中考题型例解求二次函数的解析式及相关问题
求二次函数解析式的例题及其答案
2022年春北师大版九年级数学中考复习《二次函数与特殊平行四边形综合压轴题》专题突破训练(附答案)1.如图,在平面直角坐标系xOy中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,交y轴于点C(0,3),顶点为D.(1)求抛物线解析式;(2)点E为线段BD上的一个动点,作EF⊥x轴于点F,连接OE,当△OEF面积最大时.求点E的坐标;(3)G是第四象限内抛物线上一点,过点G作GH⊥x轴于点H,交直线BD于点K、且OH=GK,作直线AG.①点G的坐标是;②P为直线AG上方抛物线上一点,过点P作PQ⊥AG于点Q,取点M(0,),点N为平面内一点,若四边形MPNQ是菱形,请直接写出菱形的边长.2.如图,抛物线y=﹣x2+bx+c的图象经过点C(0,2),交x轴于点A(﹣1,0)和B,连接BC,直线y=kx+1与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的表达式及点B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.(3)在(2)的条件下,若点M为直线DE上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+4经过点A(﹣2,0),点B(4,0),与y轴交于点C,过点C 作直线CD∥x轴,与抛物线交于点D,作直线BC,连接AC.(1)求抛物线的函数表达式,并用配方法求抛物线的顶点坐标;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上,且位于点C的上方,点N在直线BC上,点P为直线BC上方抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.4.如图,在平面直角坐标系中,抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣1,0)、B (5,0),与y轴交于点C,D是抛物线对称轴上一点,纵坐标为﹣5,P是线段BC上方抛物线上的一个动点,连接BP、DP.(1)求抛物线的函数表达式;(2)当△BDP的面积取得最大值时,求点P的坐标和△BDP面积的最大值;(3)将抛物线y=ax2+bx+5(a≠0)沿着射线BD平移,使得新抛物线经过点D.新抛物线与x轴交于E、F两点(点E在点F左侧),与y轴交于点G,M是新抛物线上一动点,N是坐标平面上一点,当以点E、G、M、N为顶点的四边形是矩形时,请直接写出所有满足条件的点N的横坐标.5.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”的形状为(不必写出证明过程);(2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+mx(m>0)的“抛物线三角形”.请问是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,请说明理由.6.如图,抛物线y=﹣x2+3x+m与x轴的一个交点为A(4,0),另一交点为B,且与y轴交于点C,连接AC.(1)求m的值及该抛物线的对称轴;(2)已知该抛物线上有一点D(x,y)(x>0,y>0),使得S△ABD=S△ABC,求点D的坐标;(3)若点P在直线AC上,点Q是平面内一点,是否存在点Q,使以点A、点B、点P、点Q为顶点的四边形为正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c(a≠0)经过A、C两点,与x轴的另一交点为点B.(1)求A、C两点的坐标;(2)当△ABC为轴对称图形时,求抛物线的解析式;(3)当△ABC关于y轴成轴对称时,若点M、N是抛物线上的动点,且有MN∥x轴,点P是x轴上的动点,在坐标平面内是否存在一点Q,使以M、N、P、Q为顶点的四边形构成正方形?若存在,求出Q点坐标;若不存在,请说明理由.8.已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点N(n,0)是x轴上的动点.(1)求抛物线的解析式;(2)如图1,若n<3,过点N作x轴的垂线交抛物线于点P,交直线BC于点G.①是否存在以P、C、G为顶点的三角形与△BNG相似?若存在,求出点N的坐标,若不存在,请说明理由;②过点P作PD⊥BC于点D,当△PDG≌△BNG时,求n的值.(3)如图2,将直线BC绕点B顺时针旋转,它恰好经过线段OC的中点,然后将它向上平移个单位长度,得到直线OB1.①点E在直线OB1上运动,在平面直角坐标系中是否存在点F,使以点A、B、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标,若不存在,请说明理由;②当点N关于直线OB1的对称点N1落在抛物线上时,请直接写出点N的坐标.9.如图,在平面直角坐标系中,抛物线C1:y=﹣x2+bx+c与坐标轴交于A,B,C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0),点D的坐标为(0,4).(1)求该二次函数的解析式;(2)如图1,若点E为该抛物线在第一象限内的一动点,点F在该抛物线的对称轴上,求使得△ECD面积取最大值时点E的坐标,并求出此时EF+CF的最小值;(3)如图2,将抛物线C1先向右平移2个单位,再向下平移5个单位得到抛物线C2,点M为抛物线C2上一动点,点N为平面内一动点,问是否存在这样的点M、N使得四边形DMCN为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.10.如图1,在平面直角坐标系xOy中,抛物线与x轴交于点A,B(点A 在点B的左侧),交y轴于点C,且经过点D(5,6).(1)求抛物线的解析式及点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在点P,使△APD是等腰直角三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由;(3)在直线AD下方,作正方形ADEF,并将沿对称轴平移|t|个单位长度(规定向上平移时t为正,向下平移时t为负,不平移时t为0),若平移后的抛物线与正方形ADEF(包括正方形的内部和边)有公共点,求t的取值范围.11.综合与探究:如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式.(2)点E在抛物线的对称轴上,则CE+OE的最小值为.(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.①当△ANC面积最大时的P点坐标为;最大面积为.②点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.参考答案1.解:(1)把点A(﹣1,0)和点C(0,3)代入抛物线y=ax2+2x+c(a≠0),则,解得,∴抛物线的解析式为:y=﹣x2+2x+3;(2)由(1)知抛物线的顶点为D(1,4),令y=0,即﹣x2+2x+3=0,解得x=﹣1或x=3,∴B(3,0),∴直线BD的解析式为:y=﹣2x+6,设点E的横坐标为m,则E(m,﹣2m+6),F(m,0),∴EF=﹣2m+6,OF=m,∴△OEF面积=•EF•OF=(﹣2m+6)•m=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴当m=时,△OEF面积的最大值为.此时E(,3);(3)①设点G的横坐标为n,则G(n,﹣n2+2n+3),K(n,﹣2n+6),H(n,0),∴OH=n,GK=﹣2n+6﹣(﹣n2+2n+3)=n2﹣4n+3,∵OH=GK,∴n=(n2﹣4n+3),解得n=或n=(舍),∴G(,﹣).②若四边形MPNQ是菱形,则△MPQ是等腰三角形,且MP=MQ,取PQ的中点N,则PQ⊥MN,由上可知,A(﹣1,0),G(,﹣).∴直线AG的解析式为:y=﹣x﹣.∵PQ⊥AG,PQ⊥MN,∴MN∥AG,∴直线MN的解析式为:y=﹣x+.设点P的横坐标为t,则P(t,﹣t2+2t+3),直线PQ的解析式为:y=2x+b,则2t+b=﹣t2+2t+3,解得b=﹣t2+3,∴直线PQ的解析式为:y=2x﹣t2+3,令2x﹣t2+3=﹣x﹣,解得x=.∴Q(,﹣),∴PQ的中点N(,),∵直线MN的解析式为:y=﹣x+.∴﹣•+=,解得t=2或t=,∴P(2,3)或P(,).∴MP的长为=或=.故菱形的长为:或.2.解:(1)∵抛物线y=﹣x2+bx+c的图象经过点C(0,2),点A(﹣1,0),∴,解得,∴抛物线的解析式为y=x2+x+2,∵抛物线交x轴于点A和点B,∴当y=0时,x2+x+2=0,解得x=4或x=﹣1,∴B(4,0);(2)存在最大值,由题知,点E位于y轴右侧,作EG∥y轴交BC于点G,∴CD∥EG,∴,∵直线y=kx+1与y轴交于点D,∴D(0,1),∴CD=2﹣1=1,∴,设直线BC的解析式为y=gx+r(g≠0),将B(4,0),C(0,2)代入,得,解得,∴直线BC得解析式为y=﹣x+2,设点E(t,﹣t2+t+2),则G(t,﹣t+2),且0<t<4,∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣t2+2t=﹣(t﹣2)2+2,∴=﹣(t﹣2)2+2,∵﹣<0,∴当t=2时,有最大值为2,此时E点的坐标为(2,3);(3)存在点M和点N使得以点B,D,M,N为顶点的四边形是菱形,理由如下:设直线DE的解析式为y=sx+d,将D(0,1),E(2,3)代入,得,解得,∴直线DE的解析式为y=x+1,设M(n,n+1),∵B(4,0),D(0,1),∴BM2=(4﹣n)2+(0﹣n﹣1)2=2n2﹣6n+17,DM2=(0﹣n)2+(1﹣n﹣1)2=2n2,BD2=42+12=17,∵以点B,D,M,N为顶点的四边形是菱形,故分以下两种情况:①当BD为边时,MN=DM=BD(如下图)或MN=BM=BD(如下图),∴DM2=BD2=17或BM2=BD2=17,即2n2=17或2n2﹣6n+17=17,解得n=±或n=0(舍去)或n=3,∴M(,)或M'(﹣,)或M''(3,4);②如下图,当BD为对角线时,设BD的中点为Q,则Q(2,),∵四边形BMDN是菱形,∴MN⊥BD,QB=QD=BD,∴QD2+QM2=DM2,∴(2﹣0)2+(﹣1)2+(n﹣2)2+(n+1﹣)2=2n2,解得n=,∴M'''(,),综上,符合条件的M点的坐标为(,)或(﹣,)或(3,4)或(,).3.解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),∴得,∴解得,∴抛物线解析式为y=﹣x2+x+4,∵,∴抛物线的顶点坐标为;(2)如图1,设满足条件的点在抛物线上:①当点E位于直线CD下方时,过点E作EF⊥直线CD,垂足为F.则F(t,4),CF=t,,根据题意,当∠ECD=∠ACO时,tan∠ACO=tan∠ECD,即,∴,解得t1=0(舍去),t2=3,∴;②当点E'位于直线CD上方时,过点E'作E'F'⊥直线CD,垂足为F'.则F'(s,4),CF'=s,E'F'=﹣s2+s+4﹣4=﹣s2+s,根据题意,当∠ECD=∠ACO时,tan∠ACO=tan∠ECD,即,∴,解得s1=0(舍去),s2=1.∴,所以,点E的坐标为或;(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣n2+n+4),∴CQ=n,OQ=n+4,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.综上,菱形的边长为4﹣4.4.解:(1)由题意得,,解之得,,∴抛物线的函数表达式是:y=﹣x2+4x+5;(2)如图1,∵抛物线的对称轴是x==2,∴D(2,﹣5),∵B(5,0),∴直线BD的解析式是:y=x﹣,过点P作PQ∥BD,∴可设PQ的解析式是:y=x+b,由﹣x2+4x+5=x+b得,x2﹣x+(b﹣5)=0,∵△BPD面积最大,∴方程由两个相等实数根,∴(x﹣)2=0∴x=,当x=时,y=﹣()2+5=,∴P(,),如图2,∵B(5,0),∴直线PB的解析式是:y=﹣x,∴当x=2时,y=,∴DE=﹣(﹣5)=,∴S△BDP=×(5﹣)=,即△BDP的最大面积是;(3)∵B(5,0),D(2,﹣5),∴y=﹣(x﹣2)2+9平移后的关系式是y=﹣(x+1)2+4,∴﹣(x+1)2+4=0,∴x=1或x=﹣3,∴点E(﹣3,0),G(0,3),如图3,当点M落在抛物线y=﹣(x+1)2+4的顶点(﹣1,4)时,∠EGM=90°,根据MN∥EG,MN=EG可得N(﹣4,1),∴NE的解析式是y=﹣x﹣3,由﹣(x+1)2+4=﹣x﹣3得,x=2或x=﹣3(舍去),∴M′(2,﹣5),∴N′(5,﹣2),当EG是对角线时,设点M1(m,﹣m2﹣2m+3),由M1E2+M1G2=EG2得,(x+3)2+(﹣x2﹣2x+3)2+x2+(﹣x2﹣2x)2=32+32,∴x1=﹣3,x2=0,x3=,x4=,∴N1横坐标是:﹣3﹣=,N2横坐标是:﹣3﹣=,综上所述点N的横坐标是:﹣4或5或或.5.解:(1)如图;根据抛物线的对称性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形.故答案为:等腰三角形.(2)当抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,该抛物线的顶点(,),满足=(b>0).则b=2.(3)存在.如图,作△OCD与△OAB关于原点O中心对称,则四边形ABCD为平行四边形.当OA=OB时,平行四边形ABCD是矩形,又∵AO=AB,∴△OAB为等边三角形.∴∠AOB=60°,作AE⊥OB,垂足为E,∴AE=OE tan∠AOB=OE.∴=•(m>0).∴m=2.∴A(,3),B(2,0).∴C(﹣,﹣3),D(﹣2,0).设过点O、C、D的抛物线为y=mx2+nx,则,解得.故所求抛物线的表达式为y=x2+2x.6.解:(1)把A(4,0)代入二次函数y=﹣x2+3x+m得:∴﹣16+12+m=0,解得:m=4,∴二次函数的解析式为:y=﹣x2+3x+4=﹣(x﹣)2+,∴二次函数对称轴为直线x=;(2)由(1)知,y=﹣x2+3x+4,∴C(0,4),即OC=4,令y=0,则﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴B(﹣1,0),∴AB=4﹣(﹣1)=5,∵S△ABD=S△ABC,点D(x,y)在抛物线y=﹣x2+3x+4上,∴﹣x2+3x+4=4,解得:x=0或3,∴只有(3,4)符合题意.∴点D的坐标为(3,4);(3)存在,理由:①当AB是正方形的边时,此时,对应的正方形为ABP′Q′,∵A(4,0),AB=5,∴点Q′的坐标为(4,5);②当AB是正方形的对角线时,此时,对应的矩形为APBQ,∵AB、PQ是正方形对角线,∴线段AB和线段PQ互相垂直平分,∴点Q在抛物线对称轴上,且到x轴的距离为,∴点Q的坐标为(,﹣),故点Q的坐标为(4,5)或(,﹣).7.解:(1)在y=x+4中,当x=0时,y=4,当y=0时,x+4=0,解得:x=﹣3,∴A点坐标为(﹣3,0),C点坐标为(0,4);(2)设B点坐标为(x,0),①当AC=BC时,,解得:x=﹣3(舍去)或x=3,∴B点坐标为(3,0),将A点坐标为(﹣3,0),B点坐标为(3,0),C点坐标为(0,4)代入y=ax2+bx+c 中,,解得.∴抛物线的解析式为y=﹣x2+4,②当AB=BC时,,解得:x=,∴B点坐标为(,0),将A点坐标为(﹣3,0),B点坐标为(,0),C点坐标为(0,4)代入y=ax2+bx+c 中,,解得,∴抛物线的解析式为y=﹣x2﹣x+4,③当AB=AC时,,解得:x=2或x=﹣8,∴B点坐标为(2,0)或(﹣8,0),i)将A点坐标为(﹣3,0),B点坐标为(2,0),C点坐标为(0,4)代入y=ax2+bx+c 中,,解得,∴抛物线的解析式为y=﹣x2﹣x+4,ii)将A点坐标为(﹣3,0),B点坐标为(﹣8,0),C点坐标为(0,4)代入y=ax2+bx+c 中,,解得,∴抛物线的解析式为y=x2+x+4,综上,当△ABC为轴对称图形时,抛物线的解析式为y=﹣x2+4或y=﹣x2﹣x+4或y=﹣x2﹣x+4或y=x2+x+4;(3)存在,理由如下:当△ABC关于y轴成轴对称时,则AC=BC,此时抛物线的解析式为y=﹣x2+4,①当MN为正方形一边时,∵点P是x轴上的动点,且MN∥x轴,∴此时点Q也位于x轴上,设Q点坐标为(k,0),由正方形性质可得则P点坐标为(﹣k,0),∴|2k|=﹣k2+4,解得:k=±或k=±6,∴当MN在x轴上方且为正方形的一边时,此时Q点坐标为(,0)或(﹣,0),当MN在x轴下方且为正方形的一边时,此时Q点坐标为(6,0)或(﹣6,0),②当MN为正方形对角线时,∵点P是x轴上的动点,且MN∥x轴,∴此时Q点位于y轴上,设Q点坐标为(0,k),∴||=﹣×()2+4,解得:k=,∴当MN位于x轴上方且为正方形对角线时,此时Q点坐标为(0,),当MN位于x轴下方且为正方形对角线时,此时Q点坐标为(0,),综上,坐标平面内存在一点Q,使以M、N、P、Q为顶点的四边形构成正方形,Q点坐标为(,0)或(﹣,0),或(6,0)或(﹣6,0)或(0,)或(0,).8.解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),则y=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,故﹣3a=﹣3,解得a=1,故抛物线的表达式为y=x2﹣2x﹣3;(2)①由抛物线的表达式知,点C(0,﹣3),由B、C的坐标得,直线BC的表达式为y=x﹣3,∵点N(n,0),∴P(n,n2﹣2n﹣3),G(n,n﹣3),∵B(3,0),C(0,﹣3),∴OB=OC=3,则∠OBC=∠OCB=45°,当点N在y轴右侧,△BNG∽△CPG时,如图:∵PN⊥x轴,∴∠BNG=∠CPG=90°,∴PN=OC=3,∴n2﹣2n﹣3=﹣3,解得:n=2或0(与C重合,舍去),∴n=2,∴点N的坐标为(2,0);当点N在y轴右侧,△BNG∽△PCG时,如图:∵△BNG∽△PCG,∴∠BNG=∠PCG=90°,∠CPG=∠OBC=45°,,∴CG=n,PG=n﹣3﹣(n2﹣2n﹣3)=﹣n2+3n,NG=3﹣n,BG ==(3﹣n),∴,解得:n=1,∴点N的坐标为(1,0);当点N在y轴左侧,△BNG∽△PCG时,如图:∵△BNG∽△PCG,∴∠BNG=∠PCG=90°,∠CPG=∠OBC=45°,∴CG=|n|=﹣n,PG=(n2﹣2n﹣3)﹣(n﹣3)=n2﹣3n,∴PG=CG,即n2﹣3n=×(﹣n),解得:n=0或1(舍去),综上所述,点N的坐标为(2,0)或(1,0);②当点N在y轴右侧时,由抛物线的表达式知,点C(0,﹣3),∴OB=OC=3,则∠OBC=∠OCB=45°,∴NB=3﹣n=NG,∴BG=(3﹣n),∵△PDG≌△BNG,∴PG=BG=(3﹣n),∴PN=3﹣n+(3﹣n)=(3﹣n)(1+),∴点P的坐标为(n,(n﹣3)(1+)),将点P的坐标代入抛物线表达式得:(n﹣3)(+1)=n2﹣2n﹣3,解得n=3(舍去)或n=,∴n=;当点N在y轴左侧时,同理可得:n=﹣,综上所述,n=±;(3)①存在,理由如下:AB为矩形的边时,如图:设OC的中点为R(0,﹣),由B、R的坐标得,直线BR的表达式为y=x﹣,则将它向上平移个单位长度,得到直线OB1,此时函数的表达式为y=x,∵A(﹣1,0),B(3,0),∴E(3,)或(﹣1,﹣),∴F(﹣1,)或(3,﹣);AB为矩形的对角线时,如图:连接EF交AB于G,作EH⊥x轴于H,∵A(﹣1,0),B(3,0),∴AB=4,GB=GE=2,OG=1,∵直线OB1的表达式为y=x,∴OH=2EH,∵EH⊥x轴,四边形AFBE是矩形,∴∠AHE=∠BHE=∠AEB=90°,∴∠BAE=∠BEH,∴△AEH∽△EBH,∴,即,解得:EH=或,∴OH=或,∴OK=OH﹣OG﹣OG=或OK=OH+1+1=,∴F(,)或(,);综上所述:存在,点F的坐标为(﹣1,)或(3,﹣)或(,)或(,);②设线段NN1交OB1于点H,则OB1是NN1的中垂线,∵tan∠BOB1=,则tan∠N1NB=2,∵直线NN1的过点N(n,0),故直线NN1的表达式为y=﹣2(x﹣n)②,联立①②并解得,故点H的坐标为(,),∵点H是NN1的中点,由中点坐标公式得:点N1的坐标为(,),将点N1的坐标代入抛物线表达式得:=()2﹣2×﹣3,解得n=,故点N的坐标为(,0)或(,0).9.解:(1)将A(0,8),B(﹣4,0)代入y=﹣x2+bx+c,∴,∴,∴y=﹣x2+x+8;(2)∵y=﹣x2+x+8=﹣(x﹣2)2+9,∴对称轴为直线x=2,令y=0,则﹣x2+x+8=0,∴x=﹣4或x=8,∴C(8,0),设直线CD的解析式为y=kx+b,∴,∴,∴y=﹣x+4,过点E作EH⊥x轴交CD于点H,设E(m,﹣m2+m+8),F(2,n),则H(m,﹣m+4),∴EH=﹣m2+m+8+m﹣4=﹣m2+m+4,∴S△ECD=×8×(﹣m2+m+4)=﹣m2+6m+16=﹣(m﹣3)2+25,∴当m=3时,S△ECD的面积有最大值25,此时E(3,),连接BE,交对称轴于点F,连接CF,∵B点与C点关于对称轴x=2对称,∴BF=CF,∴CF+EF=BF+EF≥BE,当B、E、F三点共线时,EF+CF有最小值,最小值为BE,∴BE==;(3)存在点M、N使得四边形DMCN为菱形,理由如下:平移后的抛物线为y=﹣(x﹣2﹣2)2+9﹣5=﹣(x﹣4)2+4=﹣x2+2x,设M(t,﹣t2+2t),N(x,y),∵四边形DMCN为菱形,∴DC与MN为对角线,∴,∵CN=CM,∴(x﹣8)2+y2=(t﹣8)2+(﹣t2+2t)2,∴x=8+2或x=8﹣2,∴N(8+2,10+2)或N(8﹣2,10﹣2).10.解:(1)依题意,将点D(5,6)代入,得,解得k=﹣2,∴抛物线的解析式为,令y=0,得,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)存在,设直线AD的解析式为y=mx+n(m≠0),将A(﹣1,0),D(5,6)两点坐标代入得,,解得,∴直线AD的解析式为y=x+1,如图1,设直线AD与y轴交于点E,令x=0,得y=1,∴OA=OE=1,∴∠DAB=45°,过点D作DP1⊥x轴,过点A作AP2∥y轴,过点D作DP2∥x轴,AP2与DP2交于点P2,延长AP1至P3,使AP1=P1P3,连接DP3,延长DP1至P4,使DP1=P1P4,连接AP4,延长AP2至P5,使AP2=P2P5,连接DP5,延长DP2至P6,使DP2=P2P6,连接AP6,则△AP1D,△AP2D,△AP3D,△AP4D,△AP5D,△AP6D为所有符合题意的等腰直角三角形,∴P1(5,0),P2(﹣1,6),P3(11,0),P4(5,﹣6),P5(﹣1,12),P6(﹣7,6);(3)如图2,由(2)可知,点E的坐标是(11,0),点F的坐标是(5,﹣6),直线AD的解析式是y=x+1,设平移后的抛物线解析式为,结合图象可知,当抛物线经过点E时,是抛物线平移后与正方形ADEF有公共点的最低位置,将点(11,0)代入,得,解得t=﹣48,当抛物线与AD边有唯一公共点时,是抛物线平移后与正方形ADEF有公共点的最高位置,将y=x+1与联立方程组,,化简得x2﹣4x+2t﹣5=0,∵只有唯一解,即此一元二次方程有两个相等的实数根,∴△=(﹣4)2﹣4×1×(2t﹣5)=0,解得,∴t的取值范围.11.解:(1)将A(﹣4,0)代入y=x+c,得c=4,将A(﹣4,0)和c=4代入y=﹣x2+bx+c,得﹣16﹣4b+4=0,解得b=﹣3,∴抛物线的解析式为y=﹣x2﹣3x+4.(2)如图1,∵y=﹣x2﹣3x+4=﹣(x+)2+,∴抛物线的对称轴为直线x=﹣,由(1)得,直线AC的解析式为y=x+4,当x=0时,y=4,∴C(0,4),作点C关于直线x=﹣的对称点G,则点G(﹣3,4)在抛物线上,∴OG==5,连接OG交直线x=﹣于点H,连接CH、EG,则CE=GE,CH=GH,∴GE+OE=CE+OE,∵GE+OE≥OG,∴CE+OE≥OG,∴当点E与点H重合时,CE+OE=CH+OH=GH+OH=OG=5,此时CE+OE的值最小,∴CE+OE的最小值为5,故答案为:5.(3)①如图2,设点M的坐标为(x,0)(﹣4<x<0),则P(x,x+4),N(x,﹣x2﹣3x+4),∴PN=﹣x2﹣3x+4﹣(x+4)=﹣x2﹣4x,∴S△ANC=PN•AM+PN•OM=PN•OA=×4(﹣x2﹣4x)=﹣2(x+2)2+8,∴当x=﹣2时,S△ANC最大=8,此时P(﹣2,2),故答案为:(﹣2,2);8.②存在,如图3,菱形BDCF以BC为对角线,连接BC、DF交于点I,DF交y轴于点R,当y=0时,由﹣x2﹣3x+4=0得x1=﹣4,x2=1,∴B(1,0),∴CB==,∵DF与BC互相垂直平分,∴I为BC的中点,∴I(,2),CI=CB=,∵∠CIR=∠COB=90°,∠RCI=∠BCO,∴△ICR∽△OCB,∴=,∴CR===,∴OR=4﹣=,∴R(0,),设直线DF的解析式为y=kx+,则k+=2,解得k=,∴直线DF的解析式为y=x+,由得,∴F(,),∵点D与点F(,)关于点I(,2)对称,∴D(,);如图4,菱形BCDF以CF为对角线,连接BD交CF于点J,连接AD,∵BD与CF互相垂直平分,∴∠AJB=∠AJD=90°,JB=JD,∵OA=OC,∠AOC=90°,∴∠OAC=∠OCA=45°,∴∠JAB=∠JBA=45°,∴JB=JA,∴JD=JA,∴∠JAD=∠JDA=45°,∴∠DAB=90°,∠ADB=∠ABD=45°,∴AD=AB=1+4=5,∴D(﹣4,5);如图5,菱形BCFD以CF、CB为邻边,且点D在BC的左侧,设DF交x轴于点T,∴CF=CB=,作FL⊥y轴于点L,作DK⊥FL于点K,交x轴于点Q,则∠CLF=90°,∴∠LFC=∠LCF=45°,∴LC=LF,∴LF2+LC2=2LF2=2LC2=CF2=()2=17,∴LF=LC=,∵FL∥OA,DF∥BC,∴∠DFK=∠ATF=∠CBO,∵∠DKF=∠COB=90°,DF=CB,∴△DKF≌△COB(AAS),∴KF=OB=1,KD=OC,∵QK=OL,∴QD=LC=,LK=﹣1=,∴D(,);如图6,菱形BCFD以CF、CB为邻边,且点D在BC的右侧,作FL⊥y轴于点L,作DV⊥y轴于点V,作FK⊥DV于点K,则∠CLF=90°,∵∠LCF=∠OCA=45°,∴∠LCF=∠LFC=45°,∴LF=LC,∵CF=CB=,∴LF2+LC2=2LF2=2LC2=CF2=()2=17,∴LF=LC=,∵FK∥OC,FD∥CB,∴∠DFC=∠BCA,∠KFC=∠OCA,∴∠DFK=∠BCO,∵DF=BC,∴△DFK≌△BCO(AAS),∴FK=CO=4,KD=OB=1,∴DV=1+=,OV=4+﹣4=,∴D(,),综上所述,点D的坐标为(,)或(﹣4,5)或(,)或(,).。
求二次函数解析式-综合题-练习+答案
求二次函数解析式:综合题例1 已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式.分析:本题可以利用抛物线的一般式来求解,但因A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法.如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有ax2+bx+c=a(x-x1)(x-x2)∴抛物线的解析式为y=a(x-x1)(x-x2) (*)(其中x1、x2是抛物线与x轴交点的横坐标)我们将(*)称为抛物线的两根式.对于本例利用两根式来解则更为方便.解:∵抛物线与x轴交于A(-1,0)、B(1,0)∴设抛物线的解析式为y=a(x+1)(x-1)又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1∴函数解析式为y=-x2+1.说明:一般地,对于求二次函数解析式的问题,可以小结如下:①三项条件确定二次函数;②求二次函数解析式的一般方法是待定系数法;③二次函数的解析式有三种形式:究竟选用哪种形式,要根据具体条件来决定.例2 由右边图象写出二次函数的解析式.分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点.解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0).设解析式为y=a(x+1)2+2∵过原点(0,0),∴a+2=0,a=-2.故解析式为y=-2(x+1)2+2,即y=-2x2-4x.说明:已知顶点坐标可以设顶点式.本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),本题还可以用过点(0,0),(-2,0)而设解析式为y=a(x+2)·x再将顶点坐标(1,2)代入求出a.例3 根据下列条件求二次函数解析式.(1)若函数有最小值-8,且a∶b∶c=1∶2∶(-3).(2)若函数有最大值2,且过点A(-1,0)、B(3,0).(3)若函数当x>-2时y随x增大而增大(x<-2时,y随x增大而减小),且图象过点(2,4)在y轴上截距为-2.分析:(1)由a∶b∶c=1∶2∶(-3)可将三个待定系数转化为求一个k.即设a=k,b=2k,c=-3k(2)由抛物线的对称性可得顶点是(1,2)(3)由函数性质知对称轴是x=-2 解:(1)设y=ax2+bx+c ∵a∶b∶c=1∶2∶(-3)∴设a=k,b=2k,c=-3k ∵有最小值-8∴解析式y=2x2+4x-6(2)∵图象过点A(-1,0)、B(3,0),A、B两点均在x 轴上,由对称性得对称轴为x=1.又函数有最大值2,∴顶点坐标为(1,2),∴设解析式为y=a(x-1)2+2.(3)∵函数当x>-2时y随x增大而增大,当x<-2时y 随x增大而减小∴对称轴为x=-2设y=a(x+2)2+n∵过点(2,4)在y轴上截距为-2,即过点(0,-2)说明:题(3)也可设成y=ax2+bx+c,得:题(2)充分利用对称性可简化计算.例4 已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式.分析:此例题给出了三个条件,但实际上要看到此题还有隐含条件,如利用A点关于对称轴x=-1对称的对称点A′(1,0),因此可以把问题的条件又充实了,又如已知顶点M到x轴的距离为2,对称轴为x=-1,因此又可以找顶点坐标为(-1,±2),故可利用顶点坐标式求出函数的解析式,此题的解法不唯一,下面分别介绍几种解法.解法(一):∵抛物线的对称轴是x=-1,顶点M到x轴距离为2,∴顶点的坐标为M(-1,2)或M′(-1,-2).故设二次函数式y=a(x+1)2+2或y=a(x+1)2-2又∵抛物线经过点A(-3,0)∴0=a(-3+1)2+2或0=a(-3+1)2-2所求函数式是解法(二):根据题意:设函数解析式为y=ax2+bx+c ∵点A(-3,0)在抛物线上∴0=9a-3b+c ①又∵对称轴是x=-1∵顶点M到x轴的距离为2解由①,②,③组成的方程组:∴所求函数的解析式是:解法(三):∵抛物线的对称轴是x=-1又∵图象经过点A(-3,0)∴点A(-3,0)关于对称轴x=-1对称的对称点A′(1,0)∴设函数式为y=a(x+3)(x-1)把抛物线的顶点M的坐标(-1,2)或(-1,-2)分别代入函数式,得2=a(-1+3)(-1-1)或-2=a(-1+3)(-1-1)解关于a的方程,得∴所求函数式为:说明:比较以上三种解法,可以看出解法(一)和解法(三)比解法(二)简便.M点到x轴的距离为2,纵坐标可以是2,也可以是-2,不要漏掉一解.例5 已知抛物线y=x2-6x+m与x轴有两个不同的交点A 和B,以AB为直径作⊙C,(1)求圆心C的坐标.(2)是否存在实数m,使抛物线的顶点在⊙C上,若存在,求出m的值;若不存在,请说明理由.分析:(1)根据抛物线的对称性,由已知条件AB是直径圆心应是抛物线的对称轴与x轴的交点.(2)依据圆与抛物线的对称性知,抛物线的顶点是否在⊙C上,需要看顶点的纵坐标的绝对值是否等于⊙C的半径长,依据这个条件,列出关于m的方程,求出m值后再由已知条件做出判断.解:(1)∵y=x2-6x+m=(x-3)2+m-9∴抛物线的对称轴为直线x=3∵抛物线与x轴交于A和B两点,且AB是⊙C的直径,由抛物线的对称性∴圆心C的坐标为(3,0)(2)∵抛物线与x轴有两个不同交点∴△=(-b)2-4m>0,∴m<9设A(x1,0),B(x2,0)∵抛物线的顶点为P(3,m-9)解得:m=8或m=9∵m<9,∴m=9舍去∴m=8∴当m=8时,抛物线的顶点在⊙C上.说明“存在性”问题是探索性问题的主要形式.解答这类问题的基本思路是:假设“存在”—→演绎推理—→得出结论(合理或矛盾).例6 已知抛物线y=ax2+bx+c,其顶点在x轴的上方,它与y轴交于点C(0,3),与x轴交于点A及点B(6,0).又知方程:ax2+bx+c=0(a≠0)两根平方和等于40.(1)求抛物线的解析式;(2)试问:在此抛物线上是否存在一点P,在x轴上方且使S△PAB=2S△CAB.如果存在,求出点P的坐标;如果不存在,说明理由.分析:求解析式的三个条件中有一个是由方程的根来得到系数的关系式,通过解方程组求出系数也就得到解析式.第(2)问中问是否存在那么假设存在进行推理,从而判断存在或不存在.解:(1)由题设条件得∴抛物线顶点为(2,4).又A点坐标为(-2,0),而△ABC与△PAB同底,且当P点位于抛物线顶点时,△PAB面积最大.显然,S△PAB=16<2S△ABC=2×12=24.故在x轴上方的抛物线上不存在点P使S△PAB=2S△CAB.例7 在一块底边长为a,高为h的三角形的铁板ABC上,要截出一块矩形铁板EFGH,使它的一边FG在BC边上,矩形的边EF等于多长时,矩形铁板的面积最大.分析:问题问“矩形的边EF等于多长时,矩形铁板的面积最大”,所以题目的目标是矩形面积(S)而自变量就是EF的长(x),因此问题的关键就是用EF(x)表示矩形面积S,这就要用EF表示出EH.解:设内接矩形EFGH中,AM⊥BC,∵EH∥BC,设EF=x(0<x<h)则AN=h-x设矩形EFGH的面积为S说明:解决联系实际的问题,又与几何图形有关就应综合应用几何、代数知识,利用相似成比例列出函数式再求最值.例8 二次函数y=ax2+bx-5的图象的对称轴为直线x=3,图象与y轴相交于点B,(1)求二次函数的解析式;(2)求原点O到直线AB的距离.分析:为直线x=3,来求系数a,b.注意根与系数关系定理的充分应用.为求原点O到直线AB的距离要充分利用三角形特征和勾股定理.解: (1)如图,由已知,有∴(x1+x2)2-2x1x2=26,∴a=-1.∴解析式为y=-x2+6x-5=-(x-3)2+4.(2)∵OB=5,OC=4,AC=3,∴△AOB为等腰三角形,作OD⊥AB于D,说明:有部分学生把二次函数的顶点坐标记错,也有的学生不会用“根与系数的关系”,得不出解析式.有不少学生没有发现△AOB是等腰三角形,若发现为等腰三角形,OD 是底边AB的高,利用勾股定理就迎刃而解了.发生错误的原因,没记熟抛物线的顶点坐标公式,有的学生记下来了,但与两个根如何综合使用发生了问题,有些学生求点O到直线AB的距离,没有分析出图形与数量关系,其实△AOB是等腰三角形,知道这一性质求OD的数据就方便多了.纠正错误的办法,加强抛物线顶点坐标的学习、顶点坐标与巧用“根与系数的关系”的学习;另外,也要加强寻找特殊点的学习.一般说,无论多难的题目,总是有解题规律的.在几何图形中,经过认真分析,有的题目总含等边三角形、等腰三角形、直角三角形.例9 设A,B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,当△MAB为等腰直角三角形时,求k的值.分析:首先按题意画出图形,再运用抛物线的对称性挖掘题中的隐含条件,来解答本题,得出解后要分析解的合理性进行取舍.解:∵抛物线与x轴有两个相异交点,故△>0,即(-2)2-4·(-3)k>0,解关于k的不等式,得根据题意,作出图象,如图设N为对称轴与x轴的交点,由抛物线的对称性知,N 为AB中点.∵∠AMB=Rt∠,且MN的长即为M点的纵坐标,又设A点坐标(x1,0),B点坐标(x2,0),则有解关于k的方程,得∴k=0.说明:本题有一个重要的隐含条件,即要使抛物线与x 轴有两个相异交点,应首先满足△>0.(2)本题要求学生会运用抛物线的对称性观察图形,联想直角三角形斜边上的中线等于斜边的一半这个重要定理,找到等量关系,列出关于k的方程,如果没有这种灵活运用定理的能力,将得不到关于k的方程,难以求解.例10 某商场将进货单价为18元的商品,按每件20元销售时,每日可销售100件,如果每提价1元(每件),日销售量就要减少10件,那么把商品的售出价定为多少时,才能使每天获得的利润最大?每天的最大利润是多少?分析:此题主要涉及两个量,即售出价和每天获得的利润.而每天获得的利润是随着售出价的改变而改变的,所以要找到二者的函数关系式,应把售出价设为自变量,把每天获得的利润看作是售出价的函数.这样,再根据已知条件,就可列出二者的函数关系式.解:设该商品的售出价定为x元/件时,每天可获得y 元的利润.即每件提价(x-20)(元),每天销售量减少10(x-20)(件),也就是每天销售量为[100-10(x-20)](件),每件利润(x-18)(元)根据题意,得:y=(x-18)[100-(x-20)×10]=-10x2+480x-5400=-10(x-24)2+360.(20≤x≤30)y是x的二次函数∵a=-10<0,20≤24≤30∴当x=24时,y有最大值为360.答:每件售出价为24元时,才能使每天获得的利润最大,每天的最大利润是360元.例11 改革开放后,不少农村用上了自动喷灌设备,如图所示,设水管AB高出地面1.5米,在B处有一个自动旋转的喷水头,一瞬间,喷出的水流呈抛物线状,喷头B与水流最高点C的连线与水平面成45°角,水流的最高点C比喷头B高出2米,在所建的坐标系中,求水流的落地点F到A 点的距离是多少?分析:要求点F到A点的距离,也就是求A、F两点横坐标的差.又A点横坐标为0,所以只需求出F点横坐标.F 点在抛物线上是抛物线与x轴的交点,所以要根据已知条件,求出抛物线的解析式.解:过C点作CD⊥Ox于D,BE⊥CD于E,则有CE=BE =2,AB=DE=1.5,则B(0,1.5),C(2,3.5).∵C为抛物线的最高点,例12 如图,这是某空防部队进行射击训练时在平面直角坐标系中的示意图.地导弹运行达到距地面最大高度3千米时,相应的水平距离为4千米(即图中E点).(1)若导弹运行轨道为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标C的理由.分析:题中的实际条件转化成数学意义就是已知抛物线的顶点E,而且过点D求抛物线的解析式以及判断C是否在曲线上.解:(1)设抛物线的解析式为y=a(x-4)2+3(2)设C(x0,y0),过C点作CB⊥Ox,垂足为B.在Rt△OBC 和Rt△ABC中,OA=1,例13 已知函数y1=-x2+b1x+c1与x轴相交于原点O(0,0)和点A(4,0),若函数y2=-x2+b2x+c2,(b1≠b2)也经过点A,且y1与y2的顶点所在直线平行于x轴.(1)求两个函数的解析式.(2)当x为何值时,y1<y2.分析:解答第(1)题的关键是求y2的解析式,由题意可知a1=a2=-1,因此可以判断两条抛物线的形状和开口方向都相同,再利用y1与y2的顶点所在直线平行于x轴,可判断出y1和y2在x轴上截得的线段长相等,从而求出y2与x轴另一个交点B(8,0),由A,B点都是抛物线与x轴交点,可设解析式为y=a(x-x1)(x-x2)形式解:(1)∵y1=-x2+b1x+c1过点O(0,0),A(4,0)∴0=0+0+c1 ∴c1=00=-16+4b1+0 ∴b1=4∴函数y1=-x2+4x∵a1=a2=-1∴两条抛物线的形状,开口方向相同.又∵y1与y2的顶点所在直线平行于x轴∴y1与y2的顶点纵坐标相等∵b1≠b2,y1与y2都经过A(4,0)点∴y2与x轴的另一个交点是点B(8,0)y2=-(x-4)(x-8)=-x2+12x-32注:以上求y2的解析式是采用数、形结合的方法,进行推理得到的,此外,也可用计算方法求到b2和c2,然后写出y2的解析式,具体解法如下:∵y1的顶点是(2,4)y1与y2的顶点所在直线平行于x轴∴y1与y2的顶点纵坐标相等,y2又过点A(4,0)∵b1=4,而b1≠b2 ∴b′2=4(舍去)∴y2=-x2+12x-32解:(2)若要使y1<y2只要使-x2+4x<-x2+12x-32即可解不等式,得x>4∴当x>4时,y1<y2例14 m是怎样的数值时,二次函数y=(m-2)x2-4mx+2m-6的图象与x轴的负方向交于两个不同点.分析:二次函数的图象与x轴的负方向交于两个不同点的条件是二次项系数不为零,判别式大于零,两根之和小于零,两根之积大于0.(所谓两根是这个函数对应的一元二次方程的两根)解:设二次函数与x轴两交点的横坐标为x1,x2.要使它的图象与x轴两交点都在x轴的负方向上,应满足不等式组:解得1<m<2.答:当1<m<2时,二次函数y=(m-2)x2-4mx+2m-6的图象与x轴的负方向交于两个不同点.对二次函数式中的m不知代表什么,也无从下手求m.当抛物线与x轴相交时,y=0,两个交点的横标即为方程的两个根,两个根在原点的左方,列不出算式,不知道列出这种算式与“根与系数的关系”有关.总之有不少学生没有掌握二次函数与一元二次方程的内在联系而解题失败.发生错误的原因,不知道在一元二次函数式中的m其实质是参数.一元二次方程的根在直角坐标系x轴上的分布理论如何表达,许多学生不清楚.解不等式功底不深厚也会发生错误.纠正错误的办法,加强一元二次函数式的学习,m属于实数,任给m一个数值,就存在一条具体数值的抛物线,给出m的数值是无穷的,随着m值的不同也产生了不同的抛物线,可用“抛物线族”这个名词去表达本题的一元二次函数表达式所勾勒的抛物线是无穷无尽的.另外也要加强方程理论、根与系数关系、根的判别式的学习.例15 已知抛物线l:y=x2-(k-2)x+(k+1)2.(1)证明:不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9上;(2)要使抛物线y=x2-(k-2)x+(k+1)2和x轴有两个不同的交点A,B,求k的取值范围;(3)当(2)中的A,B间距离取得最大值时,设这条抛物线顶点为C,求此时的k值和∠ACB的度数.分析:把l的顶点坐标用k的代数式表示分别代入y=3x2+12x+9的左、右后能使两边相等说明顶点在抛物线y=3x2+12x+9上.抛物线与x轴交点的情况就是相应一元二次方程有无实根的情况.AB间距离又可列出反的二次函数.解:∴左边=右边,所以不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9上.(2)欲使抛物线l与x轴有两个交点,则△>0,即△=[-(k-2)]2-4(k+1)2=-3k2-12k>0,解之,-4<k<0.(3)当-4<k<0时,抛物线l与x轴有两个不同的交点A,B,设A(x1,0),B(x2,0),且x1>x2,x1+x2=k-2,x1x2=(k+1)2,说明:不明白“不论k取何值,抛物线l的顶点总在抛物线y=3x2+12x+9”上这句话的意思,实质上就是方程与曲线的关系,点在曲线上,即点的坐标满足曲线的方程;将抛物线顶点坐标的表达式代入抛物线函数式左右相等,即达到(1)提问;不知道抛物线与x轴相交,是△>0,无法运算而失败;不知道用“根与系数的关系”以及截距公式,不会巧用“根与系数的关系”,求不出最大值,因而求不出y=ax2+bx+c(a≠0)的a,b,c,使该题后面的提问无法进行;在x轴与抛物线顶点所构造出的三角形中,求边长时没有绝对值的概念、正切函数值不熟悉而求不出∠ACB=60°.发生错误的原因,本题是综合题,而且是中考的考题,要顺利而正确地回答出本题所有答案,从初一至初三所学的数学知识应该牢固掌握,第一问求出抛物线顶点坐标表达式,将表达式代入(1)的函数式,若相等,即满足了函数式的要求,按初中阶段属于验根的手段,按高中就是曲线与方程的关系了.这个不难的问题为什么学生束手无策呢?只是用文字表示了顶点坐标,很抽象,不易理解.本题的难度之一是出现了“k”,这个“k”其本质起到了参数作用.有些精品文档。
二次函数 经典题型详解
二次函数经典题型详解
二次函数是数学中的一个重要概念,它在代数、几何和三角学中都有广泛的应用。
下面是一些经典的二次函数题型及其解答方法。
1. 求二次函数的解析式
题目:已知二次函数的图像经过点(1,0),(2,0)和(3,4),求这个二次函数的
解析式。
解法:设二次函数的解析式为 $y = a(x - 1)(x - 2)$,将点(3,4)代入解析式,得到 $4 = a(3 - 1)(3 - 2)$,解得 $a = 2$,所以这个二次函数的解析式为$y = 2(x - 1)(x - 2)$。
2. 求二次函数的顶点坐标和对称轴
题目:已知二次函数 $y = ax^2 + bx + c$ 的对称轴为 $x = 1$,且经过点(0,3),求这个二次函数的解析式。
解法:由于对称轴为 $x = 1$,所以顶点的横坐标为 1,设顶点坐标为$(1,m)$,将点 (0,3) 代入解析式 $y = a(x - 1)^2 + m$,得到 $3 = a(0 -
1)^2 + m$,解得 $a = 3 - m$,所以这个二次函数的解析式为 $y = (3 - m)(x - 1)^2 + m$。
3. 求二次函数的最大值或最小值
题目:已知二次函数 $y = x^2 - 2x$,求这个二次函数的最小值。
解法:由于 $a = 1 > 0$,所以这个二次函数的最小值为顶点的纵坐标,即$\frac{4ac - b^2}{4a} = \frac{4 \times 1 \times (-2) - (-2)^2}{4 \times 1} = -\frac{3}{4}$。
二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析
二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。
二次函数中考题型讲解
二次函数中考题型讲解在中考数学中,二次函数是一个重要的考点,其涉及的知识点和题型都相当丰富。
二次函数中考题型讲解如下:一、求二次函数的表达式这一题型可以通过待定系数法或者平移法来解决。
例如,已知一个二次函数通过两个点,就可以设出二次函数的一般形式,再代入点的坐标来求解系数。
如果知道抛物线的顶点或者对称轴,也可以通过平移法来写出函数表达式。
二、求二次函数的顶点、对称轴和最值对于这一题型,需要掌握二次函数的性质,如顶点的坐标公式、对称轴的公式以及开口方向的判断等。
根据这些性质,可以方便地找到函数的顶点、对称轴,并求出函数的最值。
三、求二次函数与坐标轴的交点解决这一题型,可以通过令y=0然后解方程来找到与x轴的交点,令x=0找到与y轴的交点。
也可以通过判断抛物线与x轴的交点个数,利用判别式来判断。
四、求二次函数与一次函数的交点解决这一题型,可以先将两个函数联立,然后解方程组找到交点的坐标。
也可以分别求出两个函数的解析式,然后令两个解析式相等,解出x的值即为交点的横坐标。
五、求三角形的面积在二次函数中求三角形的面积是一个常见题型。
可以通过找到三角形的一边以及这边上的高,然后使用面积公式计算。
也可以通过找到三角形的三个顶点坐标,然后使用公式计算。
六、求抛物线上点的坐标对于这一题型,可以通过代入法或者作图法来解决。
代入法是将x的值代入到函数中求出y的值,作图法是通过观察图像的特点找到满足条件的点。
七、判断抛物线的开口方向以及与坐标轴的交点个数解决这一题型,可以通过观察抛物线的开口方向以及判别式的值来判断抛物线与坐标轴的交点个数。
如果抛物线向上开口且判别式大于0,那么抛物线与x 轴有两个不同的交点;如果抛物线向下开口且判别式大于0,那么抛物线与x轴有一个交点;如果抛物线向下开口且判别式小于等于0,那么抛物线与x轴没有交点。
以上就是中考数学中常见的二次函数题型以及解决方法。
在备考过程中,建议多做真题,熟悉题型和解题方法,提高解题速度和准确性。
初中二次函数解析式的确定,例题和答案
第一、求二次函数解析式的问题一.知识要点:1.已知抛物线的顶点(m,n )及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-a)2+b.,式中只有一个待定系数k,把(m,n )代入即可求出k ,从而求出抛物线的解析式。
2. 已知抛物线与x 轴的交点(x 1,0)和(x 2,0)及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-x 1 )(x-x 2 ) 式中只有一个待定系数k,把(a,b )代入即可求出k ,从而求出抛物线的解析式。
3. 已知抛物线上任意三点(x 1,y 1)(x 2,y 2)(x 3,y 3)这时可以设抛物线的解析式为:y=ax 2+bx+c,式中含有三个待定系数a 、b 、c 把(x 1,y 1)(x 2,y 2)(x 3,y 3)代入,得到含a , b, c 的方程组,即可求出k ,从而求出抛物线的解析式。
二. 重点、难点:重点:求二次函数的函数关系式难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。
三. 教学建议:求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。
典型例题例1.已知某二次函数的图象经过点A (-1,-6),B (2,3),C (0,-5)三点,求其函数关系式。
例2. 已知二次函数y ax bx c =++2的图象的顶点为(1,-92),且经过点(-2,0),求该二次函数的函数关系式。
例3. 已知二次函数图象的对称轴是x =-3,且函数有最大值为2,图象与x 轴的一个交点是(-1,0),求这个二次函数的解析式。
例4. 已知二次函数y ax bx c =++2的图象如图1所示,则这个二次函数的关系式是__________________。
图1例5. 已知:抛物线在x 轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式例6. 已知二次函数y m x mx m m =-++-()()()123212≠的最大值是零,求此函数的解析式。
怎样求二次函数的解析式
怎样求二次函数的解析式-CAL-FENGHAI.-(YICAI)-Company One1怎样求二次函数的解析式二次函数是中考数学的一个重要考点也是一个难点,往往会综合其他函数和几何而作为压轴题,有一定的难度。
这些问题又常常以求二次函数的解析式作为解题的起点,因此学会求二次函数的解析式成为解决此类问题的第一关。
一、三点型若已知二次函数图像上任意三点的坐标,则可以用一般式y = ax 2 +bx +c . 解题策略:通过各种途径搜索转化题目的各个信息找到三个点的坐标,然后用待定系数法求解析式,此类问题是中考中最常见的一类。
例1 已知二次函数图像经过(1,0)、(-1,-4)和(0,-3)三点,求这个二次函数解析式.解:设二次函数的解析式为y =ax 2+bx +c ,由已知可得043a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ ,解之得1,2,3.a b c =⎧⎪=⎨⎪=-⎩故所求二次函数解析式为y=x 2+2x-3.例2 (2010四川宜宾)将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0). 求该抛物线的解析式; 解:由题意知:A (0,6),C (6,0), 设经过点A 、B 、C 的抛物线解析式为y =ax 2+bx +c ,则:⎪⎩⎪⎨⎧++=+-==c b a c b a c63603906解得:⎪⎪⎩⎪⎪⎨⎧==-=6131c b a∴该抛物线的解析式为6312++-=x x y例3 (2010 山东省德州)已知二次函数c bx ax y ++=2A (3,0),B (2,-3),C (0,-3). 求此函数的解析式及图象的对称轴; 解:∵二次函数c bx ax y ++=2的图象经过点C (0,-3),∴c =-3.x将点A (3,0),B (2,-3)代入c bx ax y ++=2得⎩⎨⎧-+=--+=.32433390b a b a ,解得:a =1,b =-2. ∴322--=x x y .配方得:412--=)(x y ,所以对称轴为=1. 例4 (2010 山东莱芜)在平面直角坐标系中,已知抛物线c bx ax y ++=2交x 轴于)0,6(),0,2(B A 两点,交y 轴于点)32,0(C .求此抛物线的解析式;解:∵抛物线c bx ax y ++=2经过点)0,2(A ,)0,6(B ,)320(,C . ∴⎪⎩⎪⎨⎧==++=++320636024c c b a c b a , 解得343323a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩. ∴抛物线的解析式为:32334632+-=x x y . 例5.(2010湖北鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C . (1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.解:(1)点C 的坐标是(4,0);(2)设过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +c (a ≠0),将点A 、B 、C 三点的坐标代入得:xyOA BCP Q MN020164a b c c a b c =-+⎧⎪=⎨⎪=++⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式是:y = 12-x 2+32x +2. 二、顶点型若直接或间接已知二次函数图像的顶点坐标,则可以用顶点式y =a (x-h )2+k . 解题策略:想方设法找到顶点的坐标,然后用待定系数法求解析式,此法比较简单。
二次函数经典例题及解答
二次函数经典例题及解答二次函数一、中考导航图1.二次函数的意义2.二次函数的图像3.二次函数的性质顶点对称轴开口方向增减性4.待定系数法确定二次函数解析式5.二次函数与一元二次方程的关系三、中考知识梳理1.二次函数的图像二次函数y=ax2+bx+c(a≠0)的图像可以通过配方法化简为y=a(x+(b/2a))2+(4ac-b2)/4a2的形式。
确定顶点坐标后,可以对称求点列表并画图,或者使用顶点公式来求得顶点坐标。
2.理解二次函数的性质抛物线的开口方向由a的符号来确定。
当a>0时,抛物线开口向上,对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大。
当a0)或左增右减(a<0)。
此时,当x=-b/2a时,y取最值,最小值或最大值的大小为|(4ac-b2)/4a|。
3.待定系数法是确定二次函数解析式的常用方法待定系数法是通过给定的条件来确定二次函数的解析式。
可以任意给定三个点或三组x,y的值来确定解析式,组成三元一次方程组来求解。
也可以在给定条件中已知顶点坐标、对称轴或最值时,设解析式为y=a(x-h)2+k。
在给定条件中已知抛物线与x轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴时,设解析式为y=a(x-x1)(x-x2)来求解。
4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c与x轴的交点可以转化为一元二次方程ax2+bx+c=0的解。
当抛物线与x轴有两个交点时,方程有两个不相等实根;当抛物线与x轴有一个交点时,方程有两个相等实根;当抛物线与x轴无交点时,方程无实根。
5.抛物线y=ax2+bx+c中a、b、c符号的确定抛物线y=ax2+bx+c的开口方向由a的符号来确定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
b的符号可以表示抛物线与y轴的交点在y轴的上方或下方。
c的符号可以表示抛物线与x轴的交点在x轴的上方或下方。
四、中考题型例析1.确定二次函数解析式例1:求满足以下条件的二次函数的解析式:1)图像经过点A(-1,3)、B(1,3)、C(2,6);2)图像经过点A(-1,0)、B(3,0),函数有最小值-8;3)图像顶点坐标是(-1,9),与x轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式。
二次函数-存在性问题-备战2023年中考数学考点微专题
考向3.9 二次函数-存在性问题例1、(2021·湖南湘潭·中考真题)如图,一次函数333y x =-图象与坐标轴交于点A 、B ,二次函数233y x bx c =++图象过A 、B 两点. (1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.解:(1)对于33y x =:当x =0时,3y = 当y =0时,3303x -=,妥得,x =3 ∴A (3,0),B (0,3- 把A (3,0),B (0,3-23y bx c ++得: 33+3+=03b c c ⎧⎪⎨=-⎪⎩解得,233b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为:23233y =-(2)抛物线的对称轴为直线23312323b x a -=-=-=⨯故设P (1,p ),Q (m ,n ) ①当BC 为菱形对角线时,如图,∵B ,C 关于对称没对称,且对称轴与x 轴垂直, ∴∴BC 与对称轴垂直,且BC //x 轴 ∵在菱形BQCP 中,BC ⊥PQ ∴PQ ⊥x 轴 ∵点P 在x =1上, ∴点Q 也在x =1上, 当x =1时,232343113=333y =⨯-⨯--∴Q (1,433-); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,∴BC //PQ ,且BC =PQ ∵BC //x 轴,∴令3y =23233=3y解得,120,2x x == ∴(2,3)C - ∴PQ =BC =2 ∵22(3)12+= ∴PB =BC =2 ∴迠P 在x 轴上, ∴P (1,0) ∴Q (3,0);若点Q 在点P 的左侧,如图,同理可得,Q (-1,0) 综上所述,Q 点坐标为(1,433-)或(3,0)或(-1,0)1、存在性问题的解题思路:假设存在,推理论证,得出结论;2、解決线段存在性问题的方法:将军饮马问题、垂线段问题、三角形三边关系、函数最值等;3、本题考查的知识点有用待定系数法求出二次函数的解析式,菱形的性质和判定,解一元二次方程,主要考查学生综合运用这些性质进行计算和推理的能力.同时注意用分类讨论思想解决问题。
(完整版)二次函数交点问题,解析式,应用
二次函数的交点问题巧解方法:1、二次函数与x 轴、y 轴的交点:分别令y=0,x=0;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程.例1、如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.例2、已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点,并求出这两个交点的坐标。
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积例3、.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
例4、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.例5、已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.例6.已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.训练题1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为 .3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是 .5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m= .7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 .8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围 .9.抛物线y=x 2-2x +a 2的顶点在直线y=2上,则a 的值是 .10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则的值是()A .-3B .3C .D .-12.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-<1B .0<-<2C .1<-<2D .-=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?a b a ca cbc b a +++++2121a b 2a b 2a b 2a b2函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
二次函数解析式求法与例题
二次函数解析式求法与例题
小编整理了关于二次函数解析式求法与例题,希望对于同学们的二次函数解析式的求法有所了解,包括相关例题以供同学们呢练习和实践!二次函数一般形式:y=ax2+bx+c(任意三点)
顶点式:y=a(x+d)2+h(顶点和任意除顶点以外的点)有的版本教材也注原理相同
例:某二次函数图像顶点(-2,1)且经过(1,0),求二次函数解析式
解:设y=a(x+2)2+l注意:y=a(x-d)2+h中d是顶点横坐标,h是顶点纵坐标
由于二次函数图像过点(1,0)
因此a*3的平方的二0解得a=T∕9
所以所求作二次函数解析式为y=-l∕9(x+2)2÷l
(此题是样题,所以就不进一步化简成一般形式)
两根式:函数图像与X轴两交点与另外一点首先必须有交点(b2-4ac0)y=a(χ-χl)(χ-χ2)其中xl,x2是图像与X轴两交点并且是ax2+bx+c=0的两根
如果二次函数一般形式和与X轴的一个交点,那么可以求出另一个交点利用根与系数的关系
例:y=x2+4x+3与X轴的一个交点是(T,0),求其与X轴的另一交点坐标解:由根与系数的关系得:
xl+x2=-b∕a--4那么x2=-4-XI=-4-(T)=-3
所以与X轴的另一交点坐标为(-3,0)
另外将y=ax2+bx+c向右平移2个单位可得
y=a(x-2)2÷b(χ-2)+c
再向下平移2个单位得:y=a(x-2)2+b(x-2)+c-2
二次函数解析式求法与例题,仅供同学们参考,希望同学们的二次函数解析式学习有所帮助!。
中考二次函数经典例题及解析
中考二次函数经典例题及解析中考二次函数经典例题及解析一、引言二次函数是中学数学中的重要内容,也是中考数学考试中常见的题型。
通过解析经典的二次函数例题,我们可以更好地理解和掌握二次函数的特点和解题方法。
本文将结合多个经典的中考二次函数例题,深入分析题目,探讨解题思路和方法,帮助读者全面理解二次函数的应用。
二、例题一题目:已知二次函数y=ax^2+bx+c的图像经过点(1,1),(2,4),(3,9)。
求a,b,c的值。
解析:根据已知条件,代入三个点的坐标,得到三个方程:a+b+c=14a+2b+c=49a+3b+c=9通过解方程组,可以求解出a,b,c的值,进而得到二次函数的表达式。
三、例题二题目:已知二次函数y=ax^2+bx+c的图像的对称轴为x=2,顶点在直线y=1-x上。
求a,b,c的值。
解析:根据已知条件,对称轴为x=2,顶点在直线y=1-x上,可以列出方程:-b/(2a)=21-4a+2b+c=0通过求解方程组,可以得到a,b,c的值,进而得到二次函数的表达式。
四、例题三题目:已知二次函数经过点(1,-3),且在x轴上的交点为x=4。
求函数的解析式。
解析:根据已知条件,可以列出方程:a+b+c=-316a+4b+c=0通过解方程组,可以求解出a,b,c的值,进而得到二次函数的解析式。
五、总结通过以上例题的解析,我们可以看到在解二次函数相关题目时,首先需要根据题目的条件列方程,并运用相关的解方程技巧得到二次函数的系数a,b,c的值,从而得到二次函数的解析式。
在解题过程中,我们还可以借助对称轴和顶点等概念来辅助求解,这些解题方法和技巧都是我们在中考数学中必须掌握的知识点。
个人观点和理解:二次函数作为中学数学中的重要内容,其在中考数学中的考查也是至关重要的。
掌握二次函数的特点和解题方法,不仅有助于解题,还可以帮助我们更深入地理解函数的性质和应用。
通过解析经典的二次函数例题,我们可以更好地掌握二次函数的知识,并在中考数学中取得更好的成绩。
中考二次函数压轴题经典例题
中考二次函数压轴题经典例题一、一类中考二次函数高分难题:如考题:“某费用与生产成本的平方成正比,生产成本为每件5元时,总费用为125元,生产成本为每件10元时,总费用为多少元?”解:依题意可知费用与生产成本的平方之间的关系式为y=kx²,经过点(5,125),代入上式得k=5。
于是,当生产成本为每件10元时,总费用y=5x²=5×10²=500元。
二、二次函数的解析式与图像:题目:“已知函数y = ax² + bx + c(a ≠ 0)如果x1、x2是y = 0的解,试求函数的解析式。
”解:如果已知x1、x2是y=0的解,那么二次函数的解析式可以表示为y=a(x-x1)(x-x2)。
对x进行配平方,得y=ax²-(x1+x2)ax+ax1x2,与y=ax²+bx+c相比,可以得出b=-(x1+x2)a, c=ax1x2。
由此可以看出,二次函数的系数与其解之间存在着规律性的联系。
三、二次函数的最值问题:题目:“设函数y=ax²+bx+c,在点(0,c)处取得最值,已知a,c>0, c是常数,求a,b 的取值范围。
”解:本题主要考查了函数的极值点。
首先明确这样一个概念:一个函数在它的极值点处的导数等于0。
设二次函数y=ax²+bx+c的极值点为x0,将它代入导数等于0的方程式得到x0=-b/2a,所以二次函数的对称轴为x=-b/2a。
因为函数在点(0,c)处取得最值,那么有x0=0,将x0=0代入上式,解得b=0。
又因为a,c>0,且当a>0时,抛物线开口朝上,函数的最小值点在对称轴上,与题意相符。
故a>0,所以a,b的取值范围是:a>0,b=0。
中考复习专题------实际问题与二次函数
产品的销售价应定为25元,此时每日获得最大销售利 润为225元。
国家基础教育课程改革青海省潢中县实验区2004年升中试题
已知二次函数 y=0.5x² +bx+c 的图象经过点A(c,-2), 求证:这个二次函数图象的对称轴是直线 x=3。 题目中的黑色部分是一段被墨水污染了无法辨认的文字。
(1)根据已知和结论中现有的信息,你能否求出题中的二次 函数解析式?若能,请写出求解过程,并画出二次函数的图象。 若不能,请说明理由。 (2)请你根据已有的信息,在原题中的黑色部分添加一个适 当的条件,把原题补充完整。
确定自变量的取值范围; (4)在自变量的取值范围内,运用公式法或通过配方
求出二次函数的最大值或最小值;
(5)检验结果的合理性、拓展等。
例3.一场篮球赛中,小明跳起投篮,已知球 出手时离地面高 20 米,与篮圈中心的水平 距离为8米,当球出手后水平距离为4米时 到达最大高度4米,设篮球运行的轨迹为 抛物线,篮圈中心距离地面3米。 问此球能否投中?
●课后练习
1.小明家用长为8米的铝合金
条制成如图所示形状的矩形窗框,
小明爸爸想使窗户透光面积最大, 应怎样设计窗户的长和宽?
设变量,建立函数关 系,并求函数最大值.
8 3x 2
x
2.如图,某小区要在一块空地上修建如图所示形状 的花坛,并分别在两个区域内种上不同的花,已知四 边形ACDE和CBFG都是正方形,AB=2,设BC=x (1)AC=______ (2)设花坛总面积为s,求s与x函数关系式;
Q
(1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式; (2)当AP的长为何值时,S△PCQ= S△ABC 解:(1)∵P、Q分别从A、C两点同时出发,速度相等 ∴AP=CQ=x 当P在线段AB的延长线上时
如何求二次函数的解析式含练习
1如何求二次函数的解析式 二次函数的解析式的求法是九年级数学的难点,不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下。
应记死的公式: 1.二次函数y=ax 2+bx +c 的图象是 ,应用配方法可将其化为y=a (x -h )2+k 的形式,其中h= ,k= .其图象与函数y=ax 2的图象的形状相同,开口方向 ,只是图象位置不同.抛物线y=a (x -h )2+k 可以看作由抛物线y=ax 2通过上、下左右平移得到的,具体的方向,单位,只需考虑相应抛物线的 的移动. 2.二次函数y=ax 2+bx +c 的图象特点: (1)图象是抛物线,其对称轴为x= ,顶点坐标为 . (2)当a >0时,抛物线开口 ,顶点 是抛物线的最低点,也就是说,当x= 时,函数有最小值 .此时,在对称轴的左侧即x 时,y 随x 的增大而减小;在对称轴的右侧,即x 时,y 随x 的增大而增大.(3)当a <0时,抛物线开口 ,顶点 为抛物线的最高点,即此时当x= 时,函数有最大值 .在对称轴的左侧,即x 时,y 随x 的增大而 ;在对称轴的右侧,即x 时,y 随x 的增大而 .3.二次函数y=ax 2+bx 2+c (a ≠0): (1)a 决定抛物线开口方向:a >0⇔ ,a <0⇔ . (2)c 决定于y 轴交点的位置,即与y 轴交点为(0,c ),则c >0⇔抛物线交y 轴于 ;c=0⇔抛物线过 ;c <0⇔抛物线交y 轴于 。
(3)a ,b 决定对称轴x=-ab 2的位置.a ,b 同号⇔对称轴在y 轴 ;b=0⇔对称轴为 ;a ,b 异号⇔对称轴在y 轴 . 4. 二次函数表达式的求法:(1)若已知抛物线上三点坐标,可利用待定系数法求得 ;(2)若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式: 其中顶点为(h ,k)对称轴为直线x=h ; (3)若已知抛物线与x 轴的交点坐标或交点的横坐标,则可采用两根式: ,其中与x 轴的交点坐标为(x 1,0),(x 2,0)分类分析一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例2、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例3、经过点A (0,3)的抛物线的解析式是 . 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要解此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,然后画出该二次函数的图像,由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变,再由平移后的图像写出其顶点坐标,由顶点式就可以求出解析式。
最新九年级数学求二次函数解析式专题讲解
最新九年级数学求二次函数解析式专题讲解类型一利用“三点式”求二次函数解析式1.已知一个二次函数的图象经过A(0,-1)、B(1,5)、C(-1,-3)三点.(1)求这个二次函数的解析式;(2)用配方法把这个函数的解析式化为y=a(x+m)2+k的形式.解析(1)设这个二次函数的解析式为y=ax2+bx+c(a≠0),-根据题意得--解得-所以这个二次函数的解析式为y=2x2+4x-1.(2)y=2x2+4x-1=2(x2+2x+1-1)-1=2(x+1)2-3.2.已知二次函数的图象经过点(0,3)、(-3,0)、(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上.解析(1)设此二次函数的解析式为y=ax2+bx+c, 将(0,3)、(-3,0)、(2,-5)代入y=ax2+bx+c,得解得--∴此二次函数的解析式是y=-x2-2x+3.(2)当x=-2时,y=-(-2)2-2×(-2)+3=3,∴点P(-2,3)在这个二次函数的图象上.3.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,-3),C(0,-3).(1)求抛物线的表达式;(2)设点D是抛物线上一点,且点D的横坐标为-2,求△AOD的面积. 解析(1)把A(3,0),B(2,-3),C(0,-3)代入y=ax2+bx+c得--解得--∴该抛物线的解析式为y=x2-2x-3.(2)把x=-2代入抛物线的解析式得y=5,即D(-2,5),∵A(3,0),∴OA=3,∴S△AOD=×3×5=.类型二利用“顶点式”求二次函数解析式4.对称轴平行于y轴的抛物线的顶点坐标为(2,3)且抛物线经过点(3,1),那么该抛物线的解析式是()A.y=-2x2+8x+3B.y=-2x2-8x+3C.y=-2x2+8x-5D.y=-2x2-8x+2答案C根据题意,设该抛物线的解析式为y=a(x-2)2+3(a≠0),因为该抛物线经过点(3,1),所以a+3=1,a=-2.所以抛物线的解析式为y=-2(x-2)2+3=-2x2+8x-5.故选C.5.已知二次函数y=ax2+bx+c中,函数值y与自变量x的部分对应值如下表:x …-1 0 1 2 3 …y …10 5 2 1 2 …(1)求该函数的表达式;(2)当y<5时,x的取值范围是.解析(1)由题意得二次函数y=ax2+bx+c的图象的顶点坐标为(2,1), 设函数的表达式为y=a(x-2)2+1.由题意得函数的图象经过点(0,5),所以5=a·(-2)2+1.所以a=1.所以函数的表达式为y=(x-2)2+1(或y=x2-4x+5).(2)由所给数据可知二次函数图象的对称轴为x=2,∴(0,5)和(4,5)均在该函数图象上.∴当y<5时,对应的x的范围为0<x<4,故答案为0<x<4.6.已知二次函数图象的顶点坐标为(2,-2),且经过点(3,1),求此二次函数的解析式,并求出该函数图象与y轴的交点坐标.解析根据题意,可设二次函数的解析式为y=a(x-2)2-2(a≠0),把(3,1)代入y=a(x-2)2-2,得a(3-2)2-2=1,解得a=3,所以二次函数的解析式为y=3(x-2)2-2.当x=0时,y=3×4-2=10,所以该函数图象与y轴的交点坐标为(0,10).类型三利用“交点式”求二次函数解析式7.如图22-5-1,抛物线y=ax2+bx+c经过A(1,0),B(4,0),C(0,3)三点,求抛物线的解析式.图22-5-1解析根据题意,可设抛物线的解析式为y=a(x-1)(x-4)(a≠0),把C(0,3)代入得a·(-1)×(-4)=3,解得a=,所以抛物线的解析式为y=(x-1)(x-4),即y=x2-x+3.8.已知关于x的二次函数的图象与x轴交于(-1,0),(3,0)两点,且图象过点(0,3).(1)求这个二次函数的解析式;(2)写出它的开口方向、对称轴.解析(1)∵二次函数的图象交x轴于(-1,0),(3,0)两点,∴设该二次函数的解析式为y=a(x-3)(x+1)(a≠0).将(0,3)代入,得3=a(0-3)×(0+1),解得a=-1,∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴这个函数的图象的开口向下,对称轴为直线x=1.9.已知二次函数y=ax2+bx+c过点A(1,0),B(-3,0),C(0,-3).(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.(写出详细的解题过程)图22-5-2解析(1)根据题意,可设抛物线的解析式为y=a(x-1)·(x+3)(a≠0),把C(0,-3)代入得a×(-1)×3=-3,解得a=1,所以这个二次函数的解析式为y=(x-1)(x+3)=x2+2x-3.(2)∵A(1,0),B(-3,0),∴AB=4.设P(m,n),∵△ABP的面积为6,∴AB·|n|=6,解得n=±3,当n=3时,m2+2m-3=3,解得m=-1+或-1-,∴P(-1+,3)或P(-1-,3).当n=-3时,m2+2m-3=-3,解得m=0或m=-2,∴P(0,-3)或P(-2,-3).故P(-1+,3)或P(-1-,3)或P(0,-3)或P(-2,-3).类型四利用“平移规律”求二次函数解析式10.如图22-5-3,将函数y=(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m)、B(4,n)平移后的对应点分别为A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()图22-5-3A.y=(x-2)2-2B.y=(x-2)2+7C.y=(x-2)2-5D.y=(x-2)2+4答案D如图,连接AB、A'B',则S阴影=S四边形ABB'A'.由平移可知,AA'=BB',AA'∥BB',∴四边形ABB'A'是平行四边形.分别延长A'A、B'B交x轴于点M、N.∵A(1,m)、B(4,n),∴MN=4-1=3.∵S▱ABB'A'=AA'·MN,∴9=3AA',解得AA'=3,即原函数图象沿y轴向上平移了3个单位,∴新图象的函数表达式为y=(x-2)2+4.11.将抛物线y=3(x-4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.答案y=3(x-5)2-1解析y=3(x-4)2+2的顶点坐标为(4,2),将其向右平移1个单位长度,再向下平移3个单位长度所得点的坐标为(5,-1),所以平移后抛物线的解析式为y=3(x-5)2-1.12.如图22-5-4,抛物线y=x2沿直线y=x向上平移个单位后,顶点在直线y=x上的M处,则平移后抛物线的解析式为.图22-5-4答案y=(x-1)2+1解析抛物线y=x2沿直线y=x向上平移个单位后,顶点在直线y=x 上的M处,则平移后抛物线的解析式为y=(x-1)2+1.13.如图22-5-5,△OAB的OA边在x轴上,其中B点坐标为(3,4)且OB=BA.(1)求经过A,B,O三点的抛物线的解析式;(2)将(1)中的抛物线沿x轴平移,设点A,B的对应点分别为点A',B',若四边形ABB'A'为菱形,求平移后的抛物线的解析式.图22-5-5解析(1)∵B点坐标为(3,4)且OB=BA,∴A(6,0).设所求抛物线的解析式为y=ax(x-6),将(3,4)代入,可得4=-9a,∴a=-,∴y=-x(x-6)=-x2+x.(2)∵B点坐标为(3,4),OB=BA,∴A(6,0),∴BA==5.∵四边形ABB'A'为菱形,∴BB'=BA=5.①若抛物线沿x轴向右平移,则B'(8,4),∴平移后抛物线的解析式为y=-(x-8)2+4;②若抛物线沿x轴向左平移,则B'(-2,4), ∴平移后抛物线的解析式为y=-(x+2)2+4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考题型例解求二次函数的解析式及相关问题
中考题型例解:求二次函数的解析式及相关问题教学目标:1、巩固求解析式的方法,能灵活的根据条件恰当地选取选择解析式。
2、体会数形结合思想,利用函数的性质解决实际问题。
3、完善解题步骤,把握得分点。
教学重、难点:巩固求解析式的方法、灵活的根据条件恰当地选取解析式以及培养解决实际问题的能力。
一.引入二次函数解析式的三种形式:,,。
二、例题解析例1:已知抛物线经过点(-1,0),23并与y 轴交于点(0,3),请求出此抛物线解析式。
方法一:方法二:例2:如图,小明的父亲在相距 2 米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高1 米的小明距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为多少米? A B C 2.5 米0.5 米1米2米三、巩固练习1、某公司推出了一种高效环保型洗涤用品年初上市后公司经历了从亏损到盈利
的过程.下面的二次函数图象部分刻画了该公司年初以来累
积利润s万元与销售时间t月之间的关系即前t 个月的利润总和s 与t 之间的关系.根据图象图提供的信息解答下列问题:1由已知图象上的三点坐标求累积利润s万元与时间t 月之间的函数关系式2求截止到几月末公司累积利润可达到30 万元2、如图,某公路隧道横截面为抛物线,其最大高度为6 米,底部宽度OM 为12 米. 现以O 点为原点,OM
所在直线为x 轴建立直角坐标系.1直接写出点M 及抛物线顶点P 的坐标;2求这条抛物线的解析式;3若要搭建一个矩形“支撑架”AD- DC- CB,使C、D 点在抛物线上,A、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?3、在平面直角坐标系中,ΔAOB 的位置如图所示,。
已知∠AOB=90°,AO=BO,点 A 的坐标为(-31)(1)求点B 的坐标。
(2)求过A,O,B 三点的抛物线的解析式;(3)抛物线的对称轴上有一点M,且点M 的纵坐标与点B的纵坐标相等,连结AM,BM,求ΔAMB 的面积。
4.已知:抛物线y ax 2 bx c a 0 的对称轴为x 1,x 轴交于A,B 两点,与y 轴交于点C 其中与A 3,、C 0,2 .0 y(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P,使得△PBC 的周长最小.A O B x请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).连接PD、PE.设CD 的长为m ,过点 D 作DE ‖PC 交x 轴于点E.C△PDE 的面积为S .求S 与m 之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.。