大学物理知识点复习重点总结
大学物理复习资料
大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。
在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。
大物章节总结知识点
大物章节总结知识点第一章:力学基础1.1 研究对象及基本概念物理学研究的对象是宇宙中的物质和运动,力学是研究物体的运动的一门物理学科。
物体是指占据空间、具有质量的物质。
运动是指物体在空间中的位置随时间发生的变化。
在力学中,物理量包括质量、力、速度、加速度、位移等。
1.2 物体运动的描述运动是在一定空间和时间内物体位置的变化。
运动状态的描述需要考虑时间和位置两个因素。
在力学中,常用的描述方法有坐标系、时刻、位移、速度、加速度等。
1.3 物体运动的规律牛顿三定律是描述物体运动规律的基础。
第一定律表明,物体要么处于静止状态,要么以匀速直线运动;第二定律指出,物体的加速度与作用在其上的力成正比,与质量成反比;第三定律说明,两个物体相互作用时,彼此施加的作用力大小相等,方向相反。
第二章:动力学2.1 力的概念力是导致物体发生运动或形状变化的原因。
力是一个矢量,包括大小和方向两个方面。
常见的力有重力、弹力、摩擦力、张力等。
2.2 牛顿运动定律牛顿运动定律是经典力学的基石。
第一定律,即惯性定律,指出物体的静止或匀速直线运动状态不会自发改变;第二定律,即运动定律,描述了物体受力时加速度的变化规律;第三定律,即作用与反作用,阐明了物体间作用力的相互影响。
2.3 力的合成与分解如果一个物体受到多个力的作用,则其合力可以用力的合成法则求得。
力的分解指的是将一个力分解成两个分力的过程。
2.4 动能和动能定理动能是描述物体运动状态的物理量,它与物体的质量和速度相关。
动能定理指出,外力对物体做功会使物体的动能发生改变。
2.5 势能与机械能守恒势能是物体由于位置或状态而具有的能量,常见的势能有重力势能、弹性势能等。
机械能守恒定律指出,在没有其他非弹性因素作用时,系统的机械能保持不变。
第三章:动力学应用3.1 运动的描述位置、速度、加速度等描述运动的基本物理量。
在一维直线运动中,运动规律可以用直线方程描述。
3.2 牛顿定律的应用应用牛顿第二定律可以计算物体在受力情况下的加速度。
大学物理知识点
大学物理知识点大学物理知识点大学物理是一门涉及自然界中各种现象和规律的科学,它研究的对象包括物质结构、运动、能量等方面。
在大学物理学习的过程中,有一些重要的知识点是必须掌握的,下面我将列举一些重要的知识点。
1. 力和力的分解:力是物体运动和形态变化的原因,常见的力有重力、弹力、摩擦力等。
在研究物体的运动时,我们需要将一个力分解为多个分力,以便更好地理解物体的运动规律。
2. 力的合成:当多个力作用在一个物体上时,它们会相互合成,形成一个合力。
合力的大小和方向由各个力的大小和方向决定。
3. 牛顿三定律:牛顿三定律是力学的基本定律,包括第一定律(惯性定律)、第二定律(运动定律)和第三定律(作用-反作用定律)。
它们描述了物体运动的规律和物体之间相互作用力的性质。
4. 力的作用距离:力在施力点处产生,但是其效果可以作用于施力点的任意一点。
力的作用距离是力矩的物理量,它等于施力点到力线的垂直距离乘以力的大小。
5. 力的能量转换:力和能量是物体运动和形态变化的基本原因和表现。
力可以改变物体的形态和运动状态,使物体具有能量。
6. 力学平衡:在力学中,力的合成为零的状态被称为力学平衡。
当物体处于力学平衡时,它不会发生形态和运动上的变化。
7. 动力学:动力学是研究力的作用和物体的运动规律的学科。
它主要研究力和质量之间的关系,以及物体在受力作用下的运动规律。
8. 转动运动:转动运动是物体绕一定轴线旋转的运动。
研究转动运动时,我们需要考虑力矩、转动惯量等物理量。
9. 机械波:机械波是由介质振动引起的波动。
它包括纵波和横波两类,常见的机械波有声波、水波等。
10. 光学:光学研究光的传播和作用规律。
它包括几何光学和物理光学两个方面,几何光学主要研究光的传播路径和成像,物理光学则研究光的波动性质。
以上是一些大学物理的重要知识点,它们是理解自然界运动和变化规律的基础。
在物理学习过程中,我们需要深入理解这些知识点,并能够将它们应用到实际问题中,以便更好地理解和解释物理现象。
大一物理知识点总结分章节
大一物理知识点总结分章节大一物理知识点总结第一章:力学1.1 物体和力1.1.1 物体的质量和体积1.1.2 力的概念和特点1.2 运动学1.2.1 位移、速度和加速度1.2.2 直线运动和曲线运动1.2.3 牛顿第一定律和第二定律1.3 力学中的能量1.3.1 动能和势能1.3.2 动能定理和机械能守恒定律1.4 静力学1.4.1 平衡条件和力的合成1.4.2 浮力和密度的关系第二章:热学2.1 温度和热量2.1.1 温度的测量和单位2.1.2 热量的传递和能量守恒定律2.2 热力学定律2.2.1 理想气体定律2.2.2 热传导和传热方式2.2.3 热机和热效率第三章:电学3.1 静电学3.1.1 电荷和库仑定律3.1.2 电场和电势3.2 电流和电阻3.2.1 电流的概念和测量3.2.2 电阻的概念和欧姆定律 3.2.3 欧姆定律的应用3.3 电路和电源3.3.1 并联电路和串联电路3.3.2 电源的类型和特点第四章:光学4.1 光的传播和光的特性4.1.1 光的传播模型4.1.2 光的直线传播和光的反射4.2 光的折射和色散4.2.1 光的折射定律4.2.2 光的色散和光的全反射4.3 光的成像和光学仪器4.3.1 光的成像原理4.3.2 凸透镜和凹透镜的成像第五章:波动与声学5.1 机械波的传播性质5.1.1 机械波的分类和传播特性5.1.2 波的叠加和波的干涉5.2 声音的产生和传播5.2.1 声音的产生原理和声音的特性5.2.2 声音的传播和声音的衰减5.3 声学应用和超声波5.3.1 声音的应用领域5.3.2 超声波的产生和应用以上为大一物理知识点总结的基本章节内容,每个章节可以进一步展开相关知识点的详细解释和应用案例。
希望这份总结对你的学习有所帮助!。
大一物理知识点总结手写版
大一物理知识点总结手写版(此处省略封面和目录)一、运动学1. 一维运动1.1 匀速直线运动1.2 一维加速直线运动1.3 自由落体运动2. 二维运动2.1 矢量与标量2.2 平抛运动2.3 简谐振动二、力学1. 牛顿三定律1.1 第一定律:惯性定律1.2 第二定律:动量定律1.3 第三定律:作用与反作用定律2. 平衡力学2.1 物体平衡条件2.2 受力分析法2.3 完整静力图法三、功和能量1. 功1.1 功的计算1.2 弹力做功1.3 重力做功2. 势能与动能2.1 势能的定义与计算2.2 动能定理2.3 势能曲线与平衡位置四、热学与分子运动论1. 热学基本概念1.1 温度与热平衡1.2 热传导与热传递1.3 热力学第一定律2. 理想气体状态方程2.1 理想气体的基本性质2.2 理想气体状态方程2.3 分子速率与温度关系五、电学1. 电荷与电场1.1 基本电荷1.2 电场的性质1.3 电势与电势差2. 电流与电阻2.1 电流的定义与计算2.2 电阻与电阻定律2.3 欧姆定律六、电磁学1. 静电场1.1 高斯定律1.2 电场能2. 磁场与电磁感应2.1 磁场的定义与性质2.2 磁感应强度与电流关系2.3 楞次定律与法拉第定律七、光学1. 几何光学1.1 光的传播与反射1.2 折射定律1.3 透镜与成像2. 光的波动性2.1 互ference2.2 衍射与干涉2.3 光的偏振八、原子物理与量子力学1. 原子物理基本概念1.1 原子结构与元素周期表1.2 辐射与吸收1.3 能级与谱线2. 量子力学基本原理2.1 波粒二象性与波函数2.2 不确定性原理2.3 德布罗意假设(此处省略参考文献)以上是大一物理知识点的手写版总结,请仔细阅读。
大学物理知识点总结汇总
引言概述:大学物理作为一门重要的理工科学科,涵盖了广泛的知识领域。
在大学物理学习过程中,我们需要掌握各种物理定律、概念和实验技巧。
本文将对大学物理中的一些重要知识点进行总结汇总,旨在帮助读者系统地理解这些知识点,提高物理学习效果。
正文内容:一、电磁学知识点1.库伦定律:阐述了两个电荷之间的静电力与它们之间的距离和电量大小的关系。
2.电场与电势:解释了电荷周围空间存在电场的概念,电势则是描述电场能量状态的重要物理量。
3.电流和电阻:分析了电流的定义和流动规律,以及电阻对电流流动的影响。
4.电磁感应:研究了磁场对导体中的电荷运动产生的电动势,并解释了发电机和变压器的工作原理。
5.电磁波:介绍了电磁波的产生和传播规律,以及电磁波的波长、频率和速度之间的关系。
二、光学知识点1.光的直线传播:讲解了光的传播方式和光的速度。
2.光的干涉和衍射:阐述了光的干涉和衍射现象的原理,并解释了双缝干涉、单缝衍射和菲涅尔衍射等常见现象。
3.几何光学:介绍了光的折射、反射和成像的规律,以及利用透镜和镜片进行光学成像的方法。
4.光的偏振:解释了光的偏振现象和偏振光的特性。
5.光的散射和吸收:探讨了光在物质中的散射和吸收过程,以及光的能量衰减规律。
三、热学知识点1.热力学基本概念:介绍了温度、热量和热平衡的概念。
2.理想气体定律:讨论了理想气体状态方程和气体的压强、体积和温度之间的关系。
3.热传导:解释了热的传导方式、热传导定律和热导率的概念。
4.热力学循环:分析了热力学循环中的能量转化和效率计算,以及常见的卡诺循环和斯特林循环。
5.热力学第一和第二定律:阐述了热力学第一定律(能量守恒定律)和第二定律(熵增原理)的概念和应用。
四、相对论知识点1.狭义相对论:介绍了狭义相对论的基本原理,包括光速不变原理和等效质量增加原理。
2.斜坐标系和洛伦兹变换:解释了相对论中的平时距离、时间间隔和洛伦兹变换的概念。
3.相对论动能和动量:分析了相对论速度和质量增加对动能和动量的影响。
大学物理必考知识点大全
大学物理必考知识点大全1. 力学1.1. 牛顿三定律1.2. 力的合成与分解1.3. 动量定理1.4. 质点运动学1.5. 曲线运动2. 热学2.1. 熵与热力学第二定律2.2. 热力学循环2.3. 理想气体的等温、绝热过程2.4. 热传导、热辐射、热对流3. 电磁学3.1. 库仑定律3.2. 电场与电势3.3. 电荷守恒量子化3.4. 电磁感应与法拉第定律3.5. 麦克斯韦方程组4. 光学4.1. 光的干涉与衍射4.2. 库仑定律4.3. 像差与光学仪器4.4. 光的波粒二象性5. 原子物理5.1. 波尔模型与能级跃迁5.2. 薛定谔方程与波函数5.3. 玻尔兹曼分布5.4. 拉曼效应与斯特恩-格拉赫实验6. 相对论6.1. 狭义相对论基本概念6.2. 相对论动力学6.3. 黑洞与引力波7. 核物理7.1. 放射性衰变7.2. 核裂变与核聚变7.3. 质能方程7.4. 射线与粒子探测技术8. 粒子物理学8.1. 标准模型8.2. 强、弱、电磁相互作用8.3. 粒子加速器与探测器9. 波动光学9.1. 波动光学基本概念9.2. 干涉与衍射9.3. 偏振光与光的散射10. 统计物理学10.1. 玻尔兹曼分布与费米-狄拉克分布10.2. 统计力学与热力学关系10.3. 统计物理学中的等概率原理总结:大学物理的必考知识点包括力学、热学、电磁学、光学、原子物理、相对论、核物理、粒子物理学、波动光学和统计物理学等多个领域。
理解和掌握这些知识点,对于大学物理考试和物理学的学习都非常重要。
通过系统学习和实践运用,我们可以更好地理解物理世界的规律和现象,并能够应用物理原理解决实际问题。
希望本文的内容对您的学习和考试有所帮助!。
大学物理知识点的总结归纳
大学物理知识点的总结归纳一、理论基础力学1、运动学参照系。
质点运动的位移和路程,速度,加速度。
相对速度。
矢量和标量。
矢量的合成和分解。
匀速及匀速直线运动及其图象。
运动的合成。
抛体运动。
圆周运动。
刚体的平动和绕定轴的转动。
2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。
惯性参照系的概念。
摩擦力。
弹性力。
胡克定律。
万有引力定律。
均匀球壳对壳内和壳外质点的引力公式(不要求导出)。
开普勒定律。
行星和人造卫星的运动。
3、物体的平衡共点力作用下物体的平衡。
力矩。
刚体的平衡。
重心。
物体平衡的种类。
4、动量冲量。
动量。
动量定理。
动量守恒定律。
反冲运动及火箭。
5、机械能功和功率。
动能和动能定理。
重力势能。
引力势能。
质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。
弹簧的弹性势能。
功能原理。
机械能守恒定律。
碰撞。
6、流体静力学静止流体中的压强。
浮力。
7、振动简揩振动。
振幅。
频率和周期。
位相。
振动的图象。
参考圆。
振动的速度和加速度。
由动力学方程确定简谐振动的频率。
阻尼振动。
受迫振动和共振(定性了解)。
8、波和声横波和纵波。
波长、频率和波速的关系。
波的图象。
波的干涉和衍射(定性)。
声波。
声音的响度、音调和音品。
声音的共鸣。
乐音和噪声。
热学1、分子动理论原子和分子的量级。
分子的热运动。
布朗运动。
温度的微观意义。
分子力。
分子的动能和分子间的势能。
物体的内能。
2、热力学第一定律热力学第一定律。
3、气体的性质热力学温标。
理想气体状态方程。
普适气体恒量。
理想气体状态方程的微观解释(定性)。
理想气体的内能。
理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。
4、液体的性质流体分子运动的特点。
表面张力系数。
浸润现象和毛细现象(定性)。
5、固体的性质晶体和非晶体。
空间点阵。
固体分子运动的特点。
6、物态变化熔解和凝固。
熔点。
熔解热。
蒸发和凝结。
饱和汽压。
沸腾和沸点。
汽化热。
临界温度。
固体的升华。
空气的湿度和湿度计。
大学物理知识点总结归纳
第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r r称为位矢位矢r xi yj =+rv v ,大小r r ==v 运动方程 ()r r t =r r运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B Ar r r xi yj =-=∆+∆r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆r 、r ∆、s ∆的含义(∆≠∆≠∆rr r s )2. 速度(描述物体运动快慢和方向的物理量)平均速度 x y r x y i j i j t t tu u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt∆→∆==∆r r r(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ϖϖϖϖϖϖ+=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==ϖϖ ds dr dt dt=r 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t∆=∆rr 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆r r r r △ a r方向指向曲线凹向二.抛体运动运动方程矢量式为 2012r v t gt =+r rr分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度ds v dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
大学期末物理知识点总结
大学期末物理知识点总结第一章:力学1.1 运动的描述运动是物态变化的一种形式,是物体位置随时间的变化。
在力学中,主要包括平动和转动两种。
1.2 牛顿运动定律牛顿运动定律是指牛顿三定律。
第一定律是惯性定律,第二定律是物体受到的力等于质量和加速度的乘积,第三定律是作用力与反作用力大小相等、方向相反。
1.3 动能和动能定理动能是物体由于运动而具有的能量,动能定理是体系外力对体系所做功等于体系动能的增量。
1.4 势能和机械能守恒势能是物体由于位置而具有的能量,机械能守恒是指在没有非弹性碰撞的情况下,机械能在整个过程中保持不变。
1.5 圆周运动圆周运动是指物体在以圆周运动的过程中,速度方向不断发生变化。
1.6 万有引力定律万有引力定律是指两个物体之间的引力与它们的质量和距离的平方成正比,与质量和引力定理中引力成反比。
第二章:振动和波动2.1 振动的基本概念振动是物体周期性的来回运动。
包括简谐振动和受迫振动。
2.2 波的分类波是一种能量传播的形式,分为机械波和电磁波。
2.3 波的传播波传播的方式有横波和纵波,横波是波动传播的方向垂直于波动速度的方向,纵波是波动传播的方向与波动速度的方向一致。
2.4 光的波动性光既具有粒子性,也具有波动性,光波长和频率与其他波相同。
2.5 声的特性声波是一种机械波,它需要介质来传播。
第三章:热学3.1 热的传导热传导是指高温物体和低温物体之间热量自发传递的过程。
3.2 热的物态变化热的物态变化包括升华、凝固、融化和冷凝。
3.3 热力学第一定律热力学第一定律是能量守恒定律的表现形式,它表明热量在物体间传递时,热量的增加来自于对外做功和内能的增加。
3.4 热功转化效率热功转化效率是指系统输出功与输入热量的比值。
3.5 热力学第二定律热力学第二定律是指热量不可能自发地从低温物体传递到高温物体。
第四章:电磁学4.1 静电场静电场是指在不同位置存在不同电场强度的状态。
4.2 电流和电阻电流是电荷在单位时间内通过导线的数量,电阻是电流通过导线时所遇到的阻力。
大学物理知识点总结归纳归纳
大学物理知识点总结归纳归纳一、物体的内能1.分子的动能物体内所有分子的动能的平均值叫做分子的平均动能.温度升高,分子热运动的平均动能越大.温度越低,分子热运动的平均动能越小.温度是物体分子热运动的平均动能的标志.2.分子势能由分子间的相互作用和相对位置决定的能量叫分子势能.分子力做正功,分子势能减少,分子力做负功,分子势能增加。
在平衡位置时(r=r0),分子势能最小.分子势能的大小跟物体的体积有关系.3.物体的内能(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能.(2)分子平均动能与温度的关系由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。
(3)分子势能与体积的关系分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。
而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。
这就在分子势能与物体体积间建立起某种联系。
因此分子势能分子势能跟体积有关系,由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加;体积变化时,分子势能发生变化,因而物体的内能发生变化.此外, 物体的内能还跟物体的质量和物态有关。
二.改变物体内能的两种方式1.做功可以改变物体的内能.2.热传递也做功可以改变物体的内能.能够改变物体内能的物理过程有两种:做功和热传递.注意:做功和热传递对改变物体的内能是等效的.但是在本质上有区别:做功涉及到其它形式的能与内能相互转化的过程,而热传递则只涉及到内能在不同物体间的转移。
[P7.]南京市金陵中学06-07学年度第一次模拟1.下列有关热现象的叙述中正确的是(A)A.布朗运动反映了液体分子的无规则运动B.物体的内能增加,一定要吸收热量C.凡是不违背能量守恒定律的实验构想,都是能够实现的D.物体的温度为0℃时,物体分子的平均动能为零[P8.] 07届1月武汉市调研考试2.恒温的水池中,有一气泡缓慢上升,在此过程中,气泡的体积会逐渐增大,不考虑气泡内气体分子势能的变化,则下列说法中正确的是( A D )A.气泡内的气体对外界做功B.气泡内的气体内能增加C.气泡内的气体与外界没有热传递D.气泡内气体分子的平均动能保持不变[P9.] 2007年广东卷10、图7为焦耳实验装置图,用绝热性能良好的材料将容器包好,重物下落带动叶片搅拌容器里的水,引起水温升高。
大学物理知识点的总结
大学物理知识点的总结一、理论基础力学1、运动学参照系。
质点运动的位移和路程,速度,加速度。
相对速度。
矢量和标量。
矢量的合成和分解。
匀速及匀速直线运动及其某象。
运动的合成。
抛体运动。
圆周运动。
刚体的平动和绕定轴的转动。
2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。
惯性参照系的概念。
摩擦力。
弹性力。
胡克定律。
万有引力定律。
均匀球壳对壳内和壳外质点的引力公式(不要求导出)。
开普勒定律。
行星和人造卫星的运动。
3、物体的平衡共点力作用下物体的平衡。
力矩。
刚体的平衡。
重心。
物体平衡的种类。
4、动量冲量。
动量。
动量定理。
动量守恒定律。
反冲运动及火箭。
5、机械能功和功率。
动能和动能定理。
重力势能。
引力势能。
质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。
弹簧的弹性势能。
功能原理。
机械能守恒定律。
碰撞。
6、流体静力学静止流体中的压强。
浮力。
7、振动简揩振动。
振幅。
频率和周期。
位相。
振动的某象。
参考圆。
振动的速度和加速度。
由动力学方程确定简谐振动的频率。
阻尼振动。
受迫振动和共振(定性了解)。
8、波和声横波和纵波。
波长、频率和波速的关系。
波的某象。
波的干涉和衍射(定性)。
声波。
声音的响度、音调和音品。
声音的共鸣。
乐音和噪声。
热学1、分子动理论原子和分子的量级。
分子的热运动。
布朗运动。
温度的微观意义。
分子力。
分子的动能和分子间的势能。
物体的内能。
2、热力学第一定律热力学第一定律。
3、气体的性质热力学温标。
理想气体状态方程。
普适气体恒量。
理想气体状态方程的微观解释(定性)。
理想气体的内能。
理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。
4、液体的性质流体分子运动的特点。
表面张力系数。
浸润现象和毛细现象(定性)。
5、固体的性质晶体和非晶体。
空间点阵。
固体分子运动的特点。
6、物态变化熔解和凝固。
熔点。
熔解热。
蒸发和凝结。
饱和汽压。
沸腾和沸点。
汽化热。
临界温度。
固体的升华。
空气的湿度和湿度计。
露点。
大学基础物理学知识点大全
大学基础物理学知识点大全大学基础物理学知识点第一章机械运动常考点1.机械运动:一个物体相对另一个物体位置改变(关键抓住五个字“位置的变化”)2.运动的描述参照物:描述物体运动还是静止时选定的标准物体运动和静止的相对性:选不同的参照物,对运动的描述可能不同3.运动的分类匀速直线运动:沿直线运动,速度大小保持不变;变速直线运动:沿直线运动,速度大小改变。
4.比较快慢方法:时间相同看路程,路程长的快;路程相同看时间,时间短的快5.速度(常考点)物理意义:表示物体运动的快慢;定义:物体在单位时间内通过的路程;公式:v=s/t单位:m/s、km/h;关系:1m/s=3.6km/h;1km/h=1/3.6m/s6.匀速直线运动特点:任意时间内通过的路程都相等公式:v=s/t速度与时间路程变化无关7.描述运动的快慢平均速度物理意义:反映物体在整个运动过程中的快慢公式:v=s/t8.平均速度的测量原理:v=s/t工具:刻度尺、秒表需测物理量:路程s;时间t注意:一定说明是哪一段路程(或哪一段时间)9.路程时间图像速度时间图象第二章声现象一、声音的发生与传播常考点1.一切发声的物体都在振动。
用手按住发音的音叉,发音也停止,该现象说明振动停止发声也停止。
振动的物体叫声源。
2.声音的传播需要介质,真空不能传声。
在空气中,声音以看不见的声波来传播,声波到达人耳,引起鼓膜振动,人就听到声音。
3.真空不能传声,月球上没有空气,所以登上月球的宇航员们即使相距很近也要靠无线电话交谈,因为无线电波在真空中也能传播。
4.声音在介质中的传播速度简称声速。
一般情况下,v固v液v气声音在15℃空气中的传播速度是340m/s。
5.回声是由于声音在传播过程中遇到障碍物被反射回来而形成的。
如果回声到达人耳比原声晚0.1s以上人耳能把回声跟原声区分开来,此时障碍物到听者的距离至少为17m。
在屋子里谈话比在旷野里听起来响亮,原因是屋子空间比较小造成回声到达人耳比原声晚不足0.1s最终回声和原声混合在一起使原声加强。
大学物理期末复习知识点
CV ,m T
200J
M R T 200J M mol
CV
,m
i 2
R
3 2
R(单)
CV
,m
i 2
R
5 2
R(双)
Q 500J 单
Q 700J 双
例题
例题:一定质量的理想气体的内能E随体积V的变化关系为一直线, 其延长线过E-V图的原点,如图,试判断此直线表示什么过程?
❖ 分析:内能变化公式为:
Q E W
dQ dE pdV
Q E V2 pdV V1
分析:一定量的理想气体,经历某过程后,温度升高了,则说明( D ): A.吸了热; B.外界对系统做功;C. 系统对外界做功;D.内能增加。
知识点2:等值过程
过程 过程方程 热一律 内能增量ΔE 做功W 吸放热Q 摩尔热容
等容 dV=0 等压 dp=0
卡诺循环(理想热机):两绝热+两等温 ❖ 卡诺热机循环(卡诺正循环) 热机效率的理想值:
1 T2 T1 T2 T1 T1
❖ 卡诺制冷机机循环(卡诺负循环)
制冷系数
e T2 T1 T2
供暖系数: Q1 1 e
W
例题
例:一卡诺热机在1000K和300K的两热源之间工作,求热机效率。
若低温热源不变,要使热机效率提高到80%,则高温热源温度需提 高多少?
平均动能与势能
Ek
Ep
1 4
kA2
1 2
E
思考: 1、当质点以频率ν 做简谐振动时,其动能的变化频率为多少? 2ν 2、简谐振动过程中,动能和势能相等的位置的位移在何处?
sin2 (t 0 ) cos2 (t 0 ) t 0 45或135 x Acos 45或Acos135
大学物理高考知识点
大学物理高考知识点大学物理是高考中的一门重要科目,掌握其知识点对于高考成绩的提升至关重要。
下面将详细介绍一些大学物理高考知识点。
1. 力学1.1 牛顿三定律:一物体受到的力等于其所受到的物体对它施加的力。
1.2 万有引力定律:两物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。
1.3 动量守恒定律:一个系统内物体的总动量在没有外力作用下保持不变。
1.4 力的合成与分解:多个力可以合成为一个力,一个力可以分解为多个力。
1.5 动能与功:动能是物体由于运动而具有的能量,功是力对物体所做的功。
2. 热学2.1 热力学定律:第一定律和第二定律是热力学的基本定律。
2.2 热传导:热能在物体间通过传导方式传播。
2.3 热膨胀:物体在受热过程中会发生体积扩大。
2.4 热力学循环:由一系列可逆过程组成的循环过程。
2.5 温度与热量:温度是描述物体热状态的物理量,热量是物体之间因温度差异而传递的能量。
3. 光学3.1 光的折射与反射:光在介质之间传播时会发生折射,光在界面上发生反射。
3.2 光的色散:不同频率的光在介质中传播速度不同,导致光发生色散。
3.3 光的干涉与衍射:光通过两个或多个光程相等的区域时会产生干涉或衍射现象。
3.4 凸透镜与凹透镜:凸透镜会使光线聚焦,凹透镜则使光线发散。
3.5 光的波粒二象性:光既可以看作是波动现象,也可以看作是粒子的组成。
4. 电磁学4.1 库仑定律:两个电荷之间的力与它们之间的距离的平方成反比。
4.2 电场:电场是描述电荷周围空间中电场力的物理量。
4.3 电流与电阻:电流是电荷通过横截面的单位时间流过的量,电阻是物体对电流的阻碍程度。
4.4 磁场:磁场是由运动电荷或磁铁产生的力场。
4.5 法拉第电磁感应定律:变化的磁场会在导线中产生感应电动势。
5. 相对论5.1 狭义相对论:描述高速运动物体的行为。
5.2 等效质量与质能关系:质量可以转化为能量,而能量也可以转化为质量。
(完整版)大学物理知识点(全)
Br ∆ A rB ryr ∆第一章 质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
大学物理知识点期末复习版
第一章 运动学一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量; 明确r ∆、r ∆、s ∆的含义∆≠∆≠∆r r s2. 速度描述物体运动快慢和方向的物理量平均速度xyr x y i j ij t t t瞬时速度速度 t 0r drv limt dt ∆→∆==∆速度方向是曲线切线方向 瞬时速度:j v i v j dt dy i dt dx dt r d v y x +=+==,瞬时速率:2222y x v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds drdt dt= 速度的大小称速率; 3. 加速度是描述速度变化快慢的物理量平均加速度va t∆=∆ 瞬时加速度加速度 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动包括一般曲线运动 1.线量:线位移s 、线速度ds v dt= 切向加速度t dva dt=速率随时间变化率 法向加速度2n v a R=速度方向随时间变化率;2.角量:角位移θ单位rad 、角速度d dtθω=单位1rad s -⋅ 角速度22d d dt dtθωα==单位2rad s -⋅3.线量与角量关系:2 = t n s R v R a R a R θωαω===、、、 4.匀变速率圆周运动:1 线量关系020220122v v at s v t at v v as =+⎧⎪⎪=+⎨⎪⎪-=⎩2 角量关系020220122tt t ωωαθωαωωαθ=+⎧⎪⎪=+⎨⎪⎪-=⎩第二章 机械振动一. 简谐运动振动:描述物质运动状态的物理量在某一数值附近作周期性变化; 机械振动:物体在某一位置附近作周期性的往复运动; 简谐运动动力学特征:F kx =- 简谐运动运动学特征:2a x ω=-简谐运动方程: cos()xA t简谐振动物体的速度:sindxvA t dt加速度222cos d x aA tdt速度的最大值m v A , 加速度的最大值2ma A二. 描述谐振动的三个特征物理量 1. 振幅A :22002v A x,取决于振动系统的能量;2. 角圆频率:22T,取决于振动系统的性质 对于弹簧振子km、对于单摆g lω= 3. 相位——t,它决定了振动系统的运动状态,x v0t =的相位—初相arc v tgx 所在象限由00x v 和的正负确定:00x >,00v <,ϕ在第一象限,即ϕ取02π00x <,00v <,ϕ在第二象限,即ϕ取2ππ00x <,00v >,ϕ在第三象限,即ϕ取322ππ 00x >,00v >,ϕ在第四象限,即ϕ取322ππ三. 旋转矢量法简谐运动可以用一旋转矢量长度等于振幅的矢端在Ox 轴上的投影点运动来描述;1.A 的模A =振幅A ,2. 角速度大小=谐振动角频率ω3.0t =的角位置ϕ是初相4.t 时刻旋转矢量与x 轴角度是t 时刻 振动相位t ωϕ+2cos[()]v xa A t t uωωϕ∂==--+∂])(sin[ϕωω+--=∂∂=uxt A t y v 5.矢端的速度和加速度在Ox 轴上的投影点,速度和加速度是谐振动的速度和加速度; 四.简谐振动的能量 以弹簧振子为例:五.同方向同频率的谐振动的合成设()111cos x A t ωϕ=+合成振动振幅与两分振动振幅关系为:12A A A =+合振动的振幅与两个分振动的振幅以及它们之间的相位差有关; 一般情况,相位差21ϕϕ-可以取任意值1212A A A A A -<<+第三章 机械波一.波动的基本概念1.机械波:机械振动在弹性介质中的传播;2. 波线——沿波传播方向的有向线段;波面——振动相位相同的点所构成的曲面 3.波的周期T :与质点的振动周期相同;4. 波长λ:振动的相位在一个周期内传播的距离;5. 振动相位传播的速度;波速与介质的性质有关 二. 简谐波沿ox 轴正方向传播的平面简谐波的波动方程 质点的振动速度质点的振动加速度 这是沿ox 轴负方向传播的平面简谐波的波动方程;cos 2()t xy A T πϕλ⎡⎤=++⎢⎥⎣⎦三.波的干涉两列波频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象; 两列相干波加强和减弱的条件: 1()πλπϕϕϕk r r 221212±=---=∆ ),2,1,0(⋅⋅⋅=k 时,21A A A += 振幅最大,即振动加强 ()()πλπϕϕϕ1221212+±=---=∆k r r ),2,1,0(⋅⋅⋅=k 时,21A A A -=振幅最小,即振动减弱2若12ϕϕ=波源初相相同时,取21r r δ=-称为波程差;212r r k δλ=-=± ),2,1,0(⋅⋅⋅=k 时,21A A A += 振动加强()21212λδ+±=-=k r r),2,1,0(⋅⋅⋅=k 时,21A A A -=振动减弱;其他情况合振幅的数值在最大值12A A +和最小值12A A -之间;第四章 真 空 中 的 静 电 场知识点:1. 场强(1) 电场强度的定义 0q F E=(2) 场强叠加原理∑=iE E 矢量叠加(3) 点电荷的场强公式 rr q E ˆ420πε=(4) 用叠加法求电荷系的电场强度 ⎰=r r dqE ˆ420πε2. 高斯定理 真空中 :∑⎰=⋅内qS d E S1ε3. 电势(1) 电势的定义⎰⋅=零势点pp ld E V对有限大小的带电体,取无穷远处为零势点,则 ⎰∞⋅=pp ld E V2 电势差⎰⋅=-bab a ld E V V3 电势叠加原理 ∑=iV V 标量叠加4 点电荷的电势r qV 04πε=取无穷远处为零势点电荷连续分布的带电体的电势⎰=r dqV 04πε 取无穷远处为零势点4. 电荷q 在外电场中的电势能 a a qV w =5. 移动电荷时电场力的功 )(b a ab V V q A -=第五章 真 空 中 的 稳 恒 磁 场知识点:1. 毕奥-萨伐定律电流元l Id 产生的磁场 20ˆ4r r l Id B d ⨯⋅=πμ式中, l Id表示稳恒电流的一个电流元线元,r 表示从电流元到场点的距离, rˆ表示从电流元指向场点的单位矢量..2. 磁场叠加原理在若干个电流或电流元产生的磁场中,某点的磁感应强度等于每个电流或电流元单独存在时在该点所产生的磁感强度的矢量和. 即∑=iB B3. 要记住的几种典型电流的磁场分布 1有限长细直线电流)cos (cos 4210θθπμ-=a IB式中,a 为场点到载流直线的垂直距离, 1θ、2θ为电流入、出端电流元矢量与它们到场点的矢径间的夹角.a) 无限长细直线电流r I B πμ20=b) 通电流的圆环2/32220)(2R x IR B +⋅=μ 圆环中心04I B rad Rμθθπ=⋅单位为:弧度()4 通电流的无限长均匀密绕螺线管内 nI B 0μ= 4. 安培环路定律真空中∑⎰=⋅内I l d B L0μ当电流I 的方向与回路l 的方向符合右手螺旋关系时, I 为正,否则为负. 5. 磁力1 洛仑兹力B v q F ⨯=质量为m 、带电为q 的粒子以速度v沿垂直于均匀磁场B 方向进入磁场,粒子作圆周运动,其半径为qB mv R =周期为 qB m T π2=2 安培力 Bl Id F⨯=⎰第六章 电 磁 感 应 电 磁 场知识点:1. 楞次定律:感应电流产生的通过回路的磁通量总是反抗引起感应电流的磁通量的改变.2. 法拉第电磁感应定律 dtd i ψ-=ε Φ=ψN 3. 动生电动势: 导体在稳恒磁场中运动时产生的感应电动势.l d B v baab⋅⨯=⎰)(ε 或 ⎰⋅⨯=l d B v )(ε4. 感应电场与感生电动势: 由于磁场随时间变化而引起的电场成为感应电场. 它产生电动势为感生电动势.⎰Φ-=⋅=dtd l d E i 感ε局限在无限长圆柱形空间内, 沿轴线方向的均运磁场随时间均匀变化时, 圆柱内外的感应电场分别为 )(2R r dtdBr E ≤-=感)(22R r dtdBr R E ≥-=感5. 自感和互感 自感系数 IL ψ=自感电动势 dtdI L L -=ε 自感磁能 221LI W m = 互感系数 212121I I M ψ=ψ=互感电动势 dtdI M121-=ε 6. 磁场的能量密度BH B w m 2122==μ 7. 位移电流 此假说的中心思想是: 变化着的电场也能激发磁场.通过某曲面的位移电流强度d I 等于该曲面电位移通量的时间变化率. 即⎰⋅∂∂=Φ=S D d S d tDdt d I位移电流密度 tDj D ∂∂=8. 麦克斯韦方程组的积分形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ) (3)
(4)
(2)由运动方程, 情况
第三章动量守恒和能量守恒定律主要内容
一.动量定理和动量守恒定理
1.冲量和动量
称为在 时间内,力 对质点的冲量。
质量 与速度 乘积称动量
2.质点的动量定理:
质点的动量定理的分量式:
3.质点系的动量定理:
质点系的动量定理分量式
动量定理微分形式,在 时间内:
第五章机械振动主要内容
一.简谐运动
振动:描述物质运动状态的物理量在某一数值附近作周期性变化。
机械振动:物体在某一位置附近作周期性的往复运动。
简谐运动动力学特征:
简谐运动运动学特征:
简谐运动方程:
简谐振动物体的速度:
加速度
速度的最大值 , 加速度的最大值
3)建立坐标,列运动方程(一般列分量式);
4) 文字运算、代入数据
举例:如图所示,把质量为 的小球挂
在倾角 的光滑斜面上,求
(1)当斜面以 的加速度水平向右运动时,
(2)绳中张力和小球对斜面的正压力。
解:1)研究对象小球
2)隔离小球、小球受力分析
3)建立坐标,列运动方程(一般列分量式);
(1)
(2)
局限在无限长圆柱形空间内,沿轴线方向的均运磁场随时间均匀变化时,圆柱内外的感应电场分别为
5.自感和互感
自感系数
自感电动势
自感磁能
互感系数
互感电动势
6.磁场的能量密度
7.位移电流此假说的中心思想是:变化着的电场也能激发磁场.
通过某曲面的位移电流强度 等于该曲面电位移通量的时间变化率.即
位移电流密度
8.麦克斯韦方程组的积分形式
(4) 解题时常用牛顿定律分量式
(平面直角坐标系中) (一般物体作直线运动情况)
(自然坐标系中) (物体作曲线运动)
运用牛顿定律解题的基本方法可归纳为四个步骤
运用牛顿解题的步骤:
1)弄清条件、明确问题(弄清已知条件、明确所求的问题及研究对象)
2)隔离物体、受力分析(对研究物体的单独画一简图,进行受力分析)
b)通电流的圆环
圆环中心
(4)通电流的无限长均匀密绕螺线管内
4.安培环路定律
真空中
磁介质中
当电流I的方向与回路l的方向符合右手螺旋关系时, I为正,否则为负.
5.磁力
(1)洛仑兹力
质量为m、带电为q的粒子以速度 沿垂直于均匀磁场 方向进入磁场,粒子作圆周运动,其半径为
周期为
(2)安培力
(3)载流线圈的磁矩
载流线圈受到的磁力矩
(4)霍尔效应霍尔电压
电磁感应电磁场
知识点:
1.楞次定律:感应电流产生的通过回路的磁通量总是反抗引起感应电流的磁通量的改变.
2.法拉第电磁感应定律
3.动生电动势:导体在稳恒磁场中运动时产生的感应电动势.
或
4.感应电场与感生电动势:由于磁场随时间变化而引起的电场成为感应电场.它产生电动势为感生电动势.
4.电荷q在外电场中的电势能
5.移动电荷时电场力的功
6.场强与电势的关系
静电场中的导体
知识点:
1.导体的静电平衡条件
(1)
(2)
2.静电平衡导体上的电荷分布
导体内部处处静电荷为零.电荷只能分布在导体的表面上.
3.电容定义
平行板电容器的电容
电容器的并联 (各电容器上电压相等)
电容器的串联 (各电容器上电量相等)
4.电容器的能量
电场能量密度
5、电动势的定义 式中 为非静电性电场.电动势是标量,其流向由低电势指向高电势。
静电场中的电介质
知识点:
1.电介质中的高斯定理
2.介质中的静电场
3.电位移矢量
真空中的稳恒磁场
知识点:
1.毕奥-萨伐定律
电流元 产生的磁场
式中, 表示稳恒电流的一个电流元(线元),r表示从电流元到场点的距离, 表示从电流元指向场点的单位矢量..
三.动能定理、功能原理、机械能守恒守恒
1.动能定理
质点动能定理:
质点系动能定理:
作用于系统一切外力做功与一切内力作功之和等于系统动能的增量
2.功能原理:外力功与非保守内力功之和等于系统机械能(动能+势能)的增量
机械能守恒定律:只有保守内力作功的情况下,质点系的机械能保持不变
真空中的静电场
知识点:
1.场强
4. 动量守恒定理:
当系统所受合外力为零时,系统的总动量将保持不变,称为动量守恒定律
动量守恒定律分量式:
二.功和功率、保守力的功、势能
1.功和功率:
质点从 点运动到 点变力 所做功
恒力的功:
功率:
2.保守力的功
物体沿任意路径运动一周时,保守力对它作的功为零
3.势能
保守力功等于势能增量的负值,
物体在空间某点位置的势能
2.角量:角位移 (单位 )、角速度 (单位 )
角速度 (单位 )
3.线量与角量关系:
4.匀变速率圆周运动:
(1) 线量关系 (2) 角量关系
第二章牛顿运动定律主要内容
一、牛顿第二定律
物体动量随时间的变化率 等于作用于物体的合外力 即:
, 时
说明:(1)只适用质点;(2) 为合力 ;(3) 是瞬时关系和矢量关系;
2.磁场叠加原理
在若干个电流(或电流元)产生的磁场中,某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和.即
3.要记住的几种典型电流的磁场分布
(1)有限长细直线电流
式中,a为场点到载流直线的垂直距离, 、 为电流入、出端电流元矢量与它们到场点的矢径间的夹角.
a)无限长细直线电流
(1)电场强度的定义
(2)场强叠加原理 (矢量叠加)
(3)点电荷的场强公式
(4)用叠加法求电荷系的电场强度
2.高斯定理
真空中
电介质中
3.电势
(1)电势的定义
对有限大小的带电体,取无穷远处为零势点,则
(2)电势差
(3)电势叠加原理 (标量叠加)
(4)点电荷的电势 (取无穷远处为零势点)
电荷连续分布的带电体的电势 (取无穷远处为零势点)
第一章质点运动学主要内容
一.描述运动的物理量
1.位矢、位移和路程
由坐标原点到质点所在位置的矢量 称为位矢
位矢 ,大小
运动方程
运动方程的分量形式
位移是描述质点的位置变化的物理量
△t时间内由起点指向终点的矢量 ,
路程是△t时间内质点运动轨迹长度 是标量。
明确 、 、 的含义( )
2.速度(描述物体运动快慢和方向的物理量)
平均速度
瞬时速度(速度) (速度方向是曲线切线方向)
,
速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)
平均加速度 瞬时加速度(加速度)
方向指向曲线凹向
二.抛体运动
运动方程矢量式为
分量式为
三.圆周运动(包括一般曲线运动)
1.线量:线位移 、线速度
切向加速度 (速率随时间变化率)
法向加速