【第九章 计数原理、概率与统计】-2018年高三数学周考(江苏版) (word版含答案)
2018年高考江苏数学(含答案)
2 6 , 7
(1)证明:函数 f ( x) x 与 g ( x) x2 2 x 2 不存在“S 点”; (2)若函数 f ( x) ax2 1 与 g ( x) ln x 存在“S 点”,求实数 a 的值; (3) 已知函数 f ( x) x2 a ,g ( x)
f ( f (15)) 的值为
▲ . 10.如图所示,正方体的棱长为 2,以其所有面的中心为顶点的多面体的体积为 ▲ .
11.若函数 f ( x) 2 x3 ax2 1(a R) 在 (0, ) 内有且只有一个零点,则 f ( x) 在 [1,1] 上的最
-2-
大值与最小值的和为 ▲ . 12.在平面直角坐标系 xOy 中,A 为直线 l : y 2 x 上在第一象限内的点, B(5,0) ,以 AB 为直 径的圆 C 与直线 l 交于另一点 D.若 AB CD 0 ,则点 A 的横坐标为 ▲ . 13.在 △ABC 中,角 A, B, C 所对的边分别为 a, b, c , ABC 120 , ABC 的平分线交 AC 于 点 D,且 BD 1 ,则 4a c 的最小值为 ▲ . 14.已知集合 A {x | x 2n 1, n N*} , B {x | x 2n , n N*} .将 A
be x . 对任意 a 0 , 判断是否存在 b 0 , 使函数 f ( x) x
与 g ( x) 在区间 (0, ) 内存在“S 点”,并说明理由. 20. (本小题满分 16 分) 设 {an } 是首项为 a1 ,公差为 d 的等差数列, {bn } 是首项为,公比为 q 的等比数列. (1)设 a1 0, b1 1, q 2 ,若 | an bn | b1 对 n 1, 2,3, 4 均成立,求 d 的取值范围; (2) 若 a1 b1 0, m N* , q (1, m 2] , 证明: 存在 d R , 使得 | an bn | b1 对 n 2,3, 均成立,并求的取值范围(用 b1 , m, q 表示) .
【概率与统计单元测试】-2018年高三数学周考、月考、段考测试卷(江苏版)试卷 (word版含答案)
【2018年高三数学优质试卷原创精品】专题21 1月第二次周考试题测试时间: 班级: 姓名: 分数: 一、填空题:本大题共14个小题,每小题5分,共70分.1.高中数学联赛期间,某宾馆随机安排E D C B A 、、、、五名男生入住3个标间(每个标间至多住2人),则B A 、入住同一标间的概率为 . 【答案】512. 【2016年河南商丘高三二模】某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布),100(2σN ,已知35.0)10080(=≤<ξP ,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取 份. 【答案】15份【解析】因为数学成绩ξ服从正态分布,且均值100μ=,所以(120)=(80)0.5(80100)0.50.350.15P P P ξξξ≥≤=-<≤=-=,根据分层抽样,应该抽1000.1515⨯=份.3.某研究机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据:由表中数据,求得线性回归方程为,a x yˆ5ˆ+=,若某儿童的记忆能力为12时,则他的识图能力约为 . 【答案】5.9【解析】由表中的数据7, 5.5x y ==,由(,)x y 在直线4ˆˆ5y x a =+,解得1ˆ10a =-,即回归直线方程为41ˆ510yx =-,所以当12x =时,41ˆ129.5510y=⨯-=,即他的识图能力为9.5,故填5.9. 4.不等式组2204x y -≤≤⎧⎨≤≤⎩表示的点集记为M ,不等式组220x y y x-+≥⎧⎨≥⎩表示的点集记为N ,在M 中任取一点P ,则P ∈N 的概率为 .【答案】3295.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆ0.76ya x =+,据此估计,该社区一户收入为15万元家庭年支出为 . 【答案】8.11【解析】因为ˆ0.76ya x =+过点(,)(10,8)x y =,所以0.4a =,因此当15x =时,ˆ11.8y =,应填8.11. 6.在区间[]0,10内随机取出两个数,则这两个数的平方和在区间[]0,10内的概率为 . 【答案】40π【解析】所求概率为几何概型,测度为面积,设这两个数为,x y ,则0,10x y ≤≤,构成一个正方形,面积为210,这两个数的平方和22[0,10]x y +∈在正方形中阴影面积为104π,因此所求概率为210410π=40π,应填40π.7.从1,2,3,4,5种任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件=B “取到的2个数均为偶数”,则()|P B A = . 【答案】14【解析】()()2223222255421,10510C C C P A P AB C C +=====,由条件概率公式()()()1110|245P AB P B A P A === 8.某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取1000名成年人调查是否吸烟及是否患有肺病,得到22⨯列联表,经计算得2 5.231K =,已知在假设吸烟与患肺病无关的前提条件下,22( 3.841)0.05,( 6.635)0.01P K P K ≥=≥=,则该研究所可以 .【答案】有95%以上的把握认为“吸烟与患肺病有关”9.如图,在正方形OABC 内,阴影部分是由两曲线)10(,2≤≤==x x y x y 围成,在正方形内随机取一点,则此点取自阴影部分的概率是.【答案】31【解析】阴影部分面积dx x x S ⎰-=102)(3101|)3132(323=-=x x ,所以所求概率为113113P ==⨯.故应填31.10.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据 (x 1,y 1),(x 2,y 2),(x 3,y 3),(x 4,y 4),(x 5,y 5).根据收集到的数据可知x 1+x 2 +x 3 +x 4 +x 5 =150,由最小二乘法求得回归直线方程为y $= 0.67x+ 54.9,则y 1+y 2+y 3+y 4+y 5的值为 . 【答案】375【解析】由题意,得30)(5154321=++++=x x x x x x ,且回归直线9.5467.0+=∧x y 恒过点),(y x ,则759.543067.0=+⨯=y ,375554321==++++x y y y y y ;故应填375.11.高三二模手若能连续命中两次,即停止投篮,晋级下一轮.假设某选手每次命中率都是0.6,且每次投篮结果相互独立,则该选手恰好投篮4次晋级下一轮的概率为 .【答案】12518【解析】根据题意得,第一次中或不中,第二次不中,第三次和第四次必须投中,得概率为125186.06.04.01=⨯⨯⨯. 12.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布2(100,)N σ,已知40.0)10080(=≤<ξP ,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取 . 【答案】10份 【解析】1(120)[12(80100)]0.12P P ξξ≥=-<≤=,∴应从120分以上的试卷中抽取1000.110⨯=. 11.已知随机变量X 服从正态分布X ~N (2,σ2), P (X <4)=0.84, 则P (X ≤0)的值为 . 【答案】0.1612.一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号依次为1,2,3,…,60.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是 . 答案:43【解析】16.0)4(1)4(=<-=≥X P X P 因为60106=,所以,抽到编号为3、13、23、33、43、53,第5组为43. 二、解答题15.某校高三数学备课组为了更好的制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学认为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:(I)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为期末数学成绩不 低于90分与测试“过关”是否有关?说明你的理由.(II)在期末分数段[105,120)的5人中,从中随机选3人,记抽取到过关测试“过关”的人 数为X ,求X 的分布列及数学期望. 下面的临界值表供参考:【答案】(Ⅰ)有95%的把握认为期末数学成绩不低于90分与测试 “过关”有关;(Ⅱ)略. 【解析】试题解析:(I)依题意得12,18,14,6a b c d ====2501261814)225= 4.327>3.8413020262452K ⨯-⨯=≈⨯⨯⨯(因此有95%的把握认为期末数学成绩不低于90分与测试 “过关”有关.(6分)(II )在期末分数段[105,120)的5人中,有3人 测试“过关”,随机选3人,抽取到过关测试“过关”的人数为X 的可能取值为1,23,2112323233333555361(1)(2)(3)101010C C C C C P X P X P X C C C =========,,X 的分布列为:36118()123 1.810101010E X =⨯+⨯+⨯== ------------------(12分) 16.(12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)若将频率视为频率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区 间[45,75)内的产品件数为X ,求X 的分布列与数学期望. 【答案】(1)0.05;(2)1.8.试题解析:(1)设区间[]75,85内的频率为x , 则区间[)55,65,[)65,75内的频率分别为4x 和2x依题意得()0.0040.0120.0190.0310421x x x +++⨯+++= 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………6分 (2)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验, 所以X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[)45,75内的频率为0.30.2+0.1=0.6+, 将频率视为概率得0.6p =因为X 的所有可能取值为0,1,2,3,且0033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=, 2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=. 所以X 的分布列为:X 0 1 2 3 P0.0640.2880.4320.216所以X 的数学期望为00.06410.28820.43230.216 1.8EX =⨯+⨯+⨯+⨯=. (或直接根据二项分布的均值公式得到30.6 1.8EX np ==⨯=)……………12分 17.(本小题满分12分)某校为了解本校学生的课后玩电脑游戏时长情况,随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生每天玩电脑游戏的时长的频率分布直方图.(Ⅰ)根据频率分布直方图估计抽取样本的平均数x 和众数m (同一组中的数据用该组区间的中点值作代表);(Ⅱ)已知样本中玩电脑游戏时长在]60,50[的学生中,男生比女生多1人,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望)(ξE .【答案】(Ⅰ)2.29=x ;35=m (Ⅱ)详见解析.,103)1(352213===C C C P ξ,53106)2(351223====C C C P ξ101)3(3533===C C P ξ ξ的分布列为所以510352101)(=⨯+⨯+⨯=ξE 18.私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:2人不赞成的概率;(Ⅱ)在(Ⅰ)的条件下,令选中的...4.人中..不.赞成..“.车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.【答案】 (Ⅰ)7522;(Ⅱ) 65E ξ=.(Ⅱ)ξ的所有可能取值为:0,1,2,3()22642251061545150=,104522575C C p C C ξ==⋅=⋅=()21112646442222510510415624102341=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()124422510461243=,104522575C C p C C ξ==⋅=⋅=所以ξ的分布列是:所以ξ的数学期望5E ξ=. 19.若对 2.5PM 采用如下标准:某市环保局从180天的市区 2.5PM 监测数据中,随机抽取10天的数据作为样本,检测值如茎叶图所示 (十位为茎,个位为叶).(Ⅰ)从这10天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的分布列; (Ⅱ)以这10天的 2.5PM 日均值来估计这180天的空气质量情况,其中大约有多少天的空气质量达到一 级?【答案】(Ⅰ)分布列见解析;(Ⅱ)72. 【解析】21463103(2)10C C P C ξ===,…………………………5分30463101(3)30C C P C ξ===,…………………………6分所以,ξ的分布列为:…………………………7分(Ⅱ)由已知可得总体容量10N =,空气质量达到一级的天数4M =,…………………………8分因为这10天中 2.5PM 日均值空气质量达到一级的频率为25,…………………………9分 所以180天中 2.5PM 日均值空气质量达到一级的概率为25;…………………………11分设η为180天中每天空气质量达到一级的天数,则2(180,)5B η ,2180725E η=⨯=,因此180天中空气质量达到一级的天数为72天.…………………………12分20.“开门大吉”是某电视台推出的游戏节目.选手面对18 号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手大多在以下两个年龄段:2130 ,3140 (单位:岁),统计这两个年龄段选手答对歌曲名称与否的人数如下图所示.(Ⅰ)写出22⨯列联表,并判断是否有90%的把握认为答对歌曲名称与否和年龄有关,说明你的理由.(下面的临界值表供参考)(Ⅱ)在统计过的参赛选手中按年龄段分层选取9名选手,并抽取3名幸运选手,求3名幸运选手中在2130 岁年龄段的人数的分布列和数学期望.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++) 【答案】(Ⅰ) 有90%以上的把握认为答对歌曲名称和年龄有关;(Ⅱ)1.【解析】(Ⅰ)根据题意,列出22⨯列联表如下:由列联表计算得()22120107010303201004080K ⨯⨯-⨯==⨯⨯⨯. 因为3 2.706>,所以有90%以上的把握认为答对歌曲名称和年龄有关. 概率分别为:()()0312363633995150,12128C C C C P X P X C C ⋅⋅======, ()()213036363399312,31484C C CC P X P X C C ⋅⋅======. 所以,随机变量X (抽取的3名幸运选手中在2130 岁年龄段的人数)的分布列为:随机变最X (抽取的3名幸运选手中在2130 岁年龄段的人数)的期望为 515310123121281484EX =⨯+⨯+⨯+⨯=.。
(完整版)2018江苏数学高考真题含答案解析
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲.2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.5.函数()f x =的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面. 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=.(1)求cos2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26, 求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2 10.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为,,所以. 因为,所以,因此,.(2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以, 因此.因为,所以,因此,.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 5cos()αβ+=-225sin()1cos ()αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB . 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x =-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立, 即11,1d 3,32d 5,73d 9,得. 112(,)n n n a n d b -=-=1 12|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即,即当时,d 满足.因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值().①当时,, 当时,有,从而. 因此,当时,数列单调递增,故数列的最大值为. ②设,当x >0时,, 所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减,故数列的最小值为.因此,d 的取值范围为.75[,]32111(1),n n n a b n d b b q -=+-=1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n n n q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)x f x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长. B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC .又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt △OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分. 解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆, 从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos6AB ==.因此,直线l 被曲线C截得的弦长为 D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz . 因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
2018年普通高等学校招生全国统一考试(江苏卷)数学试题及详解精校版
2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1 •本试卷共4页,均为非选择题(第1题〜第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2 .答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3 •请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4•作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5 •如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:1锥体的体积V =」Sh,其中S是锥体的底面积,h是锥体的高.3一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.1.已知集合A 二{0,1,2,8}, B 二{-1,1,6,8},那么.1・【答案】「1,8?【解析】由题设和交集的定义可知,AnB=〈1,8?.2 •若复数z满足i N =1 2i,其中i是虚数单位,则z的实部为▲2. 【答案】2【解析】因为i n =1 • 2i,则=2 -i,则z的实部为2. i3•已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.n 1 13. 【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89, 90,91, 91,故平89 89 90 91 91 均数为90 .54 •一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.—I■While /<6 ;:1+2 :;5—2S \■End While:■Prim S;…[科遍4. 【答案】8【解析】由伪代码可得1=3 , S=2 ; 1=5, S=4 ; 1=7, S=8 ;因为7 6 ,所以结束循环,输出S = 8 .5 .函数f (x^ log2 x -1的定义域为▲.5•【答案】12,::【解析】要使函数f x有意义,则log2x-1_0,解得x —2,即函数f x的定义域为2 •::.6 •某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为▲.36. 【答案】-10【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为—.107 •已知函数y二sin(2x •「)( )的图象关于直线x •对称,贝U :的值是▲2 2 3n7. 【答案】-丄6【解析】由题意可得sin . 2 n+® = ±1,所以—n+® =」+ k n,13 丿 3 2:护二一n• k n k ■ Z ,因为_n< -,所以k = 0,:护二一n.6 2 2 6【解析】因为双曲线的焦点F c,0到渐近线y = _^x即bx_ay = O的距离为a穿£上=b,所以b卫c ,.a2b2 c 22 2x y -&在平面直角坐标系xOy中,若双曲线 2 - 2 =1(a 0,b 0)的右焦点F(c,0)到一条渐近a b线的距离为fc,则其离心率的值是▲8. 【答案】2因此a2 =c2—b2 =c2—?c2=丄『,a =1c,e = 2 .4 4 27:Xcos ,0 :: x _ 2,29.函数f(x)满足f(x,4) =f(x)(x・R),且在区间(-2,2]上, f(x)二2则1| x |,-2:::x_0,L 2 f(f(15))的值为▲.29. 【答案】二2【解析】由f x • 4二f x得函数f x的周期为4,1 i 所以f (15 )= f (16 —1 )= f (―1 )= —1 +乙=-,因此 f f15 = f — = cos —.v f12 丿 4 210•如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.(第10题)410. 【答案】—3【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1, 底面正方形的边长等于、、2,所以该多面体的体积为2 - 1 .2 2 = 3 4 .3 33 211•若函数f(x) 2x -ax 1(a R)在(0,;)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为▲.11. 【答案】-3且仅有一个零点且f(0)=1,所以a>0 , f Lo,; 3 13 丿因此2 \ —-a\—*1=0 , a=3 ,13丿13丿从而函数f x在丨-1,0 I上单调递增,在0,1 1上单调递减,所以f xmax 二f 0,f xmin 二min〈f -1, f 仁=f -1,fX max fX min 二f 0 f一1" 一4 一3 -12. 在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线I交于另一点D.若云B CD =0,则点A的横坐标为▲.12. 【答案】3【解析】设A a,2a a 0,则由圆心C为AB中点得c邑2 a ,I 2 丿易得C : x -5 x—a!亠yy -2a ]=0 ,与y "x联立解得点D的横坐标X D = 1,所以D 1,2 .所以"AB 二5-a,-2a , CD = :1-^5^ - a ,a2-2a- 3= 0 , a = 3 或a=-1,因为a 0,所以a = 3 .13. 在△ ABC中,角A,B,C所对的边分别为a, b,c , - ABC =120 , ■ ABC的平分线交AC 于点D,且BD =1,则4a c的最小值为▲.13. 【答案】9【解析】由题意可知,S\ABC =S U B D BCD,由角平分线性质和三角形面积公11 1 1 1式得—acsi n120 a 1 si n 60 — c 1 si n60,化简得ac = a c, 1 ,2 2 2 a c因此4a+c = (4a+c)Q +1 =5 + c+空巧口伫如=9 ,la c 丿a c i a c当且仅当c=2a =3时取等号,则4a c的最小值为9.14. 已知集合A={x|x=2n-1,n,N*} , B={x|x=2n,n,N*}.将AU B 的所有元素从小到大依次排列构成一个数列{a n}.记£为数列{a n}的前n项和,则使得S n 12a n -1成立的n的最小值为_▲ ___________________【解析】由f x =6x -2ax=0得x=0.14. 【答案】27【解析】设a n=2k,贝U S n = [(2工1 _1 )+(2 过 2 _1 )+ 山十(2,2k』一1 )〕+ _2 + 22+|||+2鋼二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字 说明、证明过程或演算步骤.〔5.(本小题满分〔4分) 在平行六面体 ABCD —ARGD ,中,AA= AB, AB ,丄B,G .求证:(D AB //平面AB ,C ; (2)平面 ABB , A -平面 A ,BC .〔5.【答案】(〔)见解析;(2)见解析.【解析】⑴在平行六面体ABCD - ABCP 中, AB// AB .AB , u 平面ARC ,所以AB II 平面A ,B ,C .(2)在平行六面体ABCD-ABGD,中,四边形ABBA 为平行四边形. 又因为AA = AB ,所以四边形ABBA 为菱形,因此 AB , _ AB .又因为 AB , _ BG ,BC I BG ,所以 AB , _ BC .又因为 ABPl BC = B ,AB U 平面 ABC ,BCu 平面 ABC , 所以AB , _平面ABC .因为AB, 平面ABBA , 所以平面ABB, A 丄平面ABC .,6.(本小题满分,4分)已知:■,:为锐角,tan :• , cos (、£ ' 巧 5 .3 5(,)求cos2>的值; (2) 求 tan (…)的值.7 2 16.【答案】(,)-丄;(2) --.2511【解析】(1)因为tan 〉= -, ta n > =虫 ,所以si n >二* cos 〉. 3 cos 。
2018年高考数学试题(江苏卷)含答案
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ题答题要求参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲.2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.5.函数()f x 的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c到一条渐近线的距离为,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=(1)求cos 2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+ 均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.29 10.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C ,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为cos()αβ+=,所以sin()αβ+==, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+. 17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则si n θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()( 24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a xb x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+ ,即当2,3,,1n m =+ 时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+ 均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+ 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+ ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为m q m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若PC =,求BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=OC=2,所以OP.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A,det()221310=⨯-⨯=≠A,所以A可逆,从而1-A2312-⎡⎤=⎢⎥-⎣⎦.(2)设P(x,y),则233121xy⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311xy-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cosρθ,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26ρθ-=,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos 6AB ==因此,直线l 被曲线C 截得的弦长为.D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而11(,2)(0,2,22),BP AC ==- ,故111|||cos ,|||||BP AC BP AC BP AC ⋅==⋅ . 因此,异面直线BP 与AC 1(2)因为Q 为BC的中点,所以1,0)2Q ,因此3,0)2AQ = ,11(0,2,2),(0,0,2)AC CC == . 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅= n n即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CC CC CC |θ==⋅⋅== n n n 所以直线CC 1与平面AQC 123.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+ (242)(1)(2)4(2)2n n n n f --=-+-+⋯++=,因此,n ≥5时,(2)n f =222n n --.。
2018年江苏省高三上学期期末数学试题分类之概率、统计
三、统计(一)试题细目表(二)试题解析1.(2018·南通泰州期末·3)已知某校高一、高二、高三的学生人数分别为400,400,500.为了解该校学生的身高情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为65的样本,则应从高三年级抽取名学生.【答案】252.(2018·无锡期末·3)某高中共有学生2800人,其中高一年级960人,高三年级900人,现采用分层抽样的方法,抽取140人进行体育达标检测,则抽取高二年级学生人数为.【答案】473.(2018·扬州期末·3)若数据31,37,33,a,35的平均数是34,则这组数据的标准差为_________.【答案】24.(2018·扬州期末·4)为了了解某学校男生的身体发育情况,随机调查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图,根据此图估计该校2000名男生中体重在70-80kg的人数为________.【答案】240 5.(2018·常州期末·4)若一组样本数据2015,2017,x ,2018,2016的平均数为2017,则该组样本数据的方差为 .【答案】26.(2018·南京盐城期末·3).为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 .【答案】12007.(2018·苏北四市期末·5)某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),时间(单位:分钟)50 60 70 80 90 100 0.035a 0.020 0.010 0.005第3题图则成绩在[250,400)内的学生共有 人.【答案】750四、概率(一)试题细目表(二)试题解析1.(2018·南通泰州期末·5)某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,则数学建模社团被选中的概率为 .【答案】122.(2018·无锡期末·4)已知,{1,2,3,4,5,6}a b ∈,直线1:210l x y +-=,2:30l ax by -+=,则直线12l l ⊥的概率为 .150 200 250 300 350 400 450(第5题) (第17题)【答案】1123.(2018·扬州期末·6)从两名男生2名女生中任选两人,则恰有一男一女的概率为__________.【答案】234.(2018·常州期末·6) 函数1()ln f x x=的定义域记作集合D .随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数1,2,,6 ),记骰子向上的点数为t ,则事件“t D ∈”的概率为 . 【答案】565.(2018·南京盐城期末·5).口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 . 【答案】236.(2018·苏州期末·4)苏州轨道交通1号线每5分钟一班,其中,列车在车站停留0.5分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台立即能乘上车的概率为 . 【答案】1107.(2018·苏北四市期末·7)连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为 . 【答案】59。
2018年高考数学理一轮复习课时达标:第九章 计数原理与概率、随机变量及其分布59 含答案 精品
课时达标 第59讲[解密考纲]古典概型在高考中常以选择题或填空题的形式出现,有时与集合、函数、不等式等知识综合,以解答题形式出现.一、选择题1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则a <b 的概率为( D )A .45B .35C .25D .15解析:从1,2,3,4,5中随机选取一个数的取法有5种,从1,2,3中随机选取一个数的取法有3种,所以a ,b 的可能结果有5×3=15种,其中a <b 的结果有(1,2),(1,3),(2,3),共3种.所以所求概率为P =315=15,故选D .2.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过4的概率记为p 1,点数之和大于8的概率记为p 2,点数之和为奇数的概率记为p 3,则( A )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 2解析:随机掷两枚质地均匀的骰子,共有36种不同结果,其中向上的点数之和不超过4的有6种不同结果;点数之和大于8的有10种不同结果;点数之和为奇数的有18种不同结果,故p 1=636=16,p 2=1036=518,p 3=1836=12,故p 1<p 2<p 3.3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( A )A .13B .12C .23D .34解析:甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同—个小组的情况有3种,故甲、乙两位同学参加同一个兴趣小组的概率P =39=13.4.从1,2,3,4这四个数字中一次随机取两个,则取出的这两个数字之和为偶数的概率是( B )A .16B .13C .12D .15解析:从1,2,3,4这四个数字中一次随机取两个,共有6种情况,其中取出的这个数字之和为偶数的情况有(1,3),(2,4),共2种,所以P =26=13.5.把一颗骰子投掷两次,第一次出现的点数记为m ,第二次出现的点数记为n ,方程组⎩⎪⎨⎪⎧mx +ny =3,2x +3y =2只有一组解的概率是( D ) A .23B .34C .15D .1718解析:方程组只有一组解,除了⎩⎪⎨⎪⎧m =2,n =3,⎩⎪⎨⎪⎧m =4,n =6这两种情况之外都可以,故所求概率P =6×6-26×6=1718.6.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为( D )A .19B .29C .718D .49解析:试验包含的基本事件共有6×6=36种结果.其中满足题设条件的有如下情况: 若a =1,则b =1,2;若a =2,则b =1,2,3; 若a =3,则b =2,3,4;若a =4,则b =3,4,5 ; 若a =5,则b =4,5,6;若a =6,则b =5,6. 共16种.故他们“心相近”的概率为P =1636=49.二、填空题7.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为23.解析:设2本数学书分别为A ,B ,语文书为C ,则所有的排放顺序有ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,共6种情况,其中数学书相邻的有ABC ,BAC,CAB ,CBA ,共4种情况,故2本数学书相邻的概率P =46=23.8.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为13.解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.9.(2017·山东潍坊模拟)如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为710.解析:由茎叶图知甲在五场比赛中的得分总和为18+19+20+21+22=100;乙运动员在已知成绩的四场比赛中得分总和为15+16+18+28=77,乙的另一场得分是20到29十个数字中的任何一个的可能性是相等的,共有10个基本事件,而事件“甲的平均得分不超过乙的平均得分”就包含了其中的23,24,25,26,27,28,29共7个基本事件,所以甲的平均得分不超过乙的平均得分的概率为710.三、解答题10.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解析:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件共有{1,2},{1,3}两个.因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3).(1)求使得事件“a ⊥b ”发生的概率; (2)求使得事件“|a |≤|b |”发生的概率.解析:(1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6}, 故(m ,n )所有可能的取法共36种.使得a ⊥b ,即m -3n =0,即m =3n ,共有2种:(3,1),(6,2), 所以事件a ⊥b 的概率为236=118.(2)|a|≤|b|,即m 2+n 2≤10,此时共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6种使得|a|≤|b|,其概率为636=16.12.一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c .(1)z =(b -3)2+(c -3)2,求z =4的概率;(2)若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.解析:(1)因为是投掷两次,因此基本事件(b ,c ):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个.当z =4时,(b ,c )的所有取值为(1,3),(3,1), 所以P (z =4)=216=18.(2)①若方程一根为x =1,则1-b -c =0,即b +c =1,不成立. ②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧ b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知,(b ,c )的所有可能取值为(1,2),(2,3),(3,4). 所以方程为“漂亮方程”的概率为P =316.。
精选江苏专用2018版高考数学专题复习专题10计数原理概率与统计第75练离散型随机变量及其概率分布练习理
(江苏专用)2018版高考数学专题复习 专题10 计数原理、概率与统计 第75练 离散型随机变量及其概率分布练习 理1.(2016·长春模拟)已知随机变量X 的概率分布为P (X =i )=2a (i =1,2,3,4),则P (2<X ≤4)=________.2.(2016·镇江模拟)甲、乙两人参加某高校的自主招生考试,若甲、乙能通过面试的概率都为23,且甲、乙两人能否通过面试相互独立,则面试结束后通过人数ξ的均值E (ξ)的值为________.3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是________. 4.(2016·合肥模拟)随机变量X 的概率分布规律为P (X =n )=a n n +(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为________.5.设随机变量ξ的概率分布为P ⎝ ⎛⎭⎪⎫ξ=k 5=ak (k =1,2,3,4,5),则P ⎝ ⎛⎭⎪⎫110<ξ<710=________.6.(2016·南京模拟)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则V (ξ)=________.7.(2016·无锡模拟)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ=|a -b |的取值,则ξ的均值E (ξ)为________.8.若X ~B (n ,p ),且E (X )=6,V (X )=3,则P (X =1)的值为________.9.设非零常数d 是等差数列x 1,x 2,…,x 19的公差,随机变量ξ等可能地取值x 1,x 2,…,x 19,则方差V (ξ)=______.10.(2016·长沙模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其概率分布为P (X =k ),则P (X =5)的值为________.11.某大学志愿者协会有6名男同学,4名女同学,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同),则选出的3名同学中女同学的人数X 的概率分布为________.12.若一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件然后放回,则直至取到正品时所需次数X 的概率分布为P (X =k )=________.13.均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2,将这个小正方体抛掷两次,则向上的数字之积的均值是________.14.一袋中装有分别标记着数字1,2,3的3个小球,每次从袋中取出一个小球(每只小球被取到的可能性相同).现连续取3次球,若每次取出一个球后放回袋中,记3次取出的球中标号最小的数字与最大的数字分别为X ,Y ,设ξ=Y -X ,则E (ξ)=________.答案精析1.7102.433.94.565.25解析 由已知,随机变量ξ的概率分布为由概率分布的性质可得a +2a +3a +4a +5a =1, ∴a =115,∴P ⎝ ⎛⎭⎪⎫110<ξ<710=115+215+315=25.6.25解析 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以V (ξ)=15+35×0+15×1=25.7.89解析 ∵抛物线的对称轴在y 轴的左侧, ∴-b 2a <0,即ba >0,也就是a ,b 必须同号,∴ξ的概率分布为∴E (ξ)=0×13+1×49+2×29=89.8.3·2-10解析 ∵E (X )=np =6,V (X )=np (1-p )=3, ∴p =12,n =12,则P (X =1)=C 112·12·(12)11=3·2-10.9.30d 2解析 E (ξ)=x 10,V (ξ)=d 219(92+82+…+12+02+12+…+92)=30d 2.10.2755解析 ∵从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X =5,即旧球的个数增加了2个,∴取出的3个球必为1个旧球,2个新球,故P (X =5)=C 13C 29C 312=2755.11.解析 随机变量X 的所有可能取值为0,1,2,3, P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3), 所以随机变量X 的概率分布是12.(310)k -1710,k =1,2,3,…解析 由于每次取出的产品仍放回,每次取到正品的概率完全相同, 所以X 的可能取值是1,2,…,k ,…, 相应的取值概率为P (X =1)=710, P (X =2)=310×710=21100, P (X =3)=310×310×710=631 000,…P (X =k )=(310)k -1710(k =1,2,3,…).13.49解析 记向上的数字之积为ξ,则ξ的所有可能取值为0,1,2,4.因为P (ξ=0)=34,P (ξ=1)=19,P (ξ=2)=19,P (ξ=4)=136,所以E (ξ)=0×34+1×19+2×19+4×136=49.14.43 解析ξ=Y -X =0,1,2,连续取3次球,它的取法有111,112,121,211,113,131,311,122,212,221,133,313,331,123,132,213,231,312,321,222,223,232,322,233,323,332,333,其中Y -X =0有3种,Y -X =1有12种,Y -X =2有12种,因此它们的概率分别为19,49,49,故E (ξ)=0×19+1×49+2×49=43.。
2018年江苏高考数学试题及答案(无错版)(3) 精品
2018年普通高等学校招生全国统一考试一、选择题:本大题共10小题,每小题5分,共50分。
1.下列函数中,周期为2π的是( )A .sin 2x y =B .sin 2y x =C .cos 4xy = D .cos 4y x =2.已知全集U Z =,2{1,0,1,2},{|}A B x x x =-==,则U A C B 为( )A .{1,2}-B .{1,0}-C .{0,1}D .{1,2}3.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心率为( )A .5B .52C .3D .2 4.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:( )①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是A .①③B .②④C .①④D .②③ 5.函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是( )A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31xf x =-,则有( )A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<7.若对于任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为( ) A .3 B .6 C .9 D .128.设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞9.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .3210.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为( )A .2B .1C .12D .14二、填空题:本大题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试 数学 (江苏卷) word版含解析
2018年普通高等学校招生全国统一考试数 学(江苏卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
数学I 试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么AB =________.2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.5.函数()f x =________.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.7.已知函数()sin 22π2πy x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π3x =对称,则ϕ的值是________.8.在平面直角坐标系xOy 中,若双曲线()222210,0x y a b a b-=>>的右焦点(),0F c 到一条渐近线,则其离心率的值是________. 9.函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,0221,202x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩,则()()15ff 的值为________.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.11.若函数()()3221f x x ax a =-+∈R 在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为________.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________.13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.14.已知集合{}*21,A x x n n ==-∈N ,{}*2,n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数{}n a 列的前n 项和,则使得112n n S a +>成立的n 的最小值为________.二、解答题:本大题共6小题,共计90分.请在答题卡的指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平行六面体1111ABCD A BC D -中,1AA AB =,111AB B C ⊥. 求证:(1)AB ∥平面11A B C ;此卷只装订不密封班级 姓名 准考证号 考场号 座位号(2)平面11ABB A ⊥平面1A BC .16.(14分)已知α,β为锐角,4tan 3α=,()cos 5αβ+=-. (1)求cos 2α的值; (2)求()tan αβ-的值.17.(14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16分)如图,在平面直角坐标系xOy 中,椭圆C过点12⎫⎪⎭,焦点()1F,)2F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △的面积为7,求直线l 的方程.19.(16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R , 满足()()00f x g x =且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与()222g x x x =+-不存在“S 点”; (2)若函数()21f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数()2f x x a =-+,()e x bg x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”,并说明理由.20.(16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设10a =,11b =,2q =,若1n n a b b -≤对1n =,2,3,4均成立,求d 的取值范围; (2)若110a b =>,*m ∈N,(q ∈,证明:存在d ∈R ,使得1n n a b b -≤对2n =,3,,1m +均成立,并求d 的取值范围(用1b ,m ,q 表示).数学II (附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .(10分) [选修4—1:几何证明选讲]如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C.若PC =BC 的长.B .(10分) [选修4—2:矩阵与变换] 已知矩阵2312A ⎡⎤=⎢⎥⎣⎦. (1)求A 的逆矩阵1A -;(2)若点P 在矩阵A 对应的变换作用下得到点()3,1P ',求点P 的坐标.C .(10分)[选修4—4:坐标系与参数方程] 在极坐标系中,直线l 的方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,曲线C 的方程为4cos ρθ=,求直线l 被曲线C截得的弦长.D .(10分) [选修4—5:不等式选讲]若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.[必做题]第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(10分)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P ,Q 分别为11A B ,BC 的中点.(1)求异面直线BP 与1AC 所成角的余弦值; (2)求直线1CC 与平面1AQC 所成角的正弦值.23.(10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s t <时,有s t i i >,则称(),s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序()2,1,()3,1,则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求()32f ,()42f 的值;(2)求()()25n f n ≥的表达式(用n 表示).2018年普通高等学校招生全国统一考试数 学 答 案(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【答案】{}1,8【解析】由题设和交集的定义可知,{}1,8A B =.2.【答案】2【解析】因为i 12i z ⋅=+,则12i2i iz +==-,则z 的实部为2. 3.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为8989909191905++++=.4.【答案】8【解析】由伪代码可得3I =,2S =;5I =,4S =;7I =,8S =;因为76>,所以结束循环,输出8S =. 5.【答案】[)2,+∞【解析】要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞. 6.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.7.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=±⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-. 8.【答案】2【解析】因为双曲线的焦点(),0F c 到渐近线by x a=±即0bx ay ±=的距离为bc b c==,所以b =, 因此2222223144a c b c c c =-=-=,12a c =,2e =. 9.【解析】由()()4f x f x +=得函数()f x 的周期为4, 所以()()()11151611122f f f =-=-=-+=, 因此()()115cos 2π4ff f ⎛⎫=== ⎪⎝⎭. 10.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边2142133⨯⨯⨯=. 11.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a>,03a f ⎛⎫= ⎪⎝⎭, 因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减, 所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.12.【答案】3【解析】设()(),20A a a a >,则由圆心C 为AB 中点得5,2a C a +⎛⎫⎪⎝⎭, 易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1D x =,所以()1,2D .所以()5,2AB a a =--,51,22a CD a +⎛⎫=-- ⎪⎝⎭, 由0AB CD ⋅=得()()()5512202a a a a +⎛⎫--+--= ⎪⎝⎭, 2230a a --=,3a =或1a =-,因为0a >,所以3a =.13.【答案】9【解析】由题意可知,A B C A B DB C S S S =+△△△,由角平分线性质和三角形面积公式得111s i n 1201s i n 601s i n 60222a c a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=, 因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当23c a ==时取等号,则4a c +的最小值为9. 14.【答案】27 【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k k k k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解, 此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥,得满足条件的n 最小值为27.二、解答题:本大题共6小题,共计90分.请在答题卡的指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体1111ABCD A BC D -中,11ABA B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A BC D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥.又因为1A B BC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .16.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos 22cos 125αα=-=-.(2)因为α,β为锐角,所以()0,παβ+∈. 又因为()cos αβ+=()sin αβ+==, 因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--,因此,()()()()tan 2tan 2tan tan 21tan 2tan 11ααβαβααβααβ-+-=-+==-⎡⎤⎣⎦++.17.【答案】(1)1,41⎡⎫⎪⎢⎣⎭;(2)当π6θ=时,能使甲、乙两种蔬菜的年总产值最大. 【解析】(1)连结PO 并延长交MN 于H ,则PH MN ⊥,所以10OH =. 过O 作OE BC ⊥于E ,则OE MN ∥,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+,CDP △的面积为()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-.过N 作GN MN ⊥,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==. 令0GOK θ∠=,则01sin 4θ=,0π0,6θ⎛⎫∈ ⎪⎝⎭.当0π2,θθ⎡⎫∈⎪⎢⎣⎭时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1,41⎡⎫⎪⎢⎣⎭.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4:3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为()30k k >, 则年总产值为()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯-()8000sin cos cos k θθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭.设() sin cos cos fθθθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭,则()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+.令()=0f θ',得π6θ=,当0π6,θθ⎛⎫∈ ⎪⎝⎭时,()>0f θ',所以()f θ为增函数;当ππ,62θ⎛⎫∈⎪⎝⎭时,()<0f θ',所以()f θ为减函数, 因此,当π6θ=时,()f θ取到最大值. 18.【答案】(1)椭圆C 的方程为2214x y +=;圆O 的方程为223x y +=; (2)①点P的坐标为);②直线l的方程为y =+.【解析】(1)因为椭圆C的焦点为()1F,)2F ,可设椭圆C 的方程为()222210x y a b a b +=>>.又点12⎫⎪⎭在椭圆C 上,所以222231143a ba b +=-=⎧⎪⎨⎪⎩,解得2241a b ==⎧⎨⎩,因此,椭圆C 的方程为2214x y +=. 因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于()()00000,,0P x y x y >>,则22003x y +=,所以直线l 的方程为()000x y x x y y =--+,即0003x y x y y =-+. 由22000143x y x y x y y ⎧⎪⎪⎨+==-+⎪⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点, 所以()()()()22222200024443644820x x y y y x∆=--+-=-=.因为0x ,00y >,所以0x =01y =. 因此,点P的坐标为).②因为三角形OAB,所以12AB OP ⋅=,从而AB =. 设()11,A x y ,()22,B x y ,由(*)得120024x x y =+,所以()()()()22222201212222200048214y x x AB x x y y y x y -⎛⎫=-+-=+⋅⎪⎝⎭+. 因为22003x y +=, 所以()()20222016232491x AB x -==+,即42002451000x x -+=, 解得2052x =(2020x =舍去),则2012y =,因此P的坐标为22⎛ ⎝⎭. 综上,直线l的方程为y =+.19.【答案】(1)见解析;(2)a 的值为e2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”. 【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ',得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫ ⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2. (3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()3002e 1x xb x =-,则0b >.函数()2f x x a =-+,()e xb g x x=,则()2f x x '=-,()()2e 1x b x g x x-'=. 由()()f x g x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”. 因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”. 20.【答案】(1)d 的取值范围为75,32⎡⎤⎢⎥⎣⎦;(2)d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦,证明见解析. 【解析】(1)由条件知:()1n a n d =-,12n n b -=. 因为1n n a b b -≤对1n =,2,3,4均成立, 即()1121n n d ---≤对1n =,2,3,4均成立,即11≤,13d ≤≤,325d ≤≤,739d ≤≤,得7532d ≤≤. 因此,d 的取值范围为75,32⎡⎤⎢⎥⎣⎦.(2)由条件知:()11n a b n d =+-,11n n b b q -=. 若存在d ,使得1n n a b b -≤(2n =,3,,1m +)成立, 即()11111n b n d b q b -+--≤(2n =,3,,1m +),即当2n =,3,,1m +时,d 满足1111211n n q q b d b n n ---≤≤--.因为(q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2n =,3,,1m +均成立. 因此,取0d =时,1n n a b b -≤对2n =,3,,1m +均成立.下面讨论数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值和数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值(2n =,3,,1m +).①当2n m ≤≤时,()()()1112222111n n nn n n n n n q q q q q nq q nq n n n n n n -----+----+-==---, 当112mq <≤时,有2n mq q ≤≤,从而()120n n nn q qq---+>.因此,当21n m ≤≤+时,数列121n q n -⎧⎫-⎨⎬-⎩⎭单调递增,故数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值为2m q m -. ②设()()21xf x x =-,当0x >时,()()ln21ln220xf x x =--<',所以()f x 单调递减,从而()()01f x f <=.当2n m ≤≤时,()111112111nn n q q n n f q n n n n --⎛⎫⎛⎫=≤-=< ⎪ ⎪⎝⎭⎝⎭-, 因此,当21n m ≤≤+时,数列11n q n -⎧⎫⎨⎬-⎩⎭单调递减,故数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值为mq m . 因此,d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦.数学II (附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .【答案】2【解析】连结OC ,因为PC 与圆O 相切,所以OC PC ⊥.又因为PC =2OC =,所以4OP ==.又因为2OB =,从而B 为Rt OCP △斜边的中点,所以2BC =.B .【答案】(1)12312A --⎡⎤=⎢⎥-⎣⎦;(2)()3,1-. 【解析】(1)因为2312A ⎡⎤=⎢⎥⎣⎦,()det 221310A =⨯-⨯=≠, 所以A 可逆,从而12312A--⎡⎤=⎢⎥-⎣⎦. (2)设(),P x y ,则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x A y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 因此点P 的坐标为()3,1-.C .【答案】直线l 被曲线C截得的弦长为 【解析】因为曲线C 的极坐标方程为4cos ρθ=, 所以曲线C 的圆心为()2,0,直径为4的圆. 因为直线l 的极坐标方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭, 则直线l 过()4,0A ,倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则π6OAB ∠=. 连结OB ,因为OA 为直径,从而π2OBA ∠=,所以4cos 6πAB ==.因此,直线l 被曲线C截得的弦长为 D .【答案】4【解析】由柯西不等式,得()()()222222212222x y zx y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =, 所以222x y z ++的最小值为4.[必做题]第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.【答案】(1;(2【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11AC 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,)B,()0,1,0C ,()10,1,2A -,)12B ,()10,1,2C .(1)因为P 为11A B的中点,所以1,22P ⎫-⎪⎪⎝⎭,从而1,22BP ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,2AC =,故111cos ,5BP AC BPAC BP AC ⋅-<>===⋅ 因此,异面直线BP 与1AC . (2)因为Q 为BC 的中点,所以1,02Q ⎫⎪⎪⎝⎭, 因此33,02AQ ⎛⎫= ⎪⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n即302220x y y z +=+=⎪⎩,不妨取)1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则111sin cos ,CCCC CC θ⋅=<>===⋅n n n, 所以直线1CC 与平面1AQC 23.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ, 所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n ,所以()01n f =.逆序数为1的排列只能是将排列12n 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()24212422n n n n f --=-+-+++=,因此,5n ≥时,()2222n n n f --=.。
2018年高考江苏数学卷和答案解析
温馨提示:全屏查看效果更佳。
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每题5小分,共计70分。
请把答案填写在答题卡相应位置上。
1.已知集合==-{0,1,2,8},{1,1,6,8}A B ,那么A B ⋂=__________.2.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z z 的实部为__________.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为__________.5.函数()f x =__________.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率是__________.7.已知函数sin(2)()22y x ππϕϕ=+-<<的图像关于直线3x π=对称,则ϕ的值是__________.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐,则其离心率的值是__________. 9.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2)-上cos ,022()1||,202x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩,则((15))f f 的值为__________.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为__________.11.若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为__________.12.在平面直角坐标系xOy 中, A 为直线:2l y x =上在第一象限内的点, ()5,0B 以AB 为直径的圆C 与直线l 交于另一点D ,若0AB CD ⋅=,则点A 的横坐标为__________. 13.在ABC ∆中,角,,A B C 所对应的边分别为,,,120,a b c ABC ABC ∠=∠o的平分线交AC 于点D ,且1BD =,则4a c +的最小值为__________.14.已知集合{}{}**|21,,|2,n A x x n n N B x x n N ==-∈==∈,将A B ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 二、解答题15.在平行四边形1111ABCD A BC D -中, 1111,AA AB AB BC =⊥1.求证: //AB 平面11A B C2.平面11ABB A ⊥平面1A BC16.已知,αβ为锐角, ()4tan ,cos 35ααβ=+=-1.求cos 2α的值。
高考数学《计数原理、概率与统计理》平行性测试卷
《计数原理、概率与统计(理)》平行性测试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)《九章算术》是人类科学史上应用数学的最早巅峰,在研究比率方面的应用十分丰富,其中有“米谷粒分”问题:粮仓开仓收粮,粮农送来1 534石,验其米内杂谷,随机取米一把,数得254粒内夹谷28粒,则这批米内夹谷约( ) A .134石 B .169石 C .268石 D .338石(2)某校在2016年的中学数学挑战赛中有1 000人参加考试,数学考试成绩ξ~N (90,σ2)(σ>0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次数学考试成绩不低于110分的考生人数约为( )A .200B .400C .600D .800(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140(4)将1,2,3,…,9这九个数字填在如图所示的9个空格中,要求每一行从左到右,每一列从上到下增大,当3,4固定在图中的位置时, 填写空格的方法有( )A .6种B .12种C .18种D .24种(5)已知甲、乙两名同学在五次数学单元测验中得分如下:A .甲比乙稳定B .甲、乙稳定程度相同C .乙比甲稳定D .甲平均分比乙低(6)如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛一枚幸运小花朵,则小花朵落在小正方形内的概率为( ) A..117B .217C .317D .417(7)已知数据12,,,n x x x ⋅⋅⋅的平均数为x ,数据12,,,m y y y ⋅⋅⋅的平均数为y ,且x y ≠,若12,,,n x x x ⋅⋅⋅,12,,,m y y y ⋅⋅⋅的平均数(1)z ax a y =+-,当102a <<时,,n m 的大小关系为( )A. m n <B. n m <C. m n =D. 2n m <试分数的极差与中位数之和为( )A .117B .118C .118.5D .119.5(10)某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .35 B .59 C .110 D .25(11)已知()23012331nnn x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),设()31nx -展开式的二项式系数和为n S ,123n n a a a a T =+++⋅⋅⋅+(n *∈N ),n S 与n T 的大小关系是( )A .n n S >TB .n n S <TC .n 为奇数时,n n S <T ,n 为偶数时,n n S >TD .n n S =T(12)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318B.418C.518D.618二、填空题:本大题共4小题,每小题5分.(14)有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的件数,则EX = .(15)某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p (p ≠0),射击次数为η,若η的均值E (η)>74,则p 的取值范围是________.(16)已知等式x 4+a 1x 3+a 2x 2+a 3x +a 4=(x +1)4+b 1(x +1)3+b 2(x +1)2+b 3(x +1)+b 4,定义映射f :(a 1,a 2,a 3,a 4)→(b 1,b 2,b 3,b 4),则f (4,3,2,1)=____________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?⎝ ⎛⎭⎪⎪⎫参考公式:b ^=∑ni =1x i y i -n x y∑ni =1x 2i -n x 2,a ^=y -b ^x (18)(本小题满分12分)某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A 、B 两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”(I )从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求的分布列和数学期望;(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.(19)(本小题满分12分)某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(I)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;(II)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和均值.(20)(本小题满分12分)甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为12.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(I)求总决赛中获得门票总收入恰好为300万元的概率;(II)设总决赛中获得门票总收入为X,求X的均值E(X).(21)(本小题满分12分)在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.(I)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;(II)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.(22)(本小题满分12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为Z(单位:元)是一个随机变量.(I)求Z的分布列和均值;(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.《计数原理、概率与统计(理)》平行性测试卷参考答案一、选择题:(1)B.[解析]设这批米内夹谷约为x石,根据随机抽样事件的概率得x1 534=28254,得x≈169.(2)A. 【解析】依题意得P (70≤ξ≤110)=0.6,P (ξ≤110)=0.3+0.5=0.8,P (ξ≥110)=0.2, 于是此次数学考试成绩不低于110分的考生约有 0.2×1 000=200(人).(3)D 【解析】设所求人数为N ,则N =2.5×(0.16+0.08+0.04)×200=140. (4) A 【解析】分为三个步骤:第一步,数字1,2,9第二步,数字5可以放在左下角或右上角两个位置,故数字5有2种方法.第三步,数字6如果和数字5相邻,则7,8有1种方法;数字6如果不和数字5相邻,则7,8有2种方法,故数字6,7,8共有3种方法.根据分步乘法计数原理,有1×2×3=6(种)填写空格的方法.(5)A 【解析】先比较二者的平均数得甲与乙的平均数相等都是70,再比较二者的方差,经计算得甲的方差是2,,乙的方差是4.4,故甲的稳定.(6) B 【解析】直角三角形的较短边长为3,则较长边长为5,所以小正方形边长为2,面积为4,所以向大正方形内抛一枚幸运小花朵时, 小花朵落在小正方形内的概率为434=217.(7)B 【解析】(1)()()1.2nx my n nax a y a x a y n m n m n m n a n m n m +=+-⇒-=-+++⇒=<⇒<+(8) C 【解析】由于⎝⎛⎭⎫1-x 2+2x 7表示7个因式⎝⎛⎭⎫1-x 2+2x 的乘积,在这7个因式中,有2个取-x 2,有一个取2x ,其余的因式都取1,即可得到含x 3的项;或者在这7个因式中,有3个取-x 2,有3个取2x,剩余的一个因式取1,即可得到含x 3的项.故含x 3的项为C 27×C 15×2×C 44-C 37×C 34×23=210-1 120=-910.(9)B 【解析】22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.(10)B [解析] 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B ,则P (AB )=C 26C 210=13,∴P (B |A )=P (AB )P (A )=1335=59.(11)C 【解析】令1x =得0122n n n S a a a a =++++=,令0x =得0(1)n a =-,所以1230(1)n n n n n T a a a a S a S =+++⋅⋅⋅+=-=--, 所以当n 为偶数时,1n n n T S S =-<,当n 为奇数时,1n n n T S S =+>.(12)C 【解析】甲共得6条,乙共得6条,共有6×6=36(对),其中垂直的有10对,∴P =1036=518.二、填空题:(13) 4[解析] 根据茎叶图中的数据,得成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×2035=4(人). 【解析】由已知X 的所有可能取值为:0,1,2;则272107(0);15C P X C ===11732107(1);15C C P X C ===232101(2);15C P X C ===所以77130121515155EX =⨯+⨯+⨯=.(15) ⎝⎛⎭⎫0,12【解析】由已知得P (η=1)=p ,P (η=2)=(1-p )p ,P (η=3)=(1-p )2,则E (η)=p +2(1-p )p +3(1-p )2=p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1),所以p ∈⎝⎛⎭⎫0,12. (16)(0,-3,4,-1)【解析】因为x 4+a 1x 3+a 2x 2+a 3x +a 4=[(x +1)-1]4+a 1[(x +1)-1]3+a 2[(x +1)-1]2+a 3[(x +1)-1]+a 4,所以f (4,3,2,1)=[(x +1)-1]4+4[(x +1)-1]3+3[(x +1)-1]2+2[(x +1)-1]+1,所以b 1=C 14(-1)+4C 03=0,b 2=C 24(-1)2+4C 13(-1)+3C 02=-3,b 3=4,b 4=-1.三、解答题:(17)解:(1)由题意,作散点图如图.....................3分(2)由对照数据,计算得∑4i =1x i y i =66.5, ∑4i =1x 2i =32+42+52+62=86, x =4.5,y =3.5,b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7, a ^=y -b ^x =3.5-0.7×4.5=0.35,所以回归方程为y ^=0.7x +0.35...................................8分 (3)当x =100时,y =100×0.7+0.35=70.35(吨标准煤),预测生产100吨甲产品的生产能耗比技改前降低90-70.35=19.65(吨标准煤)...................................10分(18)解:(I )由频率分布直方图可得“成绩优秀”的人数为4.的可能值为 0,1,2. .................................................1分ξ故的分布列为...............................................................7分(II )由频率分布直方图可得,甲班成绩优秀、成绩不优秀的人数分别为12、38,乙班成绩优秀、成绩不优秀的人数分别为4、46.根据列联表中数据,由于4.762>3.481,所以有95%的把握认为“成绩优秀”与教学方式有关.....12分 (19)解:(I)设该运动员到篮筐中心的水平距离的中位数为x ,∵0.20×1=0.20<0.5,且(0.40+0.20)×1=0.6>0.5; ∴x ∈[4,5].由0.40×(5-x )+0.20×1=0.5,解得x =4.25,∴该运动员到篮筐中心的水平距离的中位数是4.25米...........5分 (II)由频率分布直方图可知投篮命中时到篮筐中心距离超过4米的概率为p =35,随机变量X 的所有可能取值为-4,-2,0,2,4. ...................6分P (X =-2)=C 14⎝⎛⎭⎫253⎝⎛⎭⎫351=96625, P (X =0)=C 24⎝⎛⎭⎫252⎝⎛⎭⎫352=216625, P (X =2)=C 34⎝⎛⎭⎫251⎝⎛⎭⎫353=216625, P (X =4)=⎝⎛⎭⎫354=81625, X 的分布列为:分E (X )=(-4)×16625+(-2)×96625+0×216625+2×216625+4×81625=45...........12分(20)解:(1)依题意,每场比赛获得的门票收入组成首项为40,公差为10的等差数列. 设此数列为{a n },则易知a 1=40,a n =10n +30, 所以S n =n (10n +70)2=300.解得n =5或n =-12(舍去),所以总决赛共比赛了5场.………4分 则前4场比赛的比分必为1∶3,且第5场比赛为领先的球队获胜,其概率为C 34⎝⎛⎭⎫124=14. 所以总决赛中获得门票总收入恰好为300万元的概率为14.………6分(2)随机变量X 可取的值为S 4,S 5,S 6,S 7,即220,300,390,490.P (X =220)=2×⎝⎛⎭⎫124=18, P (X =300)=C 34⎝⎛⎭⎫124=14, P (X =390)=C 35⎝⎛⎭⎫125=516,所以X 的分布列为分所以X 的均值为E (X )=220×18+300×14+390×516+490×516=377.5(万元). ………12分(21)解:(I)学生甲的平均成绩x 甲=68+76+79+86+88+956=82,学生乙的平均成绩x 乙=71+75+82+84+86+946=82,又s 2甲=16×[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77,s 2乙=16×[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=1673, 则x 甲=x 乙,s 2甲>s 2乙,说明甲、乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛. ....................6分 (II)随机变量ξ的所有可能取值为0,1,2,且P (ξ=0)=C 24C 26=25,P (ξ=1)=C 14C 12C 26=815,P (ξ=2)=C 22C 26=115,...............9分则ξ的分布列为所以均值E (ξ)=0×25+1×815+2×115=23. ....................12分(22)解:(I)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,则有⎩⎪⎨⎪⎧2x +1.5y ≤W ,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0.(*)目标函数为z =1 000x +1 200y . ....................4分将z =1 000x +1 200y 变形为l :y =-56x +z1 200,设l 0:y =-56x .当W =12时,(*)表示的平面区域如图①阴影部分所示,三个顶点分别为A (0,0),B (2.4,4.8),C (6,0).平移直线l 0知当直线l 过点B , 即当x =2.4,y =4.8时,z 取最大值,故最大获利Z =z max =2.4×1 000+4.8×1 200=8 160(元).当W =15时,(*)表示的平面区域如图②阴影部分所示,三个顶点分别为A (0,0),B (3,6),C (7.5,0).平移直线l 0知当直线l 过点B , 即当x =3,y =6时,z 取得最大值.故最大获利Z =z max =3×1 000+6×1 200=10 200(元).当W =18时,(*)表示的平面区域如图③阴影部分所示,四个顶点分别为A (0,0),B (3,6),C (6,4),D (9,0).平移直线l 0知当直线l 过点C ,即当x =6,y =4时,z 取得最大值, 故最大获利Z =z max =6×1 000+4×1 200=10 800(元).....................8分 故最大获利Z 的分布列为因此,E (Z )=8 160×0.3+分(II)由(I)知,一天最大获利超过10 000元的概率p 1=P (Z >10 000)=0.5+0.2=0.7,由二项分布,3天中至少有1天最大获利超过10 000元的概率为P =1-(1-p 1)3=1-0.33=0.973. ....................12分《计数原理、概率与统计(理)》形成性测试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高二学生中抽取的人数为(A )10 (B )9 (C )8 (D )7(2)某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则成绩在[100,120]内的学生人数为(A )36 (B )27 (C )22 (D ) 11(3)用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为(A )24 (B )36 (C )72 (D )84(4)已知样本7,8,9,,x y 的平均数是8xy 值为(A )8 (B )32 (C )60 (D )80(5)设随机变量ξ162(,),则=P ξ(3)的值是0.0.0.0.(A )516 (B )316 (C ) 58 (D )38(6)若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与 圆(x -1)2+(y +2)2=2有公共点的概率为( )(A )25(B )25(C )35(D )3210(7)某同学做了10道选择题,每道题四个选项中有且只有一项是正确的,他每道题都随意地从中选了一个答案,记该同学至少答对9道题的概率为P ,则下列数据中与P 的值最接近的是(A )3×10-4 (B )3×10-5(C )3×10-6 (D )3×10-7(8) 设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图象如图所示.则(A )1212,μμσσ<< (B )1212,μμσσ<> (C )1212,μμσσ>< (D )1212,μμσσ>>(9)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则 展开式中系数最大的项是( )(A )15x 2 (B )20x 3 (C )21x 3(D )35x 3(10)现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,共有不同的选法(A )756种 (B ) 56种 (C )28种 (D )255种(11)甲乙两人各自在300米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是多少( ).(A )31 (B )3611 (C )3615 (D )61 (12)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组 ⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( ) (A )18(B )14(C )34(D )78二、填空题:本大题共4小题,每小题5分.(13) 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是 .(14)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)= .(15)欧阳修《卖油翁)中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌漓沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为4 cm 的圆,中间有边长为l cm 的正方形孔.若随机向铜钱上滴一滴油(设油滴整体落在铜钱上).则油滴(设油滴是直径为中(油滴整体落入孔中)的概率是 .(16)一个三位自然数百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若{},,1234a b c ∈,,,,且a ,b ,c 互不相同,则这个三位数为”有缘数”的概率是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩.(I )他的数学成绩与物理成绩哪个更稳定?请给出你的理由;(II )已知该生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?(参考公式:∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni ii ni ixn xy x n yx x xy y x xb 12211121)())((,a y bx --=-)(18)(本小题满分12分)靖国神社是日本军国主义的象征.中国人民珍爱和平,所以要坚决反对日本军国主义. 2013年12月26日日本首相安倍晋三悍然参拜靖国神社,此举在世界各国激起舆论的批评.某报的环球舆情调查中心对中国大陆七个代表性城市的1000个普通民众展开民意调查. 某城市调查体统计结果如下表:(Ⅰ) 试估计这七个代表性城市的普通民众中,认为 “中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众所占比例;(Ⅱ) 能否有99.9%以上的把握认为这七个代表性城市的普通民众的民意与性别有关?(Ⅲ) 从被调查认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众中,采用分层抽样的方式抽取6人做进一步的问卷调查,然后在这6人中用简单随机抽样方法抽取2人进行电视专访,记被抽到的2人中女性的人数为X ,求X 的分布列.附:,(19)(本小题满分12分) 某市交警在该市一交通岗前设点对过往的车辆进行抽查,经过一晚的抽查,共查出酒后驾车者60名,图甲是用酒精测试仪对这60 名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.(I )统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S 值,并说明S的统计意义;(图乙中数据i m 与i f 分别表示图甲中各组的组中值及频率) (II )本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度属于70-(单位:mg/100ml)0.0250.0200.0150.0100.00590/100mg ml 的范围,但他俩坚称没喝那么多,是测试仪不准,交警大队队长决定在被酒精测试仪测得酒精浓度属于70-90/100mg ml 范围的酒后驾车者中随机抽出2人抽血检验,ξ为吴、李两位先生被抽中的人数,求ξ的分布列,并求吴、李两位先生至少有1人被抽中的概率;(III )很多人在喝酒后通过喝茶降解体内酒精浓度,但李时珍就曾指出酒后喝茶伤肾. 为研究长期酒后喝茶与肾损伤是否有关,某科研机构采集了统计数据如下表,请你从.条件概率的角度.......给出判断结果,并说明理由.(20)(本小题满分12分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?(21)(本小题满分12分)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.(22)(本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:(I)从统计数据看,甲、乙两个班哪个班成绩更稳定(用数字特征说明);(II)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作X和Y,试求X和Y的分布列和数学期望.《计数原理、概率与统计(理)》形成性测试卷参考答案 一、选择题(1)B 【解析】抽取比例为7121030=1270930∴⨯= (2)B 【解析】根据频率分布直方图的性质有:110)005.0010.0030.0015.0(=⨯+++++a a ,解得:020.0=a ,所以成绩在[100,120]内的人数为:275410)020.0030.0(=⨯⨯+.(3)D 【解析】选两色有24C 种,一色选择对角有2种选法,共计24212C =种;选三色有34C 种,其中一色重复有13C 种选法,该色选择对角有2种选法,另两色选位有2种,共计432248⨯⨯⨯=种;四色全用有4!24=种(因,,,A B C D 为固定位置),合计84种.(4)C【解析】(5)A 162(,)得(6)B [解析] 若直线与圆有公共点,则圆心到直线的距离d =|1-2+a |2=|a -1|2≤2,解得-1≤a ≤3.又a ∈[-5,5],故所求概率为410=25.(7)B [解析] P =C 910·149×34+C 1010·1410=30×1410+1410=31×1410=31×12102=31×110242≈31×(10-3)2=31×10-6=3×10-5.(8)A [解析] 由正态分布N(μ,σ2)的性质知,x =μ为正态分布密度函数图像的对称轴,故μ1<μ2;又σ越小,图像越高瘦,故σ1<σ2. (9)B 【解析】∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64, ∴n =6,又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3.(10)D 【解析】分三类进行:第一类,从高一抽1人,高二抽1人,有11912912108C C ⨯=⨯=种不同的选法;第二类,从高二抽1人,高三抽1人,有1112712784C C ⨯=⨯=种不同的选法; 第三类,从高一抽1人,高三抽1人,有11979763C C ⨯=⨯=种不同的选法;由分类计数原理知共1088463255++=种不同选法;(11)B 【解析】设甲乙两人各自跑x 和y 米,则⎩⎨⎧≤≤≤≤30003000y x ,若满足题意即50≤-y x ,如图则()()()250300,050300,250)500(,,,,,D C F A ,所以36113003002502502121=⨯⨯⨯⨯-=P ,所以选B . (12)D 【解析】区域Ω1为直角△AOB 及其内部,其面积S △AOB =12×2×2=2.区域Ω2是直线x +y =1和x +y =-2夹成的条形区域.由题意得所求的概率P =S 四边形AODC S △AOB=2-142=78.故选D.二、填空题(13)甲 [解析] 根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分布比较稳定,而乙地的数据分布比较分散, 不如甲地数据集中,故甲地的方差小.(14)120[解析] 题意可得f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36+C 26C 14+C 16C 24+C 34=20+60+36+4=120. (15)64361π【解析】油滴(设油滴是直径为0.2 cm 的球),所以油滴的球心必须落在边长为cm 0.8的正方形边界或其内部(如图中红色的正方形),而随机向铜钱上滴一滴油且油滴整体落在铜钱上即油滴的球心必须落在以铜钱的中心为球心以cm 1.9为半径的圆上或内部(如图中红色的小圆).故由几何概型概率计算公式得ππ361641.90.8P 22=⋅=.(16)12【解析】由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,4组成的三位自然数共6个; 由1,3,4组成的三位自然数也是6个; 由2,3,4组成的三位自然数也是6个. 所以共有6+6+6+6=24个.由1,2,3组成的三位自然数,共6个”有缘数”. 由1,3,4组成的三位自然数,共6个”有缘数”.所以三位数为”有缘数”三、解答题(17)解:(I )12171788121001007x --+-++=+=;69844161001007y --+-+++=+=; …………………2分2994==1427S ∴数学,2250=7S ∴物理, …………………4分 从而22S S >数学物理,所以物理成绩更稳定. …………………6分(II )由于x 与y 之间具有线性相关关系,根据回归系数公式得到497ˆˆ0.5,1000.510050994ba ===-⨯=, …………………8分∴线性回归方程为0.550y x =+.当115y =时,130x =. ………………10分(18) 解:(Ⅰ) 由题意知道:,则在这七个代表性城市的普通民众中,认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众所占的比例大约为54.5%. ………………4分(Ⅱ) 提出假设:这七个代表性城市普通民众的民意与性别无关由数表知:则有99.9%以上的把握认为这七个代表性城市普通民众的民意与性别有关. ………………7分(Ⅲ) 设抽取的6人中男性有人,女性有6人,则得,所以6人中男性有1人,女性有5人, 则随机变量的所有可能取值为1,2,,,则随机变量的分布列如下表:………………12分(19) 解:(I )由图乙知输出的1122770S m f m f m f =++++=250.25350.15450.2550.15650.1750.1850.05⨯+⨯+⨯+⨯+⨯+⨯+⨯=47(mg/100ml ),S 的统计意义为60名酒后驾车者血液的酒精浓度的平均值. 3分(II )酒精浓度属于70-90/100mg ml 的范围的人数为0.15609⨯=ξ取值为0,1,2,127)0(2927===C C P ξ,187)1(291217===C C C P ξ,361)2(2922===C C P ξ ξ的分布列如下:吴、李两位先生至少有1人被抽中的概率=P 125)2()1(==+=ξξP P . ………………8分 (III )判断结果:长期酒后喝茶与肾损伤有关. 在长期酒后喝茶的条件下有肾损伤的概率为214849492099491=+=P在酒后不喝茶的条件下有肾损伤的概率为781742427775422=+=P若“酒后喝茶与肾损伤”无关,则11P P ≈,但214849与781742相差较多,所以应该有关. ………………12分(20)解:(1)由已知得,小明中奖的概率为23、小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1115,即这2人的累计得分X ≤3的概率为1115.……………5分(2)法一:设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知可得,X 1~B ⎝⎛⎭⎫2,23,X 2~B ⎝⎛⎭⎫2,25, 所以E (X 1)=2×23=43,E (X 2)=2×25=45,因此E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125.…………10分因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.……………12分 法二:设小明、小红都选择方案甲所获得的累计得分为Y 1,都选择方案乙所获得的累计得分为Y 2,则Y 1,Y 2的分布列为:∴E (Y 1)=0×19+2×49+4×49=83,E (Y 2)=0×925+3×1225+6×425=125,…………10分因为E (Y 1)>E (Y 2),所以二人都选择方案甲抽奖,累计得分的数学期望较大.……………12分 (21)解:(1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100.因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.……………5分(2)根据题意,X 的可能取值为1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15,…………9分所以X 的分布列为因此,X 的数学期望为E (X )=1×15+2×35+3×15=2.……………12分(22)解:(I )两个班数据的平均值都为7,甲班的方差22222216-7+-7+-7+-7+-7=25s =()(5)(7)(9)(8), 乙班的方差2222222-7+-7+-7+-7+-714=55s =(4)(8)(9)(7)(7), 因为2212s s <,甲班的方差较小,所以甲班的成绩比较稳定.4分 (II )X 可能取0,1,2211(0)525P X ==⨯=,31211(1)52522P X ==⨯+⨯=,313(2)5210P X ==⨯=,所以X 分布列为:……………………………………. 6分 数学期望11311012521010EX =⨯+⨯+⨯=.……………… 8分 Y 可能取0,1,2313(0)5525P Y ==⨯=,342114(1)555525P Y ==⨯+⨯=,248(2)5525P Y ==⨯=,所以Y 分布列为:……………………………………….. 10分 数学期望314860122525255EY =⨯+⨯+⨯=. …………….12分。
高三数学-2018年下学期江苏高三联考数学卷 精品
2018年下学期江苏高三联考数学卷参考公式:如果事件A 、B 互斥,那么 正棱锥、圆锥侧面积公式 P (A+B )=P (A )+P (B ) cl S 21=锥侧 如果事件A ‘B 要互独立,那么 其中c 表示底面周长,l 表示斜高 P (A ·B )=P (A )·P (B ) 或母线长如果事件A 在一次试验中发生的 球的体积公式 概率是P ,那么n 次独立重复试验中 334R V π=球 恰好发生k 次概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(第I 卷一、选择题1、已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(-3,4),那么sin(-α)等于A 、53 B 、-53 C 、54 D 、-542、下列四命题①a b ab a =⋅2;②(a ·b 2)=a 2·b 2;③若e 为单位向量,且a//e ,则a=|a|e ;④(a-b )2=a 2-2ab+b 2。
其中正确的命题的个数是A 、3个B 、2个C 、1个D 、0个3、0<a<1,则,log 1x y a= y=(1-a )x 在同一坐标平面内的图象为4、方程x 2sin α+y 2cos α=1表示的曲线不可能是A 、直线B 、抛物线C 、圆D 、双曲线5、正三棱锥的侧棱与底面所成的角为α,侧面与底面所成的角为β,则tan α:tan β的值为A 、33B 、3C 、21D 、26、若a>b>c ,且a+b+c=0,则下列不等式一定成立的是A 、ac>bcB 、ab>bcC 、ab<bcD 、ac<bc7、在平面直角坐标系中,由不等式组⎪⎩⎪⎨⎧≤+>xy y x xy 20确定的点(x,y)的集合是A 、第一象限内的点组成的集合B 、直线y=x 上的点(除原点外)组成的集合C 、射线y=x(x>0)上的点组成的集合D 、第三象限内的点及射线y=x(x>0)上的点组成的集合8、在正方体的一个表面内画一条直线,则与他异面的正方体的棱的条数最少有 A 、7条 B 、6条 C 、5条 D 、4条 9、等差数列{a n }中,a 1=a(a ≠0),a 2=b ,则此数列中恰有一项为0的充要条件是( )A 、(a-b)∈N *B 、(a+b)∈N *C 、b a a -∈N *D 、ba b -∈N *10、若y=ax ,xb y -=在(0,+∞)上都是减函数,则对函数y=ax 3+bx 的单调性描述正确的是( )A 、在(-∞,+∞)上单调增B 、在(0,+∞)上单调增C 、在(-∞,+∞)上单调减D 、在(-∞,0)上单调增,在(0,+∞)上单调减11、设抛物线y 2=2x 的焦点为F ,以P(29,0)为圆心,|PF|长为半径作一圆,与抛物线在x 轴上方交于M 、N ,则|MF|+|NF|的值为A 、8B 、18C 、22D 、412、若x ∈R ,n ∈N *,定义)1()1(-++=n x x x D n x ,例如)1()2()3(33-⋅-⋅-=-D ,则函数f(x)=x 99-⋅x D 的奇偶性为A 、是偶函数而不是奇函数B 、是奇函数而不是偶函数C 、是偶函数也是奇函数D 、既不是奇函数也不是偶函数第II 卷二、填空题13、将容量为100的样本数据,按从小到大的顺序分为8组,如下表组的频率是 。
2018年全国高等院校统一招生考试江苏数学试卷(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
学@科网参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲ .2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数2()log 1f x x =-的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为32c ,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面. 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,(1,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-.(2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()5αβ+=-,所以225sin()1cos ()5αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为267,所以21 267AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)22.综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+,即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为(1,2]m q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答...............题区域内作答.......若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长. B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=23,OC=2,所以OP=22PC OC+=4.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A,det()221310=⨯-⨯=≠A,所以A可逆,从而1-A2312-⎡⎤=⎢⎥-⎣⎦.(2)设P(x,y),则233121xy⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311xy-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cosρθ,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26ρθ-=,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==.因此,直线l 被曲线C 截得的弦长为23. D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz . 因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,,2)22P -, 从而131(,,2)(0,2,222),BP AC ==--, 故111|||14|310|cos ,|20||||522BP AC BP AC BP AC ⋅-+===⋅⨯. 因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以31(,,0)22Q , 因此33(,,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即330,22220.x y y z ⎧+=⎪⎨⎪+=⎩不妨取(3,1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||25sin |cos |,|||552CC CC CC |θ==⋅⨯⋅==n n n , 所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-. 为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
2018江苏高考数学试题及答案解析(K12教育文档)
2018江苏高考数学试题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018江苏高考数学试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018江苏高考数学试题及答案解析(word版可编辑修改)的全部内容。
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=⋂B A .2.若复数z 满足i z i 21+=⋅,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()1log 2-=x x f 的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数()⎪⎭⎫ ⎝⎛<<-+=222sin ππϕx x y 的图象关于直线3π=x 对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线()0,012222>>=-b a by a x 的右焦点()0,c F 到一条渐近线的距离为c 23,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=02,2120,2cos x x x xx f π, 则()()15f f 的值为 .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数()()R a ax x x f ∈+-=1223在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与直线l 交于另一点D .若0=⋅,则点A 的横坐标为 .13.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、, 120=∠ABC ,ABC ∠的平分线交AC 于点D ,且1=BD ,则c a +4的最小值为 .14.已知集合{}*∈-==N n n x x A ,12|,{}*∈==N n x x B n ,2|.将B A ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)焦如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,点12(3,0),(3,0)F F -,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点",求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC—A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s 〈t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8} 2.2 3.90 4.85.[2,+∞)6.3107.π6-8.29.2210.4311.–3 12.313.9 14.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD—A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()αβ+=-,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得 222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y , 由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)2. 综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x —2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a 〉0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点". 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+, 即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x 〈f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m . 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC . 又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt△OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分. 解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆,从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=, 则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2, 所以π4cos 236AB ==.因此,直线l 被曲线C 截得的弦长为23. D .[选修4-5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122xy z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q , 因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.x y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以2018江苏高考数学试题及答案解析(word 版可编辑修改)牛人数学助力高考数学 (1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
2018年高考数学(理)一轮复习课时达标第九章计数原理与概率、随机变量及其分布59Word版含答案
课时达标 第59讲[解密考纲]古典概型在高考中常以选择题或填空题的形式出现,有时与集合、函数、不等式等知识综合,以解答题形式出现.一、选择题1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则a <b 的概率为( D )A .45B .35C .25D .15解析:从1,2,3,4,5中随机选取一个数的取法有5种,从1,2,3中随机选取一个数的取法有3种,所以a ,b 的可能结果有5×3=15种,其中a <b 的结果有(1,2),(1,3),(2,3),共3种.所以所求概率为P =315=15,故选D .2.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过4的概率记为p 1,点数之和大于8的概率记为p 2,点数之和为奇数的概率记为p 3,则( A )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 2解析:随机掷两枚质地均匀的骰子,共有36种不同结果,其中向上的点数之和不超过4的有6种不同结果;点数之和大于8的有10种不同结果;点数之和为奇数的有18种不同结果,故p 1=636=16,p 2=1036=518,p 3=1836=12,故p 1<p 2<p 3.3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( A )A .13B .12C .23D .34解析:甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同—个小组的情况有3种,故甲、乙两位同学参加同一个兴趣小组的概率P =39=13.4.从1,2,3,4这四个数字中一次随机取两个,则取出的这两个数字之和为偶数的概率是( B )A .16B .13C .12D .15解析:从1,2,3,4这四个数字中一次随机取两个,共有6种情况,其中取出的这个数字之和为偶数的情况有(1,3),(2,4),共2种,所以P =26=13.5.把一颗骰子投掷两次,第一次出现的点数记为m ,第二次出现的点数记为n ,方程组⎩⎪⎨⎪⎧mx +ny =3,2x +3y =2只有一组解的概率是( D ) A .23B .34C .15D .1718解析:方程组只有一组解,除了⎩⎪⎨⎪⎧m =2,n =3,⎩⎪⎨⎪⎧m =4,n =6这两种情况之外都可以,故所求概率P =6×6-26×6=1718.6.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为( D )A .19B .29C .718D .49解析:试验包含的基本事件共有6×6=36种结果.其中满足题设条件的有如下情况: 若a =1,则b =1,2;若a =2,则b =1,2,3; 若a =3,则b =2,3,4;若a =4,则b =3,4,5 ; 若a =5,则b =4,5,6;若a =6,则b =5,6. 共16种.故他们“心相近”的概率为P =1636=49.二、填空题7.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为23.解析:设2本数学书分别为A ,B ,语文书为C ,则所有的排放顺序有ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,共6种情况,其中数学书相邻的有ABC ,BAC,CAB ,CBA ,共4种情况,故2本数学书相邻的概率P =46=23.8.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为13.解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.9.(2017·山东潍坊模拟)如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为710.解析:由茎叶图知甲在五场比赛中的得分总和为18+19+20+21+22=100;乙运动员在已知成绩的四场比赛中得分总和为15+16+18+28=77,乙的另一场得分是20到29十个数字中的任何一个的可能性是相等的,共有10个基本事件,而事件“甲的平均得分不超过乙的平均得分”就包含了其中的23,24,25,26,27,28,29共7个基本事件,所以甲的平均得分不超过乙的平均得分的概率为710.三、解答题10.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解析:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件共有{1,2},{1,3}两个.因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3).(1)求使得事件“a ⊥b ”发生的概率; (2)求使得事件“|a |≤|b |”发生的概率.解析:(1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6}, 故(m ,n )所有可能的取法共36种.使得a ⊥b ,即m -3n =0,即m =3n ,共有2种:(3,1),(6,2), 所以事件a ⊥b 的概率为236=118.(2)|a|≤|b|,即m 2+n 2≤10,此时共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6种使得|a|≤|b|,其概率为636=16.12.一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c .(1)z =(b -3)2+(c -3)2,求z =4的概率;(2)若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.解析:(1)因为是投掷两次,因此基本事件(b ,c ):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个.当z =4时,(b ,c )的所有取值为(1,3),(3,1), 所以P (z =4)=216=18.(2)①若方程一根为x =1,则1-b -c =0,即b +c =1,不成立. ②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧ b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知,(b ,c )的所有可能取值为(1,2),(2,3),(3,4). 所以方程为“漂亮方程”的概率为P =316.。
2018年高考数学(理)一轮复习课时达标第九章计数原理与概率、随机变量及其分布57Word版含答案
课时达标 第57讲[解密考纲]对二项式定理的考查主要涉及利用通项公式求展开式、特定项或参数值,利用二项式的性质求多项式的二项式系数、各项系数的和,一般以选择题、填空题的形式出现.一、选择题1.二项式⎝⎛⎭⎫x +2x 210的展开式中的常数项是( A ) A .180 B .90 C .45D .360解析:⎝⎛⎭⎫x +2x 210的展开式的通项为T k +1=C k 10·(x )10-k ·⎝⎛⎭⎫2x 2k =2k C k 10x 5-52k ,令5-52k =0,得k =2,故常数项为22C 210=180.2.设n 为正整数,⎝⎛⎭⎫x -1x x 2n展开式中存在常数项,则n 的一个可能取值为( B )A .16B .10C .4D .2解析:⎝⎛⎭⎫x -1x x 2n 展开式的通项公式为T k +1=C k 2n x 2n -k ·⎝⎛⎭⎫-1x x k =C k 2n(-1)k x 4n -5k 2,令4n -5k 2=0,得k =4n5,依据选项知n 可取10. 3.⎝⎛⎭⎫ax +366的展开式的第二项的系数为-3,则⎠⎛a -2x 2d x 的值为( B ) A .3 B .73C .3或73D .3或-103解析:该二项展开式的第二项的系数为C 1636a 5,由C 1636a 5=-3,解得a =-1,因此⎠⎛a -2x 2d x =⎠⎛-2-1x 2d x =x33-1-2=-13+83=73.,4.(2017·山西四校二联)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=( D )A .-5B .5,C .90D .180解析:∵(1+x )10=[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,∴a 8=C 810·22=180,故选D .,5.若(3y +x )5展开式的第三项为10,则y 关于x 的函数图象的大致形状为( D ),解析:(3y +x )5的展开式的通项为T r +1=C r 5x r 2y 5-r 3,则T 3=C 25xy =10,即xy =1,由题意知x ≥0,故D 选项的图象符合.,6.在(2x +x lg x )8的展开式中,二项式系数最大的项的值等于1 120,则x =( C ),A .1B .110,C .1或110D .-1,解析:二项式系数最大的项为第5项,由题意可知T 5=C 48(2x )4(x lg x )4=1 120,∴x4(1+lg x )=1,两边取对数可知lg 2x +lg x =0,得lg x =0或lg x =-1,故x =1或x =110.,二、填空题7.已知关于x 的二项式⎝⎛⎭⎪⎫x +a 3x n展开式的二项式系数之和为32,常数项为80,则实数a 的值为2.解析:∵二项式⎝⎛⎭⎪⎫x +a 3x n展开式的二项式系数之和为32,∴2n=32,∴n =5,∵T r +1=C r 5(x )5-r⎝ ⎛⎭⎪⎫a 3x r =C r 5a r x 52-56r ,∴52-56r =0,∴r =3.∴常数项为C 35a 3=80,∴a =2. 8.若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为2. 解析:将⎝⎛⎭⎫ax 2+b x 6展开,得到T r +1=C r 6a 6-r b r x 12-3r ,令12-3r =3,得r =3,由C 36a 3b 3=20,得ab =1,所以a 2+b 2≥2ab =2.9.若二项式⎝⎛⎭⎪⎫x +23x n的展开式中的常数项是80,则该展开式中的二项式系数之和等于32.解析:对于T r +1=C r n (x )n -r⎝ ⎛⎭⎪⎫23x r =C r n 2r x n -r 2-r 3,当r =35n 时展开式为常数项,因此n为5的倍数,不妨设n =5m ,则有r =3m ,则23m C 3m5m =80,因此m =1,则该展开式中的二项式系数之和等于2n =25=32.三、解答题10.已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.解析:(1)依题意知⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式的通项为T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎫-123x r =⎝⎛⎭⎫-12r C r n x n -2r3, 又第6项为常数项,则当r =5时,n -2r3=0,即n -103=0,解得n =10. (2)由(1)得T r +1=⎝⎛⎭⎫-12r C r 10x 10-2r 3,令10-2r 3=2,解得r =2, 故含x 2的项的系数为⎝⎛⎭⎫-122C 210=454. (3)若T r +1为有理项,则有10-2r3∈Z ,且0≤r ≤10,r ∈Z .故r =2,5,8.则展开式中的有理项分别为 C 210⎝⎛⎭⎫-122x 2=454x 2, C 510⎝⎛⎭⎫-125=-638, C 810⎝⎛⎭⎫-128x -2=45256x -2. 11.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求: (1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|. 解析:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)∵(1-2x )7展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零,∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.12.已知⎝⎛⎭⎫12+2x n,(1)展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解析:(1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝⎛⎭⎫12423=352,T 5的系数为C 47⎝⎛⎭⎫12324=70, 当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C 714⎝⎛⎭⎫12727=3 432. (2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设T k +1项的系数最大, ∵⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1. ∴9.4≤k ≤10.4,∵k ∈N ,∴k =10. ∴展开式中系数最大的项为T 11,T 11=C 1012·⎝⎛⎭⎫122·210·x 10=16 896x 10.。
2018年高考数学(理)一轮复习文档第九章计数原理、概率、随机变量及其分布第4讲随机事件、古典概型与条件
第4讲 随机事件、古典概型与条件概率)1.概率与频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (A )=1. (3)不可能事件的概率:P (A )=0. (4)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P (A ∪B )=1,P (A )=1-P (B ).4.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和. (2)特点①试验中所有可能出现的基本事件只有有限个,即有限性. ②每个基本事件发生的可能性相等,即等可能性. (3)概率公式P (A )=A 包含的基本事件的个数基本事件的总数.5.条件概率及其性质(1)条件概率的定义:设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A发生的条件下,事件B 发生的条件概率.(2)条件概率的性质:①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).1.辨明四个易误点(1)易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数. (2)对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.(3)概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∅,即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.(4)P (B |A )是在A 发生的条件下B 发生的概率,而P (A |B )是在B 发生的条件下A 发生的概率.2.集合方法判断互斥事件与对立事件(1)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.(2)事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.1.(2016·高考天津卷)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56 B .25 C.16D .13A 由题意得,甲不输的概率为12+13=56.2.(2016·高考北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B .25 C.825D .925B 设5名学生分别为甲、乙、丙、丁、戊,从甲、乙、丙、丁、戊5人中选2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情况,其中甲被选中的情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种,所以甲被选中的概率为410=25.3.教材习题改编 甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( ) A .甲是乙的充分但不必要条件 B .甲是乙的必要但不充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件B 两个事件是对立事件,则它们一定互斥,反之不一定成立. 4.已知P (B |A )=12,P (AB )=38,则P (A )等于________.由P (AB )=P (A )P (B |A ),可得P (A )=34.345.在集合⎩⎨⎧⎭⎬⎫x |x =n π6,n =1,2,3,…,10中任取一个元素,则所取元素恰好满足方程cos x =12的概率是________.基本事件总数为10,满足方程cos x =12的基本事件数为2,故所求概率为P =210=15.15随机事件的频率与概率(2016·高考全国卷甲)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件“一续保人本年度的保费不高于基本保费”.求P (A )的估计值; (2)记B 为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.【解】 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知, 一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3. (3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a .某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率; (2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12. 由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为 4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.互斥事件、对立事件的概率某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.记1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)1张奖券的中奖概率;(2)1张奖券不中特等奖且不中一等奖的概率.【解】 (1)设“1张奖券中奖”为事件M ,则M =A ∪B ∪C ,依题意,P (A )=11 000,P (B )=101 000=1100,P (C )=120,因为A ,B ,C 两两互斥, 所以P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000,故1张奖券的中奖概率为611 000. (2)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,所以P (N )=1-P (A ∪B )=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.古典概型的概率(高频考点)古典概型是高考考查的热点,可在选择题、填空题中单独考查,也可在解答题中与统计一起考查,属容易题.高考对本部分内容的考查主要有以下三个命题角度:(1)根据概率求参数;(2)利用古典概型的概率公式求概率;(3)古典概型与统计的综合应用(下章讲解).(2016·高考山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【解】 用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N ,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16, 所以基本事件总数n =16. (1)记“xy ≤3”为事件A ,则事件A 包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1). 所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4), 所以P (B )=616=38.事件C 包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1), 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.角度一 根据概率求参数1.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-518,+∞ B .⎝⎛⎭⎪⎫-∞,718C.⎝ ⎛⎭⎪⎫-718,518 D .⎝ ⎛⎭⎪⎫-518,718 D 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118,两条直线l 1:ax +by =2,l 2:x +2y =2相交的情形除平行与重合(a =1,b =2)即可,所以P 2=3336=1112,因为点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,所以⎝ ⎛⎭⎪⎫118-m 2+⎝ ⎛⎭⎪⎫11122<137144,解得-518<m <718,故选D .角度二 利用古典概型的概率公式求概率2.(2017·黑龙江实验中学期末)从混有5张假钞的20张一百元纸币中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率为( )A.119 B .1718C.419D .217D 从混有5张假钞的20张一百元纸币中任意抽取2张,至少有一张是假币,共有n =C 15C 115+C 25种抽法;抽取的两张都是假币,有m =C 25种,故所求的概率为P =m n =105×15+10=217. 3.全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2016年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.(1)法一:融合指数在内的“省级卫视新闻台”记为A1,A2,A3;融合指数在内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.其中,至少有1家融合指数在内的基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},共9个.所以所求的概率P=9 10 .法二:融合指数在内的“省级卫视新闻台”记为A1,A2,A3;融合指数在内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.其中,没有1家融合指数在内的基本事件是:{B1,B2}共1个.所以所求的概率P=1-110=9 10.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.条件概率(1)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )A.18B.14C.25D.12(2)将三颗骰子各掷一次,设事件A为“三个点数都不相同”,B为“至少出现一个3点”,则P(A|B)=( )A.6091B.12C.712D.81125【解析】 (1)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P (AB )P (A )=110410=14.(2)P (A |B )表示在B 发生的情况下,A 发生的概率,即在“至少出现一个3点”的情况下,“三个点数都不相同”的概率,因为“至少出现一个3点”的情况数目为6×6×6-5×5×5=91,“三个点数都不相同”则只有一个3点,共C 13×5×4=60种情况,故P (A |B )=6091. 【答案】 (1)B(2)A把本例(1)事件A 中的“和”变为“积”,其他条件不变,则P (B |A )=________. 事件A :“取到的2个数之积为偶数”所包含的基本事件有:(1,2),(3,2),(4,2),(5,2),(4,1),(4,3),(4,5),所以P (A )=710.事件B :“取到的2个数均为偶数”所包含的基本事件有(2,4),所以P (AB )=110,所以P (B |A )=P (AB )P (A )=110710=17.171.根据历年气象统计资料,宜都三月份吹东风的概率为310,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为( )A.911B .89C.25 D .811B 设事件A 表示宜都三月份吹东风,事件B 表示三月份下雨,根据条件概率计算公式可得在吹东风的条件下下雨的概率P (B |A )=830310=89.2.(2017·张掖第一次诊断考试)某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A.35B .59 C.110 D .25B 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B ,则P (AB )=C 26C 210=13,所以P (B |A )=P (AB )P (A )=1335=59,故选B .1.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件B 因为P (A )+P (B )=15+13=815=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选B .2.(2017·湖南衡阳八中一模)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3C 因为事件A ={抽到一等品},且P (A )=0.65,所以事件“抽到的产品不是一等品”的概率为P =1-P (A )=1-0.65=0.35.故选C.3.某工程施工在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm)对工期延误天数Y 的影响及相应的概率P 如下表所示:在年降水量X 至少是100的条件下,工期延误小于30天的概率为( ) A .0.7 B .0.5 C .0.3D .0.2B 设事件A 为“年降水量X 至少是100”,事件B 为“工期延误小于30天”,则P (B |A )=P (AB )P (A )=0.2+0.10.2+0.1+0.3=0.5,故选B .4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1B .1121C.1021D .521C 从袋中任取2个球共有C 215=105种,其中恰好1个白球,1个红球共有C 110C 15=50种,所以恰好1个白球,1个红球的概率为50105=1021.5.在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字5是取出的五个不同的数的中位数的概率为( )A.956 B .928 C.914D .59B 分析可知,要满足题意,则抽取的除5以外的四个数字中,有两个比5小,有两个比5大,故所求概率P =C 24·C 23C 58=928.6.(2017·洛阳统考)安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( )A.115B .15C.14 D .12B 由题意分析可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,所以所求概率P =4·A 33C 36·A 33=15.7.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n 个,则0.4221=0.3n ,故n =15.158.(2016·高考四川卷)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是__________.从2,3,8,9中任取两个不同的数字,(a ,b )的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数的概率为16.169.一个袋子里有2个白球、3个黑球、4个红球,从中任取3个球恰好有2个球同色的概率为________.记A ={取出的3个球中恰好有2个白球},B ={取出的3个球中恰好有2个黑球},C ={取出的3个球中恰好有2个红球},则P (A )=C 22C 17C 39=112,P (B )=C 23C 16C 39=314,P (C )=C 24C 15C 39=514.又A ,B ,C 三个事件两两互斥, 则P (取出的3个球中恰好有2个球同色) =P (A +B +C )=P (A )+P (B )+P (C ) =112+314+514=5584. 558410.如下的三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率为________.⎣⎢⎡⎦⎥⎤a 11 a 12 a 13a 21 a 22 a 23a31a 32 a 33从九个数中任取三个数的不同取法共有C 39=9×8×71×2×3=84(种),取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6(种),所以至少有两个数位于同行或同列的概率为1-684=1314. 131411.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的相关数据,如表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%. (1)求x ,y 的值;(2)求顾客一次购物的结算时间超过2分钟的概率.(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20. (2)记A :一位顾客一次购物的结算时间超过2分钟.A 1:该顾客一次购物的结算时间为2.5分钟. A 2:该顾客一次购物的结算时间为3分钟.将频率视为概率可得P (A )=P (A 1)+P (A 2)=20100+10100=0.3,所以一位顾客一次购物的结算时间超过2分钟的概率为0.3.12.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A ,B 两组,每组4支,求:(1)A ,B 两组中有一组恰好有2支弱队的概率; (2)A 组中至少有2支弱队的概率.(1)法一:3支弱队在同一组中的概率为C 15C 48×2=17,故有一组恰好有2支弱队的概率为1-17=67.法二:A 组恰有2支弱队的概率为C 23C 25C 48,B 组恰好有2支弱队的概率为C 23·C 25C 48,所以有一组恰好有2支弱队的概率为C 23·C 25C 48+C 23·C 25C 48=67.(2)法一:A 组中至少有2支弱队的概率为C 23·C 25C 48+C 33·C 15C 48=12.法二:A ,B 两组有一组中至少有2支弱队的概率为1(因为此事件为必然事件).由于对A 组和B 组而言,至少有2支弱队的概率是相同的,所以A 组中至少有2支弱队的概率为12.13.(2017·合肥市第二次质量检测)某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A 和B 都不是第一个出场,B 不是最后一个出场”的前提下,学生C 第一个出场的概率为( )A.13 B .15 C.19D .320A 法一:当学生A 最后一个出场时,有A 13A 33=18种不同的安排方法;当学生A 不是最后一个出场时,有A 23A 33=36种不同的安排方法,所以满足“A 和B 都不是第一个出场,B 不是最后一个出场”的所有不同安排方法有18+36=54种.其中“C 第一个出场”的结果有A 13A 33=18种,则所求概率为1854=13,选项A 正确. 法二:“A 和B 都不是第一个出场,B 不是最后一个出场”的安排方法中,另外3人中任何一个人第一个出场的概率都相等,故“C 第一个出场”的概率是13.14.有100本书,既分为文科、理科2类,又分为精装、平装2种,其中文科书40本,精装书70本,理科的平装书20本,则:(1)任取1本恰是文科精装书的概率是________;(2)先任取1本恰是文科书,放回后再取1本恰是精装书的概率是________. (1)基本事件总数为100,其中文科书40本,理科书60本;精装书70本,理科的平装书20本,精装书40本;文科的精装书30本,文科的平装书10本.则任取1本恰是文科精装书的概率为30100=0.3.(2)基本事件总数为100×100,则所求概率P =C 140C 170100×100=410×710=0.28.(1)0.3 (2)0.2815.在某项大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.(1)记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A 33C 25A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A 44C 25A 44=110,所以甲、乙两人不在同一岗位服务的概率是P (E -)=1-P (E )=910.(3)有两人同时参加A 岗位服务的概率P 2=C 25A 33C 25A 44=14,所以仅有一人参加A 岗位服务的概率P 1=1-P 2=34.16.(2017·枣庄模拟)根据我国颁布的《环境空气质量指数(AQI)技术规定》:空气质量指数划分为0~50、51~100、101~150、151~200、201~300和大于300六级,对应空气质量指数的六个级别,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于等于150时,可以进行户外运动;空气质量指数为151及以上时,不适合进行旅游等户外活动,下表是济南市2016年10月上旬的空气质量指数情况:(1)求10月上旬市民不适合进行户外活动的概率;(2)一外地游客在10月上旬来济南旅游,想连续游玩两天,求适合连续旅游两天的概率. (1)该试验的基本事件空间Ω={1,2,3,4,5,6,7,8,9,10},基本事件总数n =10.设事件A 为“市民不适合进行户外活动”,则A ={3,4,9,10},包含基本事件数m =4.所以P (A )=410=25,即10月上旬市民不适合进行户外活动的概率为25.(2)该试验的基本事件空间Ω={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)},基本事件总数n =9,设事件B 为“适合连续旅游两天的日期”,则B ={(1,2),(5,6),(6,7),(7,8)},包含基本事件数m =4,所以P (B )=49,所以适合连续旅游两天的概率为49.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2018年高三数学优质试卷原创精品】专题22 计数原理概率统计测试时间: 班级: 姓名: 分数: 一、填空题:本大题共14个小题,每小题5分,共70分.1.在某个容量为300的样本的频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个小长方形面积和的15,则中间一组的频数为________.【答案】50【解析】由题意知中间一组的频率为16,则频数为300×16=50.故填50.2.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9【答案】513.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为【答案】18【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法. 故填18.4.设i 为虚数单位,则6(i)x +的展开式中含4x 的项为 .【答案】415x -【解析】含4x 的项为24246C i 15x x =-,故填415x -. 5.用数字1,2,3,4,5构成没有重复数字的五位数,其中奇数的个数为________.【答案】72【解析】由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有13C ,再将剩下的4个数字排列得到44A ,则满足条件的五位数有1434C A 72⋅=,故填72.6.从3名男生和1名女生中随机选取两人,则两人恰好是一名男生和一名女生的概率为________. 【答案】217.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是__________.【答案】32【解析】由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率为1131224P =-⨯=,因2次独立试验成功次数X 满足二项分布3~2,4X B ⎛⎫⎪⎝⎭,则()33242E X =⨯=,故填32.8.将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】56【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=,故填56. 9.某学校一共排7节课(其中上午4节,下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有 . 【答案】15 【解析】试题分析:运用分类计数原理求解:若第一节排课,则有5种排课方式;若第二节排课,则有4种排课方式;若第三节排课,则有3种排课方式;若第四节排课,则有3种排课方式;若第五节排课,则有1种排课方式.由分类计数原理共有32)13345(2=++++种排课方式.故应选15.11.高中数学联赛期间,某宾馆随机安排E D C B A 、、、、五名男生入住3个标间(每个标间至多住2人),则B A 、入住同一标间的概率为 . 【答案】51 【解析】∵某宾馆随机安排E D C B A 、、、、五名男生入住3个标间,共有9033222325=A A C C 种情形,B A 、入住同一标间有183323=A C 种情形,∴B A 、入住同一标间的概率为519018==P ,故填51.12.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布),100(2σN ,已知35.0)10080(=≤<ξP ,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取 份. 【答案】15份13.如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数2()f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .【答案】512【解析】因2x y =与x 轴的面积为37)12(313212=-==⎰dx x S ,故阴影部分的面积为35374=-=d ,而414=⨯==ABCDS D ,故由几何概型的计算公式得125==D d P ,应填答案512.14.在二项式62()x x-的展开式中,常数项的值是__________.(用具体数字作答) 【答案】160- 【解析】试题分析:因r r r r rr r x C xxC T 266661)2()2(--+-=-=,令026=-r 得3=r ,故常数项是1601234568)2(336-=⨯⨯⨯⨯⨯-=-C ,应填160-.二、解答题(本大题共6小题,共90分)15.为了参加师大附中第30届田径运动会的开幕式,高三年级某6个班联合到集市购买了6根竹竿,作为班期的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1(单位:米). (1)若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;(2)若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根a 元.从这6根竹竿中随机抽取两根,若期望这两根竹竿的价格之和为18元,求a 的值. 【答案】(1) 45;(2) 7a =. 【解析】(2)设任取两根竹竿的价格之和为ξ,则ξ的可能取值为2a ,10a +,20,其中2611(2)15P a C ξ===,1124268(10)15C C P a C ξ=+==,24266(20)15C P C ξ===, 所以1862402(10)201515153a E a a ξ+=⨯++⨯+⨯=. 令240183a +=,得7a =. 16.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费. 为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(I )求直方图中a 的值;(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (III )若该市政府希望使85%的居民每月均用水量不超过标准x (吨),估计x 的值,并说明理由.(II )由图,不低于3吨人数所占百分比为()0.50.120.080.04=12%⨯++ ∴全市月均用水量不低于3吨的人数为:3012%=3.6⨯(万)(III )由图可知,月均用水量小于2.5吨的居民人数所占百分比为: ()0.50.080.160.30.40.520.73⨯++++=即73%的居民月均用水量小于2.5吨,同理, 88%的居民月均用水量小于3吨,故2.53x << 假设月均用水量平均分布,则()85%73%0.52.50.5 2.90.3x -÷=+⨯=(吨).17.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.⑶解:设本年度所交保费为随机变量X.平均保费=⨯++⨯+⨯+⨯+⨯EX a a a a a0.850.300.15 1.250.20 1.50.20 1.750.1020.05=+++++=,0.2550.150.250.30.1750.1 1.23a a a a a a a∴平均保费与基本保费比值为1.23.18.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?设2台机器共需更换的易损零件数的随机变量为X ,则X 的可能的取值为16,17,18,19,20,21,22,所以()()()11160.20.20.04P X P A P B ===⨯=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯0.20.40.24+⨯=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯= ()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=⨯+⨯=()()()44220.20.20.04P x P A P B ===⨯=⑵ 要令()0.5P x n ≤≥,0.040.160.240.5++< ,0.040.160.240.240.5+++≥ 则n 的最小值为19.19. 在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评. 某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表1:男生 表2:女生(Ⅰ) 从表2的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率; (Ⅱ)由表中统计数据填写下边22⨯列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.参考数据与公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.临界值表:【答案】(Ⅰ) 35; (Ⅱ)否. 【解析】(Ⅰ)设从高一年级男生中抽出m 人,则45500500400m =+,25m =, ∴ 21820,52025=-==-=y x ……………………………………………………2分 表2中非优秀学生共5人,记测评等级为合格的3人为,,a b c ,尚待改进的2人为,A B , 则从这5人中任选2人的所有可能结果为:),(b a ,),(c a ,),(c b ,),(B A ,),(A a ,),(B a ,),(A b ,),(B b ,),(A c ,),(B c 共10种………………………………………………… 4分设事件C 表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”, 则C 的结果为:()()()()()(),,,,,,,,,,,a A a B b A b B c A c B ,共6种………………………………………5分∴63()105P C==,故所求概率为35………………………………………………………8分20.若对 2.5PM采用如下标准:某市环保局从180天的市区 2.5PM监测数据中,随机抽取10天的数据作为样本,检测值如茎叶图所示(十位为茎,个位为叶).(Ⅰ)从这10天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的分布列;(Ⅱ)以这10天的 2.5PM日均值来估计这180天的空气质量情况,其中大约有多少天的空气质量达到一级?【答案】(Ⅰ)分布列见解析;(Ⅱ)72.【解析】试题分析:(Ⅰ)借助题设条件排列组合数公式求解;(Ⅱ)借助题设条件运用贝努力分布的公式求解.试题解析:(Ⅰ)ξ的可能取值为0,1,2,3,…………………………1分则03463101(0)6C CPCξ===,…………………………3分12463101(1)2C C P C ξ===,…………………………4分21463103(2)10C C P C ξ===,…………………………5分30463101(3)30C C P C ξ===,…………………………6分所以,ξ的分布列为:…………………………7分设η为180天中每天空气质量达到一级的天数,则2(180,)5B η ,2180725E η=⨯=, 因此180天中空气质量达到一级的天数为72天.…………………………12分。