最新整理初中数学试题试卷常州市初中毕业、升学统一考试及答案.doc

合集下载

2024年江苏常州第二十四中学、教科院、市实验中学联考中考一模数学试题+答案

2024年江苏常州第二十四中学、教科院、市实验中学联考中考一模数学试题+答案

2024年江苏省常州市第二十四中学、教科院、市实验中学联考中考一模数学试题一、选择题:(本大题共8小题,每小题2分,共16分)1.(2分)把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.﹣6+3=9 B.﹣6﹣3=﹣3 C.﹣6+3=﹣3 D.﹣6+3=32.(2分)计算(﹣a)3•a2的结果是()A.﹣a6B.a6C.﹣a5D.a53.(2分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1 B.m≤1 C.m≤4 D.4.(2分)下列几种著名的数学曲线中,不是轴对称图形的是()A.B.C.D.5.(2AD应该是△ABC的()A.角平分线B.中线C.高线D.以上都不是6.(2分)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A=88°,∠C =42°,AB=60,则点A到BC的距离为()A.60sin50°B.C.60cos50°D.60tan50°7.(2分)如图,已知∠AOB=60°,以点O为圆心,与角的两边分别交于C,D两点,D为圆心,大于,两条圆弧交于∠AOB内一点P,连结OP,过点P作直线PE∥OA交OB于点E,过点P作直线PF∥OB交OA于点F,OP=6cm,则四边形PFOE的面积是()A.B.C.D.8.(2分)如图①,底面积为30cm2的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②,若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱体的底面积为()cm2.A.24 B.12 C.18 D.21二、填空题:(本大题共10小题,每小题2分,共20分)9.(2分)25的算术平方根是.10.(2分)当a时,分式有意义.11.(2分)因式分解:a2+8a+16=.12.(2分)若m<2<m+1,且m为整数,则m=.13.(2分)图中的小正方形的边长都相等,若△MNP≌△MEQ,则点Q可能是图中的点.14.(2分)如图,在平行四边形ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为.15.(2分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=8,AD=6,则AF的长为.16.(2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为.17.(2分)初三(9)班同学在“2021义卖”活动中表现特别突出,他们设计了两款特别的产品.第一是“人分纪念品”套装,销售一件此产品可获利16%;第二是“一路向北”手提袋,销售一件此产品可获利24%;当销售量的比为3:2时,总获利为18%.当销售量的比为1:3时,总获利为.18.(2分)如图,半圆O的半径为1,AC⊥AB,BD⊥AB,且AC=1,BD=3,P是半圆上任意一点,则封闭图形ABDPC面积的最大值是.三、解答题(本大题共10小题,第19题6分.第20-25题每题8分,第26-28题每题10分,共84分)19.(6分)计算:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0.20.(8分)解不等式组:,并求出它的正整数解.21.(8分)某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.这20名居民讲座前、讲座后成绩得分统计图如图:b.这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下:平均数中位数方差讲座前72.071.599.7讲座后86.8m88.4c.结合讲座后成绩x,被抽取的20名居民中有5人获得“参与奖”(x<80),有7人获得“优秀奖”(80≤x<90),有8人获得“环保达人奖”(90≤x≤100),其中成绩在80≤x<90这一组的是:80 82 83 85 87 88 88根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“〇”圈出代表居民小张的点;(2)写出表中m的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有人.22.(8分)完全相同的四张卡片,上面分别标有数字﹣1,2,1,﹣3,将其背面朝上,从中任意抽出1张(不放回),记为m,再抽一张记为n,以m作为M点的横坐标,n作为M点的纵坐标,记为M(m,n).(1)抽出一张卡片标有数字为正数的概率是;(2)用树状图或列表法求所有点M(m,n)的坐标,并且点M在第二象限的概率.23.(8分)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.24.(8分)【问题背景】新能源汽车多数采用电能作为动力来源,不需要燃烧汽油,这样就减少了二氧化碳等气体的排放,从而达到保护环境的目的.【实验操作】为了解汽车电池需要多久能充满,以及充满电量状态下电动汽车的最大行驶里程,某综合实践小组设计两组实验.实验一:探究电池充电状态下电动汽车仪表盘增加的电量y(%)与时间t(分钟)的关系,数据记录如表1:电池充电状态时间t(分钟)0103060增加的电量y(%)0103060实验二:探究充满电量状态下电动汽车行驶过程中仪表盘显示电量e(%)与行驶里程s(千米)的关系,数据记录如表2:汽车行驶过程已行驶里程s(千米)0160200280显示电量e(%)100605030【建立模型】(1)观察表1、表2发现都是一次函数模型,请结合表1、表2的数据,求出y关于t的函数表达式及e关于s的函数表达式;【解决问题】(2)某电动汽车在充满电量的状态下出发,前往距离出发点460千米处的目的地,若电动汽车行驶240千米后,在途中的服务区充电,一次性充电若干时间后继续行驶,且到达目的地后电动汽车仪表盘显示电量为20%,则电动汽车在服务区充电多长时间?25.(8分)如图,在平面直角坐标系中,反比例函数,k>0)的图象经过点A(1,2),B (m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求反比例函数的表达式;(2)当△ABC的面积为4时,求B点坐标.26.(10分)【问题发现】如图1所示,将△ABC绕点A逆时针旋转90°得△ADE,连接CE、DB,根据条件填空:①∠ACE的度数为°;②若CE=2,则CA的值为;【类比探究】如图2所示,在正方形ABCD中,点E在边BC上,点F在边CD上,且满足∠EAF=45°,BE=1,DF=2,求正方形ABCD的边长;【拓展延伸】如图3所示,在四边形ABCD中,CD=CB,∠BAD+∠BCD=90°,AC、BD为对角线,且满足AC=CD,若AD=3,AB=4,请直接写出BD的值.27.(10分)在一个三角形中,如果三个内角的度数之比为连续的正整数,那么我们把这个三角形叫做和谐三角形.(1)概念理解:若△ABC为和谐三角形,且∠A<∠B<∠C,则∠A=°,∠B =°,∠C=°.(任意写一种即可)(2)问题探究:如果在和谐三角形ABC中,∠A<∠B<∠C,那么∠B的度数是否会随着三个内角比值的改变而改变?若∠B的度数改变,写出∠B的变化范围;若∠B的度数不变,写出∠B的度数,并说明理由.(3)拓展延伸:如图,△ABC内接于⊙O,∠BAC为锐角,BD为圆的直径,∠OBC=30°.过点A 作AE⊥BD,交直径BD于点E,交BC于点F,若AF将△ABC分成的两部分的面积之比为1:2,则△ABC一定为和谐三角形吗?”请说明理由.28.(10分)已知,抛物线y=x2﹣(2m+2)x+m2+2m与x轴交于A,B两点(A在B的左侧).(1)当m=0时,求点A,B坐标;(2)若直线y=﹣x+b经过点A,且与抛物线交于另一点C,连接AC,BC,试判断△ABC的面积是否发生变化?若不变,请求出△ABC的面积;若发生变化,请说明理由;(3)当5﹣2m≤x≤2m﹣1时,若抛物线在该范围内的最高点为M,最低点为N,直线MN与x轴交于点D,且,求此时抛物线的解析式.参考答案与试题解析一、选择题:(本大题共8小题,每小题2分,共16分)1.(2分)把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.﹣6+3=9 B.﹣6﹣3=﹣3 C.﹣6+3=﹣3 D.﹣6+3=3【解答】解:由题意可知:﹣6+3=﹣3,故选:C.2.(2分)计算(﹣a)3•a2的结果是()A.﹣a6B.a6C.﹣a5D.a5【解答】解:(﹣a)3•a2=﹣a3•a2=﹣a5,故选:C.3.(2分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1 B.m≤1 C.m≤4 D.【解答】解:∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值范围是m≤1.故选:B.4.(2分)下列几种著名的数学曲线中,不是轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,故此选项符合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项不合题意.故选:A.5.(2分)王老汉要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD应该是△ABC的()A.角平分线B.中线C.高线D.以上都不是【解答】解:由三角形的面积公式可知,三角形的中线把三角形分为面积相等的两部分,∴他所作的线段AD应该是△ABC的中线,故选:B.6.(2分)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A=88°,∠C =42°,AB=60,则点A到BC的距离为()A.60sin50°B.C.60cos50°D.60tan50°【解答】解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin B=60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.7.(2分)如图,已知∠AOB=60°,以点O为圆心,与角的两边分别交于C,D两点,D为圆心,大于,两条圆弧交于∠AOB内一点P,连结OP,过点P作直线PE∥OA交OB于点E,过点P作直线PF∥OB交OA于点F,OP=6cm,则四边形PFOE的面积是()A.B.C.D.【解答】解:过P作PM⊥OB于M,由作图得:OP平分∠AOB,∴,∴,∴,∵PE∥OA,PF∥OB,∴四边形OEPF为平行四边形,∠EPO=∠POA=30°,∴∠POE=∠OPE,∴OE=PE,设OE=PE=x cm,在Rt△PEM中,PE2﹣MP2=EM2,即:,解得:,∴.故选:B.8.(2分)如图①,底面积为30cm2的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②,若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱体的底面积为()cm2.A.24 B.12 C.18 D.21【解答】解:根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了:42s﹣24s=18(s),这段高度为:14﹣11=3(cm),设匀速注水的水流速度为x cm3/s,则18•x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;“几何体”下方圆柱的高为a,则a•(30﹣15)=18×5,解得a=6,所以“几何体”上方圆柱的高为11﹣6=5(cm),设“几何体”上方圆柱的底面积为S cm2,根据题意得5•(30﹣S)=5×(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.故选:A.二、填空题:(本大题共10小题,每小题2分,共20分)9.(2分)25的算术平方根是5.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.10.(2分)当a≠﹣2时,分式有意义.【解答】解:根据题意得,a+2≠0,解得a≠﹣2.故答案为:≠﹣2.11.(2分)因式分解:a2+8a+16=(a+4)2.【解答】原式=(a+4)2,故答案为:(a+4)2.12.(2分)若m<2<m+1,且m为整数,则m=5.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.13.(2分)图中的小正方形的边长都相等,若△MNP≌△MEQ,则点Q可能是图中的点D.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故答案为:D.14.(2分)如图,在平行四边形ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为12.【解答】解:∵四边形ABCD是平行四边形,∠B=60°,AB=2,∴∠D=∠B=60°,CD=AB=2,∴由折叠得∠E=∠D=60°,CE=CD=2,∵将△ADC沿AC折叠后,点D落在DC的延长线上的点E处,∴D、C、E三点在同一条直线上,∴DE=CE+CD=2+2=4,∠DAE=180°﹣∠E﹣∠D=60°,∴△ADE是等边三角形,∴AD=AE=DE=4,∴AD+AE+DE=3×4=12,∴△ADE的周长为12,故答案为:12.15.(2分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=8,AD=6,则AF的长为.【解答】解:∵四边形ABCD是矩形,∴AB=CD=8,∠ADC=90°,AB∥CD,∵AD=6,∴AC===10,∵点E是AB的中点,∴AE=AB=4,∵AB∥CD,∴∠CDE=∠DEA,∠DCF=∠CAE,∴△CDF∽△AEF,∴===2,∴AF=AC=,故答案为:.16.(2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为x>3.【解答】解:由题意得,一次函数y=kx+b的图象经过(2,0),k>0,∴2k+b=0,∴b=﹣2k,∴不等式可化为:2kx﹣6k>0,解得x>3,故答案为:x>3.17.(2分)初三(9)班同学在“2021义卖”活动中表现特别突出,他们设计了两款特别的产品.第一是“人分纪念品”套装,销售一件此产品可获利16%;第二是“一路向北”手提袋,销售一件此产品可获利24%;当销售量的比为3:2时,总获利为18%.当销售量的比为1:3时,总获利为20.8%.【解答】解:设一件“人分纪念品”套装卖x元,一件“一路向北”手提袋卖y元,则一件此产品可获利16%x元,一件“一路向北”手提袋可获利24%y元,令“人分纪念品”的销售量为3a,则“一路向北”的销售量为2a,由销售量的比为3:2时,总获利为18%,得:=18%,解得x=2y,设销售量的比为1:3时,令“人分纪念品”的销售量为b,则“一路向北”的销售量为3b,则总获利为:===20.8%,即总获利为20.8%.故答案为:20.8%.18.(2分)如图,半圆O的半径为1,AC⊥AB,BD⊥AB,且AC=1,BD=3,P是半圆上任意一点,则封闭图形ABDPC面积的最大值是2+.【解答】解:如图,连接DC,并延长交BA的延长线于点G,欲使封闭图形ACPDB的面积最大,因梯形ACDB的面积为定值,故只需△CPD的面积最小.而CD为定值,故只需使动点P到CD的距离最小.为此作半圆平行于CD的切线EF,设切点为P′,并分别交BD及BA的延长线于点F,E.连接OC,∵CA⊥AB,DB⊥AB,∴△CGA∽△DGB,∴=,∴GA=AO=AC=1.∴△ACO和△GAC是等腰直角三角形,∴∠GCA=∠OCA=45°,∴∠GCO=90°,∴OC⊥GD.OC⊥EF,∴切点P′就是OC与半圆的交点.即当动点P取在P′的位置时,到CD的距离最小,而OC=,∴CP´=﹣1,∴S△CP´D=×2×(﹣1)=2﹣,∴封闭图形ACPDB的最大面积为:×(1+3)×2﹣(2﹣)=4﹣2+=2+.故答案为:2+.三、解答题(本大题共10小题,第19题6分.第20-25题每题8分,第26-28题每题10分,共84分)19.(6分)计算:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0.【解答】解:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0=﹣2++2﹣+1=1.20.(8分)解不等式组:,并求出它的正整数解.【解答】解:,解不等式①得:x≤5,解不等式②得:x<14,所以不等式组的解集为x≤5,则不等式组的正整数解为1,2,3,4,5.21.(8分)某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.这20名居民讲座前、讲座后成绩得分统计图如图:b.这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下:平均数中位数方差讲座前72.071.599.7讲座后86.8m88.4c.结合讲座后成绩x,被抽取的20名居民中有5人获得“参与奖”(x<80),有7人获得“优秀奖”(80≤x<90),有8人获得“环保达人奖”(90≤x≤100),其中成绩在80≤x<90这一组的是:80 82 83 85 87 88 88根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“〇”圈出代表居民小张的点;(2)写出表中m的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有64人.【解答】解:(1)如图所示:(2)讲座后成绩的中位数是第10和第11个数的平均数,所以m==87.5;(3)估计能获得“环保达人奖”的有160×=64(人).故答案为:64.22.(8分)完全相同的四张卡片,上面分别标有数字﹣1,2,1,﹣3,将其背面朝上,从中任意抽出1张(不放回),记为m,再抽一张记为n,以m作为M点的横坐标,n作为M点的纵坐标,记为M(m,n).(1)抽出一张卡片标有数字为正数的概率是;(2)用树状图或列表法求所有点M(m,n)的坐标,并且点M在第二象限的概率.【解答】解:(1)由题意知,共有4种等可能的结果,其中抽出一张卡片标有数字为正数的结果有:2,1,共2种,∴抽出一张卡片标有数字为正数的概率是=.故答案为:.(2)列表如下:由表格可知,共有12种等可能的结果.其中点M在第二象限的结果有:(﹣1,2),(﹣1,1),(﹣3,2),(﹣3,1),共4种,∴点M在第二象限的概率为=.23.(8分)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.【解答】(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.24.(8分)【问题背景】新能源汽车多数采用电能作为动力来源,不需要燃烧汽油,这样就减少了二氧化碳等气体的排放,从而达到保护环境的目的.【实验操作】为了解汽车电池需要多久能充满,以及充满电量状态下电动汽车的最大行驶里程,某综合实践小组设计两组实验.实验一:探究电池充电状态下电动汽车仪表盘增加的电量y(%)与时间t(分钟)的关系,数据记录如表1:电池充电状态时间t(分钟)0103060增加的电量y(%)0103060实验二:探究充满电量状态下电动汽车行驶过程中仪表盘显示电量e(%)与行驶里程s(千米)的关系,数据记录如表2:汽车行驶过程已行驶里程s(千米)0160200280显示电量e(%)100605030【建立模型】(1)观察表1、表2发现都是一次函数模型,请结合表1、表2的数据,求出y关于t的函数表达式及e关于s的函数表达式;【解决问题】(2)某电动汽车在充满电量的状态下出发,前往距离出发点460千米处的目的地,若电动汽车行驶240千米后,在途中的服务区充电,一次性充电若干时间后继续行驶,且到达目的地后电动汽车仪表盘显示电量为20%,则电动汽车在服务区充电多长时间?【解答】解:(1)根据题意,两个函数均为一次函数,设y=a1t+b1,e=a2s+b2,将(10,10),(30,30)代入y=a1t+b1得,解得,∴函数解析式为:y=t,将(160,60),(200,50)代入e=a2s+b2得,解得,∴函数解析式为:e=﹣+100.(2)由题意得,先在满电的情况下行走了w1=240km,当s1=240时,e1=﹣s1+100=﹣=40,∴未充电前电量显示为40%,假设充电充了t分钟,应增加电量:e2=y2=t,出发是电量为e=e+e=40+t,走完剩余路程w=460﹣240=220km,w2应耗电量为:e4=﹣w2+100=﹣=45,满电状态下剩余电量45%,据此可得:应耗电量100%﹣45%=55%,20=e3﹣e4=40+t﹣55,解得t=35,答:电动汽车在服务区充电35分钟.25.(8分)如图,在平面直角坐标系中,反比例函数,k>0)的图象经过点A(1,2),B (m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求反比例函数的表达式;(2)当△ABC的面积为4时,求B点坐标.【解答】解:(1)把点A(1,2)代入反比例函数得,=2,∴k=2,∴反比例函数解析式为:;(2)把点B(m,n)代入反比例函数得,=n,∴B(m,),∴C(0,),BC=,∵S△ABC=),∴m=5,∴B的坐标为(5,).26.(10分)【问题发现】如图1所示,将△ABC绕点A逆时针旋转90°得△ADE,连接CE、DB,根据条件填空:①∠ACE的度数为45°;②若CE=2,则CA的值为;【类比探究】如图2所示,在正方形ABCD中,点E在边BC上,点F在边CD上,且满足∠EAF=45°,BE=1,DF=2,求正方形ABCD的边长;【拓展延伸】如图3所示,在四边形ABCD中,CD=CB,∠BAD+∠BCD=90°,AC、BD为对角线,且满足AC=CD,若AD=3,AB=4,请直接写出BD的值.【解答】【问题发现】解:①将△ABC绕点A逆时针旋转90°得△ADE,∴∠DAB=∠CAE=90°,CA=EA,∴∠ACE=45°,故答案为:45;②∵△CAE是等腰直角三角形,∠ACE=45°,∴AC=CE•cos45°=2×=,故答案为:;【类比探究】解:将△ABE绕A逆时针旋转90°得△ADG,如图所示:∵△ABE绕A逆时针旋转90°得△ADG,∴∠BAE=∠DAG,AE=AG,BE=DG=1,∠ABE=∠ADG=90°,∵∠ADC+∠ADG=180°,∴G、D、C共线,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAG+∠DAF=45°=∠EAF,即∠F AG=∠EAF,在△GAF与△EAF中,,∴△GAF≌△EAF(SAS),∴EF=GF,∵GF=GD+DF=1+2=3,∴EF=3,设正方形ABCD边长为x,则CE=x﹣1,CF=x﹣2,在Rt△CEF中,CE2+CF2=EF2,∴(x﹣1)2+(x﹣2)2=32,解得:x=或x=(舍去),∴正方形ABCD的边长为;【拓展延伸】解:将△ADC绕C逆时针旋转至△CBE,连接AE,如图所示:∴AD=BE,CA=CE,∠ACD ECB,∠ADC=∠EBC,∵CD=CB,∴∠BCD=∠ACE,,∴△DCB∽△ACE,∴,∵∠BAD+∠BCD=90°,∴∠ABC+∠ADC=270°,∵∠ADC=∠EBC,∴∠ABC+∠EBC=270°,∴∠ABE=90°,∴AE=,∴BD=.27.(10分)在一个三角形中,如果三个内角的度数之比为连续的正整数,那么我们把这个三角形叫做和谐三角形.(1)概念理解:若△ABC为和谐三角形,且∠A<∠B<∠C,则∠A=30°,∠B=60°,∠C=90°.(任意写一种即可)(2)问题探究:如果在和谐三角形ABC中,∠A<∠B<∠C,那么∠B的度数是否会随着三个内角比值的改变而改变?若∠B的度数改变,写出∠B的变化范围;若∠B的度数不变,写出∠B的度数,并说明理由.(3)拓展延伸:如图,△ABC内接于⊙O,∠BAC为锐角,BD为圆的直径,∠OBC=30°.过点A 作AE⊥BD,交直径BD于点E,交BC于点F,若AF将△ABC分成的两部分的面积之比为1:2,则△ABC一定为和谐三角形吗?”请说明理由.【解答】解:(1)由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.可设n=2,由∠A:∠B:∠C=1:2:3,∴.故答案为:30;60;90.(2)∠B的度数不变.由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.∴∠B的度数不变,且∠B=60°.(3)△ABC一定为和谐三角形.理由如下:分两种情况讨论:①当S△ACF=2S△ABF时,如图1,连结OA,OC,过点O作OG⊥BC于点G.由OA=OB=OC=r,∠OBC=30°,可得∠OCB=30°,∠BOC=180°﹣30°﹣30°=120°.∴.∴.∵,∴.又∵S△ACF=2S△ABF,∴CF=2BF.∴.∵AF⊥BD,∠OBC=30°,∴∠AFB=60°=∠BAC.又∵∠ABF=∠CBA,∴△ABF∽△CBA.∴AB2=BF•BC.∴.∴解得:AB=r.∴△AOB为等边三角形.∵,∴.∴∠ABC=90°.∵30°:60°:90°=1:2:3,∴△ABC为和谐三角形.②当S△ABF=2S△ACF时,如图2,连结OA,OC,过点O作OG⊥BC于点G.同理可得OA=OB=OC=r,∠BAC=60°,,△ABF∽△CBA,∴AB2=BF•BC.∴.∴△AOB为等腰直角三角形.∴.∴∠ABC=75°.∵45°:60°:75°=3:4:5,∴△ABC为和谐三角形.综上所述,△ABC一定为和谐三角形.28.(10分)已知,抛物线y=x2﹣(2m+2)x+m2+2m与x轴交于A,B两点(A在B的左侧).(1)当m=0时,求点A,B坐标;(2)若直线y=﹣x+b经过点A,且与抛物线交于另一点C,连接AC,BC,试判断△ABC的面积是否发生变化?若不变,请求出△ABC的面积;若发生变化,请说明理由;(3)当5﹣2m≤x≤2m﹣1时,若抛物线在该范围内的最高点为M,最低点为N,直线MN与x轴交于点D,且,求此时抛物线的解析式.【解答】解:(1)当m=0时,y=x2﹣2x,当y=0时,有x2﹣2x=0,解得x1=0,x2=2,∵A在B的左侧,∴点A坐标为(0,0),点B坐标为(2,0).(2)△ABC的面积不变.对于抛物线y=x2﹣(2m+2)x+m2+2m,当y=0时,有x2﹣(2m+2)x+m2+2m=0,解得:x1=m,x2=m+2.∵A在B的左侧,∴点A坐标为(m,0),点B坐标为(m+2,0),∴AB=2,∵直线y=﹣x+b经过点A(m,0),∴0=﹣m+b,∴b=m,∴y=﹣x+m,联立解得x1=m,x2=m+1,∵点C在y=﹣x+m上,当x2=m+1时,y C=﹣1,∴C点坐标为(m+1,﹣1).∴S△ABC=,∴△ABC的面积不发生变化,S△ABC=1.(3)∵5﹣2m≤x≤2m﹣1,∴5﹣2m<2m﹣1,∴m>.由题可知对称轴为x=m+1,则对称轴x=m+1,∵,即范围5﹣2m≤x≤2m﹣1的中点为x=2,∴,即抛物线的对称轴在直线x=2的右侧.①若2m﹣1≤m+1,m≤2,即<m≤2时,∵抛物线开口向上,当5﹣2m≤x≤2m﹣1时,y随x的增大而减小,如图,当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),当x=2m﹣1时,取最低点N(2m﹣1,m2﹣4m+3),分别过点M,N作x轴的垂线交于点H,G,则△MDH∽△NDG,∴,即,∴,解得m=1(舍)或m=2,∴当m=2时,抛物线的解析式为y=x2﹣6x+8.②若2<m+1<2m﹣1,即m>2,∴最低点在顶点处取得,∴N(m+1,﹣1),当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),由,得9m2﹣24m+15=3,解得,∵m>2,∴m1与m2不符合题意,舍去,综上所述,抛物线的解析式为y=x2﹣6x+8.。

常州市二O二O年初中毕业、升学统一考试数学试题及答案(word版本可编辑)

常州市二O二O年初中毕业、升学统一考试数学试题及答案(word版本可编辑)

巴中市二〇二〇年高中阶段教育招生考试数学试卷(全卷满分150分,120分钟完卷)第I 卷 选择题(共30分)注意事项:1.考生姓名、考号、考试科目,应在答题卡上“先填后涂”. 2.每小题选出的答案,必须用2B铅笔在答题卡上“对应涂黑”. 3.答题卡上答案项需改动,应用橡皮擦擦干净后再涂.一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填入题后的括号内.(本题共10个小题,每小题3分,共30分) 1.下列各式计算正确的是( ) A.224a a a += B.22(3)6x x =C.236()x x =D.222()x y x y +=+2.2007年我市初中毕业生约为3.94万人,把3.94万用科学记数表示且保留两个有效数字为( ) A.44.010⨯B.43.910⨯C.43910⨯D.4.0万3.李明为好友制作一个(图1)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )4.下列说法正确的是( )A.要想了解NBA 各球队在2007赛季的比赛结果,应采用民意调查法B.某工厂质检人员检测灯泡的使用寿命采用普查法C.要了解某小组各学生某次数学测试成绩采用抽样调查法 D.了解我市中学生的身体素质状况采用抽样调查法5.如图2,O 是ABC △的外接圆,已知50ABO ∠=,则ACB ∠的大小为( ) A.40B.30C.45D.506.下列说法错误..的是( ) A.同时抛两枚普通正方体骰子,点数都是4的概率为13B.不可能事件发生机会为0C.买一张彩票会中奖是可能事件D.一件事发生机会为0.1%,这件事就有可能发生祝 中 考 成 预 功 祝 成 考 功 预 中 预 祝 中 考 成 功 祝成 预 图1预 祝 中 考 成 功 A. B.C.D.AB CO图27.一元二次方程2210x x --=的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.函数(0)y kx k k =+≠在直角坐标系中的图象可能是( )9.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为12米,在如图4所示的坐标系中,这支喷泉的函数关系式是( )A.2132y x ⎛⎫=--+ ⎪⎝⎭B.21312y x ⎛⎫=-+ ⎪⎝⎭C.21832y x ⎛⎫=--+ ⎪⎝⎭D.21832y x ⎛⎫=-++ ⎪⎝⎭10.“五一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x 元,男装部购买了原价为y 元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( )A.5800.80.85700x y x y +=⎧⎨+=⎩B.7000.850.8580x y x y +=⎧⎨+=⎩C.7000.80.85700580x y x y +=⎧⎨+=-⎩D.7000.80.85580x y x y +=⎧⎨+=⎩巴中市二〇〇七年高中阶段教育招生考试数学试卷说明:1.全卷满分为150分,120分钟完卷. 2.本试卷分为第I 卷和第II 卷,第I 卷为选择题,答案涂卡,第II 卷为非选择题,考生用蓝、黑墨水钢笔或圆珠笔在试卷上做答 3.考试结束后监考老师将答题卡装入专用袋,不装订第I 卷,只装订第II 卷.第II 卷 非选择题(共120分)二、填空题(每小题3分,共30分,把答案直接填写在题中横线上) 11.12-的相反数是 ,倒数是 ,平方等于 .图3 yx OA. B. C. D.y x O y x O yxOO xy 图412.函数2y x =-的自变量x 的取值范围为 .13.如图5,点P 在双曲线(0)ky k x=≠上,点(12)P ',与点P 关于y 轴对称,则此双曲线的解析式为. 14.分解因式:3a a -=.15.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个 三角形.16.某承陶瓷市场现出售的有边长相等的正三角形、正方形、正五边形的地板砖,某顾客想买其中的两种..镶嵌着铺地板,则他可以选择的是 . 17.2007年4月,巴中市出租车收经费方式全面调整,具体收费方式如下,行驶距离在3千米以内(包括3千米)付起步价3元,超过3千米后,每多行驶1千米加收1.4元,试写出乘车费用y (元)与乘车距离x (千米)(3)x >之间的函数关系式为.18.某射击运动员五次射击成绩分别为9环,6环,7环,8环,10环,则他这五次成绩的平均数为 ,方差为 .19.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的 (填“平均数”或“中位数”或“众数”). 20.先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有种.三、解答题(每小题6分,共18分)21.计算:301(32007)(276tan 30)3-⎛⎫+--- ⎪⎝⎭22.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭O1 2 yx图523.解不等式组12(1)01132x x x --<⎧⎪⎨-+<⎪⎩ ① ②四、解答题(24题9分,25题10分,26题12分,共31分) 24.如图6,将AOC △各顶点的横纵坐标分别乘以2-作为对应顶点的横纵坐标,得到所得的111A O C △. ①在图中画出所得的111AO C (4分)②猜想111A O C △与AOC △的关系,并说明理由(5分)25.如图7,在Rt ABC △中,90C ∠=,60A ∠=,点E ,F 分别在AB ,AC 上,把A ∠沿着EF 对折,使点A 落在BC 上点D 处,且使ED BC ⊥. (1)猜测AE 与BE 的数量关系,并说明理由.(5分)(2)求证:四边形AEDF 是菱形(5分)26.巴中市进行课程改革已经五年了,为了了解学生对数学实验教材的喜欢程度,现对某中学初中学生进行了一次问卷调查,具体情况如下:①已知该校初一共月480人,求该校初中学生总数.(2分) ②求该校初二学生人数及其扇形的圆心角度数.(3分)③请补全统计表,并制作条形统计图来反映统计表中的内容.(5分) ④请计算不喜欢此教材的学生的频率,并对不喜欢此教材的同学提出一条建议,希望能通过你的建议让他喜欢上此教材.(2分)喜欢程序 非常喜欢 喜欢 不喜欢 人数 600人 100人xyOCA 图6CDBFEA 图7初一 初二 初三 图8五、(10分)27.赵明暑假到光雾山旅游,从地理课上知道山区气温会随着海拔高度的增加而下降,沿途他利用随身所带的登山表,测得以下数据:海拔高度()x m 400 500 600 700 气温()y C3231.430.830.2(1)现以海拔高度为x 轴,气温为y 轴建立平面直角坐标系(如图9),根据上表中提供的数据描出各点.(3分)(2)已知y 与x 之间是一次函数关系,求出这个关系式.(5分)(3)若赵明到达光雾山山巅时,测得当时气温为19.4C ,请求出这里的海拔高度.(2分)六、(10分)28.如图10所示,某学校拟建两幢平行的教学楼,现设计两楼相距30米,从A 点看C 点,仰角为5;从A 点看D 点,俯角为30,解决下列问题: (1)求两幢楼分别高多少米?(结果精确到1米)(6分)(2)若冬日上午9:00太阳光的入射角最低为30(光线与水平线的夹角),问一号楼的光照是否会有影响?请说明理由,若有,则两楼间距离应至少相距多少米时才会消除这种影响?(结果精确到1米)(4分) (参考数据:tan 50.0875≈ tan300.5774≈ cos30 1.732≈)七、(10分)29.在学习勾股定理时,我们学会运用图(I )验证它的正确性;图中大正方形的面积可表示为2()a b +,也可表示为2142c ab ⎛⎫+⎪⎝⎭,即221()42a b c ab ⎛⎫+=+ ⎪⎝⎭由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.x (米) 0 200 400 600 800 1000 29.630.2 30.831.432 32.633.233.8 y (℃)图9AC 1 号楼2 号 楼图10光线(1)请你用图(II )(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等).(3分)(2)请你用(III )提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++(3分)(3)请你自己设计图形的组合,用其面积表达式验证:22()()()x p x q x px qx pq x p q x pq ++=+++=+++(4分).八、(11分)如图12,以边长为2的正方形ABCD 的对角线所在直线建立平面直角坐标系,抛物线2y x bx c =++经过点B 且与直线AB 只有一个公共点. (1)求直线AB 的解析式.(3分)(2)求抛物线2y x bx c =++的解析式.(3分)(3)若点P 为(2)中抛物线上一点,过点P 作PM x ⊥轴于点M ,问是否存在这样的点P ,使PMC ADC △△?若存在,求出点P 的坐标;若不存在,请说明理由.(5分)图12。

江苏省常州市初中毕业、升学统一考试数学试卷

江苏省常州市初中毕业、升学统一考试数学试卷

江苏省常州市2007年初中毕业、升学统一考试数学试卷注意事项:1.全卷共8页,28题,满分120分,考试时间120分钟.2.答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上. 3.用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上.4.考生在答题过程中,可以使用CZ1206,HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π).一、填空题(本大题每个空格1分,共18分.把答案填在题中横线上) 1.2-的相反数是 ,13-的绝对值是 ,立方等于64-的数是 . 2.点(12)A -,关于x 轴对称的点的坐标是 ;点A 关于原点对称的点的坐标是 .3.若30α=∠,则α∠的余角是 °,cos α= .4.在校园歌手大赛中,七位评委对某位歌手的打分如下:9.8,9.5,9.7,9.6,9.5,9.5,9.6,则这组数据的平均数是 ,极差是 . 5.已知扇形的半径为2cm ,面积是24cm 3π,则扇形的弧长是 cm ,扇形的圆心角为 °.6.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 7.如图,已知DE BC ∥,5AD =,3DB =,9.9BC =,B =∠则ADE =∠ °,DE = ,ADEABCS S =△△ .8.二次函数2y ax bx c =++的部分对应值如下表:二次函数2y ax bx c =++图象的对称轴为x = ,2x =对应的函数值y = . 二、选择题(下列各题都给出代号为A ,B ,C ,D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后( )内,每小题2分,共18分) 9.在下列实数中,无理数是( ) A .13B .πCD .22710.在函数12y x =-+中,自变量x 的取值范围是( ) A .2x ≠B .2x -≤C .2x ≠-D .2x -≥11.下列轴对称图形中,对称轴的条数最少的图形是( ) A .圆 B .正六边形 C .正方形 D .等边三角形12.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是( )(第7题)BA .15B .25 C .23 D .1313.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是( )A .第3分时汽车的速度是40千米/时B .第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 14.下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是( ) 15.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号 B .16号 C .17号 D .18号 16.若二次函数222y ax bx a =++-(a b ,为常数)的图象如下,则a 的值为( ) A .2-B.C .1D17.如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA CB ,分别相交于点P Q ,,则线段PQ 长度的最小值是( ) A .4.75B .4.8C .5D.三、解答题(本大题共2小题,共18分.解答应写出演算步骤) 18.(本小题满分10分)化简: (1)0222-+ (2)24142x x ---.(第13题) /分A .B .C .D .(第16题)(第17题) A C19.(本小题满分8分)解方程: (1)341x x=-; (2)2220x x +-=.四、解答题(本大题共2小题,共12分.解答应写出证明过程) 20.(本小题满分5分)已知,如图,在ABCD 中,BAD ∠的平分线交BC 边于点E . 求证:BE CD =.21.(本小题满分7分) 已知,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接D E F ,,,得到DEF △为等边三角形.求证:(1)AEF CDE △≌△;(2)ABC △为等边三角形.五、解答题(本大题共2小题,共15分.解答应写出文字说明或演算步骤) 22.(本小题满分7分)图1是某市2007年2月5日至14日每天最低气温的折线统计图.(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;(第20题)(第21题) 图1 (第22题)(2)在这10天中,最低气温的众数是 ,中位数是 ,方差是 . 23.(本小题满分8分)A 口袋中装有2个小球,它们分别标有数字1和2;B 口袋中装有3个小球,它们分别标有数字3,4和5.每个小球除数字外都相同.甲、乙两人玩游戏,从A B ,两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.六、探究与画图(本大题共2小题,共13分) 24.(本小题满分6分)如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等. (1)设菱形相邻两个内角的度数分别为m 和n ,将菱形的“接近度”定义为m n -,于是,m n -越小,菱形越接近于正方形.①若菱形的一个内角为70,则该菱形的“接近度”等于 ;(2)设矩形相邻两条边长分别是a 和b (a b ≤),将矩形的“接近度”定义为a b -,于是a b -越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义. 25.(本小题满分7分) 已知1O 经过(42)A -,,(33)B -,,(11)C --,,(00)O ,四点,一次函数2y x =--的图象是直线l ,直线l 与y 轴交于点D .anm(1)在右边的平面直角坐标系中画出1O ,直线l 与1O 的交点坐标为 ; (2)若1O 上存在整点P (横坐标与纵坐标均为整数的点称为整点),使得APD △为等腰三角形,所有满足条件的点P 坐标为 ; (3)将1O 沿x 轴向右平移 个单位时,1O 与y 相切.七、解答题(本大题共3小题,共26分.解答应写出文字说明、证明过程或演算步骤) 26.(本小题满分7分)学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名? 27.(本小题满分9分)已知,如图,正方形ABCD 的边长为6,菱形EFGH 的三个顶点E G H ,,分别在正方形ABCD 边ABCD DA ,,上,2AH =,连接CF . (1)当2DG =时,求FCG △的面积;(2)设DG x =,用含x 的代数式表示FCG △的面积; (3)判断FCG △的面积能否等于1,并说明理由.(第27题)A28.(本小题满分10分)已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.(第28题)[参考答案] http://一、填空题(每个空格1分,共18分)1.2,13,4-;2.(12),,(12)-,; 3.60,2; 4.9.6,0.3;5.43π,120; 6.2-,2; 7.50,6.6,49; 8.1,8-.二、选择题(本大题共9小题,每小题2分,共18分)三、解答题(本大题共2题,第18题10分,第19题8分,共18分.解答应写出演算步骤)18.解:(1)原式1134=+- ························ 3分 74=-. ························· 5分 (2)原式42(2)(2)(2)(2)x x x x x +=--+-+ ·················· 2分42(2)(2)x x x --=-+ ························· 3分(2)(2)(2)x x x --=-+ ························· 4分12x =-+. ··························· 5分 19.解:(1)去分母,得344x x =-. ···················· 1分 解得,4x =. ······························ 2分 经检验,4x =是原方程的根.∴原方程的根是4x =. ·························· 4分(2)2(1)3x +=, ···························· 2分1x += ······························ 3分11x ∴=-21x =- ······················ 4分四、解答题(本大题共2小题,第20题5分,第21题7分,共12分.解答应写出证明过程)21.证明:四边形ABCD 是平行四边形,AD BC ∴∥,AB CD =.DAE BEA ∴=∠∠. ··························· 1分AE 平分BAD ∠,BAE DAE ∴=∠∠.·················· 2分 BAE BEA ∴=∠∠. ··························· 3分AB BE ∴=.······························· 4分 又AB CD =,BE CD ∴=. ······················· 5分 21.证明:(1)BF AC =,AB AE =,FA EC ∴=.············ 1分 DEF △是等边三角形,EF DE ∴=. ··················· 2分 又AE CD =,AEF CDE ∴△≌△. ··················· 4分 (2)由AEF CDE △≌△,得FEA EDC =∠∠,BCA EDC DEC FEA DEC DEF =+=+=∠∠∠∠∠∠,DEF △是等边三角形,60DEF ∴=∠,60BCA ∴=∠,同理可得60BAC =∠. ·················· 5分ABC ∴△中,AB BC =. ························· 6分ABC ∴△是等边三角形.·························· 7分 五、解答题(第22题7分,第23题8分,共15分)22.(1)画图正确. ···························· 2分(2)7℃,7.5℃,2.49(℃)2(众数1分,中位数2分,方差2分). ······ 7分 23.解:画树状图: 或列表:····································· 4分 数字之和共有6种可能情况,其中和为偶数的情况有3种,和为奇数的情况有3种.1()2P ∴=和为偶数,1()2P =和为奇数,··················· 6分 ∴游戏对甲、乙双方是公平的. ······················· 8分六、探究与画图(第24题6分,第25题7分,共13分) 24.解:(1)①40. ···························· 2分 ②0. ·································· 4分 (2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但a b -却不相等.合理定义方法不唯一,如定义为b a .b a 越小,矩形越接近于正方形;ba越大,矩形与正方形的形状差异越大;当1ba=时,矩形就变成了正方形. ···· 6分 25.解:(1)画图,(11)--,,(42)-,. ··················· 3分 (2)(31)--,,(02),. ·························· 5分 (3)2+. ······························ 7分开始1 2 3 4 5 3 4 5 4 5 6 5 6 7和七、解答题(第26题7分,第27题9分,第28题10分,共26分) 26.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195.x y x y +=⎧⎨+=⎩,······························ 2分 解得15015.x y =⎧⎨=⎩, ······························ 3分答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10)m -名,216515015(10)1000216515015(10)1100.m m m m ⨯++-⎧⎨⨯++-⎩≥,≤ ···················· 5分 解得1041242727m ≤≤. ·························· 6分 m 是整数,4m ∴=,106m ∴-=. ··················· 7分答:二等奖4名,三等奖6名. 27.解:(1)正方形ABCD 中,2AH =,4DH ∴=. 又2DG =,因此HG =,即菱形EFGH的边长为 在AHE △和DGH △中,90A D ==∠∠,2AH DG ==,EH HG ==,AHE DGH ∴△≌△.AHE DGH ∴=∠∠.90DGH DHG +=∠∠,90DHG AHE ∴+=∠∠, 90GHE ∴=∠,即菱形EFGH 是正方形.同理可以证明DGH CFG △≌△.因此90FCG =∠,即点F 在BC 边上,同时可得2CF =,从而14242FCG S =⨯⨯=△. ························ 2分 (2)作FM DC ⊥,M 为垂足,连结GE ,AB CD ∥,AEG MGE ∴=∠∠,HE GF ∥,HEG FGE ∴=∠∠. AEH MGF ∴=∠∠. 在AHE △和MFG △中,90A M ==∠∠,HE FG =,AHE MFG ∴△≌△.2FM HA ∴==,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2.BFA因此12(6)62FCG S x x =⨯⨯-=-△. ···················· 6分(3)若1FCG S =△,由6FCG S x =-△,得5x =,此时,在DGH △中,HG =相应地,在AHE △中,6AE =>,即点E 已经不在边AB 上.故不可能有1FCG S =△. ·························· 9分 另法:由于点G 在边DC 上,因此菱形的边长至少为4DH =,当菱形的边长为4时,点E 在AB 边上且满足AE =,此时,当点E 逐渐向右运动至点B 时,HE 的长(即菱形的边长)将逐渐变大,最大值为HE =此时,DG =0x ≤≤. 而函数6FCG S x =-△的值随着x 的增大而减小,因此,当x =FCG S △取得最小值为6-.又因为661->-=,所以,FCG △的面积不可能等于1. ····· 9分28.解:(1)由(1)2(33)m m -=+,得m =-k = ····· 2分(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =,BC =,因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠.当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意. ······························· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF ,12AD m =,由点(1A --,,得点11(1)D m --,.因此11(1)(23)m --+=解之得1m =10m =舍去),因此点63D ⎛ ⎝⎭,.此时AD =BC 的长度不等,故四边形ADBC 是梯形. ········ 5分如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH m m =>,则2DH =,22CD m =由点(10)C -,,得点22(1)D m -+,因此22(1)3m m -+=.解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········· 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,同理可得,点(2D --,,四边形ABCD 是梯形. ·············· 9分综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:63D ⎛ ⎝⎭,或(1D 或(2D --,. ········ 10分图1图2 图3。

常州市中考数学试卷含参考答案和评分标准

常州市中考数学试卷含参考答案和评分标准

常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。

2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。

3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。

4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。

一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是,9的平方根是 。

2.在函数1-=x y 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。

3.若α∠的补角是120°,则α∠= °,=αcos 。

4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。

5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。

6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。

当0πx 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。

8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。

二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =• C .2222x x x =+ D .()423a a -=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y x B .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0πφπb a b a +,那么下列关系式中正确的是 【 】 A .a b b a --φφφ B .b b a a --φφφ C .a b a b --φφφ D .a b b a φφφ--17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1A F BCDEHG①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫ ⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。

常州市中考数学试卷及答案(Word解析版)

常州市中考数学试卷及答案(Word解析版)

江苏省常州市中考数学试卷一.选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.(2分)(•常州)在下列实数中,无理数是()A.2B.3.14 C.D.考点:无理数.分析:根据无理数,有理数的定义对各选项分析判断后利用排除法求解.解答:解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C 、﹣是有理数,故本选项错误;D 、是无理数,故本选项正确.故选D.点评:主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)(•常州)如图所示圆柱的左视图是()A.B.C.D.考点:简单几何体的三视图分析:找到从左面看所得到的图形即可.解答:解:此圆柱的左视图是一个矩形,故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(2分)(•常州)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是()A.B.C.D.考点:反比例函数图象上点的坐标特征分析:设将点(1,﹣1)代入所设的反比例函数关系式y=(k≠0)即可求得k的值.解答:解:设经过点(1,﹣1)的反比例函数关系式是y=(k≠0),则﹣1=,解得,k=﹣1,所以,所求的函数关系式是y=﹣或.故选A.点评:本题主要考查反比例函数图象上点的坐标特征.所有反比例函数图象上点的坐标都满足该函数解析式.4.(2分)(•常州)下列计算中,正确的是()A.(a3b)2=a6b2B.a•a4=a4C.a6÷a2=a3D.3a+2b=5ab考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解.解答:解:A、(a3b)2=a6b2,故本选项正确;B、a•a4=a5,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、3a与2b不是同类项,不能合并,故本选项错误.故选A.点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,理清指数的变化是解题的关键.5.(2分)(•常州)已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较考点:方差.分析:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.解答:解:由题意得,方差<,A、甲组数据没有乙组数据的波动大,故本选项错误;B、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C、甲组数据没有乙组数据的波动大,故本选项错误;D、甲组数据没有乙组数据的波动大,故本选项错误;故选B.点本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波评:动性的大小,方差越大,波动性越大.6.(2分)(•常州)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断考点:直线与圆的位置关系.分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解答:解:∵⊙O的半径为6,圆心O到直线l的距离为5,∵6>5,即:d<r,∴直线L与⊙O的位置关系是相交.故选;C.点评:本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.7.(2分)(•常州)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0考点:二次函数的最值;抛物线与x轴的交点.分析:根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.解答:解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选B.点评:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.8.(2分)(•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b考点:完全平方公式的几何背景.分析:根据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案.解答:解;3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,∵a2+4ab+4b2=(a+2b)2,∴拼成的正方形的边长最长可以为(a+2b),故选D.点评:此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.二.填空题(本大题共有9小题,第9小题4分,其余8小题每小题4分,共20分,)9.(4分)(•常州)计算﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.考点:有理数的乘方;相反数;绝对值;有理数的减法.分析:根据相反数的定义,绝对值的性质,负整数指数幂,有理数的乘方的意义分别进行计算即可得解.解答:解:﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.故答案为:3;3;﹣;9.点评:本题考查了相反数的定义,绝对值的性质,负整数指数幂,以及有理数的乘方的意义,是基础题.10.(2分)(•常州)已知点P(3,2),则点P关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.解答:解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).故答案为:(﹣3,2);(﹣3,﹣2).点评:本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.11.(2分)(•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=2,b=﹣2.考点:待定系数法求一次函数解析式.分析:把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答即可.解答:解:∵一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B (1,0),∴,解得.故答案为:2,﹣2.点评:本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用.12.(2分)(•常州)已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是5πcm,扇形的面积是15πcm2(结果保留π).考点:扇形面积的计算;弧长的计算.分析:根据扇形的弧长公式l=和扇形的面积=,分别进行计算即可.解答:解:∵扇形的半径为6cm,圆心角为150°,∴此扇形的弧长是:l==5π(cm),根据扇形的面积公式,得S扇==15π(cm2).故答案为:5π,15π.点评:此题主要考查了扇形弧长公式以及扇形面积公式的应用,熟练记忆运算公式进行计算是解题关键.13.(2分)(•常州)函数y=中自变量x的取值范围是x≥3;若分式的值为0,则x=.考点:分式的值为零的条件;函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解;根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3;2x﹣3=0且x+1≠0,解得x=且x≠﹣1,所以,x=.故答案为:x≥3;.点评:本题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.(2分)(•常州)我市某一周的每一天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数是27,众数是28.考点:众数;中位数.分析:根据中位数、众数的定义,结合表格信息即可得出答案.解答:解:将表格数据从大到小排列为:25,26,27,27,28,28,28,中位数为:27;众数为:28.故答案为:27、28.点评:本题考查了众数、中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.(2分)(•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=﹣2或1.考点:一元二次方程的解.分析:方程的解就是能使方程左右两边相等的未知数的值,把x=﹣1代入方程,即可得到一个关于a的方程,即可求得a的值.解答:解:根据题意得:2﹣a﹣a2=0 解得a=﹣2或1点评:本题主要考查了方程的解得定义,是需要掌握的基本内容.16.(2分)(•常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.考点:圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系.分析:根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°,然后求出∠CAD=30°,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°,根据圆内接四边形对角互补求出∠BDC=60°再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°,解直角三角形求出BD,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠BAC=120°,∴∠CAD=120°﹣90°=30°,∴∠CBD=∠CAD=30°,又∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,∵AB=AC,∴∠ADB=∠ADC,∴∠ADB=∠BDC=×60°=30°,∵AD=6,∴在Rt△ABD中,BD=AD÷cos60°=6÷=4,在Rt△BCD中,DC=BD=×4=2.故答案为:2.点评:本题考查了圆周角定理,直角三角形30°角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键.17.(2分)(•常州)在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=﹣.考点:反比例函数综合题.分析:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),判断出△OBF∽△AOE,利用对应边成比例可求出k的值.解答:解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),∵∠AOE+∠BOF=90°,∠OBF+∠BOF=90°,∴∠AOE=∠OBF,又∵∠BFO=∠OEA=90°,∴△OBF∽△AOE,∴==,即==,则=﹣b①,a=②,①×②可得:﹣2k=1,解得:k=﹣.故答案为:﹣.点评:本题考查了反比例函数的综合题,涉及了相似三角形的判定与性质,反比例函数图象上点的坐标的特点,解答本题要求同学们能将点的坐标转化为线段的长度.三、解答题(本大题共2小题,共18分)18.(8分)(•常州)化简(1)(2).考点:分式的加减法;实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)分别进行二次根式的化简、零指数幂的运算,代入特殊角的三角函数值即可得出答案.(2)先通分,然后再进行分子的加减运算,最后化简即可.解答:解:(1)原式=2﹣1+2×=2.(2)原式=﹣==.点评:本题考查了分式的加减运算、特殊角的三角函数值及零指数幂的运算,属于基础题,掌握各部分的运算法则是关键.19.(10分)(•常州)解方程组和分式方程:(1)(2).考点:解分式方程;解二元一次方程组.分析:(1)利用代入消元法解方程组;(2)最简公分母为2(x﹣2),去分母,转化为整式方程求解,结果要检验.解答:解:(1),由①得x=﹣2y ③把③代入②,得3×(﹣2y)+4y=6,解得y=﹣3,把y=﹣3代入③,得x=6,所以,原方程组的解为;(2)去分母,得14=5(x﹣2),解得x=4.8,检验:当x=4.8时,2(x﹣2)≠0,所以,原方程的解为x=4.8.点评:本题考查了解分式方程,解二元一次方程组.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.四、解答题(本大题共2小题,共15分请在答题卡指定区域内作答,解答或写出文字说明及演算步骤)20.(7分)(•常州)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°.考点:条形统计图;扇形统计图.分析:(1)首先根据打篮球的人数是20人,占40%,求出总人数,再用总人数减去篮球、足球和其它人数得出乒乓球的人数,用各个爱好的人数除以总人数,即可得出所占的百分百,从而补全统计图;(2)用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.解答:解:(1)总人数是:20÷40%=50(人),则打乒乓球的人数是:50﹣20﹣10﹣15=5(人).足球的人数所占的比例是:×100%=20%,打乒乓球的人数所占的比例是:×100%=10%;其它的人数所占的比例是:×100%=30%.补图如下:(2)根据题意得:360°×=72°,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°;故答案为:72°.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)(•常州)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.考点:列表法与树状图法.专题:图表型.分析:(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.五.解答题(本大题共2小时,共13分,请在答题卡指定区域内作答,解答应写出证明过程)22.(6分)(•常州)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.考点:全等三角形的判定与性质.专题:证明题.分析:根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.解答:证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.点评:本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.23.(7分)(•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC 的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.解答:证明:∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.点评:此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.六.解答题(本大题共2小题,请在答题卡指定区域内作答,共13分)24.(6分)(•常州)在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=30°,∠A′BC=90°,OA+OB+OC=.考点:作图-旋转变换.专题:作图题.分析:解直角三角形求出∠ABC=30°,然后过点B作BC的垂线,在截取A′B=AB,再以点A′为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O′,连接A′O′、BO′,即可得到△A′O′B;根据旋转角与∠ABC的度数,相加即可得到∠A′BC;根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.解答:解:∵∠C=90°,AC=1,BC=,∴tan∠ABC===,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.故答案为:30°;90°;.点评:本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A′、O′四点共线是解题的关键.25.(7分)(•常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)表示出生产乙种饮料(650﹣x)千克,然后根据所需A种果汁和B种果汁的数量列出一元一次不等式组,求解即可得到x的取值范围;(2)根据销售总金额等于两种饮料的销售额的和列式整理,再根据一次函数的增减性求出最大销售额.解答:解:(1)设该厂生产甲种饮料x千克,则生产乙种饮料(650﹣x)千克,根据题意得,,由①得,x≤425,由②得,x≥200,所以,x的取值范围是200≤x≤425;(2)设这批饮料销售总金额为y元,根据题意得,y=3x+4(650﹣x)=3x+2600﹣4x=﹣x+2600,即y=﹣x+2600,∵k=﹣1<0,∴当x=200时,这批饮料销售总金额最大,为﹣200+2600=2400元.点评:本题考查了一次函数的应用,列一元一次不等式组解实际问题,根据A、B果汁的数量列出不等式组是解题的关键,(2)主要利用了一次函数的增减性.七.解答题(本大题共2小题,共25分,解答应写出文字说明,证明过程或演算步骤)26.(6分)(•常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=a+b﹣1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上格点边多边形内部格点多边形的面积的格点的个数的格点个数多边形1 8 1多边形2 7 3…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).考点:规律型:图形的变化类.分析:根据8=8+2(1﹣1),11=7+2(3﹣1)得到S=a+2(b﹣1).解答:解:填表如下:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形1 8 1 8多边形2 7 3 11…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).点评:考查了作图﹣应用与设计作图.此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.27.(9分)(•常州)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.考点:圆的综合题.专题:综合题.分析:(1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;(2)由△OAB为等腰直角三角形得AB=OA=6,根据三角形面积公式得到当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,此时C点到AB的距离的最大值为CE的长然后利用等腰直角三角形的性质计算出OE,然后计算△ABC的面积;(3)①过C点作CF⊥x轴于F,易证Rt△OCF∽Rt△AOD,则=,即=,解得CF=,再利用勾股定理计算出OF=,则可得到C点坐标;②由于OC=3,OF=,所以∠COF=30°,则可得到∴BOC=60°,∠AOD=60°,然后根据“SAS”判断△BOC≌△AOD,所以∠BCO=∠ADC=90°,再根据切线的判定定理可确定直线BC为⊙O的切线.解答:解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∵△OAB为等腰直角三角形,∴AB=OA=6,∴OE=AB=3,∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠ADO=∠COD=90°,∴∠DOA+∠DAO=90°而∠DOA+∠COF=90°,∴∠COF=∠DAO,∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,OF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADC=90°,∴OC⊥BC,∴直线BC为⊙O的切线.点评:本题考查了圆的综合题:掌握切线的判定定理、平行线的性质和等腰直角三角形的判定与性质;熟练运用勾股定理和相似比进行几何计算.28.(10分)(•常州)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P 点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.(1)写出A、C两点的坐标;(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a 的代数式表示);若不能,请说明理由.考点:一次函数综合题分析:(1)利用一次函数图象上点的坐标特征求解;(2)如答图1所示,解题关键是求出点P、点Q的坐标,然后利用PA=2PQ,列方程求解;(3)如答图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值.解答:解:(1)在直线解析式y=2x+2中,令y=0,得x=﹣1;x=0,得y=2,∴A(﹣1,0),C(0,2);(2)当0<m<1时,依题意画出图形,如答图1所示.∵PE=CE,∴直线l是线段PC的垂直平分线,∴MC=MP,又C(0,2),M(0,m),∴P(0,2m﹣2);直线l与y=2x+2交于点D,令y=m,则x=,∴D(,m),设直线DP的解析式为y=kx+b,则有,解得:k=﹣2,b=2m﹣2,∴直线DP的解析式为:y=﹣2x+2m﹣2.令y=0,得x=m﹣1,∴Q(m﹣1,0).已知△PAQ是以P为顶点的倍边三角形,由图可知,PA=2PQ,∴,即,整理得:(m﹣1)2=,解得:m=(>1,不合题意,舍去)或m=,∴m=.(3)当1<m<2时,假设存在实数m,使CD•AQ=PQ•DE.依题意画出图形,如答图2所示.由(2)可知,OQ=m﹣1,OP=2m﹣2,由勾股定理得:PQ=(m﹣1);∵A(﹣1,0),Q(m﹣1,0),B(a,0),∴AQ=m,AB=a+1;∵OA=1,OC=2,由勾股定理得:CA=.∵直线l∥x轴,∴△CDE∽△CAB,∴;又∵CD•AQ=PQ•DE,∴,∴,即,解得:m=.∵1<m<2,∴当0<a≤1时,m≥2,m不存在;当a>1时,m=.∴当1<m<2时,若a>1,则存在实数m=,使CD•AQ=PQ•DE;若0<a≤1,则m不存在.点评:本题是代数几何综合题,考查了坐标平面内一次函数的图象与性质、待定系数法、相似三角形、勾股定理、解方程等知识点.题目综合性较强,有一定的难度.第(3)问中,注意比例式的转化,这样可以简化计算.。

2024年江苏省常州市中考一模数学试题(含答案)

2024年江苏省常州市中考一模数学试题(含答案)

九年级教学情况调研测试数学试题2024.5一、选择题(本大题共8小题,每小题2分,共16分)1.的倒数是( )A.4B.C.D.2.截止2024年1月31日,理想汽车累计交付量达到约664500辆,其中664500可用科学记数法表示为( )A. B. C. D.3.计算的结果是()A. B. C. D.4.如图是由5个相同的小正方体组合而成的几何体,则该几何体的主视图是( )A. B. C. D.5.一元二次方程根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根D.没有实数根6.当时,代数式的值为6,那么当时,这个代数式的值是( )A.1B. C.6D.7.如图,A 、B 、C 、D 、E 、F 为的六等分点,甲同学从中任取三点画一个三角形,乙同学用剩下的点画一个三角形,则甲乙两位同学所画的三角形全等的概率为( )A.B.1C.D.8.小丽从常州开车去南京,开了一段时间后,发现油所剩不多了,于是开到服务区加油,加满油后又开始匀速行驶,下面哪一幅图可以近似的刻画该汽车在这段时间内的速度变化情况( )14-4-14-14466.4510⨯50.664510⨯56.64510⨯46.64510⨯()233xy -266x y259x y 269x y-269x y22310x x -+=2x =31ax bx ++2x =-5-4-O 122913A. B. C. D.二、填空题(本大题共10小题,每小题2分,共20分)9.4的算术平方根是__________.10.有意义,则x 的取值范围是_______.11.分解因式:________.12.点关于直线对称的点的坐标是_______.13.已知反比例函数,当时,y 随x 的增大而减小,则m 的取值范围是____.14.已知扇形的圆心角为,则这个扇形的面积_____.15.中,,,则的值是______.16.如图,是的直径,是的切线,交于点D ,连结,若,则的大小为______.17.如图,正方形的边长为10,,,,则线段的长为____.18.如图,正方形的边长为6,O 为正方形对角线的中点,点E 在边上,且,点F 是边上的动点,连接,点G 为的中点,连接、,当时,线段的长为____________.24x y y -=()2,3P -1x =5m y x-=0x >120︒S =ABC △90C ∠=︒4sin 5A =tan A AB O AC O OC O BD 26C ∠=︒B ∠︒ABCD 2CF =5BE AB =//GE CB GE ABCD AC AB 2BE =BC EF EF OG BG BG OG =EF三、解答题(共84分,其中19至26题每题8分,27、28题每题10分)19.计算(每小题4分,共8分)(1(2)20.解方程和不等式(每小题4分,共8分)(1)解方程:(2)解不等式组:21.(8分)为增进学生对数学知识的了解,某校开展了两次知识问答活动,从中随机抽取了30名学生两次活动的成绩进行整理、描述和分析,如图1,将这30名学生的第一次活动成绩作为横坐标,第二次活动成绩作为纵坐标.图1图2(1)学生甲第一次成绩是70分,则该生第二次成绩是________分.(2)两次成绩均达到或高于90分的学生有_____个(3)为了解每位学生两次活动平均成绩的情况,如图2是这30位学生两次活动平均成绩的频数分布直方图(数据分成8组:,,,,,,,)在的成绩分别是77,77,78,78,78,79,79,则这30位学生两次活动平均成绩的中位数是_________.(4)假设全校有1200名学生参加此次活动,请估计两次活动平均成绩不低于90分的学生人数.22.(8分)2024年春晚,魔术师表演了一个与纸牌相关的魔术,让人大开眼界,这个魔术中隐含了一个数学问题——约瑟夫问题,春晚结束后,小华和小丽玩起了抽扑克牌游戏,他们从同一副扑克牌中选出四张牌,牌面数字分别为3,6,7,9.将这四张牌背面朝上,洗匀.(1)小丽从中随机抽出一张牌,则抽到这张牌是奇数的概率是_____;(2)小丽从中随机抽取一张,记下牌面上的数字后放回,背面朝上,洗匀,接着小华再从中随机抽取一张,记下牌面上的数字,请求出他们抽到的两张扑克牌牌面数字之和恰好是3的倍数的概率.23.(8分)如图,菱形中,对角线、相交于点O ,过点C 作,过点D 作,与相交于点E .()6tan 603π︒+-()()()233232x y x y x y --+-12133x x+=--21512x x x x +>⎧⎪⎨+-≥⎪⎩6065x ≤<6570x ≤<7075x ≤<7580x ≤<8085x ≤<8590x ≤<9095x ≤<95100x ≤≤7580x ≤<ABCD AC BD //CE BD //DE AC CE DE(1)求证:四边形是矩形.(2)若,,求四边形的周长.24.(8分)《九章算术》中记载了这样一个问题:“假设5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、羊各值多少两银子?(2)若某商人准备用50两银子买牛和羊共20只,要求羊的数目不超过牛的数目的两倍,且银两有剩余,请问商人有几种购买方法?列出所有可能的购买方案。

常州市二OO五年初中毕业、升学统一考试数学试题及答案(word版本可编辑)

常州市二OO五年初中毕业、升学统一考试数学试题及答案(word版本可编辑)

常州市二OO 五年初中毕业、升学统一考试数学一、填空题(本大题每个空格1分,共18分,把答案填在题中横线上)1.31-的相反数是 , 31-的绝对值是 , 31-的倒数是 . 2.=0)2( ,=-2)21( .3.将1300000000用科学记数法表示为 .4.用计算器计算:sin35°≈ ,≈41 . (保留4个有效数字) 5.小明五次测试成绩如下:91、89、88、90、92,则这五次测试成绩的平均数是 ,方差是6.如图,正方形ABCD 的周长为16cm ,顺次连接正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于 cm ,四边形EFGH 的面积等于 cm 2. 7.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)= ,P(摸到奇数)= .8.已知抛物线562+-=x x y 的部分图象如图,则抛物线的对称轴为直线x= ,满足y <0的x 的取值范围是 ,将抛物线562+-=x x y 向 平移 个单位,则得到抛物线962+-=x x y.二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在【 】内,每题2分,共18分)第6题HGFE D CBA9.在下列实数中,无理数是【】14A、5B、0C、7D、510.将100个数据分成8个组,如下表:则第六组的频数为【】A、12 B、13 C、14 D、1511.如果某物体的三视图是如图所示的三个图形,俯视图左视图主视图第11题那么该物体的形状是【】A、正方体 B、长方体 C、三棱柱 D、圆锥12.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是 【 】 A 、③④②① B 、②④③① C 、③④①② D 、③①②④ 13.如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是 【 】 A 、60° B 、70° C 、80° D 、90°14.如图,等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于 A 、44° B 、68° C 、46° D 、22° 【 】 15.如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 【 】 A 、1516 B 、516 C 、1532 D 、1716第15题第16题D ABC16.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是 【 】 A 、2 B 、3 C 、4 D 、517.某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:丙乙甲给出以下3个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水. 则上述判断中一定正确的是【】A、①B、②C、②③D、①②③三、解答题(本大题共2小题,共18分,解答应写出文字说明、证明过程或演算步骤)18.(本小题满分10分)化简:(1)︒+-45sin2321;(2)3)3(32-+-xxxx19.(本小题满分8分)解方程(组):(1)xx321=-;(2)⎩⎨⎧=+=+825yxyx三、解答题(本大题共2小题,共12分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分5分)如图,在ABC ∆中,点D 、E 、F 分别在AB 、AC 、BC 上,BC DE //,AB EF //,且F 是BC 的中点. 求证:CF DE =F EDCB A21.(本小题满分7分)如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.F ED CBA五、解答题(本大题共2小题,共15分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分8分)有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.第二次测试第一次测试分数301040请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上); (1)两次测试最低分在第 次测试中; (2)第 次测试较容易;(3)第一次测试中,中位数在 分数段,第二次测试中,中位数在 分数段. 23.(本小题满分7分)某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球A 袋中摸出1个球,再从装有编号为1、2、3的三个红球B 袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你人为这种方法公平吗?请说明理由.六、画图与说理(本大题共2小题,共12分) 24.(本小题满分6分)如图,在ABC ∆中,1=BC ,2=AC ,090=∠C .(1)在方格纸①中,画'''C B A ∆,使'''C B A ∆∽ABC ∆,且相似比为2︰1; (2)若将(1)中'''C B A ∆称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点O 为对称中心,并且以直线l 为对称轴的图案.25.(本小题满分6分)如图,有一木制圆形脸谱工艺品,H 、T 两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D 处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点D 的位置(画出图形表示),并且分别说明理由.理由是:七、解答题(本大题共3小题,共27分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分7分)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶艺品用料情况如下表:(1)设制作B 型陶艺品x 件,求x 的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数.26.(本小题满分8分)有一个ABC Rt ∆,090=∠A ,090=∠B ,1=AB ,将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数xy 3=的图象上,求点C 的坐标.26.(本小题满分12分)已知⊙O 的半径为1,以O 为原点,建立如图所示的直角坐标系.有一个正方形ABCD ,顶点B 的坐标为(13-,0),顶点A 在x 轴上方,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在一条直线上时,CD 与⊙O 相切吗?如果相切,请说明理由,并求出OD 所在直线对应的函数表达式;如果不相切,也请说明理由;(2)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求出S 与x 的函数关系式,并求出S 的最大值和最小值.常州市2005年初中毕业、升学统一考试数学试题参考答案及评分标准一、 填空题(每个空格1分,共18分)1、3,31,31- ; 2、1 ,4 ; 3、1.3×109 ; 4、0.5736 , 6.403; 5、90,2 ; 6、28 ,8 ; 7、21,101 8、x=3 , 1<x <5 ,上 ,4 二、 选择题(本大题共9小题,每小题2分,共18分)三、解答题(第18题10分,第19题8分,共18分)18、解:(1)原式=222322+-……………………………………4分 =22- ………………………………………………5分(2)原式=22)3()3()3(3--+-x x x x x …………………………………2分 =22)3(33--+x xx x …………………………………………4分=22)3(-x x ………………………………………………5分 19、解:(1)去分母,得 x=3(x-2)……………………………………1分解得, x=3…………………………………………2分 经检验: x=3是原方程的根.……………………3分 ∴原方程的根是x=3 4分(2)⎩⎨⎧⋯⋯⋯⋯=+⋯⋯⋯⋯=+②y x ①y x 825②-①,得x=3………………………………………………2分 把x=3代入①,得3+y=5 , ∴y=2………………………3分∴方程组的解为⎩⎨⎧==23y x ………………………………………4分四、解答题(第20题5分,第21题7分,共12分)20、证明:∵DE ∥BC,EF ∥AB,∴四边形BDEF 是平行四边形 2分 ∴DE=BF 3分 ∵F 是BC 的中点∴BF=CF 4分 ∴DE=CF 5分 21、解:(1)图中还有相等的线段是:AE=BF=CD ,AF=BD=CE 2分 事实上,∵△ABC 与△DEF 都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD 3分又∵∠CED+∠AEF=120°,∠CDE+∠CED=120°∴∠AEF=∠CDE,同理,得∠CDE=∠BFD,4分∴△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD=CE 5分(2)线段AE、BF、CD它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF、BD、CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到。

常州市初中毕业暨升学考试模拟数学试卷及答案

常州市初中毕业暨升学考试模拟数学试卷及答案

常州市初中毕业暨升学考试模拟数学试卷(试卷满分:120分考试时间:90分钟)准考证号姓名座位号一、选择题:1.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2B.﹣3C.+4D.﹣12.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()3.对于用四舍五入法得到的近似数4.609万,下列说法中正确的是( )A.它精确到千分位B.它精确到0.01C.它精确到万位D.它精确到十位4.下列式子中,正确的是()A.a5n÷a n=a5B.(﹣a2)3•a6=a12C.a8n•a8n=2a8nD.(﹣m)(﹣m)4=﹣m55.如图,直线a∥b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG度数为()A.20°B.30°C.40°D.50°6.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6B.众数是7C.中位数是8D.平均数是107.函数的自变量x的取值范围为()A.x≠1 B.x>-1 C.x≥-1 D.x≥-1且 x≠18.下列函数中,y是x的一次函数的是()①y=x-6;②y= -3x –1;③y=-0.6x;④y=7-x.A.①②③B.①③④C.①②③④D.②③④9.一根长竹签切成四段,分别为3cm、5cm、7cm、9cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有()A. 1个 B. 2个 C.3个 D. 4个10.若x,x2是一元二次方程x2-5x+6=0的两个根,则x1+x2的值是( )1A.1B.5C.-5D.611.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12B.16C.18D.2412.如图,已知抛物线y=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、1y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题:13.某冷库的室温为-4 ℃,一批食品需要在-28 ℃冷藏,如果每小时降温3 ℃,经过小时后能降到所要求的温度.14.当x= 时,二次根式取最小值,其最小值为。

2021年常州市初中毕业、升学统一考试及答案数学

2021年常州市初中毕业、升学统一考试及答案数学

2021年常州市初中毕业、升学统一考试及答案数学常州市二OO五年初中毕业.升学统一考试数学一.填空题(本大题每个空格1分,共18分,把答案填在题中横线上)1.的相反数是, 的绝对值是, 的倒数是.2.,.3.将用科学记数法表示为.4.用计算器计算:sin35°≈, . (保留4个有效数字)5.小明五次测试成绩如下:91.89.88.90.92,则这五次测试成绩的平均数是,方差是6.如图,正方形ABCD的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于cm,四边形EFGH的面积等于cm2.7.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)= ,P(摸到奇数)= .8.已知抛物线的部分图象如图,则抛物线的对称轴为直线_= ,满足y<0的_的取值范围是,将抛物线向平移个单位,则得到抛物线.二.选择题(下列各题都给出代号为A.B.C.D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在【】内,每题2分,共18分)9.在下列实数中,无理数是【】A.5B.0C.D.10.将100个数据分成8个组,如下表:组号12345678频树1114121313_1210则第六组的频数为【】A.12B.13C.14D.1511.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是【】A.正方体B.长方体C.三棱柱D.圆锥12.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是【】A.③④②①B.②④③①C.③④①②D.③①②④13.如图,已知AB∥CD,直线分别交AB.CD于点E.F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是【】A.60°B.70°C.80°D.90°14.如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于A.44°B.68°C.46°D.22°【】15.如图,等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是【】A. B. C. D.16.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是【】A.2B.3C.4D.517.某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:给出以下3个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水. 则上述判断中一定正确的是【】A.①B.②C.②③D.①②③三.解答题(本大题共2小题,共18分,解答应写出文字说明.证明过程或演算步骤) 18.(本小题满分10分)化简:(1) ;(2)19.(本小题满分8分)解方程(组):(1) ;(2)三.解答题(本大题共2小题,共12分,解答应写出文字说明.证明过程或演算步骤) 20.(本小题满分5分)如图,在中,点..分别在..上,,,且是的中点.求证:21.(本小题满分7分)如图,已知为等边三角形,..分别在边..上,且也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.五.解答题(本大题共2小题,共15分.解答应写出文字说明.证明过程或演算步骤) 22.(本小题满分8分)有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上);(1)两次测试最低分在第次测试中;(2)第次测试较容易;(3)第一次测试中,中位数在分数段,第二次测试中,中位数在分数段.23.(本小题满分7分)某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1.2.3的三个白球袋中摸出1个球,再从装有编号为1.2.3的三个红球袋中摸出1个球(两袋中球的大小.形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你人为这种方法公平吗?请说明理由.六.画图与说理(本大题共2小题,共12分)24.(本小题满分6分)如图,在中,,,.(1)在方格纸①中,画,使∽,且相似比为2︰1;(2)若将(1)中称为〝基本图形〞,请你利用〝基本图形〞,借助旋转.平移或轴对称变换,在方格纸②中设计一个以点为对称中心,并且以直线为对称轴的图案.25.(本小题满分6分)如图,有一木制圆形脸谱工艺品,.两点为脸谱的耳朵,打算在工艺品反面两耳连线中点处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点的位置(画出图形表示),并且分别说明理由.理由是:七.解答题(本大题共3小题,共27分.解答应写出文字说明.证明过程或演算步骤) 26.(本小题满分7分)七(2)班共有50名学生,老师安排每人制作一件型或型的陶艺品,学校现有甲种制作材料36,乙种制作材料29,制作.两种型号的陶艺品用料情况如下表:需甲种材料需乙种材料1件型陶艺品0.90.31件型陶艺品0.41(1)设制作型陶艺品件,求的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作型和型陶艺品的件数.26.(本小题满分8分)有一个,,,,将它放在直角坐标系中,使斜边在轴上,直角顶点在反比例函数的图象上,求点的坐标.26.(本小题满分12分)已知⊙的半径为1,以为原点,建立如图所示的直角坐标系.有一个正方形,顶点的坐标为(,0),顶点在轴上方,顶点在⊙上运动.(1)当点运动到与点.在一条直线上时,与⊙相切吗?如果相切,请说明理由,并求出所在直线对应的函数表达式;如果不相切,也请说明理由;(2)设点的横坐标为,正方形的面积为,求出与的函数关系式,并求出的最大值和最小值.常州市_年初中毕业.升学统一考试数学试题参考答案及评分标准一.填空题(每个空格1分,共18分)1. ;2.1 ,4 ;3.1.3_109 ;4.0.5736 , 6.403;5.90,2 ;6. ,8 ;7.8._=3 , 1<_<5 ,上 ,4二.选择题(本大题共9小题,每小题2分,共18分)题号91011121314151617答案CDCCBDABA三.解答题(第18题10分,第19题8分,共18分)18.解:(1)原式=……………………………………4分= ………………………………………………5分(2)原式=…………………………………2分=…………………………………………4分=………………………………………………5分19.解:(1)去分母,得_=3(_-2)……………………………………1分解得, _=3…………………………………………2分经检验: _=3是原方程的根.……………………3分∴原方程的根是_=34分(2)②-①,得_=3………………………………………………2分把_=3代入①,得3+y=5 , ∴y=2………………………3分∴方程组的解为………………………………………4分四.解答题(第20题5分,第21题7分,共12分)20.证明:∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形2分∴DE=BF3分∵F是BC的中点∴BF=C F4分∴DE=CF5分21.解:(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE2分事实上,∵△ABC与△DEF都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD3分又∵∠CED+∠AEF=120°,∠CDE+∠CE D=120°∴∠AEF=∠CDE,同理,得∠CDE=∠BFD,4分∴△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD=CE5分(2)线段AE.BF.CD它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF.BD.CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.7分注:其他解法,按以上标准相应给分.五.解答题(第22题8分,第23题7分,共15分)22.答:(1)第一次;2分(2)第二次;4分(3)第一次分数的中位数在20_39分数段6分第二次分数的中位数在40_59分数段8分23.解:方法不公平.说理方法一:用表格来说明,红球白球1231(1,1)(2)(1,2)(3)(1,3)(4)2(2,1)(3)(2,2)(4)(2,3)(5)3(3,1)(4)(3,2)(5)(3,3)(6)说理方法二:用树状图来说明:所以,七(2)班被选中的概率为,七(3)班被选中的概率为,七(4)班被选中的概率为,七(5)班被选中的概率为,七(6)班被选中的概率为, 5分所以,这种方法不公平7分六.画图与说理(第24题6分,第25题6分,共12分)24.解:图不唯一 ,略 .第(1)题2分;第(2)题4分.25.解:画图正确4分方法一:如图①,画TH的垂线L交TH于D,则点D就是TH的中点.依据是垂径定理.5分方法二:如图②,分别过点T.H画HC⊥TO,TE⊥HO,HC与TE相交于点F,过点O.F画直线L交HT于点D,则点D就是HT的中点.由画图知,Rt△HOC≌Rt△TOE,易得HF=TF,又OH=OT所以点O.F在HT的中垂线上,所以HD=TD6分方法三:如图③,(原理同方法二)6分注:其它解法,按以上标准相应给分七.解答题(第26题7分,第27题8分,第28题12分,共27分)26.解:(1)由题意得:2分由①得,_≥18,由②得,_≤20,所以_的取值得范围是18≤_≤20(_为正整数)4分(2)制作A型和B型陶艺品的件数为:①制作A型陶艺品32件,制作B型陶艺品18件; 5分②制作A型陶艺品31件,制作B型陶艺品19件; 6分③制作A型陶艺品30件,制作B型陶艺品20件; 7分27.解:本题共有4种情况.如图①,过点A做AD⊥BC于D则AD=ABsin60°=,∴点A的纵坐标为1分将其代入y=,得_=2,即OD=22分在Rt△ADC中,DC=,所以OC=,即点C1的坐标为()3分(2)如图②,过点A作A E⊥BC于E则AE=,OE=2,CE=,所以OC=4分即点C2的坐标为(,0)5分根据双曲线的对称性,得点C3的坐标为() 6分点C4的坐标为()7分所以点C的坐标分别为:().(,0).().()28.(1)CD与⊙O相切.1分因为A.D.O在一直线上,∠ADC=90°,所以∠COD=90°,所以CD是⊙O的切线3分CD与⊙O相切时,有两种情况:①切点在第二象限时(如图①),设正方形ABCD的边长为a,则a2+(a+1)2=13,解得a=2,或a=-3(舍去)4分过点D作DE⊥OB于E,则Rt△ODE≌Rt△OBA,所以,所以DE=,OE=,所以点D1的坐标是(-,)5分所以OD所在直线对应的函数表达式为y=6分②切点在第四象限时(如图②),设正方形ABCD的边长为b,则b2+(b-1)2=13,解得b=-2(舍去),或b=37分过点D作DF⊥OB于F,则Rt△ODF∽Rt△OBA,所以,所以OF=,DF=,所以点D2的坐标是(,-)8分所以OD所在直线对应的函数表达式为y=9分(2)如图③,过点D作DG⊥OB于G,连接BD.OD,则BD2=BG2+DG2=(BO-OG)2+OD2-OG2=10分所以S=AB2=11分因为-1≤_≤1,所以S的最大值为,S的最小值为12分。

2020年常州市初中毕业升学统一考试初中数学

2020年常州市初中毕业升学统一考试初中数学

2020年常州市初中毕业升学统一考试初中数学数 学本卷须知:1.全卷共8页,28题,总分值120分,考试时刻120分钟.2.答卷前将密封线内的项目填写清晰,并将座位号填写在试卷规定的位置上.3.用蓝色或黑色钢笔、圆珠笔将答案直截了当填写在试卷上.4.考生在答题过程中,能够使用CZ1206,HY82型函数运算器,假设试题运算结果没有要求取近似值,那么运算结果取精确值〔保留根号和π〕.一、填空题〔本大题每个空格1分,共18分.把答案填在题中横线上〕1.2-的相反数是 ,13-的绝对值是 ,立方等于64-的数是 . 2.点(12)A -,关于x 轴对称的点的坐标是 ;点A 关于原点对称的点的坐标是 . 3.假设30α=∠,那么α∠的余角是 °,cos α= .4.在校园歌手大赛中,七位评委对某位歌手的打分如下:9.8,9.5,9.7,9.6,9.5,9.5,9.6,那么这组数据的平均数是 ,极差是 .5.扇形的半径为2cm ,面积是24cm 3π,那么扇形的弧长是 cm ,扇形的圆心角为 °.6.一次函数y kx b =+的图象通过点(02)A -,,(10)B ,,那么b = ,k = .7.如图,DE BC ∥,6=AD ,3DB =,9.9BC =,50B =∠,那么ADE =∠ °,DE = ,ADE ABCS S =△△ .8.二次函数2y ax bx c =++的部分对应值如下表: x … 3- 2- 0 1 3 5 … y … 7 0 8- 9- 5- 7 …二次函数2y ax bx c =++图象的对称轴为x = ,2x =对应的函数值y = .二、选择题〔以下各题都给出代号为A ,B ,C ,D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后〔 〕内,每题2分,共18分〕9.在以下实数中,无理数是〔 〕A .13B .πC .16D .22710.在函数12y x =-+中,自变量x 的取值范畴是〔 〕 A .2x ≠ B .2x -≤ C .2x ≠- D .2x -≥11.以下轴对称图形中,对称轴的条数最少的图形是〔 〕A .圆B .正六边形C .正方形D .等边三角形12.袋中有3个红球,2个白球,假设从袋中任意摸出1个球,那么摸出白球的概率是〔 〕A .15B .25C .23D .1313.如图,图象〔折线OEFPMN 〕描述了某汽车在行驶过程中速度与时刻的函数关系,以下讲法中错误的选项是......〔 〕A .第3分时汽车的速度是40千米/时B .第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时14.下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是〔 〕15.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但差不多上星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是〔 〕A .15号B .16号C .17号D .18号 16.假设二次函数222y ax bx a =++-〔a b ,为常数〕的图象如下,那么a 的值为〔 〕A .2-B .2-C .1D .217.如图,在ABC △中,10AB =,8AC =,6BC =,通过点C 且与边AB 相切的动圆与CA CB ,分不相交于点P Q ,,那么线段PQ 长度的最小值是〔 〕A .4.75B .4.8C .5D .42三、解答题〔本大题共2小题,共18分.解承诺写出演算步骤〕18.〔本小题总分值10分〕化简:〔1〕02229-+ 〔2〕24142x x ---. 19.〔本小题总分值8分〕解方程:〔1〕341x x=-; 〔2〕2220x x +-=. 四、解答题〔本大题共2小题,共12分.解承诺写出证明过程〕20.〔本小题总分值5分〕,如图,在ABCD 中,BAD ∠的平分线交BC 边于点E .求证:BE CD =.21.〔本小题总分值7分〕,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接D E F ,,,得到DEF △为等边三角形.求证:〔1〕AEF CDE △≌△;〔2〕ABC △为等边三角形.五、解答题〔本大题共2小题,共15分.解承诺写出文字讲明或演算步骤〕22.〔本小题总分值7分〕图1是某市2007年2月5日至14日每天最低气温的折线统计图.〔1〕图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,依照图1提供的信息,补全图2中频数分布直方图;〔2〕在这10天中,最低气温的众数是 ,中位数是 ,方差是 . 23.〔本小题总分值8分〕A 口袋中装有2个小球,它们分不标有数字1和2;B 口袋中装有3个小球,它们分不标有数字3,4和5.每个小球除数字外都相同.甲、乙两人玩游戏,从A B ,两个口袋中随机地各取出1个小球,假设两个小球上的数字之和为偶数,那么甲赢;假设和为奇数,那么乙赢.那个游戏对甲、乙双方公平吗?请讲明理由.六、探究与画图〔本大题共2小题,共13分〕24.〔本小题总分值6分〕如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为〝接近度〞.在研究〝接近度〞时,应保证相似图形的〝接近度〞相等.〔1〕设菱形相邻两个内角的度数分不为m 和n ,将菱形的〝接近度〞定义为m n -,因此,m n -越小,菱形越接近于正方形.①假设菱形的一个内角为70,那么该菱形的〝接近度〞等于 ;②当菱形的〝接近度〞等于 时,菱形是正方形.〔2〕设矩形相邻两条边长分不是a 和b 〔a b ≤〕,将矩形的〝接近度〞定义为a b -,因此a b -越小,矩形越接近于正方形.你认为这种讲法是否合理?假设不合理,给出矩形的〝接近度〞一个合理定义.25.〔本小题总分值7分〕⊙1O 通过(42)A -,,(33)B -,,(11)C --,,(00)O ,四点,一次函数2y x =--的图象是直线l ,直线l 与y 轴交于点D .〔1〕在下面的平面直角坐标系中画出⊙1O ,直线l 与⊙1O 的交点坐标为 ; 〔2〕假设⊙1O 上存在整点P 〔横坐标与纵坐标均为整数的点称为整点〕,使得APD △为等腰三角形,所有满足条件的点P 坐标为 ;〔3〕将⊙1O 沿x 轴向右平移 个单位时,⊙1O 与y 相切.七、解答题〔本大题共3小题,共26分.解承诺写出文字讲明、证明过程或演算步骤〕26.〔本小题总分值7分〕学校举办〝迎奥运〞知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖 三等奖 1盒福娃和1枚徽章 1盒福娃 1枚徽章用于购买奖品的总费用许多于1000元但不超过1100元,小明在购买〝福娃〞和微章前,了解到如下信息:〔1〕求一盒〝福娃〞和一枚徽章各多少元?〔2〕假设本次活动设一等奖2名,那么二等奖和三等奖应各设多少名?27.〔本小题总分值9分〕,如图,正方形ABCD 的边长为6,菱形EFGH 的三个顶点E G H ,,分不在正方形ABCD 边AB CD DA ,,上,2AH ,连接CF .〔1〕当2DG =时,求FCG △的面积;〔2〕设DG x =,用含x 的代数式表示FCG △的面积;〔3〕判定FCG △的面积能否等于1,并讲明理由.28.〔本小题总分值10分〕(1)A m -,与(233)B m +,是反比例函数k y x=图象上的两个点. 〔1〕求k 的值; 〔2〕假设点(10)C -,,那么在反比例函数k y x =图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?假设存在,求出点D 的坐标;假设不存在,请讲明理由.。

初中毕业升学考试(江苏常州卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(江苏常州卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(江苏常州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣2的绝对值是()A. ﹣2B. 2C.D.【答案】B【解析】试题分析:|﹣2|=2.故选B.考点:绝对值.【题文】计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.4【答案】D.【解析】试题分析:3﹣(﹣1)=4,故选D.考点:有理数的减法.【题文】如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体 B.三棱锥 C.球体 D.圆锥体【答案】A.【解析】试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.考点:数轴.【题文】如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()评卷人得分A.cm B.5cm C.6cm D.10cm【答案】B.【解析】试题分析:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm),∴该圆玻璃镜的半径是:MN=5cm.故选B.考点:圆周角定理;勾股定理.【题文】若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.> D.【答案】D.【解析】试题分析:A.在不等式x>y两边都加上1,不等号的方向不变,故A正确;B.在不等式x>y两边都乘上2,不等号的方向不变,故B正确;C.在不等式x>y两边都除以2,不等号的方向不变,故C正确;D.当x=1,y=﹣2时,x>y,但,故D错误.故选D.考点:不等式的性质.【题文】已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【答案】A.【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.【题文】已知一次函数(k≠0)和二次函数(a≠0)的自变量和对应函数值如表:当时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4【答案】D.【解析】试题分析:由表可知,(﹣1,0),(0,1)在直线一次函数的图象上,∴,∴,∴一次函数y1=x+1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数(a≠0)的图象上,∴,∴,∴二次函数.当时,∴,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D.考点:二次函数与不等式(组).【题文】化简:=.【答案】.【解析】试题分析:原式==.故答案为:.考点:二次根式的加减法.【题文】若分式有意义,则x的取值范围是.【答案】x≠﹣1.【解析】试题分析:∵分式有意义,∴x+1≠0,即x≠﹣﹣1.故答案为:x≠﹣1.考点:分式有意义的条件.【题文】分解因式:=.【答案】.【解析】试题分析:==.故答案为:.考点:提公因式法与公式法的综合运用.【题文】一个多边形的每个外角都是60°,则这个多边形边数为.【答案】6.【解析】试题分析:360÷60=6.故这个多边形边数为6.故答案为:6.考点:多边形内角与外角.【题文】若代数式的值与的值相等,则的值为____.【答案】﹣4.【解析】试题分析:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4.考点:解一元一次方程.【题文】在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 km .【答案】2.8km.【解析】试题分析:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km,∴这条道路的实际长度为2.8km.故答案为:2.8.考点:比例线段.【题文】已知正比例函数y=ax(a≠0)与反比例函数(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是.【答案】(1,1).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).考点:反比例函数与一次函数的交点问题.【题文】如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=__________.【答案】50°.【解析】试题分析:∵∠A=70°,∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.考点:圆内接四边形的性质.【题文】已知x、y满足,当0≤x≤1时,y的取值范围是.【答案】1≤y≤.【解析】试题分析:∵,∴,即,∴x+2y=3,∴y=,∵0≤x≤1,∴1≤y≤.故答案为:1≤y≤.考点:解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.【题文】如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE 面积的最大值是.【答案】1.【解析】试题分析:先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据,判断ab的最大值即可.试题解析:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵≥0,∴2ab≤,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质;最值问题.【题文】先化简,再求值,其中x=.【答案】﹣5x+1.【解析】试题分析:根据多项式乘以多项式先化简,再代入求值,即可解答.试题解析:原式== =﹣5x+1当x=时,原式=﹣5×+1=.考点:多项式乘多项式.【题文】解方程和不等式组:(1);(2).【答案】(1)x=;(2)﹣1<x≤2.【解析】试题分析:(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.试题解析:(1)原方程可化为x﹣5=5﹣2x,解得x=,把x=代入2x﹣5得,2x﹣5=≠0,故x=是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.考点:解分式方程;解一元一次不等式组.【题文】为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【答案】(1)2000;(2)作图见解析;(3)96万.【解析】试题分析:(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.试题解析:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.考点:条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【题文】一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【答案】(1);(2).【解析】试题分析:(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.试题解析:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.考点:列表法与树状图法;概率公式.【题文】如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O,(1)求证:OB=OC(2)如果∠ABC=50o,求∠BOC的度数。

最新江苏省常州市中考数学真题试卷附解析

最新江苏省常州市中考数学真题试卷附解析

江苏省常州市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个2.如图,在△ABC 中,AB=24,AC=18,D 是AC上一点,AD = 12,在AB 上取一点 E,使A、D、E三点组成的三角形与△ABC 相似,则AE的长为()A.16 B.l4 C.16 或14 D.16 或 93.BC 是 Rt△ABC 的一直角边,以 EC 为直径的圆交斜边于 D.若 BC=4 cm,∠ACB=60°,则 AD 为()A.4cnn B.6 cm C.2 cm D.8 cm4.下列命题中,是假命题的是()A.相等的角是对顶角 B.直角都相等C.在同一平面内不相交的两条直线平行 D.三角形的内角和等于180°5.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A′,则点A与点A′的关系是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.将点A向x轴负方向平移一个单位得点A′6.如图,线段AC、BD交于点0,且AO=CO,BO=DO,则图中全等三角形的对数有()A.1对B. 2对C.3对D.4对7.下列图案中是轴对称图形的是()A .B .C .D .8.下列各式中从左到右的变形,是因式分解的是( ) A .(a+3)(a-3)=a 2-9; B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x 1) 9.下列去括号,正确的是( )A .()a b a b -+=--B .(32)32x x --=--C .22(21)21a a a α--=--D .2()2z x y z x y --=-+ 10.有下列说法:①气象台预报明天阴有雨,所以明天下雨是必然事件;②9月份有30天是必然事件;③若a<0,则│a │=-a 是必然事件;④在只装有白球的口袋里摸出一个黑球,是不可能事件;其中说法正确的个数是( )A .4个B .3个C .2个D .1个二、填空题11.函数s =2t -t 2的最大值是_________.112.反比例函数k y x=的图象经过点(-2,1),则k 的值为 . 13.△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF=AC ,则∠ABC= 度.14.定义运算“@”的运算法则为: x @y = 4xy + ,则 (2@6)@8= .15.如图所示,已知AB ∥CD ,∠1=48°,∠D=∠C ,则∠B= .16.在Rt △ABC 中,∠C = 90°,∠B = 35°,则∠A = .17.如图,以直角三角形中未知边为边长的正方形的面积为 .18.如图,从电线杆离地面8 m 处拉一条缆绳,这条缆绳在地面上的固定点距离电线杆底部6m ,则这条缆绳的长为 m .19.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为.20.-(-2)-(-8)+(-3)-(+7)写成省略加号的和式是.21.最小的自然数是,最大的负整数是,绝对值最小的有理数是 .三、解答题22.如图所示,有一辆客车在平坦的大路上行驶,前方有两幢高楼,且 A.B 两处的高度分别为 72m 和 36m,两憧楼间距离为 30 m,客车离B楼 70 m,即 FC= 70m,求此时客车看到A 楼的高度.23.一个盒子中装有白色的小塑料球.为了估计这袋有多少小球,小明将形状、大小都相同的红色小球 1000 个混入其中,摇匀后任意取出 100 粒,发现红色小塑料球有 4 个,你能估计出自塑料球的个数吗?24.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.25.如图,在矩形ABCD中,点M在BC上,DM=DA,AE⊥DM,垂足为E.求证:(1)DE=MC;(2)AM平分∠BAE.26.如果将直角三角形的三条边长同时扩大一倍,得到三角形还是直角三角形吗?扩大n倍呢(n为正整数)?27.在等式y kx b=+中,当 x=3 时,y=-2;当 x=5时,y=2.求当y=0时x的值.28.解方程组2345y xx y=⎧⎨-=⎩和124223x yx y⎧-=⎪⎨⎪+=⎩各用什么方法解比较简便?求出它们的解.图1图2图3图429.已知边长为l cm的等边三角形ABC,如图所示.(1)将这个三角形绕它的顶点C按顺时针方向旋转30°,作出这个图形;(2)再将已知三角形分别按顺时针方向旋转60°,90°,l20°,作出这些图形.(3)继续将三角形向同一方向旋转150°,180°,210°,240°,270°,300°,330°,作出这些图形.你将会得到一个美丽的图案.30.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.A5.B6.D7.D8.C9.A10.B二、填空题12.-213.4514.615.132°16.55°17.10018.1019.360°20.2+8-3-7 21.0,-1,0三、解答题22.由题意得 Rt△CEF∽Rt△CDG,即703670530DG=++,CF EFGG DG=,解得 DG=54(m),∴ DH=GH-DG= 72 -54= 18(m)答:此时客车看到 A楼的高度为 18 m .23.设白塑料球有x个,则4100010010000x=+,解得x= 24000(个)答:估计白塑料球有 24000 个24.(1)55(2)最短路程为cm;(3)(1)证△AED ≌△DCM ;(2)由BM=ME ,AB ⊥BM ,AE ⊥ME 得M 在∠BAE 的平分线上 26.均是直角三角形27.x=428.对于方程组2345y x x y =⎧⎨-=⎩,用代入法解得12x y =-⎧⎨=-⎩;对于方程组124223x y x y ⎧-=⎪⎨⎪+=⎩,用加减法解得5412x y ⎧=⎪⎪⎨⎪=⎪⎩29.略30.4,15,26。

最新江苏省常州市中考数学综合测试试卷附解析

最新江苏省常州市中考数学综合测试试卷附解析

江苏省常州市中考数学综合测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,梯形 ABCD 中,AB ∥CD ,如果ODC S :1:3BDC S ∆∆=,那么:ODC ABC S S ∆∆=( )A .1:5B .1:6C .1:7D .1:92.将抛物线2y x =经过怎样的平移可得到抛物线269y x x =++( )A .向右平移3 个单位B .向左平移3个单位C .向上平移6 个单位D .向下平移6 个单位3.一张矩形纸片按如图甲和乙所示对折,然后沿着图丙中的虚线剪下,得到①,②两部分,将①展开后得到的平面图形是( )A .三角形B .矩形C .菱形D .梯形4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .21D .1或1-5.下列现象中,不属于旋转变换的是( )A .钟摆的运动B .行驶中汽车车轮C .方向盘的转动D .电梯的升降运动6.赵强同学借了一本书,共 280 页,要在两周借期内读完. 当他读了一半时,发现平均每天要多读 21 页才能在借期内读完. 他读前一半时,平均每天读多少页?如果设读前一 半时,平均每天读x 页,则下列方程中,正确的是( )A .1401401421x x +=-B .2802801421x x +=+ C .1401401421x x +=+ D .1010121x x +=+ 7.一个多边形各边长为5,6,7,8,9,另一个相似图形和6对应的边长为9,则这个相似图形的周长为 ( )A .35B .40.5C .45D .52.58.下列说法:①直线向两方无限延伸,它无长短之分,但有粗细之别;②两条直线相交, 只有一个交点;③点a 在直线AB 外;④直线动经过点P .其中不正确的有( )A .1个B .2个C .3个D .4个9.用扇形统计圆统计全县50万人口的民族构成比例,其中表示少数民族的扇形的圆心角为 90°,则在这个县中,少数民族有( )A .12.5万人B .13万人C .9万人D .10万人 10.下列各组代数式中,属于同类项的是( ) A .4ab 与4abc B .mn -与32mn C .223a b 与223ab D .2x y 与2x11.下列语句中正确的是( )A .自然数是正数B .0 是自然数C .带“-”号的数是负数D .一个数不是正数就是负数12.下列事件中,为必然事件的是( )A .掷一枚均匀的正方形骰子,骰子停止后朝上的点数是3B .一枚均匀的正方形骰子,骰子停止后朝上的点数不是奇数便是偶数C .随机从0,1,2,·…,9这十个数中选取两个数,和为 20D .开电视,正在播广告二、填空题13.如图,△ABC 中,点D在AB上,请填上一个你认为适合的条件 ,使得△ACD ∽△ABC .14. 在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.15.定理“对角线互相平分的四边形是平行四边形”的逆定理是: .16.已知一次函数y kx b =+(k ≠0)的图象经过点(0,1),而且y 随x 的增大而增大,请你写出一个符合上述条件的函数解析式 .17.已知113x y -=,则代数式21422x xy y x xy y----的值为 . 18.方程组⎩⎨⎧=-=+13y x y x 的解为_________.19.已知BD 是ΔABC 的一条中线, 如果ΔABD 和ΔBCD 的周长分别是21,12,则BC AB -的长是 .20.如果21(3)(4)34x A B x x x x +=+-+-+,那么A= ,B= . 21.有 A ,B,C 三个箱子,A 箱放 2个白球,B 箱和C 箱都各放1个白球和 1个红球,从这三个箱子中任取一球恰是红球的概率是 .22.已知数a 为负数,且数轴上表示a 的点到原点的距离等于 3,将该点向右移动 6 个单位后得到的数的相反数是 .三、解答题23.如图,已知有一腰长为 2 cm 的等腰直角△ABC 余料,现从中要截下一个半圆,半圆的直径要在三角形的一边上,且与另两边相切. 请设计两种栽截方案,画出示意图,并计算出半圆的半径.24.已知抛物线22(1)4y m x mx m =-++-图象过原点,开口向上.(1)求m 的值,并写出解析式;(2)求顶点坐标及对称轴;(3)当x 为何值时,y 是最值?是多少?25.老师在同一直角坐标系中画了一个反比例函数的图象以及一个正比例函数y=-x 的图象,请同学们观察.同学甲、乙对反比例函数图象的描述如下:同学甲:与直线y= 一x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为 5请根据以上信息,写出反比例函数的解析式.26.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答下列问题:(1)求药物燃烧时y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?27.规定一种新的运算:1a b a b a b∆=⋅-++,如3434341∆=⨯-++.请比较大小:(3)4-∆与4(3)∆-.28.如图,在△ABC中,AB=AC=BC,D为BC边上的中点,DE上AC于E,试说明CE=14 AC.29.利用因式分解计算下列各式:(1)2287872613+⨯+;(2)222008200740162007-⨯+30.小明买了6个梨的总质量是0.95 kg,那么平均每个梨的质量约为多少(精确到0.01 kg)?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.B5.D6.C7.D8.C9.A10.B11.B12.B二、填空题13.∠1=∠B 或∠2=∠ACB 或AB AC AC AD =或AC 2=AD ·AB(只填一个) 14.0.515.平行四边形的对角线互相平分16.y=2x+1(答案不唯一)17.418.21x y =⎧⎨=⎩19. 920.-1,121.1322. -3三、解答题23.如图的两种裁截方案:方案一:作∠CAB 的角平分线交 CB 于点0,以 0 为圆心,以 OC 为半径画半圆. 作OE ⊥AB. 则CO=EO ,由面积可得:AC BC AC CO OE AB ⋅=⋅+⋅,解得2OC =.方案二:作∠ACB 的角平分线交 AB 于点0,作 OD ⊥AC ,以 0为圆心,以 OD 为半径画半圆.作 OE ⊥CB ,则 OD=OE ,由面积可得0AC BC AC OD E CB ⋅=⋅+⋅,解得 OD=1. 24.(1)∵抛物线经过原点,∴240m -=,∵开口向上,∴2m =±∴抛物线的解析式为22y x x =+(2)顶点坐标( 一 1,一1),对称轴为直线x=-1.(3)当 x=-1 时,y 有量小值为-1. 25.∵反比例函数的图象与直线 y=一x 有两个交点,∴此图象必须经过四象限;∵图象上任意一点到两坐标轴的距离的积都为5,∴||5k =,∴k.=一5 (+5舍去). ∴5y x=-. 26.解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k =,145k =.∴此阶段函数解析式为45y x =. (2)设药物燃烧结束后的函数解析式为22(0)k y k x =≠,由题意得:2810k =, 280k =.∴此阶段函数解析式为80y x=. (3)当 1.6y <时,得80 1.6x<,0x >, 1.680x >,50x > ∴从消毒开始经过50分钟后学生才可回教室. 27.(-3)△4>4△(-3)28.说明CE=12CD=14AC 29.(1)10000;(2)130.0.16 kg。

最新江苏省常州市中考数学测评考试试题附解析

最新江苏省常州市中考数学测评考试试题附解析

江苏省常州市中考数学测评考试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,抛物线顶点坐标 P (1,3),则函数y 随自变量 x 的增大而减小的x 的取值范围是( )A .x ≥3B .x ≤3C .x ≥1D .x ≤12.下列图形不是中心对称图形的是( )A .圆B .平行四边形C .菱形D .等腰梯形 3.若0a <,则下列各点中在第二象限内的( ) A . (-2,a ) B .(-2,a -) C .(a ,-2) D . (a -,2)4.已知点P (x ,y )在第二象限,且12x +=,23y -=,则点P 的坐标为( ) A .(-3,5) B .(1,-l ) C .(-3,-l ) D .(1,5)5.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4) 6.设有12个型号相同的杯子,其中一等品7个,二等品3个,三等品2个.从中任意取一个,是二等品或三等品的概率是( )A .127B .41C .61D .1257.下面的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )8.下列各组图形中成轴对称的是( )A .B .C .D . 9.某种商品若按标价的八析出售,可获利20%,若按原标价出售,可获利 ( )A . 25%B .40%C . 50%D . 66.7% 二、填空题10.八年级的小亮和小明是好朋友,他们都报名参加学校的田径运动会,将被教练随机分进甲、乙、丙三个训练队,他俩被分进同一训练队的概率是 . 11.在“Welike maths. ”所有字母中,字母“e ”出现的频率约为 . (结果保留 2个有效数字)12.如图,在△ABC 和△DBC 中,E ,F ,G ,H 分别是AB ,DB ,DC ,AC 的中点,AD =3,BC =8,则四边形EFGH 的周长为 .13.在□ABCD 中,∠B=55°,则∠D= ,∠A= .14.已知一个正比例函数的图象经过点(-4,12),则这个正比例函数的解析式是 .15.当0a <,b<0 时,a b +< ,ab 0.16.在同一平面内,两条不相交的直线的位置关系是 .17.足球比赛前,裁判用抛一枚硬币猜正反面的方式让甲、乙两个队长选进攻方向,猜对正面的队长先选,则队长甲先选的概率是 .18.右表是某所学校400名学生早晨到校方式的统计数据.(1)表中数据是通过 获得的.(2)在学生早晨到校方式中,选择 的人数最多,其中选择公交车的人数占总人数的 . 19. 观察下面一列数的规律并填空:0,3,8,15,24,…,则它的第 n 个数是 (n ≥1 正整数).20. 已知有理数 a ,则 a 的相反数可用 表示. 三、解答题 21.已知,如图,□ABCD 中,AE:EB=1:2.(1)求△AEF 与△CDF 的周长之比;(2)如果6AEF S ∆=cm 2,求CDF S ∆.22.已知△ABC ,P 是边 AB 上的一点,连结CP ,问:方式人数 步行 64 公交车 88出租车 50自行车 172其他 26(1) △ACP 满足什么条件时,△ACP∽△ABC;(2) AC:AP 满足什么条件时,△ACP∽△ABC.23.如图,在矩形ABCD中,对角线AC和BD交于点0,点E,F,G,H分别是A0,B0,CD,D0的中点,请说明四边形EFGH是矩形.24.李大伯家有一个如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动. 如果要求新池塘成平行四边形的形状. 请问李大伯的愿望能否实现?若能,请画出你的设计图;若不能,请说明理由.25.如图,在等边△ABC中,D、E分别是AB、AC上的一点,AD=CE,CD、BE交于点F.(1)试说明∠CBE=∠ACD;(2)求∠CFE的度数.26.先化简再求值:412222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中4.27.说明:对于任何整数m,多项式9)54(2-+m 都能被8整除.28.你班的同学中有在同一个月出生的吗?有在同月同日出生的吗?你的同学在哪个月出生最多?其它班的同学也是在那个月出生最多吗?做个小调查,看看会有什么有趣的发现.29.如果用c 表示摄氏温度(℃),f 表示华氏温度 (℉),那么 c 与 f 之间的关系是:5(32)9c f =-,已知c=15,求f.30.2(44)(2)a a a -+÷-= .2a -【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.A5.C6.D7.B8.C9.C二、填空题10.111.30.1812.1113.55°,125°14.18y x =-15. 0,>16.平行17.21 18. (1)调查 (2)自行车;22%19.21n -20.-a三、解答题21.(1)∵□ABCD,∠DCA=∠CAB,∠CDE=∠DEA.∴△AEF ∽△CDF, ∵AE:EB=1:2,∴AEF :1:3CDF C C ∆∆=(2)∴9S 54CCDF AEF S ∆∆==cm 2.22.(1)∠ACP=∠B 时,△ACP ∽△ABC ;(2)AC AB AP AC=时,△ACP ∽△ABC. 23.证明四边形EFGH 是平行四边形及EG=FH24.能;设计图不唯一,如:25.(1)说明△ACD ≌△CBE ;(2)60°26.原式=3341-=+-x . 27.∵)252(81640169)54(222++=++=-+m m m m m ,∴9)54(2-+m 都能被8整除. 28.略29.59℉30.2a -。

2024年江苏省常州市中考数学试卷正式版含答案解析

2024年江苏省常州市中考数学试卷正式版含答案解析

绝密★启用前2024年江苏省常州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−2024的绝对值是( )A. −12024B. 12024C. −2024D. 20242.若式子√ x−2有意义,则实数x的值可能是( )A. −1B. 0C. 1D. 23.计算2a2−a2的结果是( )A. 2B. a2C. 3a2D. 2a44.下列图形中,为四棱锥的侧面展开图的是( )A. B.C. D.5.如图,在纸上画有∠AOB,将两把直尺按图示摆放,直尺边缘的交点P在∠AOB的平分线上,则( )A. d1与d2一定相等B. d1与d2一定不相等C. l1与l2一定相等D. l1与l2一定不相等6.2024年5月10日,记者从中国科学院国家天文台获悉,“中国天眼”FAST近期发现了6个距离地球约50亿光年的中性氢星系,这是人类迄今直接探测到的最远的一批中性氢星系.50亿光年用科学记数法表示为( ) A. 50×108光年 B. 5×108光年 C. 5×109光年 D. 5×1010光年7.如图,推动水桶,以点O为支点,使其向右倾斜.若在点A处分别施加推力F1、F2,则F1的力臂OA大于F2的力臂OB.这一判断过程体现的数学依据是( )A. 垂线段最短B. 过一点有且只有一条直线与已知直线垂直C. 两点确定一条直线D. 过直线外一点有且只有一条直线与已知直线平行8.在马拉松、公路自行车等耐力运动的训练或比赛中,为合理分配体能,运动员通常会记录每行进1km所用的时间,即“配速”(单位:min/km).小华参加5km的骑行比赛,他骑行的“配速”如图所示,则下列说法中错误的是( )A. 第1km所用的时间最长B. 第5km的平均速度最大C. 第2km和第3km的平均速度相同D. 前2km的平均速度大于最后2km的平均速度第II卷(非选择题)二、填空题:本题共10小题,每小题2分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常州市二OO 五年初中毕业、升学统一考试数学一、填空题(本大题每个空格1分,共18分,把答案填在题中横线上)1.31-的相反数是 , 31-的绝对值是, 31-的倒数是 . 2.=0)2( ,=-2)21( .3.将1300000000用科学记数法表示为 .4.用计算器计算:sin35°≈ ,≈41 . (保留4个有效数字) 5.小明五次测试成绩如下:91、89、88、90、92,则这五次测试成绩的平均数是 ,方差是6.如图,正方形ABCD 的周长为16cm ,顺次连接正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于 cm ,四边形EFGH 的面积等于 cm 2. 7.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)= ,P(摸到奇数)= .8.已知抛物线562+-=x x y 的部分图象如图,则抛物线的对称轴为直线x= ,满足y <0的x 的取值范围是 ,将抛物线562+-=x x y 向 平移 个单位,则得到抛物线962+-=x x y .二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在【 】内,每题2分,共18分)第6题HGFE D CBA9.在下列实数中,无理数是【】14A、5B、0C、7D、510.将100个数据分成8个组,如下表:组号 1 2 3 4 5 6 7 8频树11 14 12 13 13 x 12 10则第六组的频数为【】A、12 B、13 C、14 D、1511.如果某物体的三视图是如图所示的三个图形,俯视图主视图左视图第11题那么该物体的形状是【】A、正方体 B、长方体 C、三棱柱 D、圆锥12.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是 【 】 A 、③④②① B 、②④③① C 、③④①② D 、③①②④ 13.如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是 【 】 A 、60° B 、70° C 、80° D 、90°14.如图,等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于 A 、44° B 、68° C 、46° D 、22° 【 】 15.如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 【 】 A 、1516 B 、516 C 、1532 D 、1716第15题第16题D ABC16.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是 【 】 A 、2 B 、3 C 、4 D 、517.某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:丙乙甲给出以下3个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水. 则上述判断中一定正确的是【】A、①B、②C、②③D、①②③三、解答题(本大题共2小题,共18分,解答应写出文字说明、证明过程或演算步骤)18.(本小题满分10分)化简:(1)︒+-45sin2321;(2)3)3(32-+-xxxx19.(本小题满分8分)解方程(组):(1)xx321=-;(2)⎩⎨⎧=+=+825yxyx三、解答题(本大题共2小题,共12分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分5分)如图,在ABC ∆中,点D 、E 、F 分别在AB 、AC 、BC 上,BC DE //,AB EF //,且F 是BC 的中点. 求证:CF DE =F EDCB A21.(本小题满分7分)如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.F ED CBA五、解答题(本大题共2小题,共15分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分8分)有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.第二次测试第一次测试301040请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上); (1)两次测试最低分在第 次测试中; (2)第 次测试较容易;(3)第一次测试中,中位数在 分数段,第二次测试中,中位数在 分数段. 23.(本小题满分7分)某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球A 袋中摸出1个球,再从装有编号为1、2、3的三个红球B 袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你人为这种方法公平吗?请说明理由.六、画图与说理(本大题共2小题,共12分) 24.(本小题满分6分)如图,在ABC ∆中,1=BC ,2=AC ,090=∠C .(1)在方格纸①中,画'''C B A ∆,使'''C B A ∆∽ABC ∆,且相似比为2︰1; (2)若将(1)中'''C B A ∆称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点O 为对称中心,并且以直线l 为对称轴的图案.25.(本小题满分6分)如图,有一木制圆形脸谱工艺品,H 、T 两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D 处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点D 的位置(画出图形表示),并且分别说明理由.理由是:七、解答题(本大题共3小题,共27分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分7分)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶艺品用料情况如下表:需甲种材料 需乙种材料 1件A 型陶艺品 0.9kg 0.3kg 1件B 型陶艺品0.4kg1kg(1)设制作B 型陶艺品x 件,求x 的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数.26.(本小题满分8分)有一个ABC Rt ∆,090=∠A ,090=∠B ,1=AB ,将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数xy 3=的图象上,求点C 的坐标.26.(本小题满分12分)已知⊙O 的半径为1,以O 为原点,建立如图所示的直角坐标系.有一个正方形ABCD ,顶点B 的坐标为(13-,0),顶点A 在x 轴上方,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在一条直线上时,CD 与⊙O 相切吗?如果相切,请说明理由,并求出OD 所在直线对应的函数表达式;如果不相切,也请说明理由;(2)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求出S 与x 的函数关系式,并求出S 的最大值和最小值.常州市 初中毕业、升学统一考试 数学试题参考答案及评分标准一、 填空题(每个空格1分,共18分)1、3,31,31- ; 2、1 ,4 ; 3、1.3×109 ; 4、0.5736 , 6.403; 5、90,2 ; 6、28 ,8 ; 7、21,101 8、x=3 , 1<x <5 ,上 ,4 二、 选择题(本大题共9小题,每小题2分,共18分)三、解答题(第18题10分,第19题8分,共18分)18、解:(1)原式=222322+-……………………………………4分 =22- ………………………………………………5分(2)原式=22)3()3()3(3--+-x x x x x …………………………………2分 =22)3(33--+x xx x …………………………………………4分=22)3(-x x ………………………………………………5分 19、解:(1)去分母,得 x=3(x-2)……………………………………1分解得, x=3…………………………………………2分 经检验: x=3是原方程的根.……………………3分 ∴原方程的根是x=3 4分(2)⎩⎨⎧⋯⋯⋯⋯=+⋯⋯⋯⋯=+②y x ①y x 825②-①,得x=3………………………………………………2分 把x=3代入①,得3+y=5 , ∴y=2………………………3分∴方程组的解为⎩⎨⎧==23y x ………………………………………4分四、解答题(第20题5分,第21题7分,共12分)20、证明:∵DE ∥BC,EF ∥AB,∴四边形BDEF 是平行四边形 2分 ∴DE=BF 3分 ∵F 是BC 的中点∴BF=CF 4分 ∴DE=CF 5分 21、解:(1)图中还有相等的线段是:AE=BF=CD ,AF=BD=CE 2分 事实上,∵△ABC 与△DEF 都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD 3分又∵∠CED+∠AEF=120°,∠CDE+∠CED=120°∴∠AEF=∠CDE,同理,得∠CDE=∠BFD,4分∴△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD=CE 5分(2)线段AE、BF、CD它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF、BD、CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到。

7分注:其他解法,按以上标准相应给分。

五、解答题(第22题8分,第23题7分,共15分)22、答:(1)第一次;2分(2)第二次;4分(3)第一次分数的中位数在20~39分数段6分第二次分数的中位数在40~59分数段8分23、解:方法不公平。

相关文档
最新文档