认识三角形2
(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时
8.如果一个三角形的三条高的交点恰是三角形的一个顶点, 那么这个三角形是( )
C
A.锐角三角形 C.直角三角形
B.钝角三角形 D.不能确定
9.如图所示.
(1)在△ABC中,BC边上的高是______;
(2)在△AEC中,AE边上的高是______; AB
(3)若AB=CD=3 cm,AE=5 cm,则△AEC的面积S=
1 解:(1)∠DAE=20°.(2)∠DAE=2(β -α ).(3)∠EFG =20°.(4)∠EFG 的大小不发生改变.理由:∵AD⊥BC,
1 FG⊥BC,∴∠GFE=∠EAD.∵∠EAD=2(β -α ),∴∠EFG 的大小不发生改变.
5.如图,AD是△ABC的中线2 ,且AB=6 cm,AC=4 cm,则△ABD 与△ACD的周长之差是_______cm.
第5题图
第6题图
6.如图,点 D 是 BC 的中点,点 E 是 AC 的中点.若 S△ADE=1, 则 S△ABC=_____4___.
知识点3:三角形的高线 7.(义乌市期中)过△ABC的顶点A,作BC边上的高,以下作法 正确的是( )
18.(浦江县月考)(例2变式)已知:在△ABC中,∠C>∠B,AE平 分∠BAC. (1)如图①,AD⊥BC于点D,若∠C=70°,∠B=30°,请你用量 角器直接量出∠DAE的度数; (2)若△ABC中,∠B=α,∠C=β(α<β),根据(1)中的结果大胆猜 想∠DAE与α,β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中,AD⊥BC,AE平分∠BAC,点 F是AE上的任意一点,过点F作FG⊥BC于点G,且∠B= 40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
西南师大版数学四年级下册 第4单元 认识三角形(2) 教案
认识三角形(二)教学内容知识与技能:知道三角形任意两条边的和大于第三边;并会判断指定长度的三条线段能否围成三角形。
过程与方法:探究三角形三边的关系,根据三角形三边的关系解释生活中的现象;提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概况能力和动手操作能力。
情感与态度:积极参与探究活动,在活动中获得成功的体验,培养学习的兴趣。
重点、难点重点在观察、操作、比较和分析中发现三角形三条边的关系。
难点应用三角形三边的关系解决实际生活中的问题。
情境导入找出图示中的三角形。
由三条线段围成的图形叫做三角形。
三角形的三边长度存在怎样的数量关系?两点之间线段最短探究新知(图示)把一根吸管任意剪成3段,能围成一个三角形吗?先做一做,在合同伴交流。
动手做一做:将多根吸管剪成不同的3段。
测出长度。
围成一圈。
通过图示,我们可以得出什么结论:当两根吸管的长度和等于第三根吸管时,不能围成三角形。
当两根吸管的长度和小于第三根吸管时,不能围成三角形。
当两根吸管的长度和大于第三根吸管时,能围成三角形。
剪一剪,围一围,填写下表。
当三条线段中的任意两条之和大于第3条边时,这三条线段才能围成三角形。
也可以说三角形任意两边之和大于第3边。
一个三角形的3个内角和是多少度?所有三角形的内角和都是180°吗?怎样去验证一下呢?拿起你的量角器,量一量每个三角形三个内角的度数吧!将三角形的三个角撕下来,拼到一起,你能发现什么?这三个内角拼在一起正好是一个平角,说明三角形的内角和是180°。
课堂练习三角形的一个内角为80°,另外两个角可能是多少度?三角形内角和是180°,除了这个80°的角,剩下两个角的度数和为:180°-80°=100°。
课堂小结1.三角形任意两边的内角和不能小于第三边。
2.三角形的内角和为180°。
7.4认识三角形(2)
A
C
B
F
C
如上所示,线段 AF 就是△ABC 的中线 3 1)三角形的中线必为线段 2)三角形的中线必平分对边 如上所示,线段 AF 是△ABC 的中线
1 必有:BF=CF= 2 BC
3)三角形有三条中线 例:做出下列三角形的三条角平分线 教师先做示范,然后再让学生自行画出 其余两个 锐角三角形
A
七、平面图形的认识(二) ---- [教案] 课 题 7.4 认识三角形(2) 教学目标 重 难 点 点 1 知道三角形高、中线、角平分线的定义 2 会做任意三角形高、中线、角平分线 会做任意三角形高、中线、角平分线 会做任意三角形高、中线、角平分线 讲练结合、探索交流 活 动 课型
课时 分配
本课(章节)需 2 本 节 课 为 第 2 为 本 学期总第
课时 课时 课时
教学方法 教 师
新授课
教具
投影仪
学 生 活 动
一 三角形的高 1 复习:过点 A 做 BC 的垂线,垂足为 D
A
A
B
C
B
C
A
A
B
C
2 在黑板上做△ABC,过点 A 做对边 BC B C D 的垂线,垂足为 D,我们 就将线段 AD 称为△ABC 的高 3 高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶 点与垂 足之间的线段称为三角形的高 例如在上图中,我们从△ABC 的一个顶点出发,向它对边 BC 所在 的直线作垂线,垂足为 D,线段 AD 就是三角形的高 注:1)三角形的高必为线段 2)三角形的高必过顶点垂直于对边 3)三角形有三条高 为了将这三条高加以区别,我们把 AD 称为 BC 边上的高 例:做出下列三角形的三条高 1 锐角三角形: A 可由教师先做示范,然后再让学生自行画出 其余两个
4.1认识三角形(2)
4..一个等腰三角形的两边长分别为 25 和 12,则第三边长 为 。
5..若等腰△ABC 周长为 26,AB=6,求它的腰长.
七年级数学导学案第 31 课时 主备人:施晓海
审核人: 施晓海
审批人:
四、课后练习:
1. 若 等 腰 三 角 形 的 两 边 长 分 别 为 3cm 和 8cm , 则 它 的 周 长 是 。 2. 若三角形的两条边长分别为 6cm 和 8cm,且第三边的边长为偶 数,则第三边长为 。 3.三角形的两边工分别为 2cm,5cm,第三边长为 xcm 也是整数,则 当三角形的周长取最大值时 x 的值为___cm。 4.已知△ABC 中,AB=3,BC=6,另一边 CA 的长是正整数,则CA 的可能取值为_________。 5.若三角形两边长分别是 4、5,则周长 c 的范围是( ) A. 1 c 9 B. 9 c 14 C. 10 c 18 D. 无法确定 6.若一个三角形的三边长是三个连续的自然数,其周 长 m 满足 10 m 22 ,则这样的三角形有( ) A. 2 个 B. 3 个 C. 4 个 D. 5 个 7.现有长度为 2cm,3cm,4cm,5cm 的木棒,从中任取三根,能组成 三角形的个数为( )A 1 B2 C3 D4 8.下列各组数据,可以作三角形三边的是( ) A 2cm,3cm,5cm B 8 cm,9cm,10cm C 9cm,3cm,5cm D 3.1cm,4.2cm,6.5cm 9. 如果三条线段 a,b,c 能组成三角形,那么它们的长度比可能是 ( )A .1:2:4 B 1:3:4 C 3:4:7 D2:3:4 10.已知三角形的两边长为2和5, 第三边的长为偶数, 那么这个 三角形的周长是( ) A11 B13 C11或13 D以上都不对 11.四名学生手中分别有3厘米,4厘米,5厘米,8厘米长的四条 线段, 若用其中三个同学手中的线段组成三角形, 共可组成 ( ) 个三角形A 1 B 2 C 3 D 4 12.一个三角形的两条边相等,周长为 18cm,三角形一边长 4cm, 求其它两边长? 13.把长度分别为20厘米, 15厘米, 18厘米的三根木棒搭成一 个三角形。 (1)若把20厘米的木棒换成7厘米长的木棒能否搭成一个三角 形?5厘米长木棒呢? (2)把20厘米长的木棒换成什么范围的尺寸不能搭成三角形?
认识三角形(2)
初中数学七年级下册 苏科版
回 顾 思思考 考 回顾
你还记得 “过一点画已知直线的垂线” 吗?
画法
过三角形 的一个顶点,你能画出 它的对边的垂线吗?
0 42 5 3 4 5 1 2
3
4
5
6
A
B
C
0
1
2 0 3 1 4 205 31
0 1 2 3 4 5
0 1 2 3 4 5 7
B
D
C3
做一做
锐角三角形的三条高
每人准备一个锐角三角形纸片。 (1) 你能画出这个三角形的三条高吗? (2) 你能用折纸的办法得到它们吗? (3) 这三条高之间有怎样的位置关系? 将你的结果与同伴进行交流. 锐角三角形的三条高是 在三角形的内部还是外部? 锐角三角形的三条高交于同一点. 锐角三角形的三条高 都在三角形的内部。
17
C D
A
折痕AD即为三角形的∠A的角平分线。
B
10
三形的角平分线的定义
以前所学的“角平分线 ”是一条射线, “三角形的角平分线” 还是射线 吗? 在三角形中,一个内角 B 的平分线与它的对边相交, 这个角的顶点与交点之间的 线段叫三角形的角平分线。 线段 注意
!
A 1 2
D ∠1=∠2 图5−10
p126
折、画钝角三角形的三条高
在纸上画出一个钝角三角形。 (2) 你能折出钝角三角形的 A 三条高吗? 你能画出钝 角三角形的三条高吗? 为了便于折出BC边上的高, 需要把CB延长。 为了便于折出AB边上的高, 需要把AB延长。 D D B B A
F F C C
E F D B E
BC边上的高是在三角形的 内部还是外部? 外部 AB边上的高呢?
《认识三角形》第2课时教学设计
《认识三角形》第2课时教学设计4、总结归纳,定义:(1)三条边各不相等的三角形叫作不等边三角形(2)有两条边相等的三角形叫作等腰三角形(3)三条边都相等的三角形叫作等边三角形等边三角形和等腰三角形之间有什么关系?(等边三角形是特殊的等腰三角形)5、我们可以把三角形按照三边情况进行分类(不等边三角形三角形按边分类]笠殛—缶等腰三角形I等腰二角形I等边三角形(二)三角形的三边关系。
1、探究活动1:如下图,点A为小明家,点B为学校,点C为邮局,小明想:我要到学校怎么走呀?哪一条路最近呀?为什么?学生讨论后个别回答,然后师生共同小结。
路线1:从A到C再到B的路线走;路线2:沿线段AB走请问:路线1、路线2哪条路程较短,你能说出根据吗?解:路线2较短;两点之间线段最短。
≡由此可以得到:4- BOAB ÷BO AC ÷ AR > RO2、议一议:(1)在同一个三角形中,任意两边之和与第三边有什么大小关系?(2)在同一个三角形中,任意两边之差与第三边有什么大小关系?(3)三角形三边有怎样的不等关系?通过动手实验(数学课本第85页“做一做”)同学们可以得到哪些结论? 理由是什么?3、探究活动2:做一做分别量出下面三个三角形的三边长度,并填入空格内。
Z∖ N 2(1) (2) (3)⑴a=,b=, C=。
(2) a=,b=,C=O⑶a=,b=,C=O根据你的测量结果,计算三角形的任意两边之差,并与第三边比较,完成填空:(1) a- b c,c- b a,c- a b⑵b—a c, c-a b,b—c a。
⑶a- c b,a— b c,b—c a。
你能得到什么结论?再画一些三角形试一试。
得出结论:三角形任意两边之差小于第三边。
4、归纳总结三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
(三)典例分析1、例I有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13Cm的木棒呢?解:取长度为2cm的木棒时,由于2+5=7<8,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.取长度为13cm的木棒时,由于5+8=13, 出现了两边之和等于第三边的情况,所以它们也不能摆成三角形。
4.1认识三角形 第二课时-七年级数学下册课件(北师大版)
数,所以x 的值只能是4或6,所以三角形的第三边Байду номын сангаас长
是4或6.
总结
通过多个条件确定三角形第三边的方法:
已知两边
第三边的范围
第三边小于已知两边的 和而大于已知两边的差
附加条件
确定第 三边
1 三角形两边长分别为3和5,第三边的长可以是8吗? 可以是2吗?说说你的理由.
解:不可以是8,也不可以是2.理由:三角形任意两 边之和大于第三边,任意两边之差小于第三边.
④三角形按角分类应分为锐角三角形、直角三角形和
钝角三角形.其中正确的有( C )
A.1个
B.2个
C.3个
D.4个
知识点 3 三角形的三边关系
议一议 (1)元宵节的晚上,房梁
上亮起了彩灯(如图), 装有黄色彩灯的电线 与装有红色彩灯的电线哪根长呢?说明你的理由. (2)在一个三角形中,任意两边之和与第三边的长度有 怎样的关系?为什么?
则该等腰三角形的底边长为( A )
A.2 cm
B.4 cm
C.6 cm
D.8 cm
2 如图,在△ABC 中,BC=BA,点D 在AB上,且 AC=CD=DB,则图中的等腰三角形有( C )
A.1个 B.2个 C.3个 D.4个
3 △ABC 的三边长a,b,c 满足关系式(a-b )(b-c )(c-a )
归纳
三角形任意两边之和大于第三边.
做一做 分别量出(图4-14)三个三角形的三边长度,并填入空格内.
(1)a=________, (2)a=________, (3)a=________, b=________, b=________, b=________, c=________, c=________, c=________,
【北师大版】七年级下册数学4.1《认识三角形》第2课时ppt课件
7.4.2认识三角形(2)课课练及答案(苏科版七年级下)pfd版
三角形三个内角的和等于180ʎ第2课时㊀认识三角形(2)㊀1.知道三角形的高㊁中线㊁角平分线的定义.2.会作任意三角形的高㊁中线㊁角平分线.㊀开心预习梳理,轻松搞定基础.(第1题)1.如图,ø1=ø2=ø3,那么图中有㊀㊀㊀㊀个三角形,它们分别是㊀,A D ㊁A E 分别是ә㊀㊀㊀㊀和ә㊀㊀㊀㊀的角平分线.2.过әA B C 的一个顶点A 画它的角平分线A D ㊁中线AM 和高AH .㊀重难疑点,一网打尽.(第3题)3.如图,在әA B C 中,A D 是角平分线,B E 是中线,øB A D =40ʎ,则øC A D =㊀㊀㊀㊀,若A C =6c m ,则A E =㊀㊀㊀㊀.4.下列说法正确的是(㊀㊀).A.三条线段组成的图形叫做三角形B .三角形的高总在三角形的内部C .三角形的中线总在三角形的内部D.三角形的角平分线可在三角形的外部5.三条高都在三角形内部的三角形是(㊀㊀).A.锐角三角形B .直角三角形C .钝角三角形D.以上都有可能6.折纸是常用的一种学习方法.请你剪下锐角三角形㊁钝角三角形㊁直角三角形各一个,用折纸的方法分别折出三条高㊁三条中线㊁三条角平分线,观察交点与三角形的位置关系.(第6题)七年级数学(下)㊀源于教材,宽于教材,举一反三显身手.(第7题)7.如图,A B ʊC D ,直线E F 与A B ㊁C D 分别相交于E ㊁F 两点,E P 平分øA E F ,过点F 作F P ʅE P ,垂足为P ,若øP E F =30ʎ,则øP F C =㊀㊀㊀㊀.8.能把一个三角形分成两个面积相等部分的是(㊀㊀).A.中线B .高C .角平分线D.以上都不是9.如图是3ˑ4的正方形网格(每个小正方形的边长为1),点A ㊁B ㊁C ㊁D ㊁E ㊁F ㊁G 七点在格点上.请解答下列各题:(1)在图(1)中画一个面积为1的直角三角形;(三角形的顶点从以上七点中选择)(2)在图(2)中画一个面积为12的钝角三角形.(三角形的顶点从以上七点中选择)(第9题)㊀瞧,中考曾经这么考!10.(2012 山东德州)不一定在三角形内部的线段是(㊀㊀).A.三角形的角平分线B .三角形的中线C .三角形的高D.三角形的中位线11.(2012 黑龙江绥化)若等腰三角形两边长分别为3和5,则它的周长是㊀㊀㊀㊀.第2课时㊀认识三角形(2)1.6㊀әA B D㊁әA B E㊁әA B C㊁әA D E㊁әA D C㊁әA E C㊀B A E㊀A C D2.如图:(第2题)3.40ʎ㊀3c m㊀4.C㊀5.A㊀6.略7.60ʎ㊀8.A㊀9.略㊀10.C㊀11.11或13。
1.1 认识三角形(二)
1.1 认识三角形(二)1.如图,在△ABC 中,∠BAC =60°,∠B =45°,AD 是△ABC 的一条角平分线,则∠ADB =105°.(第2题)2.如图,在△ABC 中,AD 是BC 边上的中线. (1)若BC =6 cm ,则CD =3cm ; (2)若CD =a ,则BC =2a ;(3)若S △ABD =8 cm 2,则S △ACD =8cm 2.(第3题)3.(1)如图,在锐角△ABC 中,CD ,BE 分别是AB ,AC 边上的高线,且CD ,BE 交于点P.若∠A =70°,则∠BPC =110°;若∠BPC =100°,则∠A =80°;(2)在△ABC 中,AD ,CE 分别是BC ,AB 边上的高线,且BC =5 cm ,AD =3 cm ,CE =4 cm ,则AB =154cm ;(3)在△ABC 中,AD 是△ABC 的边BC 上的中线,已知AB =7 cm ,AC =5 cm ,则△ABD 与△ACD 的周长之差为2cm.4.(1)一定可以把一个三角形分成两个面积相等的三角形的是(A ) A .三角形的中线 B .三角形的角平分线 C .三角形的高线 D .以上说法均不正确 (2)直角三角形的三条高线所在的直线交于(C ) A .三角形内部 B .三角形外部 C .三角形的边上 D .不能确定5.如图,在△ABC 中,D ,E 分别是BC 上的两点,且BD =DE =EC ,则图中面积相等的三角形有(A )A .4对B .5对C .6对D .7对(第5题) (第6题)6.如图,在△ABC 中,AB>AC ,AD 是△ABC 的边BC 上的中线,BE 是△ABD 的角平分线,有下列结论:①∠ABE =∠DBE ;②BC =2BD =2CD ;③△ABD 的周长等于△ACD 的周长.其中正确的个数有(C ) A .0个 B .1个 C .2个 D .3个(第7题)7.如图,在△ABC 中,∠BAD =∠B ,∠CAD =40°,∠ACE =120°,请判断AD 是否是△ABC 的角平分线,并说明理由.【解】 AD 是△ABC 的角平分线.理由如下: ∵∠ACE +∠ACB =180°, ∠B +∠BAC +∠ACB =180°, ∴∠B +∠BAC =∠ACE =120°, 即∠B +∠BAD +∠CAD =120°. ∵∠CAD =40°, ∴∠B +∠BAD =120°-40°=80°. 又∵∠B =∠BAD , ∴2∠BAD =80°, ∴∠BAD =40°, ∴∠BAD =∠CAD ,∴AD 是△ABC 的角平分线.(第8题)8.如图,在△ABC 中,D ,E 分别是BC ,AD 的中点,连结BE.若S △ABC =16 cm 2,求S △ABE . 【解】 ∵D 是BC 的中点, ∴S △ABD =S △ACD =12S △ABC =8 cm 2.∵E 是AD 的中点,∴S △ABE =S △BDE =12S △ABD =4 cm 2.9.如图,在△ABC 中,AB >AC ,AD 是BC 边上的中线,已知△ABD 与△ACD 的周长之差为8,求AB -AC 的值.(第9题)【解】∵AD是BC边上的中线,∴BD=CD.∵C△ABD=AB+BD+AD,C△ACD=AC+CD+AD,∴AB=C△ABD-BD-AD,AC=C△ACD-CD-AD.∴AB-AC=(C△ABD-BD-AD)-(C△ACD-CD-AD)=C△ABD-C△ACD=8.10.已知在△ABC中,∠A=45°,高线BD和高线CE所在的直线交于点H,求∠BHC的度数.【解】(1)当△ABC为锐角三角形时,如解图①.∵BD,CE是△ABC的高线,∴∠ADB=∠BEH=90°.又∵∠A=45°,∴∠ABD=45°,∴∠BHE=45°,∴∠BHC=180°-∠BHE=135°.(第10题解)(2)当△ABC为钝角三角形时,如解图②.∵BD,CE是△ABC的高线,∴∠ADB=∠BEH=90°.又∵∠A=45°,∴∠ABD=45°,∴∠BHC=180°-∠ABD-∠BEH=45°.综上所述,可知∠BHC=135°或45°.11.在△ABC中,AB=AC,P是BC上任意一点.(1)如图①,若P是BC边上任意一点,PF⊥AB于点F,PE⊥AC于点E,BD为△ABC的高线,请探求PE,PF与BD之间的数量关系;(第11题)(2)如图②,若P是BC的延长线上一点,PF⊥AB于点F,PE⊥AC于点E,CD是△ABC的高线,请探求PE ,PF 与CD 之间的数量关系. 【解】 (1)连结PA.∵S △ABC =S △APB +S △APC , ∴12AC ·BD =12AB ·PF +12AC ·PE. ∵AB =AC ,∴BD =PE +PF.(2)连结PA.∵S △PAB =S △ABC +S △ACP , ∴12AB ·PF =12AB ·CD +12AC ·PE. ∵AB =AC ,∴PF =CD +PE ,即PF -PE =CD.12.(1)如图①所示,在△ABC 中,∠ABC 的平分线BO 与∠ACB 的平分线CO 交于点O ,试探求∠A 与∠BOC 的数量关系;(第12题)(2)如图②,在△ABC 中,D 是边AB 延长线上一点,E 是边AC 延长线上一点,∠CBD 的平分线BO 与∠BCE 的平分线CO 交于点O.试探求: ①∠A 与∠BOC 的数量关系;②按角的大小来判断△BOC 的形状.【解】 (1)∵BO 平分∠ABC ,CO 平分∠ACB , ∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠OBC +∠OCB =12(∠ABC +∠ACB).∵∠ABC +∠ACB =180°-∠A ,∴∠OBC +∠OCB =90°-12∠A .又∵∠OBC +∠OCB =180°-∠BOC , ∴180°-∠BOC =90°-12∠A ,∴∠BOC =90°+12∠A .(2)①∵BO 平分∠CBD ,CO 平分∠BCE , ∴∠CBO =12∠CBD ,∠BCO =12∠BCE ,∴∠CBO +∠BCO =12(∠CBD +∠BCE ).∵∠ABC +∠CBD =180°,∠ACB +∠BCE =180°,∴∠CBD +∠BCE =360°-(∠ABC +∠ACB ).∵∠ABC +∠ACB =180°-∠A ,∴∠CBD +∠BCE =180°+∠A ,∴∠CBO +∠BCO =12(180°+∠A )=90°+12∠A .∵∠BOC =180°-(∠CBO +∠BCO ), ∴∠BOC =180°-90°-12∠A =90°-12∠A .②∵∠CBO =12∠CBD ,∠BCO =12∠BCE ,且∠CBD <180°,∠BCE <180°,∴∠CBO <90°,∠BCO <90°.又∵∠BOC =90°-12∠A ,∴∠BOC <90°.∴∠BOC ,∠CBO ,∠BCO 都是锐角, ∴△BOC 为锐角三角形.。
认识三角形 (2)
教学过程:一、导入同学们,请观察这张图片,你能从图片里找到三角形吗?对,在这里。
想一想,你在生活中的哪些地方还见到过三角形?指名说说。
今天我们就一起来认识一下三角形。
(板书:三角形的认识)二、探究2、请在纸上画一个三角形,不要画的太小哦。
请你到前面来,在黑板上画一个三角形。
同学们,我们像刚才一样,将三条线段首尾相接围成的图形就是一个三角形。
(课件)3、下面老师要看看谁的眼睛最亮,(课件)认真观察,下面哪一幅图是三角形?为什么?(第3是三角形,因为只有它是由三条线段首尾相接围成的,其他都不是。
)说的真好,三条线段必须要首尾相接,才能围成三角形。
围成三角形的三条线段叫做三角形的边,线段的端点叫做三角形的顶点,每两条边之间的夹角叫做三角形的角。
请大家在自己刚才画好的三角形上标出三角形的边,顶点和角。
同桌探究交流,你找出了几条边,几个顶点,几个角?完成的同学用端正的坐姿告诉老师。
请你到前面来,在老师三角形上标出所有的边、角和顶点。
给大家说说,你的想法。
(三角形有三条边,三个顶点,三个角。
)孩子你真棒,谢谢你,请回座位。
5、大家请看,方格纸上有4个点,从这4个点中任选3个作为顶点,都能画一个三角形吗?你有什么发现?哪三个点可以,哪三个点不可以,为什么?请在答题纸上第2题中画一画,和同桌互相说一说你的发现。
有小组已经完成了,请你给大家说说你们小组的发现。
(B.C.D三点不可以画一个三角形,因为这三个点在一条直线上。
)所以我们发现在同一条直线上的三个点不能画一个三角形。
6、同学们,请看这幅图,你知道图中画的是什么吗?这是一个人字梁,是建造房屋时房顶的结构,你能量出图中人字梁的高度吗?你量的是哪条线段?它和底边有什么样的位置关系?请看答题纸上第3题,想一想,量一量,同桌交流你的发现。
指名回答。
(量的是中间最高的那条线段,它和底边互相垂直。
)7、如果我们把人字梁所表示的三角形画下来,就可以这样表示出它的高和底。
(课件出示三角形的高和底)从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
认识三角形(2)
任意画一个锐角△ABC,请你画出BC边上的高. A
友情提示:
垂直的记号; 垂足的字母. C B D 三角形高线的说法:AD是Δ ABC的高;AD是Δ ABC中BC边 上的高;AD垂直于BC,垂足为D;∠ADB=∠ADC=90°. (1)锐角三角形有几条高?你能把它们都画出来吗? (2)这三条高之间有怎样的位置关系?将你的结果与同伴进 行交流. (3)锐角三角形的三条高是在三角形的内部还是外部? (4)你能用折纸的方法得到这三条高吗?
1.如图: (1)AC是哪些三角形的边? (2)若AB⊥CD,垂足为D,则CD是哪些三角形的高? (3)若E是BC中点,则AE是哪个三角形的中线?
A D B
A M B C ( 第 2题 )
F
E C ( 第 1题 )
2. 如图,已知BM是Δ ABC的中线,AB=5cm, BC=3cm,Δ ABM与Δ BCM周长差是多少?Δ ABM与 Δ BCM的面积有什么关系?
A
B
D E
F
C
课堂作业
1.如图(1), (1)当 = 时, AD是△ABC的中线. (2)当 = 时,ED是△BEC的角平分线. (3)当AD⊥BC时,BD是△ 的高,又是△
A E
图(1) 图(2)
的高.
A
B
D
C
B
C
2.如图(2),在△ABC中,分别画出中线AD、角平分线BE、 高CF.
课后探究
(3)尝试:小组内分工合作,分别画出 锐角三角形、直角三角形、钝角三角形 的3条角平分线. (4)三角形的3条角平分线之间有什么关 系?请将你的发现结果与同学交流.
三角形的三条角平分线都在三 角形的内部,并且交于一点.
1.1 认识三角形 第2课时 浙教版数学八年级上册课件(共24张PPT)
三角形 的高线
从三角形的一个顶 点向它的对边所在 的直线作垂线,顶点
B
和垂足之间的线段
A
∵AD是△ABC的BC上的高线.
∴AD⊥BC
D C ∠ADB=∠ADC=90°.
再见
2
3
4
5
6
7
8
9 10
01 23 4 5
D
C
新课讲解
一个三角形的高线共有几条?总的结高(三:在夹条三钝)角角形的的两外边部上. 因此必须先把它们的边
请画出下面三角形的高线,你延发长现,再了画什它么们?的高.
A
A
F E
B
D
CC
D B
B
A D
CE F
新课讲解
三角形的高线 总结
高 锐角三角形
直角三角形
新课讲解
一个三角形有几条角平分线? (三条) 请画出下面三角形的角平分线,你发现了什么?
三角形的三条角平分线交于一点. 称之为三角形的内心.
做一做
如图,AE是△ABC的角平分线.已知∠B=45°, ∠ C=60°,
求下列角的大小.
C
(1) ∠BAE (2) ∠AEB
E
解(:1)∵AE是△ABC的角平分线
EO D
B
C
(3)当∠A= x 时,求∠BOC的度数 (用含x代数式表示).
变式:将上体中的角平分线改为高线,∠BOC和∠A又会有什么 数量关系?
做一做
A
4.如图,已知:△ABC中,BD、CE分别
是△ABC的两条高线,AC=4,BD=5,CE=3,
EOD
求AB.
B
C
一展身手
A 5.课本P9,探究活动
11.1认识三角形(2)
1.请同学们按照四人小组用你所想到的方法求出三角形的内角和。2.按小组汇报。
(1)老师刚才看到许多同学都是用量角器进行测量,那咱们来看看他们量的结果如何。
我们先来看锐角三角形(贴锐角三角形)。
哪些同学测量的是锐角三角形的内角?请两名同学分别说说三个内角分别是多少?内角和是多少?
我们再来看直角三角形(贴直角三角形)。
(A)带①去(B)带②去(C)带③去(D)带①和②去
五、小结:
六、作业布置:
七、板书设计:
八、课后反思
中点中点
同学们,通过拼和折,你们能得到一个什么结论?
结论:三角形的内角和等于180度(板书)
那,刚才我们量的结果中,为什么有的不是180度呢(引导学生说出“误差”)
三、巩固练习。(课件展示)
1、求出三角形各个角的度数。(有图)
(1)找三边相等。
(2)我是等腰三角形,顶角是96度。
(3)我是直角三角形,我有一个锐角是40度。(引导学生总结求直角三角形中锐角的方法)
(2)拼一拼。
剪下三个内角拼一拼,每种三角形的三个内角拼在一起分别能形成一个平角,即是180度,我们就可以说三角形的内角和是180度。(学生边汇报电脑边演示)
(1)(2)(3)
(3)折一折。
先找出三角形一个内角两条边的中点,再把两点连接起来,沿着这条线往下折,角的顶点刚好与对边重合,然后再把其它两个内角折起来,也能形成一个平角。从而可以证明三角形的内角和就是180度。
11.1认识三角形(二)
教学目标
知识目标:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
能力目标:已知三角形两个角的度数,会求出第三个角的度数。
7.4认识三角形(2)
8.3同底数幂的除法(3)班级 姓名 成绩教学过程一、情境引入1、(1)你听说过“纳米”吗?(2)知道“纳米”是什么吗?(3)1“纳米”有多长?(1nm=十亿分之一m )(4)纳米记为nm ,请你用式子表示1nm 等于多少米 (5)怎么样用式子表示3nm 、5nm 等于多少米?18nm 呢?二、探究学习1、1nm=10000000001m , 也可以表示为1nm=9101m=10( ). 2、一个很小的正数可以写成1个正整数与10的负整数指数幂的积的形式吗?3、太阳的半径为700 000 000m 用科学计数法可以写成 ,太阳的主要成分是氢,而氢原子的半径大约只有0.000 000 000 05m ,类似的可以写成 。
我们得到结论,一个正数利用科学记数法可以写成a ×10n 的形式,其中1≤a <10,n 是整数。
三、例题讲解例题3 :人体中的红细胞的直径约为0.000 007 7m ,而流感病毒的直径约为0.000 000 08m ,用科学记数法表示这两个量解:例题 4:在显微镜下,一种细胞的截面积可以近似的看成圆,它的半径为7.80×10-7m ,试求这种细胞的截面面积(π≈3.14)解:截面面积S= 答:四、练习运用1、1纳米=0.000 000 001米,则25纳米应表示为( )A. 2.5×10-8米B. 2.5×10-9米C. 2.5×10-10米D. 2.5×1092、用科学计数法表示下列各数(1)2 300 000= (2)0.000 003=(3)-23 000 000= (4)-0.000 000 009 2=)(1091.11008.614.3)1080.7(2)()(27m ⨯≈⨯⨯≈⨯⨯-π3、已知光的速度是300 000 000m/s,即3×108m/s.则光在真空中走30cm需要多少时间?3、计算(用科学记数法表示结果)(1)3×1022×5.5×109 (2)-3.2×10-5×5×10-9 (3)-2.5×1012×(-6×10-8)【课后作业】1、用科学计数法表示下列各数(1)0.00017 (2)0.00000000215(3)0.000000006089 (4)-0.00100022、一种细菌的半径是00003.0厘米,用科学计数法表示为厘米3、最薄的金箔的厚度为0.000000091m,用科学记数法表示为m4、每立方厘米的空气质量为1.239×10-3g,用小数把它表示为g5、氢原子中电子和原子核之间的距离为0.00000000529厘米。
第七章 第6课时 认识三角形(2)
第6课时认识三角形(2)【基础巩固】1.在下列各图的△ABC中,正确画出AC边上的高的图形是()2.(2012.德州)不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形两边中点的连线3.(2012.哈尔滨)一个等腰三角形的两边长分别为5和6,则这个等腰三角形的周长是____.4.如图,在△ABC中,AD是角平分线,AH是高,CE是中线,(1)若∠BAD=40°,则∠CAD=_______°,∠CAB=________°;(2)若AB=6 cm,则AE=_______cm,BE=_______cm;(3)∠_______=∠_______=90°,写出图中直角三角形_____________________.5.如图,AD⊥BC于D,图中以AD为高的三角形有_______个,它们分别是_______.6.利用直角三角板分别画出下列三角形的三条高.【拓展提优】7.(2012.巴中)三角形的下列线段中能将三角形的面积分成相等两部分的是( ) A.中线B.角平分线 C.高D.两边中点的连线8.如图,AD⊥BC,GC⊥BC,CF⊥AB,D、C、F是垂足,下列说法中错误的是( )A.△ABC中,AD是BC边上的高B.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高D.△GBC中,CF是BG边上的高9.如图,△ABC中,∠ACB=90°,CD⊥AB,其中可以作为三角形的高的线段有()A.2条B.3条C.4条D.5条10.如图,已知AB⊥BC,EF⊥BC,CD⊥AD.(1)在△ABC中,BC边上的高是_______;(2)在△AEC中,AE边上的高是_______;(3)在△FEC中,EC边上的高是_______.11.等腰三角形的腰长是10,一腰上的中线将三角形的周长分成差为4的两部分,则等腰三角形的底边长是________.12.作图:(1)画出图中△ABC的高AD(标注出点D的位置);(2)画出把△ABC沿射线AD方向平移2 cm后得到的△A1B1C1;(3)根据“图形平移”的性质,得BB1=_______cm,AC与A1C1的关系是:_______.13.如图,已知△ABC.(1)画中线AD.(2)画△ABD的高BE及△ACD的高CF.量一量,比较BE和CF的大小.14.把△ABC的面积分成三等份.(用刻度尺画准,3种方法)参考答案【基础巩固】1.C 2.C 3.16或174.(1)4080 (2)3 3 (3)AHB AHC △ABH、△ACH、△ADH 5.6 △ABE,△ABD,△ABC,△AED,△AEC,△ADC6.略【拓展提优】7.A 8.B 9.D 10.(1)AB(2)CD (3)EF 11.6或14 12.(1)略(2)略(3)2平行13.略,相等14.略。
北师版七年级下册数学课件 认识三角形 第二课时 三角形的三边关系
1.判断:
随堂练习
(1)一个钝角三角形一定不是等腰三角形.( × )
(2)等边三角形是特殊的等腰三角形.( √ )
(3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ )
(5)直角三角形一定不是等腰三角形.( × )
5.判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm; (3)能,因为5cm+6cm>10cm.
归纳 判断三条线段是否可以组成三角形,只需说明 两条较短线段之和大于第三条线段即可.
我们可以把三角形按照三边情况进行分类
不等边三角形
三角形按边 分类
等腰三角形
腰和底不等的 等腰三角形
等边三角形 (三边都相等
的三角形)
二 三角形的三边关系
我要到学校怎 么走呀?哪一 条路最近呀?
邮局
小明
小明家
为什么?
学校
C
路线1:从A到C再到B的路线走;
路线2:沿线段AB走. 请问:路线1、路线2
通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析 例1 有两根长度分别为5cm和8cm的木棒,用长度 为2cm的木棒与它们能摆成三角形吗?为什么?长 度为13cm的木棒呢? 解:取长度为2cm的木棒时,由于2+5=7<8,出 现了两边之和小于第三边的情况,所以它们不能 摆成三角形.取长度为13cm的木棒时,由于 5+8=13,出现了两边之和等于第三边的情况,所 以它们也不能摆成三角形.