数值分析第五版欧拉法与改进欧拉法对比
常微分方程数值解法-欧拉法、改进欧拉法与四阶龙格库塔法常微分方程数值解法
y( xn1)
y( xn
Байду номын сангаас
h)
y(xn )
hy'( xn )
h2 2!
y''( )
进一步: 令
h2 y( xn ) hy'( xn ) 2! y''( xn )
常微分方 yn1 y( xn1 ) , yn y( xn )
程数值解
法-欧拉法 yn1 yn hf ( xn , yn ) h2
、改进欧 y( xn1 ) yn1
2
max y''( x)
a xb
拉法和四
三、Euler方法
已 知 初 值 问 题 的 一 般 形式 为:
dy
dx
f (x, y)
a xb
(1)
y( x0 ) y0
常微分方 用差商近似导数 程数值解 问题转化为
yn1 yn dy
h
dx
法-欧拉法 yn1 yn hf ( xn , yn )
法-欧 y(拉0) 法1
、改进欧
拉法和四
四、几何意义
由 x0 , y0 出发取解曲线 y yx 的切线(存在!),则斜率
dy
f x0, y0
dx x y
,
0
0
常微分方 由于 f x0, y0 及 x0, y0 已知,必有切线方程。
由点斜式写出切程线方数程:值解
法、-改欧进拉欧法 ddxy y y0 x x0
常微分方 程数值解 能用解析方法求出精确解的微分方程为数不多,
而且有的方程即使有解析解,也可能由于解的表达
法-欧拉法 式非常复杂而不易计算,因此有必要研究微分方程
Euler法与改进Euler法知识讲解
yn1 yn dy h dx
常用方法
(2) 用数值积分近似积分
dy xn1
xn1
dx f ( x, y)dx (n 0,1, )
xn dx
xn
即
y( xn1) y( xn )
xn1 f ( x, y( x))dx
xn
进一步: 令 yn1 y( xn1) , yn y( xn )
xn x0 nh, n 0,1,2 .
二、建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散化.
一般采用以下几种方法: (1) 用差商近似导数
dy
y xn1 yxn
xn1 xn
f xn , y(xn )
dx x y , n n
进一步 : 令 yn1 y(xn1) , yn y(xn )
y0 ( x x0 ) f ( x0 , y0 )
dx x y , 0 0
几何意义
等步长为h,则 x1 x0 h,可由切线算出y1 : y1 y0 hf(x0 , y0)
逐步计算出y
y( x)
在
xn
点
1
的
值
:
yn1 yn hf(xn , yn) n 0,1,2,
注意:这是“折线法”而非“切线法” y 除第一个点是曲线切线外,其他点不是!
能用解析方法求出精确解的微分方程为数不多, 而且有的方程即使有解析解,也可能由于解的表达 式非常复杂而不易计算,因此有必要研究微分方程 的数值解法
常微分方程数值解法
重点 研究一阶常微分方程的初值问题的数值解
其一般形式为:
dy
dx
f (x, y)
y( x0 ) y0
a xb
数值分析笔记
2
βk +1 ( x=)
(x
−
)
xk +1
Hale Waihona Puke x − xk xk +1 − xk
2
插值多项式: H3 (x) = ykαk (x) + yk+1αk+1(x) + mk βk (x) + mk+1βk+1(x)
3、三次样条
三、数值积分
∫ 1、梯形公式: I ( f ) = b f (x)dx ≈ b − a [ f (a) + f (b)] 代数精确度为 1
xi−1)(x − xi+1)(x − xn ) xi−1)(xi − xi+1)(xi − xn )
ωn+1(x) =(x − x0 )(x − x1)(x − xn )
li
(x)
=
(x
ωn +1 ( x) − xi )ωn′+1(x)
4)插值余项与误差估计
插值余项: Rn (x=)
f (x) − Ln (x=)
b
− ε
a
−1
计算器:
log2
x
=
ln ln
x 2
方程 f (x) = 0 改为等价形式 x = g(x) ,若 x* = g(x*) ,称 x* 为 g(x) 的一个不动点,
此时 x* 也是 f (x) = 0 的一个根。 ⇒ xk+1 = g(xk ) , g(x) 为迭代函数。
全局收敛:从任何初始值出发都收敛
k
=0,1,
2,
(k
表示迭代次数)
2、判断迭代法收敛:
①迭代阵
常微分方程的数值解法(欧拉法、改进欧拉法、泰勒方法和龙格库塔法)
[例1]用欧拉方法与改进的欧拉方法求初值问题h 的数值解。
在区间[0,1]上取0.1[解]欧拉方法的计算公式为x0=0;y0=1;x(1)=0.1;y(1)=y0+0.1*2*x0/(3*y0^2);for n=1:9x(n+1)=0.1*(n+1);y(n+1)=y(n)+0.1*2*x(n)/(3*y(n)^2);end;xy结果为x =Columns 1 through 80.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 100.9000 1.0000y =Columns 1 through 81.0000 1.0067 1.0198 1.0391 1.0638 1.0932 1.1267 1.1634 Columns 9 through 101.2028 1.2443改进的欧拉方法其计算公式为本题的精确解为()y x=x0=0;y0=1;ya(1)=y0+0.1*2*x0/(3*y0^2);y(1)=y0+0.05*(2*x0/(3*y0^2)+2*x0/(3*ya^2));for n=1:9x(n+1)=0.1*(n+1);ya(n+1)=ya(n)+0.1*2*x(n)/(3*ya(n)^2);y(n+1)=y(n)+0.05*(2*x(n)/(3*y(n)^2)+2*x(n+1)/(3*ya(n+1)^2));end;xy结果为x =Columns 1 through 80.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 100.9000 1.0000y =Columns 1 through 81.0000 1.0099 1.0261 1.0479 1.0748 1.1059 1.1407 1.1783 Columns 9 through 101.2183 1.2600[例2]用泰勒方法解x=0.1, 0.2, …, 1.0处的数值解,并与精确解进行比较。
数值分析第五版_李庆扬
数值分析第五版_李庆扬数值分析第五版_李庆扬一、课程基本信息课程中文名称:数值分析课程英文名称:Numerical Analysis课程类别:专业基础课开课学期:秋适用专业:信息与计算科学;应用数学总学时:86学时(其中理论课56学时,上机实习30学时)总学分:5(理论课3学分;上机实习2学分)预修课程(编号):数学分析,高等代数,常微分方程课程简介:本课程是大学本科信息与计算科学和应用数学专业的一门基础课,也是工科研究生的必修课。
本课程的主要内容是研究各种数学问题的数值计算方法的设计、计算误差分析以及有关理论和具体实现的一门数学课程。
是应用数学的重要分支之一。
建议教材:《计算方法》(二版)(邓建中、刘之行),西安,西安交通大学出版社,2001 参考书:[1]数值分析学习指导,关治编,出版社:清华大学出版社,出版时间:2008年;[2]数值分析,何汉林,梅家斌,科学出版社,2007年;[3]《数值计算引论》白峰杉高等教育出版社 2005年[4]《数值分析》(第五版)李庆扬易大义等清华大学出版社2008年[5]Numerical Analysis,R.Kress,世界图书出版公司20036、数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社,2001年。
二、理论课程教育目标通过本课程的教学使学生能了解现代科学计算中常用的数值计算方法及其基本理论,系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为运用数值分析的理论知识并为掌握更复杂的现代计算方法打好。
三、理论教学内容与要求(含学时)第一章:计算方法的一般概念(4学时)本章教学内容:理解计算方法的意义、研究内容与方法,理解并掌握误差的概念(包括误差的来源、绝对误差、相对误差),掌握有效数字及舍入误差对计算的影响。
第二章:解线性方程组的直接法(8学时)本章教学内容:1、高斯消去法;选主元的高斯消去法;2、矩阵的LR分解;解三对角方程组的追赶法;解方程组的平方根法;矩阵的求逆;3、方程组的数;病态方程组的判断。
数值分析第5版
数值分析第5版简介数值分析是研究利用计算机进行数值计算的一门学科。
它包括了近似计算、数值解法、误差分析等内容,广泛应用于科学计算、工程计算以及其他领域。
《数值分析第5版》是数值分析领域的经典教材,由Richard L. Burden和J. Douglas Faires共同撰写。
内容概述本教材共分为12个章节,从基础概念开始,逐步介绍各种数值计算方法和技术。
以下是每个章节的简要介绍。
第1章:导论本章介绍了数值分析的基本概念和应用领域。
阐述了数值计算的重要性,并介绍了课程所涉及的主要内容和学习方法。
第2章:误差分析本章讲解了数值计算中的误差类型和误差分析方法。
包括绝对误差和相对误差的定义与计算、舍入误差、截断误差等。
第3章:插值与多项式逼近本章介绍了数值计算中的插值和多项式逼近方法。
包括拉格朗日插值、牛顿插值、三次样条插值等。
讲解了这些方法的原理和实现过程。
第4章:数值积分与数值微分本章讲解了数值计算中的数值积分和数值微分方法。
包括梯形法则、辛普森法则、数值微分的定义和计算过程。
第5章:非线性方程的数值解本章介绍了求解非线性方程的数值解法。
包括二分法、牛顿法、割线法等。
讲解了这些方法的原理和应用。
第6章:线性代数方程组的数值解法本章讲解了求解线性代数方程组的数值解法。
包括高斯消元法、LU分解法、迭代法等。
详细讲解了这些方法的原理和计算过程。
第7章:矩阵特征值问题本章介绍了求解矩阵特征值问题的数值解法。
包括幂法、反幂法、QR方法等。
讲解了这些方法的原理和实现过程。
第8章:常微分方程的数值解本章介绍了求解常微分方程的数值解法。
包括欧拉法、龙格-库塔法、多步法等。
讲解了这些方法的原理和应用。
第9章:偏微分方程的数值解本章讲解了求解偏微分方程的数值解法。
包括有限差分法、有限元法等。
详细讲解了这些方法的原理和实现过程。
第10章:函数逼近与数据拟合本章介绍了函数逼近和数据拟合的方法。
包括最小二乘法、曲线拟合等。
Euler法与改进Euler法PPT课件
yp
yn
0.1( yn
2 xn yn
)
yq
yn
0.1( y p
2( xn 0.1) ) yp
yn1
1 2
(
yp
yq )
七、 龙格 - 库塔法 /* Runge-Kutta Method */ 建立高精度的单步递推格式。
单步递推法的基本思想是从 ( xi , yi ) 点出发,以某一 斜率沿直线达到 ( xi+1 , yi+1 ) 点。欧拉法及其各种变
一、引 言
许多实际问题的数学模型是微分方程或微分方 程的定解问题,如物体运动,电路震荡,化学反映及 生物群体的变化等.
能用解析方法求出精确解的微分方程为数不多, 而且有的方程即使有解析解,也可能由于解的表达 式非常复杂而不易计算,因此有必要研究微分方程 的数值解法
常微分方程数值解法
重点 研究一阶常微分方程的初值问题的数值解
y(x) 在 xn 处展开:
y(xn
h)
y(xn ) hy(xn )
h2 2
y(xn )
取一次Taylor多项式近似函数,得
y(xn1) y(xn h)
y(xn ) hy(xn )
h2 2
y( )
y(xn )
hf
(xn ,
y(xn ))
1 2
h2
y( )
yn
hf
(xn ,
yn )
形所能达到的最高精度为2阶。
考察改进的欧拉法,可以将其改写为:
斜率
yi 1
yi
h
1 2
K1
1 2
K
2
一定取K1 K2 的平均值吗?
K1 f ( xi , yi )
欧拉法的若干基本概念
高阶偏微分方程的求解
总结词
对于高阶偏微分方程,欧拉法可以通过迭代的方式逐 步逼近解,但可能收敛速度较慢且精度较低。
详细描述
对于高阶偏微分方程,如 (u_{tt} = f(x, y, u, u_x, u_y, u_z, u_{xx}, u_{xy}, u_{xz}, u_{yy}, u_{yz}, u_{zz})),可 以通过泰勒级数展开等方式将其转化为多个一阶偏微分 方程,然后对每个一阶偏微分方程应用欧拉法进行求解。 但需要注意的是,由于欧拉法的精度和收敛速度限制, 对于高阶偏微分方程,可能需要采用其他数值方法如有 限元法、谱方法等来提高精度和收敛速度。
欧拉法的应用领域
物理模拟
欧拉法可用于求解物理现象的数学模 型,如流体动力学、电磁学和热传导
等。
工程设计
在工程设计中,欧拉法可用于模拟和 分析复杂系统的行为,如机械系统、
控制系统和航空航天系统等。
金融建模
欧拉法也可用于金融领域,如股票价 格模拟、期权定价和风险评估等。
02
欧拉法的基本原理
离散化思想
一阶偏微分方程的求解
总结词
欧拉法也可以用于求解一阶偏微分方程,通过将偏微分方程转化为多个一维常微分方程, 然后分别用欧拉法求解。
详细描述
对于形如 (u_t = f(x, y, u, u_x, u_y, u_z)) 的一阶偏微分方程,可以通过有限差分法等 手段将其转化为多个一维常微分方程,然后对每个一维常微分方程应用欧拉法进行求解。
研究欧拉法在处理高阶微分方程 和其他复杂问题中的应用,以扩 大其应用范围。
05
欧拉法的应用实例
一维常微分方程的求解
要点一
总结词
欧拉法在求解一维常微分方程时,通过选取离散的时间点 ,将微分方程转化为差分方程,然后通过迭代求解。
Euler方法与改进的Euler方法的应用
CENTRAL SOUTH UNIVERSITY 数值分析实验报告Euler 方法与改进的Euler 方法的应用一、问题背景在工程和科学技术的实际问题中,常需求解微分方程,但常微分方程中往往只有少数较简单和典型的常微分方程(例如线性常系数常微分方程等)可求出其解析解,对于变系数常微分方程的解析求解就比较困难,而一般的非线性常微分方程的求解困难就更不用说了。
大多数情况下,常微分方程只能用近似方法求解。
这种近似解法可分为两大类:一类是近似解析法,如级数解法、逐次逼近法等;另一类是数值解法,它给出方程在一些离散点上的近似值。
二、数学模型在具体求解微分方程时,需具备某种定解条件,微分方程和定解条件合在一起组成定解问题。
定解条件有两种:一种是给出积分曲线在初始点的状态,称为初始条件,相应的定解问题称为初值问题。
另一类是给出积分曲线首尾两端的状态,称为边界条件,相应的定解问题称为边值问题。
在本文中主要讨论的是给定初值条件的简单Euler 方法和改进的Euler 方法来求解常微分方程。
三、算法及流程Euler 方法是最简单的一种显式单步法。
对于方程()y x f dxdy ,= 考虑用差商代替导数进行计算,取离散化点列nh x x n +=0,L n ,2,1,0=则得到方程的近似式()()()()n n n n x y x f hx y x y ,1≈-+ 即()n n n n y x hf y y ,1+=+ 得到简单Euler 方法。
具体计算时由0x 出发,根据初值,逐步递推二得到系列离散数值。
简单Euler 方法计算量小,然而精度却不高,因而我们可以构造梯形公式()()[]η=++=+++0111,,2y y t f y t f h y y n n n n n n 其中()N a b h -=。
这是一个二阶方法,比Euler 方法精度高。
但是上述公式右边有1+n y ,因而是隐式差分方程,可以用迭代方法计算1+n y 。
数值分析-第五版-考试总结
截断误差:近似解与精确解之间的误差。
近似值的误差(为准确值):近似值的误差限:近似值相对误差(较小时约等):近似值相对误差限:函数值的误差限:近似值有n位有效数字:第二章:插值法1.多项式插值其中:2.拉格朗日插值次插值基函数:引入记号:余项:3.牛顿插值多项式:阶均差(把中间去掉,分别填在左边和右边):余项:4.牛顿前插公式(令,计算点值,不是多项式):阶差分:余项:5.泰勒插值多项式:阶重节点的均差:6.埃尔米特三次插值:其中,A的标定为:7.分段线性插值:第三章:函数逼近与快速傅里叶变换1. 属于维空间:2.范数:3.带权内积和带权正交:4.最佳逼近的分类(范数的不同、是否离散):最优一致(-范数)逼近多项式:最佳平方(-范数)逼近多项式:最小二乘拟合(离散点):5.正交多项式递推关系:6.勒让德多项式:正交性:奇偶性:递推关系:7.切比雪夫多项式:递推关系:正交性:在上有个零点:在上有个零点:(最优一致逼近)首项的系数:8.最佳平方逼近:法方程:正交函数族的最佳平方逼近:9.最小二乘法:法方程:正交多项式的最小二乘拟合:第四章数值积分与数值微分1.求积公式具有次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过的多项式成立,不成立2.插值型求积公式3.求积公式代数精度为时的余项4.牛顿-柯特斯公式:将划分为等份构造出插值型求积公式5.梯形公式:当n=1时,6.辛普森公式:当n=2时,7.复合求积公式:复合梯形公式:复合辛普森公式:8.高斯求积公式(求待定参数和):(1)求高斯点():令与任何次数不超过的多项式带权正交,即则,由个方程求出高斯点。
(2)求待定参数:,也为次数不超过的多项式。
9.高斯-勒让德求积公式:取权函数为的勒让德多项式的零点即为求积公式的高斯点。
10.高斯-切比雪夫求积公式:取权函数为的切比雪夫多项式的零点即为求积公式的高斯点。
第五章解线性方程组的直接方法1.矩阵的从属范数:2.条件数:第六章解线性方程组的迭代法1.迭代法:2.迭代法收敛:存在。
Euler法与改进Euler法
得Euler方法的局部截断误差公式为
结论:上式说明Euler公式的局部截断误差为 O(h 2 ) 它的精度很差。
一般很少用它来求近似值,但是Euler法
却体现了数值方法的基本思想。
定义8.1 如果某种数值方法的局部截断误差为
精确解
y[0] -> 1 y[0.1] -> 1.09545 y[0.2] -> 1.18322 y[0.3] -> 1.26491 y[0.4] -> 1.34164 y[0.5] -> 1.41421 y[0.6] -> 1.48324
例题2
例2
求解初值问题 (步长h 0.1) 2 x y 2 3 y y ( 0) 1 2 x f ( x, y) 3 y2 (0 x 1)
逐步计算出 y y( x ) 在 xn 1点的值 : yn 1 yn hf(xn , yn ) n 0, 1, 2,
y
Y=y(x)
注意:这是“折线法”而非“切线法” 除第一个点是曲线切线外,其他点不是!
χ0 χ1χ2 χ3 χ a x1 x2 b
四、Euler方法的误差估计
进一步 : 令 yn1 y( xn1 ) , yFra bibliotek y( xn )
yn 1 yn dy h dx
常用方法
(2) 用数值积分近似积分
x n 1
xn
dy dx dx
x n 1
xn
f ( x, y )dx
x n 1 xn
( n 0,1,)
即
y( x n 1 ) y( x n )
微分方程数值解法
微分方程数值解法微分方程数值解法是一种将微分方程的解转化为数值计算的方法。
常用的微分方程数值解法包括欧拉法、隐式欧拉法、龙格-库塔法等。
1. 欧拉法:欧拉法是最简单的一种数值解法,它基于微分方程的定义,在给定的初始条件下,通过不断迭代计算微分方程在给定区间上的近似解。
欧拉法的迭代公式为:y_{n+1}=y_n+h\\cdot f(t_n,y_n),其中y_n表示第n步的近似解,t_n表示第n步的时间,h表示步长,f(t_n,y_n)表示微分方程的右侧函数。
2. 隐式欧拉法:隐式欧拉法是欧拉法的改进,它在计算近似解时使用了未知公式的近似值,从而提高了精度。
隐式欧拉法的迭代公式为:y_{n+1}=y_n+h\\cdotf(t_{n+1},y_{n+1}),其中y_{n+1}表示第n+1步的近似解,t_{n+1}表示第n+1步的时间,h表示步长,f(t_{n+1},y_{n+1})表示微分方程的右侧函数。
3. 龙格-库塔法:龙格-库塔法是一种常用的高阶数值解法,它通过计算微分方程的斜率来提高精度。
最常见的是四阶龙格-库塔法,它的迭代公式为:y_{n+1}=y_n+\\frac{1}{6}(k_1+2k_2+2k_3+k_4),其中k_1=h\\cdot f(t_n,y_n),k_2=h\\cdotf(t_n+\\frac{h}{2},y_n+\\frac{1}{2}k_1),k_3=h\\cdotf(t_n+\\frac{h}{2},y_n+\\frac{1}{2}k_2),k_4=h\\cdotf(t_n+h,y_n+k_3)。
这些方法的选择取决于问题的性质和精度要求。
其中,欧拉法是最简单的方法,但精度较低,龙格-库塔法精度较高,但计算量较大。
在实际应用中需要根据问题的具体情况选择合适的数值解法。
数值分析-第五版-考试总结培训资料
收集于网络,如有侵权请联系管理员删除
精品文档
第八章 矩阵特征值计算 1.格什戈林圆盘:以 为圆心,以 为半径的所有圆盘
2. 的每个特征值必属于某个圆盘之中:
3. 有 个圆盘组成一个连通的并集 , 与和余下 的 个特征值。 4.幂法:
设 的特征值满足条件: 任取非零向量 ,构造向量序列, 假设:
个圆盘是分离的,则 内恰包含
第七章 非线性方程与方程组的数值解法 1.二分法:1)计算 在有根区间 的端值 ,
2)计算区间中点值
3)判断 2.不动点迭代法:
或者
收集于网络,如有侵权请联系管理员删除
3.不动点迭代法收敛:
精品文档
4. 在 上存在不动点 :(压缩映射)
5. 不动点迭代法收敛性:满足上条,则不动点迭代法收敛,误差为:
7.复合求积公式:
收集于网络,如有侵权请联系管理员删除
复合梯形公式: 复合辛普森公式:
精品文档
8.高斯求积公式(求待定参数 和 ): (1)求高斯点( ):令
与任何次数不超过 的多项
式 带权 正交,即则 。
,由 个方程求出高斯点
(2)求待定参数 : 9.高斯-勒让德求积公式:取权函数为 式的高斯点。
数值分析-第五版-考 试总结
精品文档
第一章:数值分析与科学计算引论 截断误差:近似解与精确解之间的误差。 近似值的误差 ( 为准确值):
近似值的误差限 :
近似值相对误差 ( 较小时约等):
近似值相对误差限 :
函数值的误差限 近似值
: 有 n 位有效数字:
1.多项式插值 其中:
第二章:插值法
收集于网络,如有侵权请联系管理员删除
精品文档
第三章:函数逼近与快速傅里叶变换 1. 属于 维空间 :
Euler法与修正的Euler法局部截断误差Range-Kutta公式
Comparison with exact results
Temperature, θ(K)
1500
1000
500
0 0
-500
-1000
-1500
Exact solution
h=120 h=240
100
200
300
400
500
Tim e, t (sec)
h=480
Figure 4. Comparison of Euler’s method with exact solution for different step sizes 5
考虑形如
k
ynk ynk 1 h i fni i0
的 k步法,称为阿当姆斯(Adams)方法. k为显0式方法, 为隐k 式0方法,通常称为阿
当姆斯显式与隐式公式,也称Adams-Bashforth公式与Adam -Monlton公式.
22
阿当姆斯显式公式
kp
公式
c p1
1 1 yn1 yn h fn
y( xn ) f ( xn , yn )
y( xn )
d dx
f
( xn ,
yn )
0.5h[f(xn,yn)+f(xn+1, yn+hf(xn, yn))]
=hy’(xn)+0.5h2y”(xn)+0.5h2y'(xn) [fy’]n+
O局 故(h部修y3n)截正+1断 的= 误Eyun差l+er:h法yy(’具xddyn(x有y+(x1x)20n–))阶+fy精0n(+.xy15度0,=hy。2y)y(,”xxn)(–xnxy)n0+=OO((hh33))
21讲:Euler法与改进Euler法
hy'( xn )
h2 2!
y''( )
h2 y( xn ) hy'( xn ) 2! y''( xn )
进一步: 令 yn1 y( xn1 ) , yn y( xn )
yn1 yn hf ( xn , yn )
h2
y( xn1 ) yn1
max y''( x) 2 axb
三、Euler方法
已知初值问题的一般形式为:
dy
dx
f
( x,
y)
y( x0 ) y0
a xb
(1)
用差商近似导数 问题转化为
yn1 yn dy
h
dx
yn1 y0
y(
yn x0 )
hf
(
xn
,
yn
)
(n 0,1,2,3,...)
Euler方法的迭代公式
逐步计算出y y( x) 在 xn1点的值 : yn1 yn hf(xn , yn) n 0,1,2,
注意:这是“折线法”而非“切线法” y 除第一个点是曲线切线外,其他点不是!
Y=y(x)
a
x1χx0
χ1χ2
2
χ3
b
χ
四、Euler方法的误差估计
为简化分析,先考虑计算一步所产生的误差,即假设
( xn1 ,
y(k) n1
)
(k 0,1,2,)
如果用中心差商代替导数,则可导出Euler两步公式。
六、向后Euler方法
用向后差商:yxn1
yxn1
h
数值分析-第五版-考试总结
第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。
近似值的误差(为准确值):近似值的误差限:近似值相对误差(较小时约等):近似值相对误差限:函数值的误差限:近似值有n位有效数字:第二章:插值法1.多项式插值其中:2.拉格朗日插值次插值基函数:引入记号:余项:3.牛顿插值多项式:阶均差(把中间去掉,分别填在左边和右边):余项:4.牛顿前插公式(令,计算点值,不是多项式):阶差分:余项:5.泰勒插值多项式:阶重节点的均差:6.埃尔米特三次插值:其中,A的标定为:7.分段线性插值:第三章:函数逼近与快速傅里叶变换1. 属于维空间:2.范数:3.带权内积和带权正交:4.最佳逼近的分类(范数的不同、是否离散):最优一致(-范数)逼近多项式:最佳平方(-范数)逼近多项式:最小二乘拟合(离散点):5.正交多项式递推关系:6.勒让德多项式:正交性:奇偶性:递推关系:7.切比雪夫多项式:递推关系:正交性:在上有个零点:在上有个零点:(最优一致逼近)首项的系数:8.最佳平方逼近:法方程:正交函数族的最佳平方逼近:9.最小二乘法:法方程:正交多项式的最小二乘拟合:第四章数值积分与数值微分1.求积公式具有次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过的多项式成立,不成立2.插值型求积公式3.求积公式代数精度为时的余项4.牛顿-柯特斯公式:将划分为等份构造出插值型求积公式5.梯形公式:当n=1时,6.辛普森公式:当n=2时,7.复合求积公式:复合梯形公式:复合辛普森公式:8.高斯求积公式(求待定参数和):(1)求高斯点():令与任何次数不超过的多项式带权正交,即则,由个方程求出高斯点。
(2)求待定参数:,也为次数不超过的多项式。
9.高斯-勒让德求积公式:取权函数为的勒让德多项式的零点即为求积公式的高斯点。
10.高斯-切比雪夫求积公式:取权函数为的切比雪夫多项式的零点即为求积公式的高斯点。
第五章解线性方程组的直接方法1.矩阵的从属范数:2.条件数:第六章解线性方程组的迭代法1.迭代法:2.迭代法收敛:存在。
数值分析思考题9
数值分析思考题91、 一个算法局部误差和整体误差的区别是什么?如何定义常微分方程数值方法的阶?称 ()n n n e y x y =-为某方法在点n x 的整体截断误差,设n y 是准确的,用某种方法计算n y 时产生的截断误差,称为该方法的局部截断误差。
可以知道,整体误差来自于前面误差积累,而局部误差只来自于n y 的误差。
如果给定方法的局部截断误差为11()p n T O h ++=,其中p 为自然数,则称该方法是p 阶的或具有p 阶精度。
2、 显式方法和隐式方法的优缺点分别是什么?多步法中为什么还要使用单步法? 显式方法优点:方法简单快速。
缺点:精度低。
隐式方法优点:稳定性好。
缺点:精度低,计算量大。
多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。
3、 刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳定方法是什么?了保证数值稳定性,步长h 需要足够小,但是为了反映解的完整性,x 区间又需要足够长,计算速度变慢。
最简单的稳定方法就是扩大绝对稳定域。
4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta 法、四阶Adams 方法计算下列微分方程初值问题的解。
(1)3,12(1)0.4dy y x x dx xy ⎧=-≤≤⎪⎨⎪=⎩; (2)'109,'1011,y y z z y z =-+⎧⎨=-⎩满足(1)1,(1)1,y z =⎧⎨=⎩,12x ≤≤。
解:(1)取步长为0.1,向前Euler 公式:3101=0.11.(,)()n n n n n nn y y hf x y x y x +=++-向后Euler 公式:41111110101.(,).n n n n n n n n x y x y y hf x y x +++++++=+=+改进的Euler 公式:()11333113211(,),(,)20.10.12n n n n n n n n n n nn n n n n n hy y f x y f x y h f x y y x y y x x x x x ++++++=+++⎡⎤⎣⎦⎡⎤+=+-+-⎢⎥+⎣⎦经典的四阶Runge-Kutta 法:11234226()n n hy y k k k k +=++++ 1(,)n n k f x y = 2122(,)n n h h k f x y k =++ 3222(,)n n h h k f x y k =++ 43(,)n n k f x h y hk =++四阶显示Adams 方法:01112233555937924()[(,)(,)(,)(,)]n n n n n n n n n n hy y f x y f x y f x y f x y +------=+-+- 01111122919524()[(,)(,)(,)(,)]n n n n n n n n n n h y y f x y f x y f x y f x y +++----=++-+(2)二元微分方程组,经典的四阶Runge-Kutta 法公式为:11234226()n n hy y k k k k +=++++ 11234226()n n hz z L L L L +=++++ 1(,,)n n n k f x y z =211222(,,)n n n h h h k f x y k z L =+++322222(,,)n n n h h h k f x y k z L =+++ 433(,,)n n n k f x h y hk z hL =+++1(,,)n n n L g x y z =211222(,,)n n n h h h L g x y k z L =+++ 322222(,,)n n n h h hL g x y k z L =+++ 433(,,)n n n L g x h y hk z hL =+++改进的欧拉即为特殊的二阶龙格-库塔,公式在此不累述,注意系数。
欧拉法精度
欧拉法精度
欧拉法是一种数值解微分方程的方法。
它的基本思想是将微分方程中的导数用差分代替,然后通过不断迭代来逼近真实的解。
欧拉法虽然简单易懂,但是精度相对较低,在计算比较复杂的微分方程时需要使用更加高级的数值方法。
欧拉法的精度主要取决于时间步长和导数的变化率。
时间步长越小,迭代次数越多,精度也就越高。
导数变化率越小,欧拉法的精度也就越高。
但是,过小的时间步长会导致计算量大,而过小的导数变化率会使得计算结果偏差较大。
欧拉法的精度可以通过以下公式计算:
误差=(max|y(τ)-y(τ_n)| x h)/2
其中,y(τ)表示真实的解,y(τ_n)表示欧拉法计算的解,h表示时间步长。
例如,对于一个微分方程 y' = -2y + 4,初始条件 y(0) = 1,欧拉法的计算公式为:
y_n+1 = y_n + h(-2y_n + 4)
其中,y_n表示上一个时间步长的解,y_n+1表示当前时间步长的解。
将时间步长设为0.1,可以得到以下数据:
时间(t)y(t)欧拉法计算值(yn)精度(误差)
0 1 1
0.1 1.8 1.2 0.16
0.2 2.44 1.56 0.26
0.3 2.952 2.048 0.35
0.4 3.3616 2.6704 0.44
从上表可以看出,随着时间步长的增加,欧拉法的精度也在下降。
在时间步长为0.1时,误差仅为0.16,在时间步长为0.4时,则已经快速增加到了0.44。
数值分析-第五版-考试总结
第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。
近似值的误差(为准确值):近似值的误差限:近似值相对误差(较小时约等):近似值相对误差限:函数值的误差限:近似值有n位有效数字:第二章:插值法1.多项式插值其中:2.拉格朗日插值次插值基函数:引入记号:余项:3.牛顿插值多项式:阶均差(把中间去掉,分别填在左边和右边):余项:4.牛顿前插公式(令,计算点值,不是多项式):阶差分:余项:5.泰勒插值多项式:阶重节点的均差:6.埃尔米特三次插值:其中,A的标定为:7.分段线性插值:第三章:函数逼近与快速傅里叶变换1. 属于维空间:2.范数:3.带权内积和带权正交:4.最佳逼近的分类(范数的不同、是否离散):最优一致(-范数)逼近多项式:最佳平方(-范数)逼近多项式:最小二乘拟合(离散点):5.正交多项式递推关系:6.勒让德多项式:正交性:奇偶性:递推关系:7.切比雪夫多项式:递推关系:正交性:在上有个零点:在上有个零点:(最优一致逼近)首项的系数:8.最佳平方逼近:法方程:正交函数族的最佳平方逼近:9.最小二乘法:法方程:正交多项式的最小二乘拟合:第四章数值积分与数值微分1.求积公式具有次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过的多项式成立,不成立2.插值型求积公式3.求积公式代数精度为时的余项4.牛顿-柯特斯公式:将划分为等份构造出插值型求积公式5.梯形公式:当n=1时,6.辛普森公式:当n=2时,7.复合求积公式:复合梯形公式:复合辛普森公式:8.高斯求积公式(求待定参数和):(1)求高斯点():令与任何次数不超过的多项式带权正交,即则,由个方程求出高斯点。
(2)求待定参数:,也为次数不超过的多项式。
9.高斯-勒让德求积公式:取权函数为的勒让德多项式的零点即为求积公式的高斯点。
10.高斯-切比雪夫求积公式:取权函数为的切比雪夫多项式的零点即为求积公式的高斯点。
第五章解线性方程组的直接方法1.矩阵的从属范数:2.条件数:第六章解线性方程组的迭代法1.迭代法:2.迭代法收敛:存在。