高中数学课时跟踪检测十七数学归纳法新人教A版选修2_2
陕西省2018版数学新导学同步选修2-2人教A版作业及测试:课时作业17数学归纳法
|
一、选择题(每小题5分,共25分)
1.用数学归纳法证明“凸n边形的内角和等于(n-2)π”时,归纳奠基中n0的取值应为()
A.1B.2
C.3 D.4
解析:边数最少的凸n边形为三角形,故n0=3.
答案:C
2.用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上()
A.k2+1
A.a= ,b=
B.a=b=
C.a=0,b=
D.a= ,b=
解析:法一:特值验证法,将各选项中a,b的值代入原式,令n=1,2验证,易知选A.
法二:因为1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+ 对一切n∈N*都成立,
所以当n=1,2时有
即 解得
答案:A
12.用数学归纳法证明“当n∈N*时,求证:1+2+22+23+…+25n-1是31的倍数”时,当n=1时,原式为________,从n=k到n=k+1时需增添的项是________.
14.已知数列{an}中,a1=5,Sn-1=an(n≥2且n∈N*).
(1)求a2,a3,a4并由此猜想an的表达式.
(2)用数学归纳法证明{an}的通项公式.
解析:(1)a2=S1=a1=5,a3=S2=a1+a2=10,a4=S3=a1+a2+a3=20.
猜想:an=5×2n-2(n≥2,n∈N*)
答案:D
3.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步是()
A.假设n=2k+1时正确,再推n=2k+3时正确(k∈N*)
B.假设n=2k-1时正确,再推n=2k+1时正确(k∈N*)
C.假设n=k时正确,再推n=k+1时正确(k∈N*)
人教A版高中数学选修2课时跟踪检测七等比数列的概念及通项公式
课时跟踪检测(七) 等比数列的概念及通项公式1.[多选]下列说法中不正确的是( ) A .等比数列中的某一项可以为0B .等比数列中公比的取值范围是(-∞,+∞)C .若一个常数列是等比数列,则这个常数列的公比为1D .若b 2=ac ,则a ,b ,c 成等比数列解析:选ABD 对于A ,因为等比数列中的各项都不为0,所以A 不正确;对于B ,因为等比数列的公比不为0,所以B 不正确;对于C ,若一个常数列是等比数列,则这个常数不为0,根据等比数列的定义知此数列的公比为1,所以C 正确;对于D ,只有当a ,b ,c 都不为0时,a ,b ,c 才成等比数列,所以D 不正确.故选A 、B 、D.2.已知等比数列{a n }满足:a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243 解析:选A 设等比数列{a n }的公比为q , 由题知a 2+a 3=a 1q +a 2q =q (a 1+a 2)=6. 又因为a 1+a 2=3,所以q =2,a 1=1, 所以a 7=a 1·q 6=26=64.3.等差数列{a n }中,d =2,且a 1,a 3,a 4成等比数列,则a 2=( ) A .-4 B .-6 C .-8 D .-10解析:选B 由题知a 1=a 2-d =a 2-2,a 3=a 2+d =a 2+2,a 4=a 2+2d =a 2+4. 因为a 1,a 3,a 4成等比数列, 所以a 23=a 1·a 4,即(a 2+2)2=(a 2-2)(a 2+4), 解得a 2=-6.4.已知数列{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列,则q =( ) A .1或-12 B .1 C .-12D .-2解析:选A 由题意,可知2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q .∴a 1≠0,∴2q 2=1+q ,∴q =1或-12.5.若数列{a n }满足a n +1=4a n +6(n ∈N *)且a 1>0,则下列数列中是等比数列的是( ) A .{a n +6} B .{a n +1} C .{a n +3}D .{a n +2}解析:选D 由a n +1=4a n +6可得a n +1+2=4a n +8=4(a n +2),因此a n +1+2a n +2=4.又a 1>0,所以a n >0,从而a n +2>0(n ∈N *),故{a n +2}是等比数列.6.已知等比数列{a n }的各项均为正数,且a 1+2a 2=4,a 24=4a 3a 7,则a 5=________.解析:设公比为q ,则由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =4,a 21q 6=4a 21q 8,所以⎩⎪⎨⎪⎧a 1=2,q =12,所以a 5=2×⎝ ⎛⎭⎪⎫124=18. 答案:187.已知等比数列{a n }中的前三项为a,2a +2,3a +3,则实数a 的值为________. 解析:因为2a +2为等比中项,所以(2a +2)2=a (3a +3), 整理得a 2+5a +4=0,解得a =-1或a =-4. 但当a =-1时,第二、三项均为零, 故a =-1应舍去, 综上,a =-4. 答案:-48.“一尺之棰,日取其半,万世不竭”这句话出自《庄子·天下篇》,其意思为“一根一尺长的木棰每天截取一半,永远都取不完”.设第一天这根木棰被截取一半剩下a 1尺,第二天被截取剩下的一半剩下a 2尺,…,第五天被截取剩下的一半剩下a 5尺,则a 1+a 2a 5=________.解析:依题意可知,a 1,a 2,a 3,…成等比数列,且公比为12,则a 1+a 2a 5=12+14125=24.答案:249.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . ∵a 25=a 10,2(a n +a n -2)=5a n -1,∴⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9, ①2q 2+1=5q . ②由①,得a 1=q . 由②,得q =2或q =12,又数列{a n }为递增数列,∴a 1=q =2,∴a n =2n.10.已知数列{}a n 的前n 项和为S n ,S n =13(a n -1)(n ∈N *).(1)求a 1,a 2;(2)求证:数列{}a n 是等比数列.解:(1)由S 1=13(a 1-1),得a 1=13(a 1-1).所以a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1 =13(a n -1)-13(a n -1-1), 得a n a n -1=-12,又a 1=-12, 所以{}a n 是首项为-12,公比为-12的等比数列.1.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2…a k =a 11,则k =( ) A .12 B .15 C .18 D .212.明代朱载堉对文艺的最大贡献是创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”.“十二平均律”是指一个八度有十三个单音,相邻两个单音之间的频率之比相等,且最后一个单音的频率是第一个单音的频率的2倍,设第二个单音的频率为f 2,第八个单音的频率为f 8,则f 8f 2等于( )A. 2 B .32 C.42 D .62解析:选A 依题意知,十三个单音的频率构成等比数列,记为{a n },设公比为q ,则a 13=a 1q 12,且a 13=2a 1,∴q =2112,∴f 8f 2=a 8a 2=q 6=⎝ ⎛⎭⎪⎫21126= 2. 3.已知数列{a n }为等差数列,其前n 项和为S n ,S 2=8,S 4=32,数列{b n }为等比数列,且b 1=a 1,b 2(a 2-a 1)=b 1,则{b n }的通项公式为b n =________.解析:设公差为d ,公比为q ,由已知得⎩⎪⎨⎪⎧2a 1+d =8,4a 1+6d =32.∴⎩⎪⎨⎪⎧a 1=2,d =4.又∵b 2(a 2-a 1)=b 1, ∴q =b 2b 1=1a 2-a 1=1d =14.∴b n =2×⎝ ⎛⎭⎪⎫14n -1.答案:2×⎝ ⎛⎭⎪⎫14n -14.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827.(1)求证:{a n }是等比数列,并求出其通项公式.(2)试问:-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.解:(1)证明:∵2a n =3a n +1,∴a n +1a n =23, 故{a n }是等比数列,且其公比为23.∵a 1q ·a 1q 4=827,∴a 21=94,又a 1<0,∴a 1=-32,∴a n =⎝ ⎛⎭⎪⎫-32⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2.(2)由(1)的结论,令-1681=-⎝ ⎛⎭⎪⎫23n -2,得⎝ ⎛⎭⎪⎫234=⎝ ⎛⎭⎪⎫23n -2, 解得n =6,为正整数,则-1681是该数列的第6项. 5.设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由.解:(1)证明:因为2a n +12a n=2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,aa 4依次构成等比数列.(2)令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0,化简得t 3+2t 2-2=0 (*),且t 2=t +1.将t 2=t +1代入(*)式,得t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版
2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
2019-2020年高中数学课时跟踪检测十七数学归纳法新人教A版选修
2019-2020年高中数学课时跟踪检测十七数学归纳法新人教A 版选修1.设S k =1k +1+1k +2+1k +3+ (12),则S k +1为( ) A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1解析:选C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+… +12k,① 得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).② 由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1). 2.利用数学归纳法证明不等式1+12+13+…+12n -1<n (n ≥2,n ∈N *)的过程中,由n=k 变到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项解析:选D 当n =k 时,不等式左边的最后一项为12k -1,而当n =k +1时,最后一项为12k +1-1=12k -1+2k ,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项.3.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则( )A .该命题对于n >2的自然数n 都成立B .该命题对于所有的正偶数都成立C .该命题何时成立与k 取值无关D .以上答案都不对解析:选B 由n =k 时命题成立可推出n =k +2时命题也成立,又n =2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.4.对于不等式 n 2+n <n +1(n ∈N *),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+k+2=(k+2)2=(k+1)+1,∴n=k+1时,不等式成立,则上述证法( )A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析:选D 在n=k+1时,没有应用n=k时的归纳假设,故选D.5.设f(n)=5n+2×3n-1+1(n∈N*),若f(n)能被m(m∈N*)整除,则m的最大值为( ) A.2 B.4C.8 D.16解析:选C f(1)=8,f(2)=32,f(3)=144=8×18,猜想m的最大值为8.6.用数学归纳法证明“对于足够大的自然数n,总有2n>n3”时,验证第一步不等式成立所取的第一个值n0最小应当是________.解析:∵210=1 024>103,29=512<93,∴n0最小应为10.答案:107.用数学归纳法证明122+132+…+1(n+1)2>12-1n+2,假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是____________________________________.解析:观察不等式中分母的变化便知.答案:122+132+…+1(k+1)2+1(k+2)2>12-1k+38.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.解析:当n=1时,36+a3能被14整除的数为a=3或5;当a=3且n=2时,310+35不能被14整除,故a=5.答案:59.已知n∈N*,求证1·22-2·32+…+(2n-1)·(2n)2-2n·(2n+1)2=-n(n+1)(4n +3).证明:(1)当n=1时,左边=4-18=-14=-1×2×7=右边.(2)假设当n=k(k∈N*,k≥1)时成立,即1·22-2·32+…+(2k-1)·(2k)2-2k·(2k +1)2=-k(k+1)(4k+3).则当n=k+1时,1·22-2·32+…+(2k-1)·(2k)2-2k·(2k+1)2+(2k+1)·(2k+2)2-(2k+2)·(2k +3)2=-k (k +1)(4k +3)+(2k +2)[(2k +1)(2k +2)-(2k +3)2]=-k (k +1)(4k +3)+2(k +1)·(-6k -7)=-(k +1)(k +2)(4k +7) =-(k +1)·[(k +1)+1][4(k +1)+3], 即当n =k +1时成立.由(1)(2)可知,对一切n ∈N *结论成立.10.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).证明:(1)当n =1时,32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N *)时命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.层级二 应试能力达标1.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n+1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2解析:选C 增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.2.设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于( )A.13n +2B.13n +13n +1C.13n +1+13n +2 D.13n +13n +1+13n +2解析:选D f (n +1)-f (n )=13n +13n +1+13n +2.3.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为f (k ),则f (k +1)与f (k )的关系是( )A .f (k +1)=f (k )+k +1B .f (k +1)=f (k )+k -1C .f (k +1)=f (k )+kD .f (k +1)=f (k )+k +2解析:选C 当n =k +1时,任取其中1条直线记为l ,则除l 外的其他k 条直线的交点的个数为f (k ),因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为任何三条直线不过同一点,所以上面的k 个交点两两不相同,且与平面内其他的f (k )个交点也两两不相同,从而n =k +1时交点的个数是f (k )+k =f (k +1).4.若命题A (n )(n ∈N *)n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确解析:选C 由题意知n =n 0时命题成立能推出n =n 0+1时命题成立,由n =n 0+1时命题成立,又推出n =n 0+2时命题也成立…,所以对大于或等于n 0的正整数命题都成立,而对小于n 0的正整数命题是否成立不确定.5.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1成立时,左边所得的项为____________.解析:当n =1时,n +1=2,所以左边=1+a +a 2. 答案:1+a +a 26.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=20=1,右边=21-1=1,等式成立. ②假设n =k (k ≥1,且k ∈N *)时,等式成立,即 1+2+22+…+2k -1=2k-1.则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,所以当n =k +1时,等式也成立. 由①②知,对任意n ∈N *,等式成立. 上述证明中的错误是________.解析:由证明过程知,在证从n =k 到n =k +1时,直接用的等比数列前n 项和公式,没有用上归纳假设,因此证明是错误的.答案:没有用归纳假设7.平面内有n (n ∈N *)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n 个圆把平面分成n 2-n +2部分.证明:(1)当n =1时,n 2-n +2=2,即一个圆把平面分成两部分,故结论成立. (2)假设当n =k (k ≥1,k ∈N *)时命题成立,即k 个圆把平面分成k 2-k +2部分. 则当n =k +1时,这k +1个圆中的k 个圆把平面分成k 2-k +2个部分,第k +1个圆被前k 个圆分成2k 条弧,这2k 条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k 个部分,故k +1个圆把平面分成k 2-k +2+2k =(k +1)2-(k +1)+2部分,即n =k +1时命题也成立.综上所述,对一切n ∈N *,命题都成立.8.已知某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2. (1)写出这个数列的前5项;(2)写出这个数列的通项公式并加以证明.解:(1)已知a 1=1,由题意,得a 1·a 2=22,∴a 2=22. ∵a 1·a 2·a 3=32,∴a 3=3222.同理,可得a 4=4232,a 5=5242.因此这个数列的前5项分别为1,4,94,169,2516.(2)观察这个数列的前5项,猜测数列的通项公式应为: a n =⎩⎪⎨⎪⎧1(n =1),n 2(n -1)2(n ≥2).下面用数学归纳法证明当n ≥2时,a n =n 2(n -1)2.①当n =2时,a 2=22(2-1)2=22,结论成立.②假设当n =k (k ≥2,k ∈N *)时,结论成立, 即a k =k 2(k -1)2.∵a 1·a 2·…·a k -1=(k -1)2,a 1·a 2·…·a k -1·a k ·a k +1=(k +1)2,∴a k +1=(k +1)2(a 1·a 2·…·a k -1)·a k =(k +1)2(k -1)2·(k -1)2k 2=(k +1)2k 2=(k +1)2[(k +1)-1]2.这就是说当n =k +1时,结论也成立.根据①②可知,当n ≥2时,这个数列的通项公式是a n =n 2(n -1)2.∴这个数列的通项公式为a n =⎩⎪⎨⎪⎧1(n =1),n 2(n -1)2(n ≥2).2019-2020年高中数学课时跟踪检测十七概率的加法公式新人教B 版必修1.如果事件A ,B 互斥,记A ,B 分别为事件A ,B 的对立事件,那么( ) A .A ∪B 是必然事件 B.A ∪B 是必然事件 C.A 与B 一定互斥D.A 与B 一定不互斥解析:选B 用Venn 图解决此类问题较为直观.如图所示,A ∪B 是必然事件,故选B.2.根据湖北某医疗所的调查,某地区居民血型的分布为:O 型52%,A 型15%,AB 型5%,B 型28%.现有一血型为A 型的病人需要输血,若在该地区任选一人,则此人能为病人输血的概率为( )A .67%B .85%C .48%D .15%解析:选A O 型血与A 型血的人能为A 型血的人输血,故所求的概率为52%+15%=67%.故选A.3.下列各组事件中,不是互斥事件的是( )A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C .播种100粒菜籽,发芽90粒与发芽80粒D .检验某种产品,合格率高于70%与合格率低于70%解析:选B 对于B ,设事件A 1为平均分不低于90分,事件A 2为平均分不高于90分,则A 1∩A 2为平均分等于90分,A 1,A 2可能同时发生,故它们不是互斥事件.4.把电影院的4张电影票随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得4排1号”与事件“乙分得4排1号”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上答案都不对解析:选C “甲分得4排1号”与“乙分得4排1号”是互斥事件但不对立. 5.一个口袋内有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出不是红球的概率为________.解析:设A ={摸出红球},B ={摸出白球},C ={摸出黑球},则A ,B ,C 两两互斥,A与A 为对立事件,因为P (A +B )=P (A )+P (B )=0.58,P (A +C )=P (A )+P (C )=0.62,P (A +B +C )=P (A )+P (B )+P (C )=1,所以P (C )=0.42,P (B )=0.38,P (A )=0.20,所以P (A )=1-P (A )=1-0.20=0.80.答案:0.806.向三个相邻的军火库投一枚炸弹,炸中第一军火库的概率为0.025,炸中第二、三军火库的概率均为0.1,只要炸中一个,另两个也会发生爆炸,军火库爆炸的概率为________.解析:设A ,B ,C 分别表示炸弹炸中第一、第二、第三军火库这三个事件,D 表示军火库爆炸,则P (A )=0.025,P (B )=0.1,P (C )=0.1,其中A ,B ,C 互斥,故P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225.答案:0.2257.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________. 解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为37+14=1928.答案:19288.据统计,某储蓄所一个窗口等候的人数及相应概率如下表:(1)求至多2人排队等候的概率; (2)求至少2人排队等候的概率.解:记在窗口等候的人数是0,1,2分别为事件A ,B ,C ,则A ,B ,C 彼此互斥. (1)至多2人排队等候的概率为P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56.(2)“至少2人排队等候”的对立事件是“等候人数为0或1”,而等候人数为0或1的概率为P (A ∪B )=P (A )+P (B )=0.1+0.16=0.26.故至少2人排队等候的概率为1-0.26=0.74.9.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)抽取1张奖券中奖概率;(3)抽取1张奖券不中特等奖或一等奖的概率.解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个, ∴P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120.(2)设“抽取1张奖券中奖”为事件D ,则P (D )=P (A )+P (B )+P (C )=11 000+1100+120=611 000. (3)设“抽取1张奖券不中特等奖或一等奖”为事件E ,则P (E )=1-P (A )-P (B )=1-11 000-1100=9891 000.。
人教A版高中数学选修2-2《数学归纳法》说课稿
数学归纳法(第一课时)说课稿(人教A版高中数学选修2-2)一、教材分析1、教材地位数学归纳法是人教A版高中数学选修2—2第二章第三节的内容,它是一种特殊的证明方法,对证明一些与正整数有关的命题是非常有用的研究工具,弥补了不完全归纳法的不足。
用它解答一些高考题往往能起到柳暗花明的神奇作用,因此是高中理科生应掌握的一种证明方法。
2、教学重点、难点教学重点:理解数学归纳法的原理,掌握用数学归纳法证明命题的基本步骤教学难点:(1)理解数学归纳法的原理(2)如何利用归纳假设证明当n=k+1时命题也成立。
二、教学目标(1)知识目标:理解数学归纳法的原理,掌握数学归纳法证题的基本步骤,会用“数学归纳法”证明简单的恒等式。
(2)能力目标:培养学生观察, 分析, 论证的能力, 进一步发展学生的逻辑、抽象、创新思维能力,让学生经历知识的建构过程, 体会类比的数学思想。
(3)情感目标:通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度,感受数学内在美,激发学习热情。
三、学情分析:在此之前学生经历了数列的求通项、求和等知识的学习,还学习了归纳推理、类比推理、演绎推理等知识,已具备了一定的观察、分析、归纳能力。
四、教学方法教学方法:本节课主要采用感性体验法、类比、引导发现法进行教学。
教学手段:借助多媒体展示创设教学情境学法指导:本课以问题情境为中心,以解决问题为主线展开,引导学生通过以下模式:“观察情境→提出问题→分析问题→解决问题→提升理论→巩固应用”进行探究式学习。
五、教学过程:(一)知识链接归纳推理特点:由特殊到一般 类比推理特点:由特殊到特殊常用⎩⎨⎧完全归纳法不完全归纳法归纳法(设计意图:复习归纳推理和类比推理,为学习数学归纳法作铺垫)(二)创设情境情境1 明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子由“一字是一横,二字是二横,三字是三横”,得出“四就是四横、五就是五横……,百是百横,……,万是万横,……”的结论,用的就是“不完全归纳法”,不过,这个归纳推出的结论显然是错误的.情境2 费马(Fermat )是17世纪法国著名的数学家,他曾认为,当n∈N *时,122+n一定都是质数,这是他对n =0,1,2,3,4作了验证后得到的.后来,18世纪瑞士科学家欧拉(Euler )却证明了 1252+=4 294 967 297=6 700 417×641,从而否定了费马的推测.没想到当n =5这一结论便不成立.(设计意图:通过以上两个例子让学生了解不完全归纳法得出的结论不一定正确,即使是数学家也不例外。
高中数学 2.3数学归纳法课时作业 新人教A版选修22
高中数学 2.3数学归纳法课时作业 新人教A 版选修22课时目标 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.由一系列有限的个别事实得出一般结论的推理方法,通常叫做归纳法. 2.用数学归纳法证明一个与正整数n 有关的命题时,其步骤为: (1)归纳奠基:证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)归纳递推:假设n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时命题也成立; (3)由(1)(2)得出结论.一、选择题1.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N *),在验证n =1时,等号左边的项是( ) A .1 B .1+a C .1+a +a 2D .1+a +a 2+a 32.用数学归纳法证明“2n>n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( ) A .2 B .3 C .5 D .63.已知f (n )=1+12+13+…+1n (n ∈N *),证明不等式f (2n )>n 2时,f (2k +1)比f (2k)多的项数是( ) A .2k -1项 B .2k +1项C .2k项 D .以上都不对4.用数学归纳法证明(n +1)(n +2)·…·(n +n )=2n·1·3·…·(2n +1)(n ∈N *),从“k 到k +1”左端需增乘的代数式为( ) A .2k +1 B .2(2k +1) C.2k +1k +1 D.2k +3k +15.用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”时,第一步验证n =1时,命题成立,第二步归纳假设应写成( )A .假设n =2k +1(n ∈N *)时命题正确,再推证n =2k +3时命题正确 B .假设n =2k -1(k ∈N *)时命题正确,再推证n =2k +1时命题正确 C .假设n =k (k ∈N *)时命题正确,再推证n =k +2时命题正确D .假设n ≤k (k ∈N *)时命题正确,再推证n =k +2时命题正确 6.用数学归纳法证明不等式“1n +1+1n +2+…+12n >1324(n >2)”时的过程中,由n =k 到n =k +1时,不等式的左边( )A .增加了一项12(k +1)B .增加了两项12k +1,12(k +1)C .增加了两项12k +1,12(k +1),又减少了一项1k +1D .增加了一项12(k +1),又减少了一项1k +17.用数学归纳法证明:1+2+3+…+n 2=n 4+n 22时,则n =k +1时的左端应在n =k 时的左端加上____________________________. 8.用数学归纳法证明:1+2+22+…+2n -1=2n -1 (n ∈N *)的过程如下:(1)当n =1时,左边=1,右边=21-1=1,等式成立. (2)假设当n =k 时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N *,等式都成立.上述证明的错误是________________________.9.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).依次计算出S 1,S 2,S 3,S 4后,可猜想S n 的表达式为________________.三、解答题10.试比较2n+2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.11.在数列{a n }中,a 1=12,a n +1=a n2a n +1(n =1,2,3,…)(1)求a 2,a 3;(2)猜想数列{a n }的通项公式,并用数学归纳法证明你的结论.能力提升12.已知f (n )=(2n +7)·3n+9,存在正整数m ,使得对任意n ∈N *都能使m 整除f (n ), 则最大的m 的值为多少?并证明之.13.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *), 证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.1.数学归纳法在证明与正整数n 有关的等式、不等式、整除问题及数列问题中有广泛的应用.2.在证明n =k +1时的命题中,怎样变形使之出现n =k 时的命题的形式是解决问题的关键,要找清n =k +1时式子结构或几何量的改变.答案作业设计1.C [当n =1时,an +1=a 2.∴等号左边的项是1+a +a 2.]2.C [当n 取1、2、3、4时2n >n 2+1不成立,当n =5时,25=32>52+1=26,第一个 能使2n>n 2+1的n 值为5.]3.C [观察f (n )的表达式可知,右端分母是连续的正整数,f (2k)=1+12+…+12k ,而f (2k +1)=1+12+…+12k +12k +1+12k +2+…+12k +2k .因此f (2k +1)比f (2k)多了2k项.]4.B [当n =k 时左端为(k +1)(k +2)·…·(k +k ),当n =k +1时,左端为(k +2)(k +3)…(k+1+k -1)(k +1+k )(k +1+k +1),即(k +2)(k +3)…(k +k )·(2k +1)(2k +2). 观察比较它们的变化知增乘了(2k +1)(2k +2)k +1=2(2k +1).]5.B [因n 为正奇数,所以否定C 、D 项;当k =1时,2k -1=1,2k +1=3,故选B.] 6.C [当n =k 时,左边=1k +1+1k +2+ (12). 当n =k +1时,左边=1k +2+1k +3+...+12(k +1)=1k +1+1k +2+ (12)+ ⎝ ⎛⎭⎪⎫12k +1+12k +2-1k +1.]7.(k 2+1)+(k 2+2)+…+(k +1)28.没有用到归纳假设,不是数学归纳法. 9.S n =2nn +1解析 S 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1. 10.证明 当n =1时,21+2=4>n 2=1, 当n =2时,22+2=6>n 2=4, 当n =3时,23+2=10>n 2=9, 当n =4时,24+2=18>n 2=16, 由此可以猜想, 2n+2>n 2(n ∈N *)成立. 下面用数学归纳法证明:①当n =1时,左边=21+2=4,右边=1, 所以左边>右边,所以原不等式成立. 当n =2时,左边=22+2=6, 右边=22=4,所以左边>右边;当n =3时,左边=23+2=10,右边=32=9, 所以左边>右边.②假设n =k 时(k ≥3且k ∈N *)时,不等式成立, 即2k+2>k 2,那么n =k +1时, 2k +1+2=2·2k +2=2(2k +2)-2>2k 2-2.要证当n =k +1时结论成立, 只需证2k 2-2≥(k +1)2, 即证k 2-2k -3≥0, 即证(k +1)(k -3)≥0. 又∵k +1>0,k -3≥0, ∴(k +1)(k -3)≥0.所以当n =k +1时,结论成立. 由①②可知,n ∈N *,2n+2>n 2.11.解 (1)a 2=a 12a 1+1=122×12+1=14,a 3=a 22a 2+1=142×14+1=16.(2)猜想a n =12n ,下面用数学归纳法证明此结论正确.证明:①当n =1时,结论显然成立.②假设当n =k (k ∈N *)时,结论成立,即a k =12k ,那么a k +1=a k2a k +1=12k 2×12k +1=12k +2=12(k +1). 也就是说,当n =k +1时结论成立.根据①②可知,结论对任意正整数n 都成立, 即a n =12n.12.解 ∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36,∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,假设n =k (k ∈N *,k ≥2)时,f (k )=(2k +7)·3k +9能被36整除,则n =k +1时,f (k +1)-f (k )=(2k +9)·3k +1-(2k +7)·3k=(6k +27)·3k -(2k +7)·3k=(4k +20)·3k =36(k +5)·3k -2(k ≥2).∴f (k +1)能被36整除.因此,对任意n ∈N *,f (n )都能被36整除. 又∵f (1)不能被大于36的数整除, ∴所求最大的m 值等于36. 13.(1)解 由题意:S n =b n+r , 当n ≥2时,S n -1=bn -1+r . 所以a n =S n -S n -1=b n -1(b -1),由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (2)证明 当b =2时,由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式= 2.左式>右式,所以结论成立, ②假设n =k (k ∈N *)时结论成立, 即2+12·4+14·…·2k +12k>k +1, 则当n =k +1时,2+12·4+14·…2k +12k ·2k +32(k +1) >k +1·2k +32(k +1)=2k +32k +1.要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥(k +1)(k +2),由基本不等式2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立, 故2k +32k +1≥k +2成立,所以当n =k +1时,结论成立. 由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.。
2017-2018学年人教A版数学选修2-2课时跟踪检测十五 综
课时跟踪检测(十五) 综合法和分析法一、选择题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证明法;⑤分析法是逆推法.其中正确的语句有( )A .2个B .3个C .4个D .5个解析:选C ①②③⑤正确.2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1) 解析:选A 本题就是找哪一个函数在(0,+∞)上是减函数,A 项中,f ′(x )=⎝⎛⎭⎫1x ′=-1x 2<0,∴f (x )=1x 在(0,+∞)上为减函数. 3.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为( ) A .8B .4C .1D.14 解析:选B 3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14,所以1a +1b =a +b ab =1ab ≥114=4. 4.A ,B 为△ABC 的内角,A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若A >B ,则a >b .又∵a sin A =b sin B , ∴sin A >sin B .若sin A >sin B ,则由正弦定理得a >b ,∴A >B .5.已知f (x )=a x +1,0<a <1,若x 1,x 2∈R ,且x 1≠x 2,则( )A.f (x 1)+f (x 2)2≤f ⎝⎛⎭⎫x 1+x 22B.f (x 1)+f (x 2)2=f ⎝⎛⎭⎫x 1+x 22C.f (x 1)+f (x 2)2≥f ⎝⎛⎭⎫x 1+x 22D.f (x 1)+f (x 2)2>f ⎝⎛⎭⎫x 1+x 22解析:选D 因为x 1≠x 2,所以f (x 1)+f (x 2)2=ax 1+1+ax 2+12> ax 1+1·ax 2+1=a x 1+x 22+1=f ⎝⎛⎭⎫x 1+x 22,所以f (x 1)+f (x 2)2>f ⎝⎛⎭⎫x 1+x 22.二、填空题6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:该证明过程符合综合法的特点.答案:综合法7.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________.解析:a a +b b >a b +b a⇔a a -a b >b a -b b⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可.答案:a ≥0,b ≥0且a ≠b8.已知sin θ+cos θ=15且π2≤θ≤3π4,则cos 2θ=________. 解析:因为sin θ+cos θ=15,所以1+sin 2θ=125,所以sin 2θ=-2425.因为π2≤θ≤3π4,所以π≤2θ≤3π2, 所以cos 2θ=-1-sin 22θ=-725. 答案:-725三、解答题9.求证:2cos(α-β)-sin(2α-β)sin α=sin βsin α.证明:要证原等式成立,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α=cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以等式成立.10.设f(x)=ln x+x-1,证明:(1)当x>1时,f(x)<32(x-1);(2)当1<x<3时,f(x)<9(x-1) x+5.证明:(1)记g(x)=ln x+x-1-32(x-1),则当x>1时,g′(x)=1x+12x-32<0.又因为g(1)=0,故g(x)<0,即f(x)<32(x-1).(2)记h(x)=f(x)-9(x-1) x+5,则h′(x)=1x+12x-54(x+5)2=2+x2x-54(x+5)2<x+54x-54(x+5)2=(x+5)3-216x 4x(x+5)2.令p(x)=(x+5)3-216x,则当1<x<3时,p′(x)=3(x+5)2-216<0,因此p(x)在(1,3)内单调递减.又因为p(1)=0,则p(x)<0,故h′(x)<0,因此h(x)在(1,3)内单调递减.又因为h(1)=0,则h(x)<0,故当1<x<3时,f(x)<9(x-1) x+5.。
高中数学人教A版选修2-2(课时训练)2.3 数学归纳法(二) Word版含答案
数学归纳法(二)[学习目标].进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题..掌握证明=+成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.[知识链接].数学归纳法的两个步骤有何关系?答案使用数学归纳法时,两个步骤缺一不可,步骤()是递推的基础,步骤()是递推的依据..用数学归纳法证明的问题通常具备怎样的特点?答案与正整数有关的命题[预习导引].归纳法归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明..数学归纳法()应用范围:作为一种证明方法,用于证明一些与正整数有关的数学命题;()基本要求:它的证明过程必须是两步,最后还有结论,缺一不可;()注意点:在第二步递推归纳时,从=到=+必须用上归纳假设.要点一用数学归纳法证明不等式问题例用数学归纳法证明:+++…+<-(≥,∈*).证明()当=时,左式==,右式=-=.因为<,所以不等式成立.()假设=(≥,∈*)时,不等式成立,即+++…+<-,则当=+时,+++…++<-+=-=-<-=-,所以当=+时,不等式也成立.综上所述,对任意≥的正整数,不等式都成立.规律方法用数学归纳法证明不等式时常要用到放缩法,即在归纳假设的基础上,通过放大或缩小等技巧变换出要证明的目标不等式.跟踪演练用数学归纳法证明:对一切大于的自然数,不等式…>成立.证明()当=时,左=+=,右=,左>右,∴不等式成立.()假设=(≥且∈*)时,不等式成立,即…>,那么当=+时,…>·==>。
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测十六 反证法 含解析 精品
课时跟踪检测(十六)反证法层级一学业水平达标1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:选B根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除解析:选B“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是() A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角解析:选B“至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a >b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.答案:自然数a,b,c中至少有两个偶数或都是奇数7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠18.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB⊂α,CD ⊂α,这与AB,CD异面相矛盾,故AC与BD异面.答案:异面9.求证:1,3,2不能为同一等差数列的三项.证明:假设1,3,2是某一等差数列的三项,设这一等差数列的公差为d,则1=3-md,2=3+nd,其中m,n为两个正整数,由上面两式消去d,得n+2m=3(n+m).因为n+2m为有理数,而3(n+m)为无理数,所以n+2m≠3(n+m),矛盾,因此假设不成立,即1,3,2不能为同一等差数列的三项.10.已知函数f(x)在R上是增函数,a,b∈R.(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.解:(1)证明:当a+b≥0时,a≥-b且b≥-a.∵f(x)在R上是增函数,∴f(a)≥f(-b),f(b)≥f(-a),∴f(a)+f(b)≥f(-a)+f(-b).(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.用反证法证明如下:假设a+b<0,则a<-b,∴f(a)<f(-b).同理可得f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,∴a+b≥0成立,即(1)中命题的逆命题成立.层级二 应试能力达标1.用反证法证明命题“关于x 的方程ax =b (a ≠0)有且只有一个解”时,反设是关于x 的方程ax =b (a ≠0)( )A .无解B .有两解C .至少有两解D .无解或至少有两解解析:选D “唯一”的否定是“至少两解或无解”.2.下列四个命题中错误的是( )A .在△ABC 中,若∠A =90°,则∠B 一定是锐角 B.17,13,11不可能成等差数列C .在△ABC 中,若a >b >c ,则∠C >60°D .若n 为整数且n 2为偶数,则n 是偶数解析:选C 显然A 、B 、D 命题均真,C 项中若a >b >c ,则∠A >∠B >∠C ,若∠C >60°,则∠A >60°,∠B >60°,∴∠A +∠B +∠C >180°与∠A +∠B +∠C =180°矛盾,故选C.3.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a ( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:选C 假设都大于-2,则a +1b +b +1c +c +1a>-6,但⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b +⎝⎛⎭⎫c +1c ≤-2+(-2)+(-2)=-6,矛盾. 4.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定解析:选B 分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意. 5.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:06.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:据题目要求及解题步骤,∵a 1-1,a 2-2,…,a 7-7均为奇数,∴(a 1-1)+(a 2-2)+…+(a 7-7)也为奇数.即(a 1+a 2+…+a 7)-(1+2+…+7)为奇数.又∵a 1,a 2,…,a 7是1,2,…,7的一个排列,∴a 1+a 2+…+a 7=1+2+…+7,故上式为0,所以奇数=(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0.答案:(a 1-1)+(a 2-2)+…+(a 7-7)(a 1+a 2+...+a 7)-(1+2+ (7)7.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14. 证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14. 因为0<a <1,0<b <1,0<c <1,所以1-a >0.由基本不等式,得(1-a )+b 2≥(1-a )b >14=12. 同理,(1-b )+c 2>12,(1-c )+a 2>12. 将这三个不等式两边分别相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>12+12+12, 即32>32,这是不成立的, 故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.8.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.解:(1)由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n . 又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·⎝⎛⎭⎫23n -1, 故1-a 2n =34·⎝⎛⎭⎫23n -1⇒a 2n =1-34·⎝⎛⎭⎫23n -1. 又a 1=12>0,a n a n +1<0, 故a n =(-1)n -1 1-34·⎝⎛⎭⎫23n -1. b n =a 2n +1-a 2n =⎣⎡⎦⎤1-34·⎝⎛⎭⎫23n -1-34·⎝⎛⎭⎫23n -1=14·⎝⎛⎭⎫23n -1. (2)用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只可能有2b s =b r +b t 成立. ∴2·14·⎝⎛⎭⎫23s -1=14·⎝⎛⎭⎫23r -1+14·⎝⎛⎭⎫23t -1, 两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s . 由于r <s <t ,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。
人教A高中数学选修21浙江专课时跟踪检测十七 空间向量的正交分解及其坐标表示 含解析
课时跟踪检测(十七) 空间向量的正交分解及其坐标表示一、基本能力达标1.设p :a ,b ,c 是三个非零向量;q :{a ,b ,c }为空间的一个基底,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 当非零向量a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底.当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量.因此pq ,q ⇒p .2.在空间直角坐标系O -xyz 中,下列说法正确的是( ) A .向量AB ―→的坐标与点B 的坐标相同 B .向量AB ―→的坐标与点A 的坐标相同 C .向量AB ―→与向量OB ―→的坐标相同 D .向量AB ―→与向量OB ―→-OA ―→的坐标相同解析:选D 因为A 点不一定为坐标原点,所以A 不正确;同理B 、C 都不正确;由于AB ―→=OB ―→-OA ―→,所以D 正确.3.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)解析:选A 依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).4.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→ B .14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→) D.16OB ―→+13OA ―→+13OC ―→ 解析:选B 如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→)=14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 5.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:选B MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .6.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.解析:由于{e 1,e 2,e 3}是空间向量的一个单位正交基底, 所以a =(4,-8,3),b =(-2,-3,7). 答案:a =(4,-8,3),b =(-2,-3,7)7.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =xa +yb +2c ,若m 与n 共线,则x =________,y =________.解析:因为m 与n 共线,所以存在实数λ,使m =λn ,即a -b +c =λxa +λyb +2λc , 于是有⎩⎪⎨⎪⎧1=λx ,-1=λy ,1=2λ,解得⎩⎪⎨⎪⎧x =2,y =-2.答案:2 -28.在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是底面A 1C 1和侧面CD 1的中心,若EF ―→+λA 1D ―→=0(λ∈R ),则λ=________.解析:如图,连接A 1C 1,C 1D , 则E 在A 1C 1上,F 在C 1D 上,易知EF 綊12A 1D ,∴EF ―→=12A 1D ―→,即EF ―→-12A 1D ―→=0,∴λ=-12.答案:-129.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB ―→,AD ―→,AA 1―→}为正交基底,求下列向量的坐标:(1)AE ―→,AF ―→,AG ―→;(2)EF ―→,EG ―→,DG ―→.解:(1)AE ―→=AD ―→+DE ―→=AD ―→+12AA 1―→=⎝⎛⎭⎫0,1,12, AF ―→=AA 1―→+A 1D 1―→+D 1F ―→=AA 1―→+AD ―→+12AB ―→=⎝⎛⎭⎫12,1,1, AG ―→=AB ―→+BG ―→=AB ―→+12AD ―→=⎝⎛⎭⎫1,12,0. (2)由(1)得EF ―→=AF ―→-AE ―→=⎝⎛⎭⎫12,1,1-⎝⎛⎭⎫0,1,12 =⎝⎛⎭⎫12,0,12,EG ―→=AG ―→-AE ―→=⎝⎛⎭⎫1,12,0-⎝⎛⎭⎫0,1,12=⎝⎛⎭⎫1,-12,-12, DG ―→=AG ―→-AD ―→=⎝⎛⎭⎫1,12,0-(0,1,0)=⎝⎛⎭⎫1,-12,0. 10.在平行六面体ABCD -A 1B 1C 1D 1中,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B ―→,EF ―→;(2)若D 1F ―→=xa +yb +zc ,求实数x ,y ,z 的值.解:(1)如图,D 1B ―→=D 1D ―→+DB ―→=-AA 1―→+AB ―→-AD ―→=a -b -c , EF ―→=EA ―→+AF ―→=12D 1A ―→+12AC ―→=-12(AA 1―→+AD ―→)+12(AB ―→+AD ―→)=12(a -c ).(2)D 1F ―→=12(D 1D ―→+D 1B ―→)=12(-AA 1―→+D 1B ―→) =12(-c +a -b -c ) =12a -12b -c , ∴x =12,y =-12,z =-1.二、综合能力提升1.已知M ,A ,B ,C 四点互不重合且无三点共线,则能使向量MA ―→,MB ―→,MC ―→成为空间的一个基底的关系是( )A .OM ―→=13OA ―→+13OB ―→+13OC ―→B .MA ―→=MB ―→+MC ―→C .OM ―→=OA ―→+OB ―→+OC ―→D .MA ―→=2MB ―→-MC ―→解析:选C 对于选项A ,由OM ―→=x OA ―→+y OB ―→+z OC ―→(x +y +z =1)⇒M ,A ,B ,C 四点共面,知MA ―→,MB ―→,MC ―→共面;对于选项B ,D ,易知MA ―→,MB ―→,MC ―→共面,故选C.2.给出下列命题:①若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底;②已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底;③A ,B ,M ,N 是空间四点,若BA ―→,BM ―→,BN ―→不能构成空间的一个基底,则A ,B ,M ,N 四点共面;④已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底. 其中正确命题的个数是( )A .1B .2C .3D .4解析:选D 根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然②正确.③中由BA ―→,BM ―→,BN ―→不能构成空间的一个基底,知BA ―→,BM ―→,BN ―→共面.又BA ―→,BM ―→,BN ―→过相同点B ,知A ,B ,M ,N 四点共面.下面证明①④正确:假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =kc .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证④也是正确的.于是①②③④四个命题都正确,故选D.3.在长方体ABCD -A 1B 1C 1D 1中,若AB ―→=3i ,AD ―→=2j ,AA 1―→=5k ,则向量AC 1―→在基底{i ,j ,k }下的坐标是( )A .(1,1,1)B .⎝⎛⎭⎫13,12,15C .(3,2,5)D .(3,2,-5)解析:选C AC 1―→=AB ―→+BC ―→+CC 1―→=AB ―→+AD ―→+AA 1―→=3i +2j +5k ,∴向量AC 1―→在基底{i ,j ,k }下的坐标是(3,2,5),故选C.4.已知向量OA ―→和OB ―→在基底{a ,b ,c }下的坐标分别为(3,4,5)和(0,2,1),若OC ―→=25AB ―→,则向量OC ―→在基底{a ,b ,c }下的坐标是( )A.⎝⎛⎭⎫-65,-45,-85 B .⎝⎛⎭⎫65,-45,-85 C.⎝⎛⎭⎫-65,-45,85 D.⎝⎛⎭⎫65,45,85解析:选A ∵AB ―→=OB ―→-OA ―→=(2b +c )-(3a +4b +5c )=-3a -2b -4c ,∴OC ―→=25AB―→=-65a -45b -85c ,∴向量OC ―→在基底{a ,b ,c }下的坐标是⎝⎛⎭⎫-65,-45,-85,故选A. 5.若{a ,b ,c }是空间的一个基底,且存在实数x ,y ,z ,使得xa +yb +zc =0,则x ,y ,z 满足的条件是________.解析:若x ≠0,则a =-y x b -zx c ,即a 与b ,c 共面.由{a ,b ,c }是空间的一个基底知a ,b ,c 不共面,故x =0,同理y =z =0.答案:x =y =z =06.若a =e 1+e 2,b =e 2+e 3,c =e 1+e 3,d =e 1+2e 2+3e 3,若e 1,e 2,e 3不共面,当d =α a +β b +γ c 时,α+β+γ=________.解析:由已知d =(α+γ)e 1+(α+β)e 2+(γ+β)e 3. 所以⎩⎪⎨⎪⎧α+γ=1,α+β=2,γ+β=3,故有α+β+γ=3.答案:37.如图所示,三棱柱ABC -A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB ―→=a ,AC ―→=b ,AA 1―→=c .(1)试用a ,b ,c 表示向量MN ―→;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长. 解:(1)MN ―→=MA 1―→+A 1B 1―→+B 1N ―→=13BA 1―→+AB ―→+13B 1C 1―→=13(c -a )+a +13(b -a )=13a +13b+13c . (2)∵(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×12=5,∴|a +b +c |=5,∴|MN ―→|=13|a +b +c |=53,即MN =53.8.如图,在正方体ABCD -A ′B ′C ′D ′中,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中x ,y ,z 的值.(1) BD ′―→=x AD ―→+y AB ―→+zAA ′―→; (2)AE ―→=x AD ―→+y AB ―→+zAA ′―→. 解:(1)∵BD ′―→=BD ―→+DD ′―→=BA ―→+BC ―→+DD ′―→=-AB ―→+AD ―→+AA ′―→, 又BD ′―→=x AD ―→+y AB ―→+zAA ′―→,∴x =1,y =-1,z =1.(2)∵AE ―→=AA ′―→+A ′E ―→=AA ′―→+12A ′C ′―→=AA ′―→+12(A ′B ′―→+A ′D ′―→)=AA ′―→+12A ′B ′―→+12A ′D ′―→=12AD ―→+12AB ―→+AA ′―→,又AE ―→=x AD ―→+y AB ―→+zAA ′―→, ∴x =12,y =12,z =1.。
人教版高中数学选修2-2课时跟踪检测(十七) 数学归纳法 Word版含解析
课时跟踪检测(十七)数学归纳法层级一学业水平达标.设=+++…+,则+为( ).+.++.+-.+-解析:选因式子右边各分数的分母是连续正整数,则由=++…+,①得+=++…+++.②由②-①,得+-=+-=-.故+=+-..利用数学归纳法证明不等式+++…+<(≥,∈*)的过程中,由=变到=+时,左边增加了( ).项.项.-项.项解析:选当=时,不等式左边的最后一项为,而当=+时,最后一项为=,并且不等式左边和式的分母的变化规律是每一项比前一项加,故增加了项..一个与正整数有关的命题,当=时命题成立,且由=时命题成立可以推得=+时命题也成立,则( ).该命题对于>的自然数都成立.该命题对于所有的正偶数都成立.该命题何时成立与取值无关.以上答案都不对解析:选由=时命题成立可推出=+时命题也成立,又=时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选..对于不等式<+(∈*),某同学用数学归纳法的证明过程如下:()当=时,<+,不等式成立.()假设当=(∈*)时,不等式成立,即<+,则当=+时,=<==(+)+,∴=+时,不等式成立,则上述证法( ).过程全部正确.=验得不正确.归纳假设不正确.从=到=+的推理不正确解析:选在=+时,没有应用=时的归纳假设,故选..设()=+×-+(∈*),若()能被(∈*)整除,则的最大值为( )....解析:选()=,()=,()==×,猜想的最大值为..用数学归纳法证明“对于足够大的自然数,总有>”时,验证第一步不等式成立所取的第一个值最小应当是.解析:∵=>=<,∴最小应为.答案:.用数学归纳法证明++…+>-,假设=时,不等式成立,则当=+时,应推证的目标不等式是.解析:观察不等式中分母的变化便知.答案:++…++>-.对任意∈*+++都能被整除,则最小的自然数=.解析:当=时,+能被整除的数为=或;当=且=时,+不能被整除,故=.答案:.已知∈*,求证·-·+…+(-)·()-·(+)=-(+)(+).证明:()当=时,左边=-=-=-××=右边.()假设当=(∈*,≥)时成立,即·-·+…+(-)·()-·(+)=-(+)(+).则当=+时,·-·+…+(-)·()-·(+)+(+)·(+)-(+)·(+)=-(+)(+)+(+)[(+)(+)-(+)]=-(+)(+)+(+)·(--)=-(+)(+)(+)=-(+)·[(+)+][(+)+],即当=+时成立.由()()可知,对一切∈*结论成立..用数学归纳法证明+≤+++…+≤+(∈*).证明:()当=时,≤+≤,命题成立.()假设当=(∈*)时命题成立,即+≤+++…+≤+,则当=+时,+++…++++…+>++·=+.又+++…++++…+<++·=+(+),即=+时,命题成立.由()和()可知,命题对所有∈*都成立.层级二应试能力达标.凸边形有()条对角线,则凸+边形对角线的条数(+)为( ).()++.()+.()+-.()+-解析:选增加一个顶点,就增加+-条对角线,另外原来的一边也变成了对角线,故。
人教版高中数学选修2-2课时跟踪检测(十七)数学归纳法(20210717215920)
课时追踪检测(十七)数学概括法一 学 水平达1 1 1 11. S k = + + k + + + + ⋯+ 2k , S k + 1 ( )k 1 2 k 3A . S k + 1B . S k + 1 + 12k + 22k + 22k + 1 C . S k + 1 - 1D . S k +1 - 12k + 12k + 1 2k + 22k + 2分析:C因式子右 各分数的分母是 正整数, 由S k =1+1+⋯k + 1 k + 2+1,①2k得 S k + 1= 1 + 1+ ⋯ + 1+1+ 1 .②k 22k 1 k 32(k 1)11 1由②-①,得S k +1- S k = 2k + 1+2(k + 1) - k + 1= 1 - 1 .故 S k + 1= S k + 1 - 1 .2(k + 1)2k + 1 2k + 1 2(k + 1)2.利用数学 法 明不等式1+ 1+ 1+ ⋯ + n 1<n(n ≥2, n ∈ N * )的 程中,由 n2 3 2 - 1= k 到 n =k + 1 ,左 增添了 ( )A . 1B . kC . k -1D . k221分析:D当 n = k ,不等式左 的最后一 2k - 1,而当 n =k + 1,最后一1= k1 kk +1-1,2- 1 2 1+ 2 ,而且不等式左 和式的分母的 化 律是每一 比前一 加故增添了 2k.3.一个与正整数n 相关的命 ,当n =2 命 建立,且由n =k 命 建立能够推得 n = k + 2 命 也建立, ()A . 命 于n > 2 的自然数 n 都建立B . 命 于所有的正偶数都建立C . 命 何 建立与k 取 没关D .以上答案都不分析:B 由 n = k 命 建立可推出 n = k + 2 命 也建立,又n = 2 命 建立,依据逆推关系, 命 于所有的正偶数都建立,故B.4. 于不等式n 2 +n < n + 1(n ∈ N * ),某同学用数学 法的 明 程以下:(1)当 n= 1 , 12+ 1< 1+ 1,不等式建立.(2) 假当 n = k(k∈N * ) ,不等式建立,即k2+ k < k + 1 ,当 n = k + 1,(k+ 1)2+ (k+ 1)= k2+ 3k+ 2< (k2+ 3k+ 2)+ k+ 2= (k+ 2)2= (k+ 1)+ 1,∴ n= k+ 1 ,不等式建立,上述法()A.程所有正确B. n= 1 得不正确C.假不正确D.从 n= k 到 n= k+ 1 的推理不正确分析:D在 n= k+ 1 ,没有用n= k 的假,故 D.5. f(n)= 5n n-1**)整除, m 的最大 ()+ 2×3+ 1(n∈ N),若 f(n)能被 m(m∈ NA. 2B. 4C. 8D. 16分析:C f(1)= 8, f(2) = 32, f(3)= 144= 8×18,猜想 m 的最大 8.6.用数学法明“ 于足大的自然数n,有2n> n3” ,第一步不等式成立所取的第一个n0最小当是 ________.103,93最小 10.分析:∵2 =1 024>102= 512< 9 ,∴ n0答案: 107.用数学法明1+1111,假 n= k ,不等式建立,22+⋯+(n+ 1)2>-n+2232当 n= k+ 1 ,推的目不等式是 ____________________________________ .分析:察不等式中分母的化便知.111111答案:22+32+⋯+(k +1)2++2>2-+3(k 2)k8.随意 n∈ N*, 34n+2+a2 n+1都能被14 整除,最小的自然数a= ________.分析:当 n= 1 , 36+ a3能被 14整除的数a= 3 或 5;当 a= 3 且 n= 2 , 310+ 35不可以被 14 整除,故a= 5.答案: 59.已知 n∈ N*,求 1·22- 2·32+⋯+ (2n- 1) ·(2n)2- 2n·(2n+ 1) 2=- n(n+ 1)(4n+ 3).明: (1)当 n= 1 ,左= 4- 18=- 14=- 1×2×7=右.(2) 假当n= k(k∈ N*, k≥1)建立,即1·22- 2·32+⋯+ (2k- 1) ·(2 k)2- 2k·(2k+ 1)2=-k(k+ 1)(4 k+ 3).当 n= k+ 1 ,1·22- 2·32+⋯+ (2k- 1) ·(2k)2- 2k·(2k+ 1) 2+ (2k+ 1) ·(2k+ 2)2- (2k+ 2) ·(2k+3)2=- k(k+ 1)(4k+ 3)+ (2k+2)[(2 k+ 1)(2k+ 2)- (2k+ 3)2 ]=- k(k + 1)(4k + 3)+ 2(k +1) ·(- 6k -7)=- ( k + 1)(k + 2)(4 k + 7)=- (k + 1) ·[(k + 1)+ 1][4( k + 1)+ 3],即当 n = k + 1 建立.由 (1)(2) 可知, 全部 n ∈ N * 建立.10.用数学 法 明1+n1 1 1 1*).2 ≤1+ 2 + + ⋯+ n ≤ +n(n ∈ N322明: (1)当 n = 1 ,31 3,命 建立.≤1+≤22 2假 当= ∈ * 命 建立,即 k 1 1 1 1 + k , (2) k(k N ) 1 +≤1+ + +⋯ + k ≤n22 32 2当 n = k + 1 ,1111+ k 1 1k k1 k + 1 1++ + ⋯ + k +k+ ⋯ + k 2 k > 1+ + 2·k + 1= 1+2.2 322 + 1 2 + 22 +221 11 k1+ k 1 + ⋯ + k11 k 1= 1又1+++ ⋯ + k + ++ + k < + k + 2 ·k+ ( k + 1),2 32 2 1 2 2 2 222 2即 n = k + 1 ,命 建立.由 (1)和 (2) 可知,命 所有n ∈ N * 都建立.二能力达1.凸 n 形有 f(n)条 角 , 凸n + 1 形 角 的条数 f(n+1) ()A . f(n)+ n +1B . f(n)+ nC . f(n)+ n -1D . f(n)+ n - 2分析:C增添一个 点,就增添 n + 1- 3 条 角 ,此外本来的一 也 成了角 ,故 f(n + 1)= f(n)+ 1+ n + 1- 3= f(n)+ n - 1.故 C.2. f(n)=1 + 11*) ,那么 f(n + 1)- f (n)等于 ()1+ 2 3+⋯+- (n ∈ N3n 1A.11 +13n +2 B.3n+13nC. 1 + 11 + 1 + 13n +1 + 23n3n + 1 +23n3n 分析:Df(n + 1)- f(n)=1+1 + 13n 3n + 1 + .3n 23. 平面内有 k 条直 ,此中任何两条不平行,任何三条不共点,k 条直 的交点个数 f( k), f(k + 1)与 f(k)的关系是 ()A . f(k + 1)= f(k)+ k + 1B . f(k + 1)= f(k)+ k - 1C . f(k + 1)= f(k)+ kD . f(k + 1)= f(k)+ k + 2分析:C 当 n =k + 1 ,任取此中1 条直l , 除 l 外的其余 k 条直 的交点的个数 f(k),因 已知任何两条直 不平行,所以直l 必与平面内其余 k 条直 都相交 (有 k 个交点 );又因 任何三条直 不 同一点,所以上边的 k 个交点两两不同样,且与平面内其余的 f(k)个交点也两两不同样,进而n = k + 1 交点的个数是 f(k)+ k = f(k + 1).4.若命 A(n)(n ∈ N * )n =k(k ∈ N * ) 命 建立, 有n = k + 1 命 建立. 知命n = n 0(n 0∈ N * ) 命 建立, 有 ()A .命 所有正整数都建立B .命 小于 n 0 的正整数不建立, 大于或等于 n 0 的正整数都建立C .命 小于n 0 的正整数建立与否不可以确立, 大于或等于n 0 的正整数都建立D .以上 法都不正确 分析:C由 意知n = n 0 命 建立能推出n = n 0 + 1 命 建立, 由n = n 0+ 1命 建立,又推出n = n 0+ 2 命 也建立 ⋯ ,所以 大于或等于n 0 的正整数命 都建立,而 小于n 0 的正整数命 能否建立不确立.n +2 2n + 11- a*5.用数学 法 明 1+ a + a + ⋯+ a = (n ∈ N ,a ≠1),在 n = 1 建立 ,左 所得的____________ .分析: 当 n = 1 , n + 1= 2,所以左 = 1+ a + a 2.答案: 1+ a + a 2 2n -1n*6.用数学 法 明1+ 2+ 2 + ⋯+ 2 = 2 - 1(n ∈ N )的 程以下:1①当 n = 1 ,左 = 2 = 1,右 = 2 - 1= 1,等式建立.②假 n = k(k ≥1,且 k ∈ N * ) ,等式建立,即1+ 2+ 22+ ⋯+ 2k -1= 2k - 1.k +12k - 1k1- 2k + 1当 n = k + 1 , 1+ 2+ 2 + ⋯ + 2+ 2 == 2 - 1,所以当 n = k + 1 ,等式也建立.由①②知, 随意n ∈ N * ,等式建立.上述 明中的 是________.分析: 由 明 程知,在 从n = k 到没实用上 假 ,所以 明是 的.答案: 没实用 假n = k + 1 ,直接用的等比数列前n 和公式,7.平面内有n(n ∈ N * )个 ,此中每两个 都订交于两点,且每三个 都不订交于同一点,求 :n 个 把平面分红n 2- n + 2 部分.明: (1)当 n = 1 , n 2- n + 2= 2,即一个 把平面分红两部分,故 建立. (2) 假 当 n = k(k ≥1, k ∈ N * ) 命 建立,即 k 个 把平面分红 k 2- k +2 部分.当 n = k + 1 , k + 1 个 中的k 个 把平面分红k 2- k + 2 个部分,第 k + 1 个被前 k 个 分红 2k 条弧, 2k 条弧中的每一条把它所在的平面部分都分红两部分, 共增添 2k 个部分,故 k +1 个 把平面分红 k 2- k + 2+ 2k = (k + 1)2- (k + 1)+ 2 部分,即 n = k + 1 命 也建立. 上所述, 全部n ∈ N * ,命 都建立.8.已知某数列的第一 1,而且 所有的自然数 n ≥2,数列的前 n 之 2n .(1) 写出 个数列的前 5 ;(2) 写出 个数列的通 公式并加以 明. 解: (1)已知 a 1= 1,由 意,得a 1 ·a 2= 22, ∴a 2= 22.2∵ a 1·a 2·a 3= 32, ∴ a 3=32 .2同理,可得 a 4= 425232, a 5= 42.所以 个数列的前5 分1,4, 9,16,254916.(2) 察 个数列的前 5 ,猜 数列的通 公式 :1(n = 1),a n =n 2(n - 1) 2(n ≥2).下边用数学 法 明当n ≥2 , a n =n 22.( n - 1)222① 当 n = 2 , a 2= 2= 2 , 建立.② 假 当 n = k(k ≥2, k ∈ N * ) , 建立,k 2即 a k = (k - 1)2.∵ a 1·a 2·⋯ ·a k - 1= (k - 1)2 , a 1·a 2 ·⋯ ·a k - 1·a k ·a k + 1= (k + 1)2,∴ a=( k +1) 2 ( k +1) 2 (k - 1)2 (k + 1)2 ( k + 1)21 =2 2 = 2 = + - 2 --+ (aaa ) a(k 1)[( k 1)1]就是 当 n = k + 1 , 也建立.依据 ①② 可知,当 n ≥2 , 个数列的通 公式是a n =n 22.(n - 1)1(n = 1), ∴ 个数列的通 公式a n = n 2( n - 1) 2 (n ≥2).。
高中数学第二章推理与证明课时作业17数学归纳法新人教A版选修2-2(2021年整理)
2018版高中数学第二章推理与证明课时作业17 数学归纳法新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章推理与证明课时作业17 数学归纳法新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章推理与证明课时作业17 数学归纳法新人教A版选修2-2的全部内容。
课时作业17 数学归纳法|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.用数学归纳法证明“凸n边形的内角和等于(n-2)π”时,归纳奠基中n0的取值应为( )A.1 B.2C.3 D.4解析:边数最少的凸n边形为三角形,故n0=3。
答案:C2.用数学归纳法证明1+2+3+…+n2=错误!,则当n=k+1时左端应在n=k的基础上加上( )A.k2+1B.(k+1)2C.错误!D.(k2+1)+(k2+2)+…+(k+1)2解析:当n=k时,左端=1+2+3+…+k2,当n=k+1时,左端=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2,故当n=k+1时,左端应在n=k的基础上加上(k2+1)+(k2+2)+…+(k+1)2,故选D.答案:D3.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是( )A.假设n=2k+1时正确,再推n=2k+3时正确(k∈N*)B.假设n=2k-1时正确,再推n=2k+1时正确(k∈N*)C.假设n=k时正确,再推n=k+1时正确(k∈N*)D.假设n≤k(k≥1)时正确,再推n=k+2时正确(k∈N*)解析:n∈N*且为奇数,由假设n=2k-1(n∈N*)时成立推证出n=2k+1(k∈N*)时成立,就完成了归纳递推.答案:B4.若命题A(n)(n∈N*)n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立.则有()A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确解析:由题意知n=n0时命题成立能推出n=n0+1时命题成立,由n=n0+1时命题成立,又推出n=n0+2时命题也成立…,所以对大于或等于n0的正整数命题都成立,而对小于n0的正整数命题是否成立不确定.答案:C5.k棱柱有f(k)个对角面,则(k+1)棱柱的对角面个数f(k+1)为(k≥3,k∈N*)( )A.f(k)+k-1 B.f(k)+k+1C.f(k)+k D.f(k)+k-2解析:三棱柱有0个对角面,四棱柱有2个对角面(0+2=0+(3-1));五棱柱有5个对角面(2+3=2+(4-1));六棱柱有9个对角面(5+4=5+(5-1)).猜想:若k棱柱有f(k)个对角面,则(k+1)棱柱有f(k)+k-1个对角面.答案:A二、填空题(每小题5分,共15分)6.用数学归纳法证明错误!+错误!+…+错误!>错误!-错误!。
人教A版高中数学选修2-2课时检测十六数学归纳法
课时检测(十六) 数学归纳法一、题组对点训练对点练一 用数学归纳法证明等式1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )共有n 项,当n =2时,f (2)=12+13B .f (n )共有n +1项,当n =2时,f (2)=12+13+14C .f (n )共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:选D 结合f (n )中各项的特征可知,分子均为1,分母为n ,n +1,…,n 2的连续自然数共有n 2-n +1个,且f (2)=12+13+14.2.用数学归纳法证明:对于任意正整数n ,(n 2-1)+2(n 2-22)+…+n (n 2-n 2)=n 2(n -1)(n +1)4.证明:①当n =1时,左边=12-1=0,右边=12×(1-1)×(1+1)4=0,所以等式成立.②假设当n =k (k ∈N *)时等式成立,即(k 2-1)+2(k 2-22)+…+k (k 2-k 2)=k 2(k -1)(k +1)4.那么当n =k +1时,有[(k +1)2-1]+2[(k +1)2-22]+…+k [(k +1)2-k 2]+(k +1)[(k +1)2-(k +1)2]=(k 2-1)+2(k 2-22)+…+k (k 2-k 2)+(2k +1)(1+2+…+k )=k 2(k -1)(k +1)4+(2k +1)k (k +1)2=14k (k +1)[k (k -1)+2(2k +1)] =14k (k +1)(k 2+3k +2) =(k +1)2[(k +1)-1][(k +1)+1]4,所以当n =k +1时等式成立. 由①②知,对任意n ∈N *等式成立.对点练二 用数学归纳法证明不等式3.用数学归纳法证明1+122+132+…+1(2n -1)2<2-12n-1(n ≥2)(n ∈N *)时,第一步需要证明( )A .1<2-12-1B .1+122<2-122-1C .1+122+132<2-122-1D .1+122+132+142<2-122-1解析:选C 第一步验证n =2时是否成立,即证明1+122+132<2-122-1.4.某同学回答“用数学归纳法证明n (n +1)<n +1(n ∈N *)”的过程如下:证明:①当n =1时,显然命题是正确的;②假设当n =k (k ≥1,k ∈N *)时,有k (k +1)<k +1,那么当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+4k +4=(k +1)+1,所以当n =k +1时命题是正确的.由①②可知对于n ∈N *,命题都是正确的.以上证法是错误的,错误在于( ) A .从k 到k +1的推理过程没有使用假设 B .假设的写法不正确C .从k 到k +1的推理不严密D .当n =1时,验证过程不具体解析:选A 分析证明过程中的②可知,从k 到k +1的推理过程没有使用假设,故该证法不能叫数学归纳法,选A.5.用数学归纳法证明:1+12+13+…+12n -1<n (n ∈N *,n >1).证明:(1)当n =2时,左边=1+12+13,右边=2,左边<右边,不等式成立.(2)假设当n =k 时,不等式成立,即1+12+13+…+12k -1<k ,则当n =k +1时,有1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +12k +12k +1+…+12k +1-1<k +1×2k2k =k +1,所以当n =k +1时不等式成立. 由(1)和(2)知,对于任意大于1的正整数n ,不等式均成立. 对点练三 归纳—猜想—证明6.k 棱柱有f (k )个对角面,则(k +1)棱柱的对角面个数f (k +1)(k ≥3,k ∈N *)为( ) A .f (k )+k -1 B .f (k )+k +1 C .f (k )+kD .f (k )+k -2解析:选A 三棱柱有0个对角面,四棱柱有2个对角面(0+2=0+(3-1));五棱柱有5个对角面(2+3=2+(4-1));六棱柱有9个对角面(5+4=5+(5-1)).猜想:若k 棱柱有f (k )个对角面,则(k +1)棱柱有[f (k )+k -1]个对角面.故选A. 7.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1(n ∈N *). (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出证明.解:(1)当n =1时,方程x 2-a 1x -a 1=0有一根S 1-1=a 1-1,所以(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12,当n =2时,方程x 2-a 2x -a 2=0有一根为S 2-1=a 1+a 2-1=a 2-12,所以⎝ ⎛⎭⎪⎫a 2-122-a 2⎝ ⎛⎭⎪⎫a 2-12-a 2=0, 解得a 2=16.(2)由题意知(S n -1)2-a n (S n -1)-a n =0, 当n ≥2时,a n =S n -S n -1,代入整理得S n S n -1-2S n +1=0,解得S n =12-S n -1.由(1)得S 1= a 1=12,S 2=a 1+a 2=12+16=23.猜想S n =nn +1(n ∈N *).下面用数学归纳法证明这个结论. ①当n =1时,结论成立.②假设n =k (k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,S k +1=12-S k =12-k k +1=k +1k +2=k +1(k +1)+1. 所以当n =k +1时,结论也成立. 由①②可知,{S n }的通项公式为S n =nn +1(n ∈N *). 二、综合过关训练1.用数学归纳法证明“凸n 边形的内角和等于(n -2)π”时,归纳奠基中n 0的取值应为( )A .1B .2C .3D .4 解析:选C 边数最少的凸n 边形为三角形,故n 0=3.2.某个与正整数有关的命题:如果当n =k (k ∈N *)时命题成立,则可以推出当n =k +1时该命题也成立.现已知n =5时命题不成立,那么可以推得( )A .当n =4时命题不成立B .当n =6时命题不成立C .当n =4时命题成立D .当n =6时命题成立解析:选A 因为当n =k (k ∈N *)时命题成立,则可以推出当n =k +1时该命题也成立,所以假设当n =4时命题成立,那么n =5时命题也成立,这与已知矛盾,所以当n =4时命题不成立.3.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1(n ∈N *)时,等式左边应在n =k 的基础上加上( )A .k 2+1 B .(k +1)2C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析:选D 当n =k 时,等式左边=1+2+…+k 2,当n =k +1时,等式左边=1+2+…+k 2+(k 2+1)+…+(k +1)2,故选D.4.已知命题1+2+22+…+2n -1=2n-1及其证明:(1)当n =1时,左边=1,右边=21-1=1,所以等式成立. (2)假设n =k (k ≥1,k ∈N *)时等式成立,即1+2+22+…+2k -1=2k-1成立,则当n =k+1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,所以n =k +1时等式也成立.由(1)(2)知,对任意的正整数n 等式都成立.判断以上评述( ) A .命题、推理都正确 B .命题正确、推理不正确 C .命题不正确、推理正确D .命题、推理都不正确解析:选B 推理不正确,错在证明n =k +1时,没有用到假设n =k 的结论,命题由等比数列求和公式知正确,故选B.5.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,下列关于步骤(2)的说法正确的有________(填序号).①假设当n =k (k ∈N *)时命题成立,证明当n =k +1时命题也成立; ②假设当n =k (k 是正奇数)时命题成立,证明当n =k +2时命题也成立; ③假设当n =2k -1(k ∈N *)时命题成立,证明当n =2k 时命题也成立. ④假设当n =2k -1(k ∈N *)时命题成立,证明当n =2k +1时命题也成立.解析:因为n 为正奇数,所以步骤(2)应为:假设当n =k (k 是正奇数)时命题成立,此时n =k +2也为正奇数;也可为:假设当n =2k -1(k ∈N *)时命题成立,此时n =2k +1也为正奇数.故②④正确.答案:②④6.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+14对一切n ∈N *都成立,则a=________,b =________.解析:∵1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+14对一切n ∈N *都成立,∴当n =1,2时有⎩⎪⎨⎪⎧ 1=3(a -b )+14,1+2×3=32(2a -b )+14,即⎩⎪⎨⎪⎧1=3a -3b +14,7=18a -9b +14,解得⎩⎪⎨⎪⎧a =12,b =14.答案:12 147.用数学归纳法证明:对一切大于1的自然数n ,不等式⎝ ⎛⎭⎪⎫1+13·⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12成立. 证明:(1)当n =2时,左边=1+13=43,右边=52,左边>右边,所以不等式成立.(2)假设n =k (k ≥2且k ∈N *)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2k +12, 那么,当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12(k +1)-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12,所以,当n =k +1时不等式也成立.由(1)和(2)知,对一切大于1的自然数n ,不等式都成立.8.将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S 1+S 3+S 5+…+S2n-1的结果,并用数学归纳法证明.S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,…解:由题意知,当n=1时,S1=1=14;当n=2时,S1+S3=16=24;当n=3时,S1+S3+S5=81=34;当n=4时,S1+S3+S5+S7=256=44,猜想:S1+S3+S5+…+S2n-1=n4.证明:(1)当n=1时,S1=1=14,等式成立.(2)假设当n=k(k∈N *)时等式成立,即S1+S3+S5+…+S2k-1=k4.那么,当n=k+1时,S1+S3+S5+…+S2k-1+S2k+1=k4+[(2k2+k+1)+(2k2+k+2)+…+(2k2+k+2k+1)] =k4+(2k+1)(2k2+2k+1)=k4+4k3+6k2+4k+1=(k+1)4,即当n=k+1时等式也成立.根据(1)和(2),可知对于任何n∈N*,S1+S3+S5+…+S2n-1=n4都成立.。
高中数学人教A版选修2-2(课时训练):2.3 数学归纳法(一)
2.3 数学归纳法(一)[学习目标]1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题. [知识链接]1.对于数列{a n },已知a 1=1,a n +1=a n1+a n (n ∈N *),求出数列前4项,你能得到什么猜想?你的猜想一定是正确的吗?答 a 1=1,a 2=12,a 3=13,a 4=14.猜想数列的通项公式为a n =1n .不能保证猜想一定正确,需要严密的证明.2.多米诺骨牌都一一倒下只需满足哪几个条件?答 (1)第一块骨牌倒下;(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下.条件(2)事实上给出了一个递推关系,换言之就是假设第K 块倒下,则相邻的第K +1块也倒下. 3.类比问题2中的多米诺骨牌游戏的原理,想一想如何证明问题1中的猜想?答 (1)当n =1时,猜想成立;(2)若当n =k 时猜想成立,证明当n =k +1时猜想也成立. [预习导引] 1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: ①(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;②(归纳递推)假设当n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 2.应用数学归纳法时注意几点:(1)用数学归纳法证明的对象是与正整数n 有关的命题. (2)在用数学归纳法证明中,两个基本步骤缺一不可.(3)步骤②的证明必须以“假设当n =k (k ≥n 0,k ∈N *)时命题成立”为条件.要点一 正确判断命题从n =k 到n =k +1项的变化例1 已知f (n )=1+12+13+…+1n (n ∈N *),证明不等式f (2n )>n 2时,f (2k +1)比f (2k )多的项数是________. 答案 2k解析 观察f (n )的表达式可知,右端分母是连续的正整数,f (2k )=1+12+13+…+12k ,而f (2k +1)=1+12+13+…+12k +12k +1+12k +2+…+12k +2k .因此f (2k +1)比f (2k )多了2k 项.规律方法 在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k +1)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.跟踪演练1 设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于________.答案13n +13n +1+13n +2解析 ∵f (n )=1+12+13+…+13n -1,∴f (n +1)=1+12+13+…+13n -1+13n +13n +1+13n +2,∴f (n +1)-f (n )=13n +13n +1+13n +2.要点二 证明与自然数n 有关的等式例2 已知n ∈N *,证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .证明 (1)当n =1时,左边=1-12=12,右边=12,等式成立;(2)假设当n =k (k ≥1,且k ∈N *)时等式成立,即: 1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k .则当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12(k +1)-1-12(k +1)=1k +1+1k +2+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+⎣⎡⎦⎤1k +1-12(k +1)=1(k +1)+1+1(k +1)+2+…+1(k +1)+k+12(k +1)=右边;所以当n =k +1时等式也成立. 由(1)(2)知对一切n ∈N *等式都成立.规律方法 (1)用数学归纳法证明命题时,两个步骤缺一不可,且书写必须规范;(2)用数学归纳法证题时,要把n =k 时的命题当作条件,在证n =k +1命题成立时须用上假设.要注意当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,弄清楚增加了哪些项,减少了哪些项,问题就会顺利解决. 跟踪演练2 用数学归纳法证明:当n ≥2,n ∈N *时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116·…·⎝⎛⎭⎫1-1n 2=n +12n .证明 (1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴n =2时等式成立.(2)假设当n =k (k ≥2,k ∈N *)时等式成立, 即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1k 2=k +12k , 那么当n =k +1时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ·⎣⎡⎦⎤1-1(k +1)2=(k +1)2-12k (k +1)=k +22(k +1)=(k +1)+12(k +1). ∴当n =k +1时,等式也成立.根据(1)和(2)知,对任意n ≥2,n ∈N *,等式都成立. 要点三 证明与数列有关的问题例3 某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2. (1)写出这个数列的前五项;(2)写出这个数列的通项公式,并加以证明. 解 (1)已知a 1=1,由题意得a 1·a 2=22, ∴a 2=22,∵a1·a 2·a 3=32,∴a 3=3222. 同理可得a 4=4232,a 5=5242.因此这个数列的前五项为1,4,94,169,2516.(2)观察这个数列的前五项,猜测数列的通项公式应为: a n =⎩⎪⎨⎪⎧1 (n =1),n 2(n -1)2(n ≥2),下面用数学归纳法证明当n ≥2时,a n =n 2(n -1)2.①当n =2时,a 2=22(2-1)2=22,所以等式成立.②假设当n =k (k ≥2,k ∈N +)时,结论成立, 即a k =k 2(k -1)2,则当n =k +1时,∵a 1·a 2·…·a k -1=(k -1)2, ∴a 1·a 2·…·a k +1=(k +1)2. ∴a k +1=(k +1)2(a 1·a 2·…·a k -1)·a k=(k +1)2(k -1)2·(k -1)2[(k +1)-1]2=(k +1)2[(k +1)-1]2, 所以当n =k +1时,结论也成立.根据①②可知,当n ≥2时,这个数列的通项公式是 a n =n 2(n -1)2,∴a n =⎩⎪⎨⎪⎧1 (n =1),n 2(n -1)2(n ≥2).规律方法 (1)数列{a n }既不是等差数列,又不是等比数列,要求其通项公式,只能根据给出的递推式和初始值,分别计算出前几项,然后归纳猜想出通项公式a n ,并用数学归纳法加以证明.(2)数学归纳法是重要的证明方法,常与其他知识结合,尤其是数学中的归纳,猜想并证明或与数列中的不等式问题相结合综合考查,证明中要灵活应用题目中的已知条件,充分考虑“假设”这一步的应用,不考虑假设而进行的证明不是数学归纳法. 跟踪演练3 数列{a n }满足:a 1=16,前n 项和S n =n (n +1)2a n ,(1)写出a 2,a 3,a 4;(2)猜出a n 的表达式,并用数学归纳法证明. 解 (1)令n =2,得S 2=2×(2+1)2a 2,即a 1+a 2=3a 2,解得a 2=112.令n =3,得S 3=3×(3+1)2a 3,即a 1+a 2+a 3=6a 3,解得a 3=120.令n =4,得S 4=4×(4+1)2a 4,即a 1+a 2+a 3+a 4=10a 4,解得a 4=130.(2)由(1)的结果猜想a n =1(n +1)(n +2),下面用数学归纳法给予证明:①当n =1时,a 1=16=1(1+1)(1+2),结论成立.②假设当n =k (k ∈N *)时,结论成立,即a k =1(k +1)(k +2),则当n =k +1时,S k =k ·(k +1)2a k ,① S k +1=(k +1)(k +2)2a k +1,②②与①相减得a k +1=(k +1)(k +2)2a k +1-k ·(k +1)2a k ,整理得a k +1=k +1k +3a k =k +1k +3·1(k +1)(k +2)=1(k +2)(k +3)=1[(k +1)+1][(k +1)+2],即当n =k +1时结论也成立.由①、②知对于n ∈N *,上述结论都成立.1.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( ) A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确 答案 C解析 由已知得n =n 0(n 0∈N *)时命题成立,则有n =n 0+1时命题成立;在n =n 0+1时命题成立的前提下,又可推得n =(n 0+1)+1时命题也成立,依此类推,可知选C. 2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( ) A .1+aB .1+a +a 2C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4答案 C解析 将n =1代入a 2n+1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下: (1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k =1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n∈N *,等式都成立.上述证明的错误是________. 答案 未用归纳假设解析 本题在由n =k 成立,证n =k +1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符.4.当n ∈N *时,S n =1-12+13-14+…+12n -1-12n ,T n =1n +1+1n +2+1n +3+…+12n ,(1)求S 1,S 2,T 1,T 2;(2)猜想S n 与T n 的关系,并用数学归纳法证明.解 (1)∵当n ∈N *时,S n =1-12+13-14+…+12n -1-12n ,T n =1n +1+1n +2+1n +3+…+12n .∴S 1=1-12=12,S 2=1-12+13-14=712,T 1=11+1=12,T 2=12+1+12+2=712.(2)猜想S n =T n (n ∈N *),即1-12+13-14+…+12n -1-12n =1n +1+1n +2+1n +3+…+12n (n ∈N *).下面用数学归纳法证明: ①当n =1时,已证S 1=T 1,②假设n =k 时,S k =T k (k ≥1,k ∈N *),即1-12+13-14+…+12k -1-12k =1k +1+1k +2+1k +3+…+12k ,则S k +1=S k +12k +1-12(k +1)=T k +12k +1-12(k +1)=1k +1+1k +2+1k +3+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+⎝⎛⎭⎫1k +1-12(k +1)=1(k +1)+1+1(k +1)+2+…+12k +1+12(k +1)=T k +1.由①,②可知,对任意n ∈N *,S n =T n 都成立.在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.一、基础达标1.某个命题与正整数有关,如果当n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( ) A .当n =6时命题不成立 B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立 答案 B2.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则( )A .该命题对于n >2的自然数n 都成立B .该命题对于所有的正偶数都成立C .该命题何时成立与k 取值无关D .以上答案都不对 答案 B解析 由n =k 时命题成立可以推出n =k +2时命题也成立.且n =2,故对所有的正偶数都成立.3.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步验证n 等于( )A .1B .2C .3D .0答案 C解析 因为是证凸n 边形,所以应先验证三角形,故选C.4.若f (n )=1+12+13+…+12n +1(n ∈N *),则n =1时f (n )是( )A .1B .13C .1+12+13D .以上答案均不正确答案 C5.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程中,第二步假设当n =k (k ∈N *)时等式成立,则当n =k +1时应得到________. 答案 1+2+22+…+2k -1+2k =2k -1+2k解析 由n =k 到n =k +1等式的左边增加了一项.6.已知f (n )=1n +1+1n +2+…+13n -1(n ∈N *),则f (k +1)=________.答案 f (k )+13k +13k +1+13k +2-1k +17.用数学归纳法证明⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14⎝⎛⎭⎫1-15…⎝⎛⎭⎫1-1n +2=2n +2(n ∈N *). 证明 (1)当n =1时,左边=1-13=23,右边=21+2=23,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14⎝⎛⎭⎫1-15…⎝⎛⎭⎫1-1k +2=2k +2, 当n =k +1时,⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14⎝⎛⎭⎫1-15…⎝⎛⎭⎫1-1k +2·⎝⎛⎭⎫1-1k +3=2k +2⎝⎛⎭⎫1-1k +3=2(k +2)(k +2)(k +3)=2k +3=2(k +1)+2,所以当n =k +1时等式也成立.由(1)(2)可知,对于任意n ∈N *等式都成立. 二、能力提升8.用数学归纳法证明等式(n +1)(n +2)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从k 到k +1左端需要增乘的代数式为( ) A .2k +1 B .2(2k +1) C .2k +1k +1D .2k +3k +1答案 B解析 n =k +1时,左端为(k +2)(k +3)…[(k +1)+(k -1)]·[(k +1)+k ]·(2k +2)=(k +1)(k +2)…(k +k )·(2k +1)·2,∴应增乘2(2k +1).9.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案 D解析 观察分母的首项为n ,最后一项为n 2,公差为1, ∴项数为n 2-n +1.10.以下用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为________. 证明:假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,那么2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时等式也成立.因此对于任何n ∈N *等式都成立.答案 缺少步骤(1),没有递推的基础 11.用数学归纳法证明:12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.证明 (1)当n =1时,左边=1, 右边=(-1)1-1×1×22=1,结论成立.(2)假设当n =k 时,结论成立.即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2,那么当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k (k +1)2=(-1)k ·(k +1)-k +2k +22=(-1)k ·(k +1)(k +2)2=(-1)k+1-1·(k +1)[(k +1)+1]2.即n =k +1时结论也成立.由(1)(2)可知,对一切正整数n 都有此结论成立.12.已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n ∈N *),S n 为数列{a n }的前n 项和. (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式. (1)解 a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10, a 4=S 3=a 1+a 2+a 3=5+5+10=20,猜想a n =⎩⎪⎨⎪⎧5 (n =1)5×2n -2 (n ≥2,n ∈N *). (2)证明 ①当n =2时,a 2=5×22-2=5,公式成立. ②假设n =k (k ≥2,k ∈N *)时成立, 即a k =5×2k -2,当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+a 3+…+a k =5+5+10+…+5×2k -2.=5+5(1-2k -1)1-2=5×2k -1=5×2(k +1)-2.故n =k +1时公式也成立.由①②可知,对n ≥2,n ∈N *,有a n =5×2n -2. 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5 (n =1)5×2n -2 (n ≥2,n ∈N *). 三、探究与创新13.已知数列{a n }的前n 项和S n =1-na n (n ∈N *). (1)计算a 1,a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明你的结论. 解 (1)计算得a 1=12;a 2=16;a 3=112;a 4=120.(2)猜想a n =1n (n +1).下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设n =k (k ∈N *)时,猜想成立,即a k =1k (k +1).那么,当n =k +1时,S k +1=1-(k +1)a k +1, 即S k +a k +1=1-(k +1)a k +1. 又S k =1-ka k =kk +1,所以k k +1+a k +1=1-(k +1)a k +1, 从而a k +1=1(k +1)(k +2)=1(k +1)[(k +1)+1]. 即n =k +1时,猜想也成立.故由①和②可知,猜想成立小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
2019-2020学年度最新高中数学人教A版选修2-2:课时跟踪检测(十三)合情推理-含解析
2019-2020学年度最新高中数学人教A版选修2-2:课时跟踪检测(十三)合情推理-含解析层级一学业水平达标1.观察图形规律,在其右下角的空格内画上合适的图形为()A.B.△C.D.○解析:选A观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3).A.①②B.①③④C.①②④D.②④解析:选C①是类比推理;②④是归纳推理,∴①②④都是合情推理.3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为() A.1∶2 B.1∶4C.1∶8 D.1∶16解析:选C由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是()A.①②B.②③C.③④D.①④解析:选B根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论.5.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2 C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 解析:选A 观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A 正确.6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49照此规律,第n 个等式为________.解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n -1,故第n 行等式左边的数依次是n ,n +1,n +2,…,(3n -2);每一个等式右边的数为等式左边加数个数的平方,从而第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)27.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是_______________________.解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大8.如图(甲)是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列{a n }的通项公式为a n =__________.解析:根据OA 1=A 1A 2=A 2A 3=…=A 7A 8=1和图(乙)中的各直角三角形,由勾股定理,可得a 1=OA 1=1,a 2=OA 2=OA 21+A 1A 22=12+12=2,a 3=OA 3=OA 22+A 2A 23=(2)2+12=3,…,故可归纳推测出a n =n . 答案:n9.在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜想凸n 边形有几条对角线?解:因为凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条,…,于是猜想凸n 边形的对角线条数比凸(n -1)边形多(n -2)条对角线,由此凸n 边形的对角线条数为2+3+4+5+…+(n -2),由等差数列求和公式可得12n (n -3)(n ≥4,n ∈N *).所以凸n 边形的对角线条数为12n (n -3)(n ≥4,n ∈N *).10.已知f (x )=13x +3,分别求f (0)+f (1) ,f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并证明你的结论.解:f (x )=13x +3,所以f (0)+f (1)=130+3+131+3=33,f (-1)+f (2)=13-1+3+132+3=33,f (-2)+f (3)=13-2+3+133+3=33.归纳猜想一般性结论;f (-x )+f (x +1)=33. 证明如下:f (-x )+f (x +1)=13-x +3+13x +1+3=3x1+3·3x +13x +1+3=3·3x 3+3x +1+13x +1+3 =3·3x +13+3x +1=3·3x +13(1+3·3x )=33. 层级二 应试能力达标1.由代数式的乘法法则类比得到向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =ab ”.其中类比结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 2.类比三角形中的性质: (1)两边之和大于第三边; (2)中位线长等于底边长的一半; (3)三内角平分线交于一点. 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;(3)四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .(1) B .(1)(2) C .(1)(2)(3)D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.3.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0172<( )A.4 0312 017 B.4 0322 017 C.4 0332 017D.4 0342 017解析:选C 观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12,22,32,…,(n +1)2;右端分母为n +1,分子成等差数列,首项为3,公差为2,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1,所以当n =2 016时不等式为:1+122+132+…+12 0172<4 0332 017. 4.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c ;类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4解析:选C 将△ABC 的三条边长a ,b ,c 类比到四面体P -ABC 的四个面面积S 1,S 2,S 3,S 4,将三角形面积公式中系数12,类比到三棱锥体积公式中系数13,从而可知选C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,∴V =13S 1r +13S 2r +13S 3r +13S 4r ,∴r =3V S 1+S 2+S 3+S 4.5.观察下图中各正方形图案,每条边上有n (n ≥2)个圆圈,每个图案中圆圈的总数是S ,按此规律推出S 与n 的关系式为____________.解析:每条边上有2个圆圈时共有S =4个;每条边上有3个圆圈时,共有S =8个;每条边上有4个圆圈时,共有S =12个.可见每条边上增加一个点,则S 增加4,∴S 与n 的关系为S =4(n -1)(n ≥2).答案:S =4(n -1)(n ≥2)6.可以运用下面的原理解决一些相关图形的面积问题:如果与一固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①、②中体会这个原理.现在图③中的两个曲线的方程分别是x 2a 2+y 2b 2=1(a >b >0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为______________.解析:由于椭圆与圆截y 轴所得线段之比为ba , 即k =b a ,∴椭圆面积S =πa 2·b a =πab . 答案:πab7.观察下列两个等式:①sin 210°+cos 240°+sin 10°cos 40°=34①;②sin 26°+cos 236°+sin 6°cos 36°=34②.由上面两个等式的结构特征,你能否提出一个猜想?并证明你的猜想. 解:由①②知若两角差为30°,则它们的相关形式的函数运算式的值均为34.猜想:若β-α=30°,则β=30°+α,sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.下面进行证明:左边= sin 2α+cos(α+30°)[cos(α+30°)+sin α] =sin 2α+⎝⎛⎭⎫32cos α-12sin α⎝⎛⎭⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.所以,猜想是正确的.故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.8.已知在Rt△ABC中,AB⊥AC,AD⊥BC于点D,有1AD2=1AB2+1AC2成立.那么在四面体A-BCD中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由.解:猜想:类比AB⊥AC,AD⊥BC,可以猜想四面体A-BCD中,AB,AC,AD两两垂直,AE⊥平面BCD.则1AE2=1AB2+1AC2+1AD2.下面证明上述猜想成立如图所示,连接BE,并延长交CD于点F,连接AF. ∵AB⊥AC,AB⊥AD,AC∩AD=A,∴AB⊥平面ACD.而AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1 AE2=1AB2+1AD2.在Rt△ACD中,AF⊥CD,∴1 AF2=1AC2+1AD2.∴1 AE2=1AB2+1AC2+1AD2,故猜想正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(十七) 数学归纳法层级一 学业水平达标1.设S k =1k +1+1k +2+1k +3+ (12),则S k +1为( ) A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1解析:选C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+… +12k,① 得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).② 由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1). 2.利用数学归纳法证明不等式1+12+13+…+12n -1<n (n ≥2,n ∈N *)的过程中,由n=k 变到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项解析:选D 当n =k 时,不等式左边的最后一项为12k -1,而当n =k +1时,最后一项为12k +1-1=12k -1+2k ,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项.3.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则( )A .该命题对于n >2的自然数n 都成立B .该命题对于所有的正偶数都成立C .该命题何时成立与k 取值无关D .以上答案都不对解析:选B 由n =k 时命题成立可推出n =k +2时命题也成立,又n =2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.4.对于不等式 n 2+n <n +1(n ∈N *),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+k+2=(k+2)2=(k+1)+1,∴n=k+1时,不等式成立,则上述证法( )A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析:选D 在n=k+1时,没有应用n=k时的归纳假设,故选D.5.设f(n)=5n+2×3n-1+1(n∈N*),若f(n)能被m(m∈N*)整除,则m的最大值为( ) A.2 B.4C.8 D.16解析:选C f(1)=8,f(2)=32,f(3)=144=8×18,猜想m的最大值为8.6.用数学归纳法证明“对于足够大的自然数n,总有2n>n3”时,验证第一步不等式成立所取的第一个值n0最小应当是________.解析:∵210=1 024>103,29=512<93,∴n0最小应为10.答案:107.用数学归纳法证明122+132+…+1(n+1)2>12-1n+2,假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是____________________________________.解析:观察不等式中分母的变化便知.答案:122+132+…+1(k+1)2+1(k+2)2>12-1k+38.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.解析:当n=1时,36+a3能被14整除的数为a=3或5;当a=3且n=2时,310+35不能被14整除,故a=5.答案:59.已知n∈N*,求证1·22-2·32+…+(2n-1)·(2n)2-2n·(2n+1)2=-n(n+1)(4n +3).证明:(1)当n=1时,左边=4-18=-14=-1×2×7=右边.(2)假设当n=k(k∈N*,k≥1)时成立,即1·22-2·32+…+(2k-1)·(2k)2-2k·(2k +1)2=-k(k+1)(4k+3).则当n=k+1时,1·22-2·32+…+(2k-1)·(2k)2-2k·(2k+1)2+(2k+1)·(2k+2)2-(2k+2)·(2k +3)2=-k (k +1)(4k +3)+(2k +2)[(2k +1)(2k +2)-(2k +3)2]=-k (k +1)(4k +3)+2(k +1)·(-6k -7)=-(k +1)(k +2)(4k +7) =-(k +1)·[(k +1)+1][4(k +1)+3], 即当n =k +1时成立.由(1)(2)可知,对一切n ∈N *结论成立.10.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).证明:(1)当n =1时,32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N *)时命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.层级二 应试能力达标1.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n+1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2解析:选C 增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.2.设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于( )A.13n +2B.13n +13n +1C.13n +1+13n +2 D.13n +13n +1+13n +2解析:选D f (n +1)-f (n )=13n +13n +1+13n +2.3.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为f (k ),则f (k +1)与f (k )的关系是( )A .f (k +1)=f (k )+k +1B .f (k +1)=f (k )+k -1C .f (k +1)=f (k )+kD .f (k +1)=f (k )+k +2解析:选C 当n =k +1时,任取其中1条直线记为l ,则除l 外的其他k 条直线的交点的个数为f (k ),因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为任何三条直线不过同一点,所以上面的k 个交点两两不相同,且与平面内其他的f (k )个交点也两两不相同,从而n =k +1时交点的个数是f (k )+k =f (k +1).4.若命题A (n )(n ∈N *)n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确解析:选C 由题意知n =n 0时命题成立能推出n =n 0+1时命题成立,由n =n 0+1时命题成立,又推出n =n 0+2时命题也成立…,所以对大于或等于n 0的正整数命题都成立,而对小于n 0的正整数命题是否成立不确定.5.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1成立时,左边所得的项为____________.解析:当n =1时,n +1=2,所以左边=1+a +a 2. 答案:1+a +a 26.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=20=1,右边=21-1=1,等式成立. ②假设n =k (k ≥1,且k ∈N *)时,等式成立,即 1+2+22+…+2k -1=2k-1.则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,所以当n =k +1时,等式也成立. 由①②知,对任意n ∈N *,等式成立. 上述证明中的错误是________.解析:由证明过程知,在证从n =k 到n =k +1时,直接用的等比数列前n 项和公式,没有用上归纳假设,因此证明是错误的.答案:没有用归纳假设7.平面内有n (n ∈N *)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n 个圆把平面分成n 2-n +2部分.证明:(1)当n =1时,n 2-n +2=2,即一个圆把平面分成两部分,故结论成立. (2)假设当n =k (k ≥1,k ∈N *)时命题成立,即k 个圆把平面分成k 2-k +2部分. 则当n =k +1时,这k +1个圆中的k 个圆把平面分成k 2-k +2个部分,第k +1个圆被前k 个圆分成2k 条弧,这2k 条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k 个部分,故k +1个圆把平面分成k 2-k +2+2k =(k +1)2-(k +1)+2部分,即n =k +1时命题也成立.综上所述,对一切n ∈N *,命题都成立.8.已知某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2. (1)写出这个数列的前5项;(2)写出这个数列的通项公式并加以证明.解:(1)已知a 1=1,由题意,得a 1·a 2=22,∴a 2=22. ∵a 1·a 2·a 3=32,∴a 3=3222.同理,可得a 4=4232,a 5=5242.因此这个数列的前5项分别为1,4,94,169,2516.(2)观察这个数列的前5项,猜测数列的通项公式应为: a n =⎩⎪⎨⎪⎧1(n =1),n 2(n -1)2(n ≥2).下面用数学归纳法证明当n ≥2时,a n =n 2(n -1)2.①当n =2时,a 2=22(2-1)2=22,结论成立.②假设当n =k (k ≥2,k ∈N *)时,结论成立, 即a k =k 2(k -1)2.∵a 1·a 2·…·a k -1=(k -1)2,a 1·a 2·…·a k -1·a k ·a k +1=(k +1)2,∴a k +1=(k +1)2(a 1·a 2·…·a k -1)·a k =(k +1)2(k -1)2·(k -1)2k 2=(k +1)2k 2=(k +1)2[(k +1)-1]2.这就是说当n =k +1时,结论也成立.根据①②可知,当n ≥2时,这个数列的通项公式是a n =n 2(n -1)2.∴这个数列的通项公式为a n =⎩⎪⎨⎪⎧1(n =1),n 2(n -1)2(n ≥2).。