“胡不归模型”——中考最值专题.doc

合集下载

九年级培优专题:经典几何模型——“胡不归”

九年级培优专题:经典几何模型——“胡不归”

经典几何模型——“阿氏圆”与“胡不归” 一.“胡不归”模型典故从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。

由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径 A →B (如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。

邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…何以归”。

这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。

二.“胡不归”模型建立如图所示,已知sin ∠MBN =k ,点 P 为角∠MBN 其中一边 BM 上的一个动点,点A 在射线BM 、BN 的同侧,连接AP ,则当“PA +k ·PB ”最小时,P 点的位置如何确定? 分析:本题的关键在于如何确定“k ·PB ”的大小,过点P 作 PQ ⊥BN 垂足为Q ,则 k ·PB =PB ·sin ∠MBN =PQ , “PA +k ·PB ”的最小值转化为求“PA +PQ ”的最小值,即A 、P 、Q 三点共线时最小。

三.“胡不归”模型破解策略“胡不归”构造某角正弦值等于系数k (k 小于1)当k 值大于1时,则提取k ,构造某角正弦值等于系数k1 起点构造所需角(k =sin ∠CAE )→过终点作所构角边的垂线→利用垂线段最短解决四.“胡不归”典型例题讲解1.四边形ABCD 是菱形,AB =6,且∠ABC =60°,M 为对角线BD (不含B 点)上任意一点,则 AM +21BM 的最小值为 . 变式思考:(1)本题如要求“2AM +BM ”的最小值你会求吗?(2)本题如要求“AM +BM +CM ”的最小值你会求吗?A DBC 沙 砾 地 带2.如图,等腰△ABC 中,AB =AC =3,BC =2,BC 边上的高为AO ,点D为射线AO 上一点,一动点P 从点A 出发,沿AD -DC 运动,动点P 在AD 上运动速度3个单位每秒,动点P 在CD 上运动的速度为1个单位每秒,则当AD = 时,运动时间最短为 秒.3.如图,在菱形ABCD 中,AB =6,且∠ABC =150°,点P 是对角线AC 上的一个动点,则P A +2PB 的最小值为 .用费马点思想做下试试4.如图,在△ACE 中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上。

最值模型之胡不归(学生版)-中考数学专题解析

最值模型之胡不归(学生版)-中考数学专题解析

最值模型之胡不归“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。

1.当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理(见专题08);2.当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。

此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。

即点P在直线上运动和点P 在圆上运动。

(1)其中点P在直线上运动的类型称之为“胡不归”问题;(2)点P在圆周上运动的类型称之为“阿氏圆”问题(见专题11)。

胡不归:【模型建立】如图1:P是直线BC上的一动点,求PA+k·PB的最小值。

【作法】1.作∠CBE=α,使sinα=k,则PD=k·OP(图2)2.当AD最短,AD⊥BE时,则P为要求点。

(图3)AD长即为PA+k·PB的最小值.简记:胡不归,正弦作个角,作高求长即可.特别提醒:当k>1时,kAP+BP=k AP+1k BP按常规模型算即可1∠AOB=30°,OM=2,D为OB上动点,求MD+12OD的最小值.2(1)【问题探究】如图1,点E是等边△ABC高AD上的一定点,请在AB上找一点F,使EF=12AE,并说明理由;(2)【问题解决】如图2,在△ACD中,CO⊥AD,垂足为O,若AD=32,AC=2,OC=3,点P在OC上,求DP+12PC的最小值.(3)【问题拓展】如图3,△ABC中,AB=AC=10,tan∠A=2,BE⊥AC于点E,D是线段BE上的一个动点,求CD+ 55BD的最小值.1.实战训练1一.选择题(共8小题)1如图,在△ABC 中,P 为平面内的一点,连接AP 、PB 、PC ,若∠ACB =30°,AC =8,BC =10,则4PA +2PB +23PC 的最小值是()A.489B.36C.410+25+67D.1610-102如图,△ABC 为等边三角形,BD 平分∠ABC ,AB =2,点E 为BD 上动点,连接AE ,则AE +12BE 的最小值为()A.1B.2C.3D.23如图,在平面直角坐标系中,抛物线y =-49x 2+83x 与x 轴的正半轴交于点A ,B 点为抛物线的顶点,C 点为该抛物线对称轴上一点,则3BC +5AC 的最小值为()A.24B.25C.30D.364如图,在等边△ABC 中,AB =6,点E 为AC 中点,D 是BE 上的一个动点,则CD +12BD 的最小值是()A.3B.33C.6D.3+35如图,在菱形ABCD中,AB=AC=6,对角线AC、BD相交于点O,点M在线段AC上,且AM= 2,点P是线段BD上的一个动点,则MP+12PB的最小值是()A.2B.23C.4D.436如图,在Rt△ABC中,∠ACB=90°,∠A=30°,则AB=2BC.请在这一结论的基础上继续思考:若AC=2,点D是AB的中点,P为边CD上一动点,则AP+12CP的最小值为()A.1B.2C.3D.27如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD +55BD的最小值是()A.25B.45C.53D.108如图,在菱形ABCD中,∠ABC=60°,E是边BC的中点,P是对角线BD上的一个动点,连接AE,AP,若AP+12BP的最小值恰好等于图中某条线段的长,则这条线段是()A.ABB.AEC.BDD.BE2二.填空题(共9小题)1如图,AC垂直平分线段BD,相交于点O,且OB=OC,∠BAD=120°.(1)∠ABC=.(2)E为BD边上的一个动点,BC=6,当AE+12BE最小时BE=2 .2如图,在△ABC中,∠A=90°,∠C=30°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为.3如图,在平面直角坐标系中,直线y=-x+4的图象分别与y轴和x轴交于点A和点B.若定点P的坐标为(0,63),点Q是y轴上任意一点,则12PQ+QB的最小值为3 .4如图,直线y=x-3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则2PC+PB的最小值为.5如图,抛物线y=x2-2x-3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=4 3,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是 649 s.6如图,在平面直角坐标系中,二次函数y=x2-2x+c的图象与x轴交于A、C两点,与y轴交于点B (0,-3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD,则C点的坐标是,2PD+PC的最小值是.7如图,四边形ABCD是菱形,AB=4,且∠BAD=30°,P为对角线AC(不含A点)上任意一点,则DP+12AP的最小值为.8如图,四边形ABCD中,AB=62,∠ABC=45°,E是BD上一点,若∠ABD=15°,则AE+12BE的最小值为.9如图,矩形OABC中,点A、C分别在x轴,y轴的正半轴上,且OA=3,AB=1,点P为线段OA上一动点,则12OP+PB最小值为.3三.解答题(共5小题)1如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(-1,0),B(0,-3),C(2,0),其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点坐标;(2)点M为抛物线的对称轴上的一个动点,若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,求点M的坐标;(3)若P为y轴上的一个动点,连接PD,求12PB+PD的最小值.2如图抛物线y=ax2+bx-4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线解析式.(2)连接BC,点P为BC下方上一动点,连接BP,CP.当△PBC的面积最大时,求点P的坐标和△PBC 面积的最大值.(3)点N为线段OC上一点,连接AN,求AN+12CN的最小值.3如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c与x轴交于点A、B两点,其中A(1,0),与y轴交于点C(0,3).(1)求抛物线解析式;(2)如图1,过点B作x轴垂线,在该垂线上取点P,使得△PBC与△ABC相似,请求出点P坐标;(3)如图2,在线段OB上取一点M,连接CM,请求出CM+12BM的最小值.4(1)【问题探究】如图1,点E是等边△ABC高AD上的一定点,请在AB上找一点F,使EF=12AE,并说明理由;(2)【问题解决】如图2,在△ACD中,CO⊥AD,垂足为O,若AD=32,AC=2,OC=3,点P在OC上,求DP+12PC的最小值.(3)【问题拓展】如图3,△ABC中,AB=AC=10,tan∠A=2,BE⊥AC于点E,D是线段BE上的一个动点,求CD+ 55BD的最小值.。

中考数学几何最值模型 专题06 胡不归模型(学生版+解析版)

中考数学几何最值模型 专题06 胡不归模型(学生版+解析版)

胡不归模型从前,有一个小伙子在外地当学徒,当他得知在家乡的年老父亲病危的消息后,便立即启程日夜赶路。

由于思念心切,他选择了全是沙砾地带的直线路径A--B (如图所示:A 是出发地,B 是目的地,AC 是一条驿道,而驿道靠目的地的一侧全是沙砾地带),当他赶到父亲眼前时,老人已去世了,邻舍告诉小伙子时告诉说,老人在弥留之际还不断喃喃地叨念:胡不归?胡不归?一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V +的值最小.V 2V 1MNCBA121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =, 即求BC +kAC 的最小值.构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC .CH=kACsin α=CH AC=kHDαA BCNM模型讲解将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.MNCBAαDH在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.方法点拨题型特征:PA+kPB (P 的运动轨迹为直线)1、将所求线段和改写为“PA+a b PB”的形式(a b <1,若a b>1,提取系数,转化为小于1的形式解决)。

2、在PB 的一侧,PA 的异侧,构造一个角度α,使得sinα=ab3、最后利用两点之间线段最短及垂线段最短解题例题演练1.如图,在△ABC中,∠A=15°,AB=2,P为AC边上的一个动点(不与A、C重合),连接BP,则AP+PB的最小值是()A.B.C.D.2【解答】解:如图,在△ABC内作∠MBA=30°过点A作AE⊥BM于点E,BM交AC于点P,∵∠BAC=15°,∴∠APE=45°∴EP=AP当BP⊥AE时,则AP+PB=PE+PB的值最小,最小值是BE的长,在Rt△ABE中,∠ABE=30°,AB=2∴BE=AB•cos30°=.∴AP+PB的最小值是.故选:B.2.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH⊥BP于点H,取AC中点O,连接OG,过点O作OQ⊥BP于点Q,∵∠ACB=90°,∠ABC=30°,AB=4∴AC=CP=2,BP=AB=4∴△ABP是等边三角形∴∠FBH=30°∴Rt△FHB中,FH=FB∴当G、F、H在同一直线上时,GF+FB=GF+FH=GH取得最小值∵AE⊥CD于点G∴∠AGC=90°∵O为AC中点∴OA=OC=OG=AC∴A、C、G三点共圆,圆心为O,即点G在⊙O上运动∴当点G运动到OQ上时,GH取得最小值∵Rt△OPQ中,∠P=60°,OP=3,sin∠P=∴OQ=OP=∴GH最小值为故选:C.强化训练1.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.2.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE 上的一个动点,则CD+BD的最小值是.3.如图,△ABC中,AB=AC=10,tan A=3,CD⊥AB于点D,点E是线段CD的一个动点,则BE+CE的最小值是.4.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形点E为△BCD围成的区域(包括各边)的一点过点E作EM∥AB,交直线AC于点M作EN∥AC交直线AB于点N,则AN+AM的最大值为.5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB 的最小值为.6.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为.7.如图,在菱形ABCD中,AB=6,点E是对角线BD上的一动点,且∠BCD =120°,则EB+EC+AE的最小值是.1.(2021•眉山中考真题)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+PB的最小值是.胡不归模型从前,有一个小伙子在外地当学徒,当他得知在家乡的年老父亲病危的消息后,便立即启程日夜赶路。

胡不归模型整理

胡不归模型整理

“胡不归模型”——中考最值专题【教学重难点】 1.“胡不归”之情景再现,模型识别 2.本质:“两定一动”型——系数不为1的最值问题处理3.三步处理:①作角;②作垂线;③计算【模块一 模型识别】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路.由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A →B (如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭.邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?···”.这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”.法国著名数学家费马(Fermat ,1601-1665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后,根据光的折射定律建立数学模型,就可以非常巧妙地解决“胡不归”问题.费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、互为辅成的.我们应该多多涉猎各方面知识,才能最大限度提升自我,走向成功.模型识别:问题本质: 操作步骤:【模块二 几何类型·选择题&B 填】【例1】1.(2012·崇安模拟)如图,ABC △在平面直角坐标系中,AB =AC ,A (0,22),C (1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A →D →C ,点P 在AD 上的运动速度是在CD 上的3倍,要使整个过程运动时间最少,则点D 的坐标应为( )A .),(20B . ),(220C . ),(320D . ),(4202.(2015·无锡二模)如图,菱形ABCD 的对角线AC 上有一动点P ,BC =6,∠ABC =150°,则P A +PB +PD 的最小值为__________.高速公路 A D B C沙 砾 地 带【模块三 A 20圆综合】【例2】(2015·内江)如图,在ACE △中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上.(1)试说明CE 是⊙O 的切线;(2)若ACE △中AE 边上的高为h ,试用含 h 的代数式表示⊙O 的直径AB ;(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当21CD +OD 的最小值为6时,求⊙O 的AB 的长.【模块三 二次函数综合·压轴】【例3】(2014·成都改编)如图,已知抛物线(2)(4)8k y x x =+-(k 为常数,k >0)与x 轴从左至右依次交于点A 、B ,与y 轴交于点C ,经过点B 的直线b x y +-=33与抛物线的另一个交点为D . (1)若点D 的横坐标为-5,求抛物线的函数关系式;(2)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标为多少时,点M 在整个运动过程中用时最少?【例4】(2015·日照改编)如图,抛物线n mx x y ++=221与直线321+-=x y 交于A 、B 两点,交x 轴于D 、C 两点,连接AC 、BC ,已知A (0,3),C (3,0).(1)抛物线的函数关系式为____________________,tan ∠BAC =__________;(2)设E 为线段AC 上一点(不含端点),连接DE ,一动点M 从点D 出发,沿线段DE 以每秒一个单位的速度运动到E 点,再沿线段EA 以每秒2个单位的速度运动到点A 后停止,当点E 的坐标是多少时,点M 在整个运动过程中用时最少?【例5】(2016·徐州改编)如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图像经过点A (-1,0), B (0,-3),C (2,0),其中对称轴与x 轴交于点D .(1)求二次函数的表达式及其顶点坐标;(2)若P 为y 轴上的一个动点,连接PD ,则PD PB +21的最小值为__________.【例6】(2016·随州改编)已知抛物线))(1)(3(≠-+=axxay,与x轴从左至右依次相交于A、B两点,与y轴交于点C,经过点A的直线bxy+-=3与抛物线的另一个交点为D.(1)若点D的横坐标为2,则抛物线的函数关系式为____________________;(2)在(1)的条件下,设点E是线段AD上一点(不含端点),连接BE,一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒332个单位运动到点D停止,问当点E的坐标为多少时,点Q运动的时间最少?。

特殊的平行四边形中的最值模型-胡不归模型(解析版)

特殊的平行四边形中的最值模型-胡不归模型(解析版)

特殊的平行四边形中的最值模型--胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。

本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。

在解决胡不归问题主要依据是:点到线的距离垂线段最短。

【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.补充知识:在直角三角形中锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边。

若无法理解正弦,也可考虑特殊直角三角形(含30°,45°,60°)的三边关系。

【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使AC V 2+BC V 1的值最小.(注意与阿氏圆模型的区分)1)AC V 2+BC V 1=1V 1BC +V 1V 2AC,记k =V 1V 2,即求BC +kAC 的最小值.2)构造射线AD 使得sin ∠DAN =k ,CH AC=k ,CH =kAC ,将问题转化为求BC +CH 最小值.3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.(若k >1,则提取系数,转化为小于1的形式解决即可)。

中考数学几何最值模型第2讲胡不归问题

中考数学几何最值模型第2讲胡不归问题
∴△ABP是等边三角形,∴∠FBH=30°
1
∴Rt△FHB中, = 2
∵Rt△OPQ中,∠P=60°,OP=3,sin∠P= =
3
∴OQ= 2 P=
故选:C.
3 3
-1
2
A
O
C
1
∴当G、F、H在同一直线上时, GF + 2 =GF+FH取得最小值
∵AE⊥CD于点G,∴∠AGC=90°
1
∴ OD + 的最小值为 3。
2
故选B.
3
2
D. 1 + 5
K
E
M
举一反三
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB、BC上的动点,连接CD,过点A作
1
AE⊥CD交BC于点E,垂足为G,连接GF,则GF + 2 的最小值是( C )
A
A. 3 − 1
0, − 3
程的时间最短,则点G的坐标为______.
y
【解答】解:如图作GM⊥AB于点M,设电子虫在CG上的速度
为V,电子虫走完全程的时间 =
AC
CG
+
2

1 AG
+
2
=

1
B O
C
x
在Rt△AMG中,GM = 2 ,
y
1
∴电子虫走完全程的时间t = GM + ,
A
当C,G,M共线时,且CM⊥AB时,GM+CG最短,
∴BC= 2 + C 2 =
12 + 2 − 3
2
A
G
P
= 6 − 2,

中考数学经典几何模型之胡不归最值模型(解析版)

中考数学经典几何模型之胡不归最值模型(解析版)

中考数学经典几何模型之胡不归最值模型(解析版)在数学中,经典几何模型是考试中经常出现的题型之一。

其中,胡不归最值模型是一种常见的最值问题。

这类问题通常涉及到形如“PA+kP”的式子,可以分为两类问题:胡不归问题和阿氏圆问题。

胡不归问题的故事源于一个少年外出求学,得知父亲病危后,他立即赶回家。

虽然他所在的位置到家的路上有一片砂石地,但他仍然义无反顾地走了这条路。

当他到家时,父亲已经去世了,他深感悔恨并痛哭流涕。

邻居告诉他,父亲在临终前一直念叨着“胡不归?胡不归?……”(“胡”同“何”)。

这个故事启发我们思考如何求解“PA+kP”型问题中的最值。

以胡不归问题为例,我们需要求解一个动点P在直线MN 外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使得AC+BC的值最小,即求BC+kAC的最小值。

为了解决这个问题,我们可以构造射线AD使得sin∠DAN=k,即CH=kAC。

这样,我们可以将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小。

在解决“PA+kP”型问题时,关键是构造与kP相等的线段,将“PA+kP”型问题转化为“PA+PC”型。

而这里的P必须是一条方向不变的线段,方能构造定角利用三角函数得到kP的等线段。

举个例子,如图所示,在△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值为5.这个问题的关键在于处理“CD+BD”的式子,考虑tanA=2,△ABE三边之比为1:2:5,sin ABE⊥AB交AB于H点,则DH=BD/5.通过构造HD,我们可以将问题转化为求CD+CH的最小值,其中CH=kAC,k=sin∠DAN=BD/5.过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即CD+BD的最小值为5.综上所述,胡不归最值模型是一类常见的最值问题。

中考数学特殊的平行四边形中的最值模型胡不归模型

中考数学特殊的平行四边形中的最值模型胡不归模型

特殊的平行四边形中的最值模型--胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。

本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。

在解决胡不归问题主要依据是:点到线的距离垂线段最短。

【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?” 看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.补充知识:在直角三角形中锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin 。

若无法理解正弦,也可考虑特殊直角三角形(含30°,45°,60°)的三边关系。

【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21A CBC V V +的值最小.(注意与阿氏圆模型的区分)1)121121=V A C B C B C A C V V V V ⎛⎫++ ⎪⎝⎭,记12V kV =,即求BC +kAC 的最小值.2)构造射线AD 使得sin ∠DAN =k ,C H kA C=,CH =kAC ,将问题转化为求BC +CH 最小值.3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题V 1V 2V 1驿道砂石地ABCV 2V 1MNCBA转化为“P A+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。

(新)中考数学几何模型--胡不归最值模型(答案解析版)

(新)中考数学几何模型--胡不归最值模型(答案解析版)

V 2V 1MNCBACH=kACsin α=CH AC=kHDαA BCNM 中考数学几何模型10:胡不归最值模型名师点睛 拨开云雾 开门见山在前面的最值问题中往往都是求某个线段最值或者形如P A +PB 最值,除此之外我们还可能会遇上形如“P A +kP ”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆. 【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家?V 1V 2V 1驿道砂石地ABC【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V +的值最小.【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 【问题解决】构造射线AD 使得sin ∠DAN =k ,即CHk AC=,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.M【模型总结】在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段.典题探究 启迪思维 探究重点例题1. 如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD 的最小值是_______.ABCDEHEDCBA ABCDEH【分析】本题关键在于处理”,考虑tan A =2,△ABE 三边之比为1:2sin ∠,故作DH ⊥AB 交AB 于H 点,则DH =.问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此时CD DH CH BE +===【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下:则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.αsin α5HEDC BAEDCB变式练习>>>1.如图,平行四边形ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则PB +的最小值等于________.A B CD PMHPD CBA A BCD PHM【分析】考虑如何构造“32PD”,已知∠A=60°,且sin60°=32,故延长AD,作PH⊥AD延长线于H点,即可得32PH PD,将问题转化为:求PB+PH最小值.当B、P、H三点共线时,可得PB+PH取到最小值,即BH的长,解直角△ABH即可得BH长.例题2. 如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.【解答】解:∵的度数为120°,∴∠C=60°,∵AC是直径,∴∠ABC=90°,∴∠A=30°,作BK∥CA,DE⊥BK于E,OM⊥BK于M,连接OB.∵BK∥AC,∴∠DBE=∠BAC=30°,在Rt△DBE中,DE=BD,∴OD+BD=OD+DE,根据垂线段最短可知,当点E与M重合时,OD+BD的值最小,最小值为OM,∵∠BAO=∠ABO=30°,∴∠OBM=60°,在Rt△OBM中,∵OB=2,∠OBM=60°,∴OM=OB•sin60°=,∴DB+OD的最小值为,故选:B.变式练习>>>2.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=﹣.【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵P A=P A,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴P A=PG,∴P A+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.例题3. 等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边在x轴上,BC 边的高OA在Y轴上.一只电子虫从A出发,先沿y轴到达G点,再沿GC到达C点,已知电子虫在Y 轴上运动的速度是在GC上运动速度的2倍,若电子虫走完全程的时间最短,则点G的坐标为(0,).【解答】解:如图作GM⊥AB于M,设电子虫在CG上的速度为v,电子虫走完全全程的时间t=+=(+CG),在Rt△AMG中,GM=AG,∴电子虫走完全全程的时间t=(GM+CG),当C、G、M共线时,且CM⊥AB时,GM+CG最短,此时CG=AG=2OG,易知OG=•×6=所以点G的坐标为(0,﹣).故答案为:(0,﹣).变式练习>>>3.如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P 从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为()A.(0,)B.(0,)C.(0,)D.(0,)解:假设P在AD的速度为3V,在CD的速度为1V,总时间t=+=(+CD),要使t最小,就要+CD最小,因为AB=AC=3,过点B作BH⊥AC交AC于点H,交OA于D,易证△ADH∽△ACO,所以==3,所以=DH,因为△ABC是等腰三角形,所以BD=CD,所以要+CD最小,就是要DH+BD最小,就要B、D、H三点共线就行了.因为△AOC∽△BOD,所以=,即=,所以OD=,所以点D的坐标应为(0,).例题4. 直线y=与抛物线y=(x﹣3)2﹣4m+3交于A,B两点(其中点A在点B的左侧),与抛物线的对称轴交于点C,抛物线的顶点为D(点D在点C的下方),设点B的横坐标为t(1)求点C的坐标及线段CD的长(用含m的式子表示);(2)直接用含t的式子表示m与t之间的关系式(不需写出t的取值范围);(3)若CD=CB.①求点B的坐标;②在抛物线的对称轴上找一点F,使BF+CF的值最小,则满足条件的点F的坐标是(3,).【解答】解:(1)抛物线y=(x﹣3)2﹣4m+3的对称轴为x=3,令x=3,则有y=×3=4,即点C的坐标为(3,4).抛物线y=(x﹣3)2﹣4m+3的顶点D的坐标为(3,﹣4m+3),∵点D在点C的下方,∴CD=4﹣(﹣4m+3)=4m+1.(2)∵点B在直线y=上,且其横坐标为t,则点B的坐标为(t,t),将点B的坐标代入抛物线y=(x﹣3)2﹣4m+3中,得:t=(t﹣3)2﹣4m+3,整理,得:m=﹣t+3.(3)①依照题意画出图形,如图1所示.过点C作CE∥x轴,过点B作BE∥y轴交CE于点E.∵直线BC的解析式为y=x,∴BE=CE,由勾股定理得:BC==CE.∵CD=CB,∴有4m+1=(t﹣3)=(+﹣3),解得:m=﹣4,或m=1.当m=﹣4时,+4×(﹣4)=﹣<0,不合适,∴m=1,此时t=+=6,y=×6=8.故此时点B的坐标为(6,8).②作B点关于对称轴的对称点B′,过点F作FM⊥BC于点M,连接B′M、BB交抛物线对称轴于点N,如图2所示.∵直线BC的解析式为y=x,FM⊥BC,∴tan∠FCM==,∴sin∠FCM=.∵B、B′关于对称轴对称,∴BF=B′F,∴BF+CF=B′F+FM.当点B′、F、M三点共线时B′F+FM最小.∵B点坐标为(6,8),抛物线对称轴为x=3,∴B′点的坐标为(0,8).又∵B′M⊥BC,∴tan∠NB′F=,∴NF=B′N•tan∠NB′F=,∴点F的坐标为(3,).故答案为:(3,).变式练习>>>4.如图1,在平面直角坐标系中将y=2x+1向下平移3个单位长度得到直线l1,直线l1与x轴交于点C;直线l2:y=x+2与x轴、y轴交于A、B两点,且与直线l1交于点D.(1)填空:点A的坐标为(﹣2,0),点B的坐标为(0,2);(2)直线l1的表达式为y=2x﹣2;(3)在直线l1上是否存在点E,使S△AOE=2S△ABO?若存在,则求出点E的坐标;若不存在,请说明理由.(4)如图2,点P为线段AD上一点(不含端点),连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.【解答】解:(1)直线l2:y=x+2,令y=0,则x=﹣2,令y=0,则x=2,故答案为(﹣2,0)、(0,2);(2)y=2x+1向下平移3个单位长度得到直线l1,则直线l1的表达式为:y=2x﹣2,故:答案为:y=2x﹣2;(3)∵S△AOE=2S△ABO,∴y E=2OB=4,将y E=4代入l1的表达式得:4=2x﹣2,解得:x=3,则点E的坐标为(3,4);(4)过点P、C分别作y轴的平行线,分别交过点D作x轴平行线于点H、H′,H′C交BD于点P′,直线l2:y=x+2,则∠ABO=45°=∠HBD,PH=PD,点H在整个运动过程中所用时间=+=PH+PC,当C、P、H在一条直线上时,PH+PC最小,即为CH′=6,点P坐标(1,3),故:点H在整个运动过程中所用最少时间为6秒,此时点P的坐标(1,3).例题5. 已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在(1)的条件下,抛物线上存在点P,使得△ACP是以AC为直角边的直角三角形,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)∵y=a(x+3)(x﹣1),∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),∵直线y=﹣x+b经过点A,∴b=﹣3,∴y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5),∵点D在抛物线上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)∵A的坐标为(﹣3,0),C(0,3),∴直线AC的解析式为:y=x+3,①∵△ACP是以AC为直角边的直角三角形,∴CP⊥AC,∴设直线CP的解析式为:y=﹣x+m,把C(0,3)代入得m=3,∴直线CP的解析式为:y=﹣x+3,解得,(不合题意,舍去),∴P(﹣,);②∵△ACP是以AC为直角边的直角三角形,∴AP⊥AC,∴设直线CP的解析式为:y=﹣x+n,把A(﹣3,0)代入得n=﹣,∴直线AP的解析式为:y=﹣x﹣,解y=得,,∴P(,﹣),综上所述:点P的坐标为(﹣,)或(,﹣);(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+32DE=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).变式练习>>>5.如图,已知抛物线y=﹣x2+bx+c交x轴于点A(2,0)、B(﹣8,0),交y轴于点C,过点A、B、C三点的⊙M与y轴的另一个交点为D.(1)求此抛物线的表达式及圆心M的坐标;(2)设P为弧BC上任意一点(不与点B,C重合),连接AP交y轴于点N,请问:AP•AN是否为定值,若是,请求出这个值;若不是,请说明理由;(3)延长线段BD交抛物线于点E,设点F是线段BE上的任意一点(不含端点),连接AF.动点Q 从点A出发,沿线段AF以每秒1个单位的速度运动到点F,再沿线段FB以每秒个单位的速度运动到点B后停止,问当点F的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)抛物线解析式为y=﹣(x+8)(x﹣2),即y=﹣x2﹣x+4;当x=0时,y=﹣x2﹣x+4=4,则C(0,4)∴BC=4,AC=2,AB=10,∵BC2+AC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴AB为直径,∴圆心M点的坐标为(﹣3,0);(2)以AP•AN为定值.理由如下:如图1,∵AB为直径,∴∠APB=90°,∵∠APB=∠AON,∠NAO=∠BAP,∴△APB∽△AON.∴AN:AB=AO:AP,∴AN•AP=AB•AO=20,所以AP•AN为定值,定值是20;(3)∵AB ⊥CD ,∴OD =OC =4,则D (0,﹣4),易得直线BD 的解析式为y =﹣x ﹣4, 过F 点作FG ⊥x 轴于G ,如图2, ∵FG ∥OD ,∴△BFG ∽△BDO , ∴=,即===,∴点Q 沿线段FB 以每秒个单位的速度运动到点B 所用时间 等于点Q 以每秒1个单位的速度运动到G 点的时间,∴当AF +FG 的值最小时,点Q 在整个运动过程中所用时间最少, 作∠EBI =∠ABE ,BI 交y 轴于I ,作FH ⊥BI 于H ,则FH =FG ,∴AF +FG =AF +FH ,当点A 、F 、H 共线时,AF +FH 的值最小,此时AH ⊥BI ,如图2, 作DK ⊥BI ,垂足为K ,∵BE 平分∠ABI ,∴DK =DO =4,设DI =m , ∵∠DIK =∠BIO ,∴△IDK ∽△IBO , ∴===,∴BI =2m ,在Rt △OBI 中,82+(4+m )2=(2m )2,解得m 1=4(舍去),m 2=,∴I (0,﹣),设直线BI 的解析式为y =kx +n ,把B (﹣8,0),I (0,﹣)代入得,解得,∴直线BI 的解析式为y =﹣x ﹣,∵AH ⊥BI ,∴直线AH 的解析式可设为y =x +q ,把A (2,0)代入得+q =0,解得q =﹣,∴直线AH 的解析式为y =x ﹣,解方程组,解得,∴F (﹣2,﹣3),即当点F 的坐标是(﹣2,﹣3)时,点Q 在整个运动过程中所用时间最少.达标检测 领悟提升 强化落实1. 如图,在平面直角坐标系中,点()3,3A ,点P 为x 轴上的一个动点,当OP AP 21+最小时,点P 的坐标为___________. [答案]:()0,2P2. 如图,四边形ABCD 是菱形,AB=4,且∠ABC=60°,点M 为对角线BD (不含点B )上的一动点,则BM AM 21的最小值为___________.[答案]:323. 如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (0,﹣),C (2,0),其对称轴与x 轴交于点D .(1)求二次函数的表达式及其顶点坐标;(2)点M 为抛物线的对称轴上的一个动点,若平面内存在点N ,使得以A ,B ,M ,N 为顶点的四边形为菱形,求点M 的坐标;(3)若P 为y 轴上的一个动点,连接PD ,求PB +PD 的最小值.【解答】解:(1)由题意,解得 ,∴抛物线解析式为y =x 2﹣x ﹣,∵y =x 2﹣x ﹣=(x ﹣)2﹣,∴顶点坐标(,﹣);(2)设点M 的坐标为(,y ).∵A (﹣1,0),B (0,﹣),∴AB 2=1+3=4.①以A 为圆心AB 为半径画弧与对称轴有两个交点,此时AM =AB , 则(+1)2+y 2=4,解得y =±,即此时点M 的坐标为(,)或(,﹣);②以B 为圆心AB 为半径画弧与对称轴有两个交点,此时BM =AB , 则()2+(y +)2=4,解得y =﹣+或y =﹣﹣,即此时点M的坐标为(,﹣+)或(,﹣﹣);③线段AB的垂直平分线与对称轴有一个交点,此时AM=BM,则(+1)2+y2=()2+(y+)2,解得y=﹣,即此时点M的坐标为(,﹣).综上所述,满足条件的点M的坐标为(,)或(,﹣)或(,﹣+)或(,﹣﹣)或(,﹣);(3)如图,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO==,∴∠ABO=30°,∴PH=PB,∴PB+PD=PH+PD=DH,∴此时PB+PD最短(垂线段最短).在Rt△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°=,∴DH=,∴PB+PD的最小值为.4. 【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?【特例分析】若n=2,则时间t=+,当a为定值时,问题转化为:在BC上确定一点D,使得+的值最小.如图②,过点C做射线CM,使得∠BCM=30°.(1)过点D作DE⊥CM,垂足为E,试说明:DE=;(2)请在图②中画出所用时间最短的登陆点D′.【问题解决】(3)请你仿照“特例分析”中的相关步骤,解决图①中的问题.(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等)【综合运用】(4)如图③,抛物线y=﹣x2+x+3与x轴分别交于A,B两点,与y轴交于点C,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请求出最少时间和此时点F的坐标.【解答】解:(1)如图①,∵DE⊥CM,∴∠DEC=90°,在Rt△BCM中,DE=CD sin30°=CD;(2)如图①过点A作AE′⊥CM交BC于点D′,则点D′即为所用时间最短的登陆点;(3)如图②,过点C作射线CM,使得sin∠BCM=,过点A作AE⊥CM,垂足为E交BC于点D,则点D为为所用时间最短的登陆点;(4)由题意得:t==EF+CF,过点C作CD∥x轴交抛物线于点D,过点F作GF⊥CD交CD于点G,∠ACB=∠DCB=α,sin∠ABC==,则EF=CF,EF+CF=EF+FH,故当E、F、H三点共线且与CD垂直时,t最小,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,点E是OB中点,其坐标为:(3,0),当x=3时,对于y=﹣x+3,y=,点F坐标为(3,),t==EF+CF,当H、F、E三点共线时,EF+FH=OC=3,即:最小时间为3秒.5. 如图,△ABC是等边三角形.(1)如图1,AH⊥BC于H,点P从A点出发,沿高线AH向下移动,以CP为边在CP的下方作等边三角形CPQ,连接BQ.求∠CBQ的度数;(2)如图2,若点D为△ABC内任意一点,连接DA,DB,DC.证明:以DA,DB,DC为边一定能组成一个三角形;(3)在(1)的条件下,在P点的移动过程中,设x=AP+2PC,点Q的运动路径长度为y,当x取最小值时,写出x,y的关系,并说明理由.【解答】(1)解:如图1中∵△ABC是等边三角形,AH⊥BC,∴∠CAP=∠BAC=30°,CA=CB,∠ACB=60°,∵△PCQ是等边三角形,∴CP=CQ,∠PCQ=∠ACB=60°,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴∠CBQ=∠CAP=30°.(2)证明:如图2中,将△ADC绕当A顺时针旋转60°得到△ABQ,连接DQ.∵△ACD≌△ABQ,∴AQ=AD,CD=BQ,∵∠DAQ=60°,∴△ADQ是等边三角形,∴AD=DQ,∴DA,DB,DC为边一定能组成一个三角形(图中△BDQ).(3)如图3中,作PE⊥AB于E,CF⊥AB于F交AH于G.∵PE=P A,∴P A+2PC=2(P A+PC)=2(PE+PC),根据垂线段最短可知,当E与F重合,P与G重合时,P A+2PC的值最小,最小值为2CF.由(1)可知△ACP≌△BCQ,可得BQ=P A,∴P A=BQ=AG=CG=y,FG=y,∴x=2(y+y),∴y=x.6. 如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F 的坐标是多少时,点M在整个运动过程中用时最少?【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.∴抛物线的函数表达式为:y=(x+2)(x﹣4).即y=x2﹣x﹣.(2)由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△P AB.①若△ABC∽△APB,则有∠BAC=∠P AB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠P AB,即:,∴y=x+k.∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△P AB,则有∠ABC=∠P AB,如答图2﹣2所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠ABC=tan∠P AB,即:=,∴y=x+.∴P(x,x+),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+,整理得:x2﹣4x﹣12=0,解得:x=6或x=﹣2(与点A重合,舍去),∴P(6,2k).∵△ABC∽△P AB,=,∴=,解得k=±,∵k>0,∴k=,综上所述,k=或k=.(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∥AB,AH⊥DK,AH交直线BD于点F,∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=,∵l BD:y=﹣x+,∴F X=A X=﹣2,∴F(﹣2,).7. 已如二次函数y=﹣x2+2x+3的图象和x轴交于点A、B(点A在点B的左侧),与y轴交于点C,(1)如图1,P是直线BC上方抛物线上一动点(不与B、C重合)过P作PQ∥x轴交直线BC于Q,求线段PQ的最大值;(2)如图2,点G为线段OC上一动点,求BG+CG的最小值及此时点G的坐标;(3)如图3,在(2)的条件下,M为直线BG上一动点,N为x轴上一动点,连接AM,MN,求AM+MN 的最小值.【解答】解:(1)令y=0,即:﹣x2+2x+3=0,解得:x=3或﹣1,即点A、B的坐标分比为(﹣1,0)、(3,0),令x=0,则y=3,则点C的坐标为(0,3),直线BC过点C(0,3),则直线表达式为:y=kx+3,将点B坐标代入上式得:0=3k+3,解得:k=﹣1,则直线BC的表达式为:y=﹣x+3,设点P的坐标为(m,n),n=﹣m2+2m+3,则点Q坐标为(3﹣n,n),则PQ=m﹣(3﹣n)=﹣m2+3m,∵a=﹣1<0,则PQ有最大值,当m=﹣=,PQ取得最大值为;(2)过直线CG作∠GCH=α,使CH⊥GH,当sinα=时,HG=GC,则BG+CG的最小值即为HG+GB的最小值,当B、H、G三点共线时,HG+GB最小,则∠GBO=α,∵sinα=,则cosα=,tanα=,OG=OB•tanα=3×=,即点G(0,),CG=3﹣=,而BG=,BG+CG的最小值为:;(3)作点A关于直线BG的对称点A′,过A′作A′N⊥x轴,交BG于点M,交x轴于点N,则此时AM+MN取得最小值,即为A′N的长度,则:∠GBA=∠AA′N=∠OGB=α,AA ′=2AB sin ∠ABG =2×4×sin α=,A ′N =A ′A cos α=×=, 即:AM +MN 的最小值为.8. 如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,点D 、F 分别是边AB ,BC 上的动点,连接CD ,过点A 作AE ⊥CD 交BC 于点E ,垂足为G ,连接GF ,则GF +FB 的最小值是( )A .B .C .D .【解答】解:延长AC 到点P ,使CP =AC ,连接BP ,过点F 作FH ⊥BP 于点H ,取AC 中点O ,连接OG ,过点O 作OQ ⊥BP 于点Q , ∵∠ACB =90°,∠ABC =30°,AB =4,∴AC =CP =2,BP =AB =4 ∴△ABP 是等边三角形,∴∠FBH =30° ∴Rt △FHB 中,FH =FB∴当G 、F 、H 在同一直线上时,GF +FB =GF +FH =GH 取得最小值 ∵AE ⊥CD 于点G ,∴∠AGC =90° ∵O 为AC 中点,∴OA =OC =OG =AC∴A 、C 、G 三点共圆,圆心为O ,即点G 在⊙O 上运动 ∴当点G 运动到OQ 上时,GH 取得最小值 ∵Rt △OPQ 中,∠P =60°,OP =3,sin ∠P = ∴OQ =OP =,∴GH 最小值为故选:C .9. 抛物线2623663y x x =--+与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当12PE EC +的值最大时,求四边形PO 1B 1C 周长的最小值,并求出对应的点O 1的坐标.E B 1O 1P A BCFy xO【分析】根据抛物线解析式得A ()32,0-、B ()2,0、C ()0,6,直线AC 的解析式为:363y x =+,可知AC 与x 轴夹角为30°. 根据题意考虑,P 在何处时,PE +2EC取到最大值.过点E 作EH ⊥y 轴交y 轴于H 点,则∠CEH =30°,故CH =2EC, 问题转化为PE +CH 何时取到最小值.考虑到PE 于CH 并无公共端点,故用代数法计算,设2623,663P m m m ⎛⎫--+ ⎪ ⎪⎝⎭,则3,63E m m ⎛⎫+ ⎪ ⎪⎝⎭,30,63H m ⎛⎫+ ⎪ ⎪⎝⎭,2636PE m m =--,33CH m =-,()22643646=226363PE CH m m m +=---++∴当PE +EC 的值最大时,x =﹣2,此时P (﹣2,),∴PC =2,∵O 1B 1=OB =,∴要使四边形PO 1B 1C 周长的最小,即PO 1+B 1C 的值最小,如图2,将点P 向右平移个单位长度得点P 1(﹣,),连接P 1B 1,则PO 1=P 1B 1, 再作点P 1关于x 轴的对称点P 2(﹣,﹣),则P 1B 1=P 2B 1, ∴PO 1+B 1C =P 2B 1+B 1C ,∴连接P 2C 与x 轴的交点即为使PO 1+B 1C 的值最小时的点B 1, ∴B 1(﹣,0),将B 1向左平移个单位长度即得点O 1,此时PO 1+B 1C =P 2C ==,对应的点O 1的坐标为(﹣,0),∴四边形PO 1B 1C 周长的最小值为+3.H O yFC BA P O 1B 1EC 1O yF CBAP O 1B 1E。

中考数学几何最值模型第2讲胡不归问题

中考数学几何最值模型第2讲胡不归问题
2
0,
4
径为A>>D>>C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为________.
y
A
D
B
C
X
【解析】假设P在AD上的速度为3V,在CD上的速度为V,总时间


1
AD
=
+ =
+ CD , 要使得t最小,就要 + 最小,
3

3
3
∵AB=AC=3,过点B作BH⊥AC交AC于点H,交OA于点D,
【模型总结】
在求解形如“PA + k ∙ ”的式子的最值问题中,关键是构造与相
等的线段,将“PA + k ∙ ”型问题转化为“PA + ”型.而这
里的必须是一条方向不变的线段,方能构造出定角,并利用三角
函数得到k ∙ 的等线段.
CH

= , = ∙
2、胡不归问题-模型总结
CD+DH的最小值。故C、D、H共线时值最小,此时
CD+DH=CH=BE=4 5.
【小结】本题题干已将BA线作出,只需要分析三角函数值,
作出垂线DH,即可解决问题,若稍加改变,将图形改造如
B
下:则需自行构造α,如右图,这正是解决 “胡不归”问
题的关键所在。
A
E
D
=


H
E
D
α
C
B
C
牛刀小试
不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走
砂石地,会不会更早些到家?
【模型建立】
如图,一动点P在直线MN外的运动速度为v1 ,在直线MN上运动的速度为

中考数学常见几何模型专题10 最值模型-胡不归问题(原卷版)

中考数学常见几何模型专题10 最值模型-胡不归问题(原卷版)

专题10 最值模型---胡不归问题最值问题在中考数学常以压轴题的形式考查,可将胡不归问题看作将军饮马衍生,主要考查转化与化归等的数学思想。

在各类考试中都以高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。

在解决胡不归问题主要依据是:①两点之间,线段最短;②垂线段最短。

【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V +的值最小.(注意与阿氏圆模型的区分)1)121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 2)构造射线AD 使得sin ∠DAN =k ,CHk AC=,CH =kAC ,将问题转化为求BC +CH 最小值. 3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.(若k >1,则提取系数,转化为小于1的形式解决即可)。

【最值原理】两点之间线段最短及垂线段最短。

2驿道V 2V 1MNCBA例1.(2022·内蒙古·中考真题)如图,在△ABC 中,AB =AC =4,△CAB =30°,AD △BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC .则P A +2PB 的最小值为 _____.例2.(2022·湖北武汉·一模)如图,在ACE △中,CA CE =,30CAE ∠=︒,半径为5的O 经过点C ,CE是圆O 的切线,且圆的直径AB 在线段AE 上,设点D 是线段AC 上任意一点(不含端点),则12OD CD +的最小值为______.例3.(2021·眉山市·中考真题)如图,在菱形中,,对角线、相交于点,点在线段上,且,点为线段上的一个动点,则的最小值是______.例4.(2022·山东淄博·二模)如图,在平面直角坐标系中,点A 的坐标是(0,2),点C 的坐标是(0,2)-,点(,0)B x 是x 轴上的动点,点B 在x 轴上移动时,始终保持ABP 是等边三角形(点P 不在第二象限),连接PC ,求得12AP PC +的最小值为( )ABCD 10AB AC ==AC BD O M AC 3AM =P BD 12MP PB+A.B .4 C.D .2例5.(2021·资阳市·中考真题)抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线上方的一点,与相交于点E ,当时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿方向平移,使点D 落在点处,且,点M 是平移后所得抛物线上位于左侧的一点,轴交直线于点N ,连结的值最小时,求的长.例6.(2020·湖南·中考真题)已知直线与抛物线(b ,c 为常数,)的一个交点为,点是x 轴正半轴上的动点.(1)当直线与抛物线(b ,c 为常数,)的另一个交点为该抛物线的顶点E 时,求k ,b ,c 的值及抛物线顶点E 的坐标; (2)点D 在抛物线上,且点D 的横坐标为时,求b 的值.2y x bx c =-++()()1,0,0,3B C -AC BPAC :1:2PE BE =CD D 2DD CD '=D //MN y OD 'CN D N CN '+MN 2y kx =-2y x bx c =-+0b >(1,0)A -(,0)M m 2y kx =-2y x bx c =-+0b >12b +2DM +例7.(2022·四川成都·中考模拟)6.如图,已知抛物线为常数,且与轴从左至右依次交于,两点,与轴交于点,经过点的直线与抛物线的另一交点为. (1)若点的横坐标为,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点,使得以,,为顶点的三角形与相似,求的值;(3)在(1)的条件下,设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒1个单位的速度运动到,再沿线段以每秒2个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动过程中用时最少?(2)(4)(8ky x x k =+-0)k >x A B y CB y x b =+D D 5-P A B P ABC ∆k F BD AF M A AF F FD D FM课后专项训练1.(2022·河北·九年级期中)如图,在△ABC 中,∠A =15°,AB =2,P 为AC 边上的一个动点(不与A 、C 重合),连接BP ,则AP +PB 的最小值是( )A .B .C .D .22.(2022·江苏·九年级月考)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,点D 、F 分别是边AB ,BC 上的动点,连接CD ,过点A 作AE ⊥CD 交BC 于点E ,垂足为G ,连接GF ,则GF +FB 的最小值是( )A .B .C .D .3.(2022·山东·九年级月考)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD +PC 的最小值是( )A .4B .2+C .D .324.(2022·重庆·九年级期中)如图所示,菱形ABCO 的边长为5,对角线OB 的长为P 为OB 上一动点,则AP 的最小值为( )A .4B .5C .D .5.(2022·浙江宁波·九年级开学考试)如图,在平面直角坐标系中,一次函数y =x 轴、y 轴于A 、B 两点,若C 为x 轴上的一动点,则2BC +AC 的最小值为__________.6.(2022·湖南·九年级月考)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AB =6,△BCD 为等边三角形点E 为△BCD 围成的区域(包括各边)的一点过点E 作EM ∥AB ,交直线AC 于点M 作EN ∥AC 交直线AB 于点N ,则AN +AM 的最大值为 .7.(2022·湖北武汉·九年级期末)如图,△ABCD 中60A ∠=︒,6AB =,2AD =,P 为边CD 上一点,则2PB +的最小值为______.8.(2022·成都市七中育才九年级期中)如图,在平面直角坐标系中,直线l 分别交x 、y 轴于B 、C 两点,点A 、C 的坐标分别为(3,0)、(0,﹣3),且△OCB =60°,点P 是直线l 上一动点,连接AP ,则AP 的最小值是______.9.(2022·四川自贡·一模)如图,ABC 中,10AB AC ==,tan 2A =,BE AC ⊥于点E ,D 是线段BE 上的一个动点,则CD 的最小值是__________.10.(2022·广东·一模)已知抛物线243y xx =-+与x 轴交于A ,B 两点(A 在B 点左侧),与y 轴正半轴交于点C ,点P 是直线BC 上的动点,点Q 是线段OC 上的动点.(1)求直线BC 解析式.(2)如图①,求OP +P A 的和取最小值时点P 的坐标. (3)如图②,求AQ +QP 的最小值.(4)如图③,求AQ 12+QC 的最小值.11.(2022·江苏·中考模拟)如图,抛物线与直线交于,两点,交轴于,两点,连接,,已知,.(Ⅰ)求抛物线的解析式和的值;(Ⅱ)在(Ⅰ)条件下:(1)为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.(2)设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒一个单位速度运动到点,再沿线段个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动中用时最少?12.(2020·四川乐山市·中考真题)已知抛物线与轴交于,两点,为抛物线的顶点,抛物线的对称轴交轴于点,连结,且,如图所示.(1)求抛物线的解析式;(2)设是抛物线的对称轴上的一个动点.①过点作轴的平行线交线段于点,过点作交抛物线于点,连结、,求的面积的最大值;②连结,求的最小值.212y x mx n=++132y x=-+A B x DC AC BC(0,3)A(3,0)C tan BAC∠P y PA P PQ PA⊥y Q P A P Q ACB∆PE AC DE M DDE E EA A E M2y ax bx c=++x(1,0)A-(50)B,Cx D BC4tan3CBD∠=P P x BC EE EF PE⊥F FB FC BCF∆PB35PC PB+13.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.(1)求抛物线的解析式;(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;14.(2022·广西·南宁三中一模)如图,二次函数21y ax bx =++的图象交x 轴于点()2,0A -、()10B ,,交y 轴于点C ,点D 是第四象限内抛物线上的动点,过点D 作//DE y 轴交x 轴于点E ,线段CB 的延长线交DE 于点M ,连接OM 、BD 交于点N ,连接AD .(1)求二次函数的表达式;(2)当OEM DBES S =时,求点D 的坐标及sin DAE ∠;(3)在(2)的条件下,点P 是x轴上一个动点,求DP 的最小值.2y x bx c =-++x A ()1,0C y ()0,3B x E F OE О'OE ()090αα︒<<︒'AE 'BE 13''BE AE +M N A B M NN15.(2022·广东·东莞市三模)已知,如图,二次函数2y ax bx c =++图像交x 轴于(1,0)A -,交y 交轴于点(0,3)C ,D 是抛物线的顶点,对称轴DF 经过x 轴上的点(1,0)F .(1)求二次函数关系式;(2)对称轴DF与BC 交于点M ,点P 为对称轴DF 上一动点.①求AP PD 的最小值及取得最小值时点P 的坐标; ②在①的条件下,把APF 沿着x 轴向右平移t 个单位长度(04)t ≤≤时,设APF 与MBF 重叠部分面积记为S ,求S 与t 之间的函数表达式,并求出S 的最大值.16.(2022·天津·中考模拟)如图,在△ACE 中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上.(1)证明:CE 是⊙O 的切线;(2)若△ACE 中AE 边上的高为h ,试用含h 的代数式表示⊙O 的直径AB ;(3)设点D 是线段AC 上任意一点(不含端点),连接OD +OD 的最小值为6时,求⊙O 的直径AB 的长.。

“胡不归模型”——中考最值专题(一).doc

“胡不归模型”——中考最值专题(一).doc

“胡不归模型”——中考最值专题(一)【教学重难点】 1.“胡不归”之情景再现,模型识别 2.本质:“两定一动”型——系数不为1的最值问题处理3.三步处理:①作角;②作垂线;③计算【模块一 模型识别】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路.由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A →B (如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭.邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?···”.这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”.法国著名数学家费马(Fermat ,1601-1665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后,根据光的折射定律建立数学模型,就可以非常巧妙地解决“胡不归”问题.费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、互为辅成的.我们应该多多涉猎各方面知识,才能最大限度提升自我,走向成功.模型识别:问题本质: 操作步骤:【模块二 几何类型·选择题&B 填】【例1】1.(2012·崇安模拟)如图,ABC △在平面直角坐标系中,AB =AC ,A (0,22),C (1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A →D →C ,点P 在AD 上的运动速度是在CD 上的3倍,要使整个过程运动时间最少,则点D 的坐标应为( )A .),(20B . ),(220C . ),(320D . ),(4202.(2015·无锡二模)如图,菱形ABCD 的对角线AC 上有一动点P ,BC =6,∠ABC =150°,则P A +PB +PD 的最小值为__________.高速公路 A D B C沙 砾 地 带【模块三 A 20圆综合】【例2】(2015·内江)如图,在ACE △中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上.(1)试说明CE 是⊙O 的切线;(2)若ACE △中AE 边上的高为h ,试用含 h 的代数式表示⊙O 的直径AB ;(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当21CD +OD 的最小值为6时,求⊙O 的AB 的长.【模块三 二次函数综合·压轴】【例3】(2014·成都改编)如图,已知抛物线(2)(4)8k y x x =+-(k 为常数,k >0)与x 轴从左至右依次交于点A 、B ,与y 轴交于点C ,经过点B 的直线b x y +-=33与抛物线的另一个交点为D . (1)若点D 的横坐标为-5,求抛物线的函数关系式;(2)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标为多少时,点M 在整个运动过程中用时最少?【例4】(2015·日照改编)如图,抛物线n mx x y ++=221与直线321+-=x y 交于A 、B 两点,交x 轴于D 、C 两点,连接AC 、BC ,已知A (0,3),C (3,0).(1)抛物线的函数关系式为____________________,tan ∠BAC =__________;(2)设E 为线段AC 上一点(不含端点),连接DE ,一动点M 从点D 出发,沿线段DE 以每秒一个单位的速度运动到E 点,再沿线段EA 以每秒2个单位的速度运动到点A 后停止,当点E 的坐标是多少时,点M 在整个运动过程中用时最少?【例5】(2016·徐州改编)如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图像经过点A (-1,0), B (0,-3),C (2,0),其中对称轴与x 轴交于点D .(1)求二次函数的表达式及其顶点坐标;(2)若P 为y 轴上的一个动点,连接PD ,则PD PB +21的最小值为__________.【例6】(2016·随州改编)已知抛物线))(1)(3(≠-+=axxay,与x轴从左至右依次相交于A、B两点,与y轴交于点C,经过点A的直线bxy+-=3与抛物线的另一个交点为D.(1)若点D的横坐标为2,则抛物线的函数关系式为____________________;(2)在(1)的条件下,设点E是线段AD上一点(不含端点),连接BE,一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒332个单位运动到点D停止,问当点E的坐标为多少时,点Q运动的时间最少?。

动点最值之胡不归模型(解析版)中考数学几何模型专项复习与训练

动点最值之胡不归模型(解析版)中考数学几何模型专项复习与训练

专题14 动点最值之胡不归模型背景故事:从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.模型建立:将这个问题数学化,我们不妨设总时间为,由可得,提取一个得,若想总的时间最少,就要使得最小,如图,过定点A 在驿道下方作射线AE ,夹角为,且,作DG ⊥AE 于点G,则,将转化为DG +DB ,再过点B 作BH ⊥AE 于点H就是我们要找的点,此时DG +DB 的最小值为BH ,,综上,所需时间的最小值为2驿道解决思路:构造射线AD 使得sin ∠DAN =k ,即CHk AC=,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.例题1. 如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD 的最小值是_______.【解析】∵tan A =2,∴△ABE三边之比为1:2sin ∠, 故作DH ⊥AB 交AB 于H点,则DH =.问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此时CD DH CH BE +===例2.如图,△ABC 在直角坐标系中,AB =AC,C (1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A→D→C ,点P 在AD 上的运动速度是在CD 上的3倍,要使整个运动时间最少,则点D 的坐标应为( )A .(0,B .(0) C .(0,)D .(0)M MABCDEHEDCBA ABCDEH【答案】D【解析】假设P在AD的速度为3V,在CD的速度为1V,总时间t+CD最小,因为AB=AC=3,过点B作BH⊥AC交AC于点H,交OA于D,易证△ADH∽△ACO,所以,所以,因为△ABC是等腰三角形,所以BD=CD,最小,就是要DH+BD最小,就要B、D、H三点共线就行了.因为△AOC∽△BOD,所以即所以,所以点D的坐标应为.例3.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.【解析】过点E作x轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图,∵EH∥AB,∴∠HEB=∠ABE,∴tan∠HED=tan∠EBA=,设DH=4m,EH=3m,则DE=5m,∴蚂蚁从D爬到E点的时间=4(s)若设蚂蚁从D爬到H点的速度为1单位/s,则蚂蚁从D爬到H点的时间==4(s),∴蚂蚁从D爬到E点所用的时间等于从D爬到H点所用的时间相等,∴蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点所用时间等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s速度爬到H点的时间,作AG⊥EH于G,则AD+DH≥AH≥AG,∴AD+DH的最小值为AQ的长,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),直线BE交y轴于C点,如图,在Rt△OBC中,∵tan∠CBO=∴OC=4,则C(0,4),设直线BE的解析式为y=kx+b,把B(3,0),C(0,4)代入得,解得,∴直线BE的解析式为,解方程组得或,则E,∴蚂蚁从A爬到Gs),即蚂蚁从A到E的最短时间为【变式训练1】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB的最小值等于________.【解析】已知∠A=60°,且,故延长AD,作PH⊥AD延长线于H点,即可得PH,∴PB=PB+PH.当B、P、H三点共线时,可得PB+PH取到最小值,即BH的长,解直角△ABH即可得BH长.【变式训练2】如图,在△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是.A BCD PMHPD CBA A BCD PHM【解析】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,,∵AB=AC,BE⊥AC,CM⊥AB,∵∠DBH=∠ABE,∠BHD=∠BEA,∴∴CD+DH≥CM,.【变式训练3】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则________.过点P作PQ⊥AD,垂足为Q,∵四边形ABCD是平行四边形,∴DC//AB,∴∠QDP=∠DAB=60°,∴当点B、P、Q三点共线时,的最小值为.课后训练1.如图,在Rt△ABC中,△ACB=90°,△B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE△CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH△BP于点H,取AC中点O,连接OG,过点O作OQ△BP于点Q,△△ACB=90°,△ABC=30°,AB=4,△AC=CP=2,BP=AB=4△△ABP是等边三角形,△△FBH=30°,△Rt△FHB中,FH=FB△当G、F、H在同一直线上时,GF+FB=GF+FH=GH取得最小值△AE△CD于点G,△△AGC=90°,△O为AC中点,△OA=OC=OG=AC△A、C、G三点共圆,圆心为O,即点G在△O上运动,△当点G运动到OQ上时,GH取得最小值△Rt△OPQ中,△P=60°,OP=3,sin△P=△OQ=OP=,△GH最小值为故选:C.2.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.【解答】解:△的度数为120°,△△C=60°,△AC是直径,△△ABC=90°,△△A=30°,作BK△CA,DE△BK于E,OM△BK于M,连接OB.△BK△AC,△△DBE=△BAC=30°,在Rt△DBE中,DE=BD,△OD+BD=OD+DE,根据垂线段最短可知,当点E与M重合时,OD+BD的值最小,最小值为OM,△△BAO=△ABO=30°,△△OBM=60°,在Rt△OBM中,△OB=2,△OBM=60°,△OM=OB•sin60°=,△DB+OD的最小值为,故选:B.3.如图,在平面直角坐标系中,二次函数y=ax2+bx+c C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则+PD的最小值为;(3)M(x,t)为抛物线对称轴上一动点①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有个;②连接MA,MB,若∠AMB不小于60°,求t的取值范围.【解答】(1)(2);【解析】(1)由题意解得,∴抛物线解析式为,∵(2)如图,连接AB,作DH⊥AB于H,交OB于P PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO ABO=30°,∴PH=PB,∴+PD=PH+PD=DH,∴此时+PD最短(垂线段最短).在Rt△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°DH=,∴+PD的最小值为;4.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)证明:CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD CD+OD的最小值为6时,求⊙O的直径AB的长.【答案】(1)见解析;(2)(3)AB=8【解析】(1)连接OC,如图,∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图,由题可得CH=h.在Rt△OHC中,CH=OC•sin∠COH,∴h=OC•sin60°=,∴OC=h,∴AB=2OC=h;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图,则∠AOF=∠COF=AOC=(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,∵OA=OC,∴∠OCA=∠OAC=30°,∴DH=DC•sin∠DCH=DC•sin30°=DC,∴+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD+OD)最小,此时FH=OF•sin∠FOH==6,则OF=,AB=2OF=.∴当+OD的最小值为6时,⊙O的直径AB的长为8.5.如图,已知抛物线y=x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF 以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【答案】(1);(2)或;(3)当点F坐标为(﹣2)时,点M在整个运动过程中用时最少.【解析】(1)抛物线y=x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线经过点B(4,0),∴×4+b=0,解得b=,∴直线BD当x=﹣5时,y=,∴D(﹣5).∵点D(﹣5)在抛物线y=x+2)(x﹣4)上,∴5+2)(﹣5﹣4)=,∴.∴抛物线的函数表达式为:(x+2)(x﹣4).(2)由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,∴.∴P(x x+k),代入抛物线解析式y=x+2)(x﹣4),得(x+2)(x﹣4x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:.②若△ABC ∽△PAB ,则有∠ABC =∠PAB ,如答图2﹣2所示. 设P (x ,y ),过点P 作PN ⊥x 轴于点N ,则ON =x ,PN =y . tan ∠ABC =tan ∠PAB ,即:,∴.∴P (x ,x ),代入抛物线解析式y =(x +2)(x ﹣4),得(x +2)(x ﹣4x +x 2﹣4x ﹣12=0,解得:x =6或x =﹣2(与点A 重合,舍去),∴P (6,2k ). ∵△ABC ∽△PAB ,,∴,解得,∵k >0,∴,综上所述,.(3)作DK ∥AB ,AH ⊥DK ,AH 交直线BD 于点F ,∵∠DBA =30°,∴∠BDH =30°,∴FH =DF ×sin30°,∴当且仅当AH ⊥DK 时,AF +FH 最小,点M ,∵lBD :,∴F X =A X =﹣2,∴F (﹣2).。

专题+圆---利用“胡不归”模型求最值-2024年中考数学复习几何模型

专题+圆---利用“胡不归”模型求最值-2024年中考数学复习几何模型

那么OD+0.5BD的最小值为______.
K
E M
解析:作BK∥CA,DE⊥BK于E,OM⊥BK于M,连
接OB.由已知得∠BAC=30º,在Rt△DBE
中,DE=0.5BD,∴0D+0.5BD=0D+DE,根据垂线
段最短可知,当点E与M重合时,OD+0.5BD的
值最小,最小值为OM=√3.
B
D
A
O
C
典例精讲
胡不归模型
知识点一
【例2】如图,△ABC在直角坐标系中,AB=AC,A(0, ),C(1,0),D为射线
AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是
在CD上的3倍,要使整个运动时间最少,则点D的坐标应为_________.
解析:设点P在DC上的速度为v,则时间
第三步:根据两点之间线段最短,找到最小值的位置;
第四步:计算.
模型分析
胡不归模型
tanα+tanβ
tan(α+β)=
1-tanα·tanβ
预备知识
sin(a+β)=sinα·cosβ+cosa·sinβ
直角三角形斜边大于直角边,直角三角形中,斜边打一个折扣(sinα),
化归为这个角的对边.斜边·sinα=对边.
题情境(1)当m=___时,CP最短,理由是_________.
(2)当m为何值时,
问题再现
1
CP BP
的最小值?请求出最小值。小明的解
2
决方法:如图,作射线BA,使∠OBA=30º,交x轴于点A,过点C作
y
CF⊥AB于点F,请完善小明的解法.问题突破当m为何值时,CP+

专题10 最值模型-胡不归问题(解析版)

专题10 最值模型-胡不归问题(解析版)

专题10 最值模型---胡不归问题最值问题在中考数学常以压轴题的形式考查,可将胡不归问题看作将军饮马衍生,主要考查转化与化归等的数学思想。

在各类考试中都以高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。

在解决胡不归问题主要依据是:①两点之间,线段最短;②垂线段最短。

【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V的值最小.(注意与阿氏圆模型的区分)V 12V 1驿道砂石地ABCV 2V 1MNCBA1)121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 2)构造射线AD 使得sin ∠DAN =k ,CHk AC=,CH =kAC ,将问题转化为求BC +CH 最小值. 3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.(若k >1,则提取系数,转化为小于1的形式解决即可)。

【最值原理】两点之间线段最短及垂线段最短。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“胡不归模型”——中考最值专题(一)
【教学重难点】
1.“胡不归”之情景再现,模型识别
2.本质:“两定一动”型——系数不为 1 的最值问题处理
3.三步处理:①作角;②作垂线;③计算
【模块一模型识别】
从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路.由于思乡
心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→ B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声
痛哭.邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?···”.这个古老的传
说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千
百年的“胡不归问题”.
法国著名数学家费马( Fermat,1601-1665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后,根据光的折射定律建立数学模型,就可以非常巧妙
地解决“胡不归”问题.费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、互为辅
成的.我们应该多多涉猎各方面知识,才能最大限度提升自我,走向成功.
B 模型识别:
沙砾地带问题本质:
操作步骤: A 高速公路 D C
B 填】
【模块二几何类型·选择题 &
【例 1】
1.( 2012·崇安模拟)如图,△ABC 在平面直角坐标系中,= ,( 0, 2 2 ),(1, 0),D 为射
AB AC A C
线上一点,一动点
P 从A 出发,运动路径为→ → ,点P 在上的运动速度是在上的 3 倍,要使AO A D C AD CD
整个过程运动时间最少,则点D的坐标应为()
A.(0,2)
B.(,2 )
C. (0,2 )
D. (0,2 )
2 4
3
2.( 2015 ·无锡二模)如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD 的最小值为 __________.
【模块三A20 圆综合】
【例 2】( 2015·内江)如图,在 △ACE 中, CA =CE , CAE =30°,⊙ O 经过点 C ,且圆的直径 AB 在线段
AE 上.
( 1)试说明 CE 是⊙ O 的切线;
( 2)若 △ ACE 中 AE 边上的高为 h ,试用含 h 的代数式表示⊙ O 的直径 AB ;
( 3)设点 D 是线段 AC 上任意一点 (不含端点) ,连接 OD ,当 1
CD +OD 的最小值为 6 时,求⊙ O 的 AB 的长.
2
【模块三 二次函数综合·压轴】
【例 3】( 2014·成都改编)如图,已知抛物线
y
k
( x 2)(x 4)
(k 为常数, k >0)与 x 轴从左至右依次
8
交于点 A 、B ,与 y 轴交于点 C ,经过点 B 的直线 y
3
x b 与抛物线的另一个交点为 D .
3
( 1)若点 D 的横坐标为- 5,求抛物线的函数关系式;
( 2)在( 1)的条件下,设 F 为线段 BD 上一点(不含端点),连接 AF ,一动点 M 从点 A 出发,沿线段 AF 以每秒 1 个单位的速度运动到 ,再沿线段 FD 以每秒 2 个单位的速度运动到 D 后停止, 当点 F 的坐标为多
F
少时,点 M 在整个运动过程中用时最少?
【例 4】( 2015·日照改编)如图,抛物线
y 1 x 2 mx n 与直线 y
1
x 3 交于 A 、B 两点,交 x
2
2
轴于 D 、 C 两点,连接 AC 、 BC ,已知 A (0, 3), C ( 3, 0).
(1)抛物线的函数关系式为 ____________________ , tan ∠BAC=__________;
(2)设E为线段AC上一点(不含端点),连接DE,一动点 M从点 D出发,沿线段 DE以每秒一个单位的
速度运动到 E 点,再沿线段 EA以每秒 2 个单位的速度运动到点 A 后停止,当点 E 的坐标是多少时,点 M 在整个运动过程中用时最少?
【例 5】( 2016·徐州改编)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图像经过点A(-1,0),B(0,-3), C(2,0),其中对称轴与 x 轴交于点 D.
( 1)求二次函数的表达式及其顶点坐标;
( 2)若P为y轴上的一个动点,连接PD,则1
PB PD的最小值为__________.2
【例 6】( 2016·随州改编)已知抛物线y a(x 3)( x 1)(a 0),与x轴从左至右依次相交于A、 B 两点,与 y 轴交于点 C,经过点 A 的直线y 3x b 与抛物线的另一个交点为D.
( 1)若点 D 的横坐标为 2,则抛物线的函数关系式为 ____________________ ;
( 2)在( 1)的条件下,设点
E 是线段 AD 上一点(不含端点),连接 BE ,一动点 Q 从点 B 出发,沿线段
BE 以每秒 1 个单位的速度运动到点
,再沿线段
以每秒
2 3
个单位运动到点
D 停止,问当点
E 的坐标
E
ED
3
为多少时,点 Q 运动的时间最少?。

相关文档
最新文档