)通过复习自然数的概念,引导学生思考自然数的局限性,从而引出有理数的概念。
利用PPT展示有理数的概念,让学生初步了解有理数。
2.呈现(10分钟)利用PPT呈现有理数的分类,包括整数、分数、正数、负数等。
通过实例讲解,让学生理解有理数的分类,并能够正确判断一个数属于哪种分类。
3.操练(10分钟)让学生进行有理数的加减乘除乘方等运算练习,通过练习让学生熟练掌握有理数的运算规则。
4.巩固(10分钟)利用PPT展示一些实际问题,让学生运用有理数解决问题。
通过解决实际问题,让学生巩固有理数的概念和运算规则。
5.拓展(10分钟)让学生思考有理数在实际生活中的应用,例如购物、计算费用等。
最新七年级上数学教材分析全
第一章从自然数到有理数一、第一章安排了“从自然数到有理数”。
本章的主要内容有:回顾前两学段学过的关于“数”的知识,进一步理解自然数、分数的产生和发展的实际背景,通过学生身边的例子体验自然数与分数的意义和在计数、测量、排序、编码等方面的应用;从相反意义的量的表示,理解有理数产生的必然性,合理性;学习有关有理数、数轴、相反数、绝对值等知识,初步理解有理数可以用数轴上的点表示,为以后的进一步学习打下基础。
数在大小比较是今后学习不等式的重要基础,数轴在各个数学领域里都有重要的应用。
正数、负数的概念对有理数概念的建立起了关键性的作用,数轴不仅能直观解释其余的相关概念,而且是解决许多数学问题的重要工具。
因此,正数、负数及数轴是本章才学中的重点。
正数、负数概念的建立需要一个学生从未经历过的数学抽象过程,数轴涉及数和形两个方面,绝对值涉及较复杂的符号问题,这些是本章教学中的难点。
本章教学要求①使学生初步体验数学与现实世界的密切联系,生活中处处有数学。
②初步了解自然数的各种应用及从自然数、分数扩充到有理数是来源于生活实践。
③在具体情景中理解具有相反意义的量的含义,会用有理数表示相反意义的量。
感受用有理数表示具有相反意义的量时,规定正、负的相对性。
④能用数轴上的点表示有理数,借助数轴理解相反数、绝对值及比较有理数的大小,体会从数与形两个方面考虑问题的方法。
二、本章编写特点(1)体现数学来源于生活,素材与学生现实紧密结合从学生身边的现实例子说起,外出乘车、购买彩票等是学生亲身经历、感受过的,比较亲切、容易接受。
这些素材来源于现实,且经过提练,体现了一定的教育价值,体现了数系扩充的必要性。
月球表面温度的变化、关于跨海大桥的报道、5个城市气温的比较等无一不是学生所熟悉和感兴趣的,使新知识的引入有了比较扎实的基础。
从解决实际问题的欲望而促进对数学学习的兴趣。
(2)重视内容承上启下,突出知识形成与应用过程为了引出有理数的概念,教材从新回顾了自然数、分数的产生过程,起到与前两个学段衔接的作用,也进一步说明了数的产生与发展是与生产、生活紧密相连的。
小学初中高中数学全册目录(完整版)
⼩学初中⾼中数学全册⽬录(完整版)七年级上册第1章从⾃然数到有理数1.1 从⾃然数到分数1.2 《九章算术》中的正负数1.3 数轴1.4 绝对值1.5 有理数的⼤⼩⽐较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘⽅2.6 有理数的混合运算2.7 准确数和近似数2.8 计算器的使⽤第3章实数3.1 平⽅根3.2 实数3.3 ⽤计算器进⾏数的开⽅3.4 实数的运算第4章代数式4.1⽤字母表⽰数4.2代数式4.3代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章⼀元⼀次⽅程5.1 ⼀元⼀次⽅程5.2 ⼀元⼀次⽅程的解法和步骤5.3 ⼀元⼀次⽅程的应⽤5.4 问题解决的基本步骤第6章数据与图表6.1 数据的收集与整理6.2 统计表6.3 条形统计图和统计图6.4 扇形统计图第7章图形的初步知识7.1 ⼏何图形7.2 线段、射线和直线7.3 线段的长短⽐较7.4 ⾓与⾓的度量7.5 ⾓的⼤⼩⽐较7.6 余⾓和补⾓7.7 相交线7.8 平⾏线七年级下册第1章三⾓形的初步知识1.1 认识三⾓形1.2 三⾓形的⾓平分线和中线1.3 三⾓形的⾼1.4 全等三⾓形1.5 三⾓形全等的条件1.6 作三⾓形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6图形变换的简单应⽤第3章事件的可能性3.1 认识事件的可能性3.2 可能性的⼤⼩3.3 可能性和概率第4章⼆元⼀次⽅程组4.1 ⼆元⼀次⽅程4.2 ⼆元⼀次⽅程组4.3 解⼆元⼀次⽅程组4.4 ⼆元⼀次⽅程组的应⽤第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式法6.3 ⽤乘法公式分解因式6.4因式分解的简单应⽤第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式⽅程⼋年级上册第1章平⾏线1.1 同位⾓、内错⾓、同旁内⾓1.2 平⾏线的判定1.3 平⾏线的性质1.4 平⾏线之间的距离第2章特殊三⾓形2.1 等腰三⾓形2.2 等腰三⾓形的性质2.3 等腰三⾓形的判定2.4 等边三⾓形2.5 直⾓三⾓形2.6 探索勾股定理2.7 直⾓三⾓形全等的判定第3章直棱柱3.1 认识直棱柱3.2 直棱柱的表⾯展开图3.3 三视图3.4 由三视图描述⼏何体第4章样本与数据分析初步4.1 抽样4.2 平均数4.3 中位数和众数4.4 ⽅差和标准差4.5 统计量的选择与应⽤第5章⼀元⼀次不等式5.1 认识不等式5.2 不等式的基本性质5.3 ⼀元⼀次不等式5.4 ⼀元⼀次不等式组第6章图形与坐标6.1 探索确定位置的⽅法6.2 平⾯直⾓坐标系6.3 坐标平⾯内的图形变换第7章⼀次函数7.1 常量与变量7.2 认识函数7.3 ⼀次函数7.4 ⼀次函数的图象7.5 ⼀次函数的简单应⽤⼋年级下册第1章⼆次根式1.1 ⼆次根式1.2 ⼆次根式的性质1.3 ⼆次根式的运算第2章⼀元⼆次⽅程2.1 ⼀元⼆次⽅程2.2 ⼀元⼆次⽅程的求解2.3 ⼀元⼀次⽅程的应⽤第3章频数分布及其图形3.1 频数与频率3.2 频数分布直⽅图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平⾏四边形5.1 多边形5.2 平⾏四边形5.3 平⾏四边形的性质5.4中⼼对称5.5 平⾏四边形的判定5.6 三⾓形的中位线5.7 逆命题和逆定理第6章特殊平⾏四边形与梯形6.1 矩形6.2 菱形6.3 正⽅形6.4梯形九年级上册第1章反⽐例函数1.1 反⽐例函数1.2 反⽐例函数的图像和性质1.3 反⽐例函数的应⽤第2章⼆次函数2.1 ⼆次函数2.2 ⼆次函数的图像2.3 ⼆次函数的性质2.4 ⼆次函数的应⽤第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆⼼⾓3.4 圆周⾓3.5 弧长及扇形的⾯积3.6 圆锥的侧⾯积和全⾯积第4章相似三⾓形4.1 ⽐例线段4.2 相似三⾓形4.3 两个三⾓形相似的判定4.4 相似三⾓形的性质及其应⽤4.5 相似多边形4.6 图形的位似九年级下册第1章解直⾓三⾓形1.1 锐⾓三⾓形1.2 有关三⾓函数的计算1.3 解直⾓三⾓形第2章简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应⽤第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三⾓形的内切圆3.3 圆与圆的位置关系第4章投影与三视图4.1 视⾓与盲区4.2 投影4.3 简单物体的三视图必修1第⼀章集合与函数概念1.1 集合1.2 函数及其表⽰1.3 函数的基本性质第⼆章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应⽤3.1 函数与⽅程3.2 函数模型及其应⽤必修2第⼀章空间⼏何体1.1 空间⼏何体的结构1.2 空间⼏何体的三视图和直观图1.3 空间⼏何体的表⾯积与体积第⼆章点、直线、平⾯之间的位置关系2.1 空间点、直线、平⾯之间的位置关系2.2 直线、平⾯平⾏的判定及其性质2.3 直线、平⾯垂直的判定及其性质第三章直线与⽅程3.1 直线的倾斜⾓与斜率3.2 直线的⽅程3.3 直线的交点坐标与距离公式必修3第⼀章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第⼆章统计2.1 随机抽样阅读与思考⼀个著名的案例阅读与思考⼴告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 ⽤样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 ⼏何概型必修4第⼀章三⾓函数1.1 任意⾓和弧度制1.2 任意⾓的三⾓函数1.3 三⾓函数的诱导公式 1.4 三⾓函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三⾓函数模型的简单应⽤第⼆章平⾯向量2.1 平⾯向量的实际背景及基本概念2.2 平⾯向量的线性运算2.3 平⾯向量的基本定理及坐标表⽰2.4 平⾯向量的数量积2.5 平⾯向量应⽤举例第三章三⾓恒等变换3.1 两⾓和与差的正弦、余弦和正切公式3.2 简单的三⾓恒等变换必修5第⼀章解三⾓形1.1正弦定理和余弦定理1.2应⽤举例1.3实习作业第⼆章数列2.1数列的概念与简单表⽰法2.2等差数列2.3等差数列的前n项和2.4等⽐数列2.5等⽐数列的前n项和第三章不等式3.1不等关系与不等式3.2⼀元⼆次不等式及其解法3.3⼆元⼀次不等式(组)与简单的线性规划问题3.3.1⼆元⼀次不等式(组)与平⾯区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第⼀章常⽤逻辑⽤语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第⼆章圆锥曲线与⽅程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应⽤3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应⽤3.4⽣活中的优化问题举例选修1-2第⼀章统计案例1.1 回归分析的基本思想及其初步应⽤1.2 独⽴性检验的基本思想及其初步应⽤第⼆章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引⼊3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第⼀章常⽤逻辑⽤语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第⼆章圆锥曲线与⽅程2.1 曲线与⽅程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与⽴体⼏何3.1 空间向量及其运算3.2 ⽴体⼏何中的向量⽅法选修2-2第⼀章导数及其应⽤1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应⽤1.4 ⽣活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应⽤第⼆章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引⼊3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第⼀章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 ⼆项式定理第⼆章随机变量及其分布2.1 离散型随机变量及其分布列2.2 ⼆项分布及其应⽤2.3 离散型随机变量的均值与⽅差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应⽤3.2 独⽴性检验的基本思想及其初步应⽤选修3-1第⼀讲早期的算术与⼏何第⼆讲古希腊数学第三讲中国古代数学瑰宝第四讲平⾯解析⼏何的产⽣第五讲微积分的诞⽣第六讲近代数学两巨星第七讲千古谜题第⼋讲对⽆穷的深⼊思考第九讲中国现代数学的开拓与发展选修3-3第⼀讲从欧⽒⼏何看球⾯第⼆讲球⾯上的距离和⾓第三讲球⾯上的基本图形第四讲球⾯三⾓形第五讲球⾯三⾓形的全等第六讲球⾯多边形与欧拉公式第七讲球⾯三⾓形的边⾓关系第⼋讲欧⽒⼏何与⾮欧⼏何选修3-4第⼀讲平⾯图形的对称群第⼆讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第⼀讲相似三⾓形的判定及有关性质第⼆讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第⼀讲线性变换与⼆阶矩阵第⼆讲变换的复合与⼆阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-4第⼀讲坐标系第⼆讲参数⽅程第⼀讲不等式和绝对值不等式第⼆讲证明不等式的基本⽅法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第⼀讲整数的整除第⼆讲同余与同余⽅程第三讲⼀次不定⽅程第四讲数伦在密码中的应⽤选修4-7第⼀讲优选法第⼆讲试验设计初步选修4-9第⼀讲风险与决策的基本概念第⼆讲决策树⽅法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介⼀年级上册⼀、数⼀数⼆、⽐⼀⽐三、1~5的认识和加减法四、认识物体和图形五、分类六、6~10的认识和加减法七、11~20各数的认识⼋、认识钟表九、20以内的进位加法⼗、总复习⼀年级下册⼀、位置⼆、20以内的退位减法三、图形的拼组四、100以内数的认识六、100以内的加法和减法(⼀)七、认识时间⼋、找规律九、统计⼗、总复习⼆年级上册⼀、长度单位⼆、100以内的加法和减法(⼆)三、⾓的初步知识四、表内乘法(⼀)五、观察物体六、表内乘法(⼆)七、统计⼋、数学⼴⾓九、总复习⼆年级下册⼀、解决问题⼆、表内除法(⼀)三、图形与变换四、表内除法(⼆)五、万以内数的认识六、克与千克七、万以内的加法和减法(⼀)⼋、统计九、找规律⼗、总复习三年级上册⼀、测量⼆、万以内的加法和减法(⼆)三、四边形四、有余数的除法五、时、分、秒六、多位数乘⼀位数三年级下册⼀、位置与⽅向⼆、除数是⼀位数的除法三、统计四、年、⽉、⽇五、两位数乘两位数六、⾯积七、⼩数的初步认识⼋、解决问题九、数学⼴⾓⼗、总复习四年级上册⼀、⼤数的认识⼆、⾓的度量三、三位数乘两位数四、平⾏四边形和梯形五、除数是两位数的除法六、统计七、数学⼴⾓⼋、总复习四年级下册⼀、四则运算⼆、位置与⽅向三、运算定律与简便计算四、⼩数的意义和性质五、三⾓形六、⼩数的加法和减法七、统计⼋、数学⼴⾓九、总复习五年级上册五、多边形的⾯积六、统计与可能性七、数学⼴⾓⼋、总复习五年级下册⼀、图形的变换⼆、因数与倍数三、长⽅体和正⽅体四、分数的意义和性质五、分数的加法和减法六、统计七、数学⼴⾓⼋、总复习六年级上册⼀、位置⼆、分数乘法三、分数除法四、圆五、百分数六、统计七、数学⼴⾓⼋、总复习六年级下册⼀、负数⼆、圆柱与圆锥三、⽐例四、统计五、数学⼴⾓六、整理与复习1、数与代数2、空间与图形。
从自然数到有理数
1.1 从自然数到有理数(1)知识要点1.自然数: 0,1,2,3,4,.......叫做自然数2.分数:把单位“1”平均分成若干等份,表示这样的一份或几份的数叫做分数,分数可以看做两个整数相除。
例如,6.05353=÷=. 3.分数的基本性质:分数的分子和分母都乘以或除以同一个不等于0的数,分数的值不变。
4.自然数的作用:(1)表示计数,既计量某物数量,例如,10张椅子中的“10”就表示技数。
(2)表示测量,既对某物进行某方面的测量,例如,小花的身高为165cm 中的“165”就表示测量。
(3)表示标号,既对某物体或事物,事件进行顺序排列,表示年份,排名,日期的数字都表示排序。
解 题 指 导(例1)把下列小数化成分数:(1)0.36 (2) 0.3 (3)0.23解析 (1)0.36=25910036= (2)0.3 = 31(3)0.239923=(例2)将一张正方形纸片分割成四张面积相等的小正方形纸片,然后将其中一张小正方形纸片在分割成四张面积相等的小正方形纸片,如此分割下去,第10次分割后,正方形的纸片共有() A.31张 B. 32张 C.33张 D. 34张答案 A解析 第一次分割后有4张,第二次分割后有3+4=7张,第三次分割后3*2+4=10张.......依此类推,第10次分割后有3*9+4=31张。
(例3) 分子为1的真分数叫做“单位分数”。
某些真分数可以写成两个单位分数的和,如.312165+=请把127写成两个单位分数的和,你能举出其他的例子吗?解析 从6532233121=⨯+=+可以看出,可以把分母分解成两个因数的积,分子分解成这两个因数的和。
.41314343127+=⨯+=∴其他的例子如5141209+=等。
同步练习1.千岛湖风光秀丽,是“黄山一千岛湖一杭州”这一国际黄金旅游线路上的一个璀璨明珠,千岛湖是世界上岛屿最多的湖泊,大小共有1078个岛,平均水深34米,其中1078个,34米分别属于() A.计数,排序 B.计数,测量 C.排序,测量D.测量,排序2.下列语句中,出现的自然数表示计数的是() A. 某中学七年级有380名 B. 小强的寝室号是306C. 小明第一次数学测试考上了班上第5名D. 教师办公室的长是6m3.妈妈的1万块存款到期了,按规定她可以得到3.25%的利息,但同时必须向国家交5%的利息税(利息税=利息*5%),妈妈交税的金额是()A.500元B.325元C.16.25元D.11元4.将自然数按如图所示的方式排列:第一列第二列第三列第四列.....第一行 0第二行 1 2第三行 2 3 4第四行 3 4 5 6.....(第四题)按照这样的规律,你以为100第一次出现在()A.第50行,第50列B.第50行,第51列C.第51行,第50列D.第51行,第51列5.按规律填空:(1)1,1,2,3,5,8,13,(),(),......(2) 1,3,6,10,15,(),(),.....(3) 2,6,12,20,(),(),......6.请把下列小数转化为分数:(1)0.7 (2) 0.7 (3) 0.02 (4)0.1257.有两个自然数,他们的和为23,则当这两个自然数是多少是,它们的积最大? 8.计算:(1)9+99+999+9999+99999. (2)1091........431321211⨯++⨯+⨯+⨯9.在元旦期间,你和你爸爸,妈妈准备外出旅游,阳光旅行社的收费标准为大人全价,小孩半价,而蓝天旅行社不管大人小孩,都是八折,这两家旅行社的基本收费一样,都是300元一人,你认为去哪家旅行社较为合算?。
_1.1从自然数到有理数第2课时正数与负数课件 浙教版数学七年级上册
04 课 堂 练 习
04 课 堂 练 习
【例2】 初中一年级女生仰卧起坐满分标准为50个,个数为54 个记为+4个,则个数为46个应记为( ) A.-6个 B.-4个 C.4个 D.+46个
B
04 课 堂 练 习
-2
+0.3 0
0
-1.2 -1
+0.5 -0.4
04 课 堂 练 习
【例4】 小虫从某地点0出发在一直线上来回爬行,假定向右爬 行的路程记为正,向左爬行的路程记为负,爬行的路程 依次为(单位:厘米)+5,-3,+ 10,-8,-6,-9,+12,10,问:小虫是否回到原点0?
2.(1)-2.5 3.2 0 (2)918 -154
03 新 知 讲 解
例 暑假第一周,小慧零花钱的收支情况如下: 星期一妈妈给零花钱10元;星期二买练习本用去3元;星期三买卡通笔 用去2.8元;星期四无收入也无支出;星期五买矿泉水用去2元;星期 六获得校报投稿稿酬5元;星期日买发夹用去6.9元。 观察她的记录表,回答下列问题: (1)请用正数、负数或0填写下表。
06 作 业 布 置
【必做】3.下列说法正确的个数是 ( ) ①加正号的数是正数,加负号的数是负数; ②任意一个正数,前面加上“-”号,就是一个负数; ③0是最小的正数; ④大于0的数是正数; A.0 B.1 C.2 D.3
06 作 业 布 置
【必做】3.①不正确。加正号的数不一定是正数,例如+ (-3)仍然是负数,同理加负号的数也不一定是负数。 ②正确。任意一个正数前面加上“-”号确实会变成负数。 ③不正确。0既不是正数也不是负数,它是一个特殊的数 。 ④正确。大于零的数确实是正数。 综上所述,正确的说法有两个,因此正确答案是选项C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章从自然数到有理数
本套教材以“数与代数”“空间与图形”“统计与概率”三条主线,并根据本学段学生的年龄特征、学习经验、认知规律和各领域数学知识自身的逻辑体系展开。
三条主线之间既有联系,又相对独立。
第三学段从“数与代数”开始,其目的是充分考虑与第二学段、第一学段的衔接,从新梳理数的发展过程,使学生感受数学来源于生活,生活离不开数学,从而增加学生学习数学的兴趣,以及探索由于需要而再次扩充数系的必要性。
第一章安排了“从自然数到有理数”。
本章的主要内容有:回顾前两学段学过的关于“数”的知识,进一步理解自然数、分数的产生和发展的实际背景,通过学生身边的例子体验自然数与分数的意义和在计数、测量、排序、编码等方面的应用;从相反意义的量的表示,理解有理数产生的必然性,合理性;学习有关有理数、数轴、相反数、绝对值等知识,初步理解有理数可以用数轴上的点表示,为以后的进一步学习打下基础。
数在大小比较是今后学习不等式的重要基础,数轴在各个数学领域里都有重要的应用。
正数、负数的概念对有理数概念的建立起了关键性的作用,数轴不仅能直观解释其余的相关概念,而且是解决许多数学问题的重要工具。
因此,正数、负数及数轴是本章才学中的重点。
正数、负数概念的建立需要一个学生从未经历过的数学抽象过程,数轴涉及数和形两个方面,绝对值涉及较复杂的符号问题,这些是本章教学中的难点。
本章教学时间约需9课时,具体安排如下:
1.1 从自然数到分数2课时
1.2 有理数1课时
1.3 数轴1课时
1.4 绝对值1课时
1.5 有理数大小的比较1课时
复习评价2课时,机动使用1课时,
合计9课时
一、教科书内容和课程教学目标
(1)本章知识结构框图如下:
(3)本章教学要求
①使学生初步体验数学与现实世界的密切联系,生活中处处有数学。
②初步了解自然数的各种应用及从自然数、分数扩充到有理数是来源于生活实践。
③在具体情景中理解具有相反意义的量的含义,会用有理数表示相反意义的量。
感受用有理数表示具有相反意义的量时,规定正、负的相对性。
④能用数轴上的点表示有理数,借助数轴理解相反数、绝对值及比较有理数的大小,体会从数与形两个方面考虑问题的方法。
二、本章编写特点
(1)体现数学来源于生活,素材与学生现实紧密结合
从学生身边的现实例子说起,外出乘车、购买彩票等是学生亲身经历、感受过的,比较亲切、容易接受。
这些素材来源于现实,且经过提练,体现了一定的教育价值,体现了数系扩充的必要性。
月球表面温度的变化、关于跨海大桥的报道、5个城市气温的比较等无一不是学生所熟悉和感兴趣的,使新知识的引入有
了比较扎实的基础。
从解决实际问题的欲望而促进对数学学习的兴趣。
(2)重视内容承上启下,突出知识形成与应用过程
为了引出有理数的概念,教材从新回顾了自然数、分数的产生过程,起到与前两个学段衔接的作用,也进一步说明了数的产生与发展是与生产、生活紧密相连的。
由于记事、测量与分配物品的需要,人类发明了自然数与分数。
人们为了要表示相反意义的量引入了负数。
但这又不是简单的重复,在新学段学习时赋于了新的内容。
如自然数在计数、排序、编码方面的应用。
(3)关注数形结合思想,鼓励师生互动突破重难点
在本章教材编写中,充分注意到利用数轴的直观性来分析、解答一些数学概念和问题,体现数形结合的思想。
在原点两侧,关于原点对称的两点直观描述了两个互为相反数代表的点的位置关系。
把数轴上的点到原点的距离作为绝对值的概念,也是先让学生体验绝对值的几何意义,再从此定义得出绝对值的求法,脉络比较清楚。
利用数轴规定有理数的顺序,帮助我们分析比较有理数的大小,既直观又形象涵盖了的理数大小比较的所有情况,有利于帮助我们突破难点重点。
在教学中要强调数轴也是从客观实际中抽象出来的数学模型,突出数轴的三个要素,多让学生动手画数轴,在数轴上表示各种实际量,包括较大的数和较小的数。
三、教学建议
(1)章前图、正负数的引入
本章章前图中是著名的珠穆朗玛峰顶峰雄姿和盛产葡萄的吐鲁番盆地。
在学生欣赏照片,感受我国地大物博,激发学生爱国热情的同时,引导学生把注意力关注到两地的气温和海拔高度上来。
因为气温有零上、零下;海拔有高于海平面的高度和低于海平面的高度。
为了准确的刻画这些量,就要引进新的数。
这就是本章学习的主要内容。
具体的教学中,可以让学生通过身边熟悉的事物举一反三,列举用正负数表示的量,进一步使学生体会到负数的引入的确是实际生活的需要,也感受到有理数应用的广泛性。
(2)合作学习初步体验
合作学习是针对课文中提出的问题,要求学生观察、实验、猜测、验证、归纳、推理、概括等方法,组织同学之间相互讨论、交流,以面对面互动的形式,分工合作探索或完成某一学习任务。
这种形式的学习方法,同学不一定很习惯,培养良好的与人合作精神也不能一蹴而就。
教师在第一次应该下功夫,作充分的准备。
先让学生观察身边的事物入手,尽量多说出在日常生活和生产实践中遇到具有相反意义的量。
零上、零下;向东、向西;升高、降低;盈利、亏损等等。
学生也可能把“相反意义”与“意义不同”混淆起来,提出一些似是而非的他认为是相反意义的量,譬如上升3度与零下3度;盈利3万元与支出3万元等。
应
该让学生充分讨论,重要的不是结论的得出,而是得出结论的过程,不要因为可能影响教学进度而教师取而代之。
通过讨论激发学生勤于思考,善于思考的学习习惯和积极参与敢于发表自己意见的学习热情。
其次讨论也是合作学习的一种重要方式,通过讨论互相启发,互相促进。
不可忽视讨论过程,可以加深对概念的理解。
通过具体例子寻找结论,可以分享成功的喜悦,感受集体的力量。
(3) 关于设计题
本章中的设计题要求学生到图书馆或上英特见网查阅资料,撰写“数的发展与由来”的小论文,主要是让学生体会数学在人类文明发展与进步中的作用,这也是一个对学生能力的培养的机会。
应该告诉学生到图书馆查阅资料及搜索网站的方法。
如用google搜索,怎样打入关键词,能找到什么资料,怎样下载,对下载的资料怎样进行裁剪等等。
可以单独一个人撰写,也可以多人合作。
因为他们是首次完成这样的任务,应该给学生足够的时间。
完成后可采取多种形式在班上交流,交流范围不限于文章内容,也可以交流在自主探索过程中,获得的经验和方法。