初一上考点训练

合集下载

人教版数学七年级上学期1.2 有理数讲练(原卷+解析版)

人教版数学七年级上学期1.2 有理数讲练(原卷+解析版)

专题1.2 有理数典例体系一、知识点1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分总结:①正整数、0统称为非负整数(也叫自然数);②负整数、0统称为非正整数;③正有理数、0统称为非负有理数;④负有理数、0统称为非正有理数;3.数轴(1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。

注意:①数轴是一条向两端无限延伸的直线;②原点、正方向、单位长度是数轴的三要素,三者缺一不可;③同一数轴上的单位长度要统一;④数轴的三要素都是根据实际需要规定的。

(2)数轴上的点与有理数的关系①所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

②所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)(3)利用数轴表示两数大小①在数轴上数的大小比较,右边的数总比左边的数大;②正数都大于0,负数都小于0,正数大于负数;③两个负数比较,距离原点远的数比距离原点近的数小。

(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数(5)a可以表示什么数①a>0表示a是正数;反之,a是正数,则a>0;②a<0表示a是负数;反之,a是负数,则a<0③a=0表示a是0;反之,a是0,,则a=04.相反数(1)相反数:只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

10七年级上册期中考前经典题目复习课(可直接用)

10七年级上册期中考前经典题目复习课(可直接用)

初一数学期中考专题复习考点一:有理数混合运算1.(2018秋•宝安区期中)计算:(1)(2)1.(2018秋•福田区校级期中)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×3.(2018秋•南山区校级期中)计算(1)4﹣(﹣6)+(﹣8)(2)(3)16÷(﹣2)3﹣(﹣8)×(﹣)(4)﹣12018﹣(1﹣0.5)÷×+|0.8﹣2|4.(2018秋•龙岗区期中)计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].5.(2018秋•福田区校级期中)计算:(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)(2)(﹣72)×2(3)(4)6.(2017秋•罗湖区校级期中)计算:(1)4+(﹣2)3×|5|﹣(﹣2.8)÷4(2)(﹣+﹣)×(﹣36)(3)﹣22﹣[(1﹣×0.6)+(﹣0.2)2﹣4](1)16﹣(﹣9+3)+(﹣2)(2)﹣42×(3)8.(2017秋•龙华区校级期中)计算:(1)﹣13﹣(﹣22)+(﹣28)(2)(﹣+)×(﹣48)(3)23+(﹣4)﹣(﹣16)﹣5(4)﹣14﹣×[3﹣(﹣3)2]9.(2014秋•南山区校级期中)计算:(1)﹣4﹣28﹣(﹣29)+(﹣24)(2)4×(﹣3)2﹣5×(﹣2)+6(3)(﹣+﹣)÷(﹣)(4)﹣14﹣(1﹣0.5)÷2×[2﹣(﹣3)2](1)16﹣(﹣23)+(﹣49)(2)﹣4×2+(﹣2)×(﹣4);(3)26×(﹣3)2+175÷(﹣5)(4)﹣1.53×0.75+0.53×﹣3×0.75;(5)[﹣+(﹣1)﹣(﹣)]×24(6)(﹣4)2﹣6×+2×(﹣1)3÷(﹣)..考点二:整式运算1.(2018秋•盐田区期末)先化简,再求值:﹣5x2y﹣[2x2y﹣3(xy﹣2x2y)]+2xy,其中x=﹣1,y=﹣2.2.(2018秋•宝安区校级期中)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a =﹣23.(2018秋•南山区校级期中)先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=1,b=2.4.(2018秋•福田区校级期中)先化简,再求值:(1),其中x=3,y=﹣.(2)已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a﹣3ab)﹣(4ab﹣3b)的值.5.(2017秋•罗湖区校级期中)先化简,再求值:当m=2,x=﹣3时,求(﹣3mx2+mx ﹣3)﹣(﹣1﹣mx2﹣mx).6.(2017秋•龙岗区期中)先化简,再求值:(1)(4a+3a2)﹣3﹣3a2﹣(﹣a+4a2),其中a=﹣2;(2),其中x=3,y=.7.(2016秋•龙岗区期中)先化简,再求值(1)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(2)(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣,b=.8.(2015秋•深圳校级期中)(1)化简﹣(3x2﹣3xy)+2(﹣2xy+2x2)(2)先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣,b=.考点三:有理数应用例1.(1)(2018秋•宝安区期中)检修队乘汽车沿着东西走向的公路往返行驶检修线路.某天早上从A地出发到收工时所走的路线为(若约定向东为正方向),当天行驶的记录如下(单位:km)+18,﹣9.5,+7,﹣14,﹣6.2,+13,﹣6.8,+10.5.①收工时距A地多远?①检修队离出发点最远的距离是?①若汽车行驶每千米耗油0.3升,那么这一天共耗油多少升?(2)(2015秋•惠城区期末)某自相车厂一周计划生产1400量自行车,平均每天生产200量,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负);星期一二三四五六日增减+5﹣2﹣4+13﹣10+6﹣9①根据记录可知前三天共生产辆;①产量最多的一天比产量最少的一天多生产辆;①该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?(3)(2017秋•沙坪坝区期末)2017年9月11日,以“绿色生活•从你我做起”为主题的重庆市第四届生态文明知识竞赛活动正式启动.某校组织全校学生参与后,王老师抽取了班上第一大组8名学生的成绩,若以80分为标准,超过的分数用正数表示,不足的分数用负数表示,成绩记录如下:﹣3,+7,﹣12,+18,+6,﹣5,﹣21,+14①最高分比最低分多多少分?第一大组平均每人得多少分?①若规定:成绩高于80分的学生操行分每人加3分,成绩在60~80分的学生操行分每人加2分,成绩在60分以下的学生操行分每人扣1分,那么第一大组的学生共加操行分多少分?训练1.(1)(2017秋•正定县期中)某天市交警大队的一辆警车在东西街上巡视,警车从钟楼A处出发,规定向东方向为正,向西方向为负,钟楼处为0千米,当天行驶纪录如下:(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2①最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?①警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油才刚好够用?(2)(2018秋•龙岗区期中)股民周思源上周五在股市以收盘价(收市时的价格)买进某公司股票1000股,每股25元,周六、周日股市不交易,在接下来的一周交易日内,周思源记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2﹣1.4+0.9﹣1.8+0.5根据上表回答问题:①星期二收盘时,该股票每股多少元?①这一周内该股票收盘时的最高价,最低价分别是多少?①已知买入股票与卖出股票均需支付成交总金额的5‰(千分之五)的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?(3)(2014秋•南山区校级期中)“十•一”黄金周期间,长隆野生动物园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2人数变化(单位:万人)①若9月30日的游客人数记为a万人,则10月2日的游客人数是万人;①请判断七天内游客人数最大的是日;①若9月30日的游客人数为2万人,门票每人150元,请求出黄金周期间,门票总收入是多少万元?考点四:代数式及应用例1.(1)(2015秋•芦溪县期中)已知代数式3x 2﹣6x +3的值为9,则代数式x 2﹣2x +6的值为 .(2)(2017秋•南山区期末)若x 2+3x ﹣5的值为7,则3x 2+9x ﹣2的值为 .(3)(2018秋•福田区校级期中)已知x 2﹣2x ﹣1=0,则5+4x ﹣2x 2= .(4)(2018秋•茂名期中)已知当x =1时,代数式2ax 3+3bx +4值为6,那么当x =﹣1时,代数式2ax 3+3bx +4值为 .训练1.(1)已知整式3242+-x x 值为1,则422+-x x 的值为 .(2)(2015秋•端州区期末)已知整式x 2﹣2x 的值为3,则2x 2﹣4x +6的值为 .(3)(2017秋•龙华区校级期中)已知x ﹣2y =﹣1,则代数式6﹣2x +4y 的值为 .(4)(2015秋•深圳校级期中)当x =1时,代数式ax 3﹣3bx +4的值是7,则当x =﹣1时,这个代数式的值是 .例2.(1)(2016秋•黄陂区期中)一个两位数的个位数字为a ,十位数字比个位数字的2倍少1,若把这个两位数十位上的数字与个位上的数字交换位置组成一个新两位数,则原两位数与新两位数的差为( ) A .9﹣9aB .11a ﹣11C .9a ﹣9D .33a ﹣11(2)(2018秋•宝安区期中)随着计算机技术的迅速发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( )A.(n+m)元B.(n+m)元C.(5m+n)元D.(5n+m)元(3)(2017秋•青龙县期末)如图,表示阴影部分面积的代数式正确是()A.ab+bc B.ab﹣cdC.c(b﹣d)+d(a﹣c)D.ad+c(b﹣d)(4)如图,大正方形的边长为a,小正方形的边长为2,用含有a的代数式表示阴影部分的面积.训练2.(1)如果x是一个两位数,现在把数字1放在它的右边,得到一个三位数,这个三位数是()A.x+1B.10x+1C.100x+1D.x+100(2)(2016秋•龙岗区期末)某企业去年7月份产值为a万元,8月份比7月份减少了10%,9月份比8月份增加了15%,则9月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元(3)(2013秋•招远市期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪下,拼成一个长方形(不重叠无缝隙),则此长方形的面积为()A.(6a+15)cm2B.(6a+9)cm2C.(3a+15)cm2D.(5a+15)cm2(4)一个商标图案如图4中阴影部分,在长方形ABCD中,AB=6cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则阴影部分的面积是()A.(4π+4)cm2B.(4π+8)cm2C.(8π+4)cm2D.(4π-16)cm2例3.(1)(2018秋•宝安区期中)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.请根据图中的数据(单位:m),解答下列问题:①用含x、y的代数式表示地面总面积;①若x=5,y=,铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?(2)(2016秋•龙华区期中)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:收费标准(注:水费按月份结算)每月用水量单价(元/立方米)不超出6立方米的部分2超出6立方米不超出10立方米的部分4超出10立方米的部分8例如:某户居民1月份用水8立方米,应收水费为2×6+4×(8﹣6)=20(元).请根据上表的内容解答下列问题:(1)若某户居民2月份用水5立方米,则应收水费多少元?(2)若某户居民3月份交水费36元,则用水量为多少立方米?(3)若某户居民4月份用水a立方米(其中6<a<10),请用含a的代数式表示应收水费.(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水x立方米,请用含x的代数式表示该户居民5、6两个月共交水费多少元.训练3.(1)(2018秋•下城区期末)小方家住房户型呈长方形,平面图如下(单位:米).现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)求a的值.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:活动方案木地板价格地砖价格总安装费A8折8.5折2000元B9折8.5折免收已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?(2)(2018秋•焦作期末)正所谓聚少成塔,滴涓成河,节约用电也是一样的道理,为了响应国家节能减排号召,鼓励市民节约用电,我市实行一户一表的阶梯电价,具体收费标准如下:月用电量(单位:千瓦时,统计时取整数)单价(单位:元/千瓦时)180及以内0.5大于180,不超过280部分(共100千瓦时)0.6280以上部分0.8(1)小雯家10月用电量400千瓦时,其10月应交电费多少元?(2)若小雯家每月用电为x千瓦时(x>280),则请用代数式表示每月其应交的电费;(3)某天小雯提出采用新型节能灯可节约用电30%,若10月就用新型节能灯则10月可少交多少电费钱?例4.(1)(2018秋•南山区校级期中)景新学校七(1)班林老师准备组织全班学生秋游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,两家旅行社同时都对20人以上的团体推出了优惠举措:甲旅行社对每位团员(包括老师及学生)七五折(即按报价的75%)优惠;乙旅行社是免去一位带队老师的费用,其余团员按八折优惠.①设参加秋游的学生共有a(a>20)人,则甲旅行社的费用为元,乙旅行社的费用为元;①如果学生人数a=46人,那么应选择哪家旅行社更合算?(2)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200九折优惠元500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠①王老师一次性购物600元,他实际付款元.①若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).①如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a 的代数式表示:两次购物王老师实际付款多少元?训练4.(1)(2017秋•龙华区校级期中)某中学初一(二)班5位教师决定带领本班a名学生在五一期间在元旦期间去珠海长隆海洋王国旅游,每张票的价格为350元,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律六折优惠.①分别用代数式表示参加这两家旅行社所需的费用;A旅行社所需费用为元,B旅行社所需费用为元,①如果这5位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?(2)(2017秋•宁国市期中)迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;①夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).①若该客户按方案①购买,夹克需付款元,T恤需付款元(用含x的式子表示);若该客户按方案①购买,夹克需付款元,T恤需付款元(用含x的式子表示);①若x=40,通过计算说明按方案①、方案①哪种方案购买较为合算?①若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.。

专练 一元一次方程应用题(20题)-七年级上学期期末考点必杀200题(人教版,含答案)

专练 一元一次方程应用题(20题)-七年级上学期期末考点必杀200题(人教版,含答案)

七年级上册数学专练一元一次方程应用题(20题)1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元?(3)某饭店9月份交水费1120元,求该饭店9月份的用水量.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B和点C处各折一下,得到条“折线数轴”,我们称点A和点D在数上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:m≥第一步:分发左、中、右三堆牌,每堆牌都为m张,且10;第二步:从右边一堆拿出五张,放入中间一堆;第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆.(1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)9.(2020·武钢实验学校初一月考)双十一临近,武汉掀起购物狂潮,现有甲,乙、丙三个商场开展的促销活动如下表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?完成下表后就可以做出选择(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100元减50元”的活动,张先生买了一件标价为630元的上衣,张先生发现竟然比没打折多付了20元钱,问丙商场先打了多少折后再参加活动(结果精确到0.01)10.(2020·江西初一期末)某车间的工人,分两队参加义务植树活动,甲队人数是乙队人数的两倍,由于任务的需要,从甲队调16人到乙队,则甲队剩下的人数是乙队人数的一半少3人,求甲、乙两队原有的人数11.(2020·山西初一期中)《夺冠》影片讲述了中国女排的奋斗历程和顽强拼搏、为国争光的感人故事.上映初期,某校为了对学生进行爱国主义教育及励志教育,计划组织所有学生及教师观看.经了解,甲、乙两家电影院的电影票单价都是30元,这两家电影院有两种不同的优惠方式.甲电影院,购买票数量不超过100张时,每张30元,超过100张时,超过的部分打八折.乙电影院,不论买多少张,每张打九折.(1)设该学校有教师学生共x人观看电影(每人买一张电影票),请用含x的式子分别表示在甲、乙两家电影院购票所需的费用.(2)若该学校有教师学生共500人观看电影(每人买一张电影票)选择哪家电影院购票更省钱,说明理由.12.(2020·内蒙古初一期末)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?13.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.14.(2020·南宁市第三十七中学初一期中)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示−10,点B表示10,点C表示15,我们称点A和点C在数轴上相距25个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2),P Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,,P O两点在数轴上相距的长度与,Q B两点在数轴上相距的长度相等.15.(2020·四川初一期中)小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)设中间的数为x,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.16.某市规定:每户每月用水不超过20立方米时,水费按“基本价”收费;超过20立方米时,不超过20立方米部分仍按“基本价”收费,超过20立方米部分按“调节价”收费小明今年一二月份的用水量和水费如表所示.(1)请你算一算该市水分的“基本价格”和“调节价”分别是每立方米多少钱?(2)若小明家3月份用水量为30立方米,请你算一算,3月份的水费是多少元?17.(2020·重庆巴蜀中学初一期中)列一元一次方程解应用题(两问均需用方程求解):10月14日iPhone12在各大电商平台预约销售,预售不到24小时,天猫、京东等平台的iPhone12就被抢完,显示无货.为了加快生产进度,郑州一富士康工厂连夜帮苹果手机生产iPhone12中的某AB型电子配件,这种配件由A型装置和B型装置组成.已知该工厂共有1200名工人.(1)据了解,在日常工作中,该工厂生产A型装置的人数比生产B型装置的人数的3倍少400人,请问工厂里有多少名工人生产B型装置?(2)若急需的AB型电子配件每套由2个A型装置和1个B型装置配套组成,每人每天只能加工40个A型装置或30个B型装置.现将所有工人重新分成两组,每组分别加工一种装置,并要求每天加工的A、B型装置正好配套,请问该工厂每天应分别安排多少名工人生产A型装置和B型装置?18.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.19.(2020·辉县市文昌中学初一期中)从2016年12月1日起某市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如下表所示):例:若某用户7月份的用水量为35吨,按三级计算则应交水费为:()⨯+⨯+--⨯=(元).20 1.910 2.9352010 5.996.5(1)如果小红家12月份的用水量为12吨,则需缴交水费________元;(2)如果小丽家12月份的用水量为27吨,求小丽家该月需缴交水费多少元?a ),求小明家该月应缴交水费多少元?(3)如果小明家12月份的用水量为a吨(30(用含a的代数式表示,并化简)(4)如果某月缴交水费126元,则该月的用水量为______吨.20.(2020·合肥实验学校初一期中)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)若都在同一家店购买签字笔和笔记本,试问购买笔记本数量是多少时,两家店的费用一样?答案及解析1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)【答案】(1)150x+3000;160x;(2)甲优惠;理由见解析;(3)7x;(4)9号;21号.解:(1)甲军训机构的总费用为:200×75%×(x+20)=150x+3000;乙军训机构的总费用为:200×80%×x=160x;(2)甲优惠,利由如下:甲:150×780+3000=120000元乙:160×780=124800元∵甲<乙∴甲优惠;(3)设最中间一天的日期为x,则其余日期为x-3、x-2、x-1、x+1、x+2、x+3则这七天的日期和为:x-3+x-2+x-1+x+x+1+x+2+x+3=7x;(4)设这七天的日期之和为84a(a为正整数)令7x=84a,解得x=12a∵0<x<30∴x=12或x=24∴他们可能于12月9号或21号出发的.【点睛】本题主要考查了列代数式,弄清题意、列出相关代数式是解答本题的关键.2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元? (3)某饭店9月份交水费1120元,求该饭店9月份的用水量. 【答案】(1)92;(2)960元;(3)180立方米. (1)4.62092⨯=(元), 故答案为:92;(2)()()50 4.615050 6.51601508⨯+-⨯+-⨯,23065080=++,960=(元),答:该饭店8月份需交水费960元;(3)因为()50 4.615050 6.5880⨯+-⨯=(元),且1120880>, 所以9月份的用水量超过150立方米, 设该饭店9月份的用水量为x 立方米,由题意得:()()50 4.615050 6.581501120x ⨯+-⨯+-=, 解得180x =,答:该饭店9月份的用水量为180立方米. 【点睛】本题考查了有理数乘法与加减法的实际应用、一元一次方程的实际应用,依据题意,正确建立运算式子和方程是解题关键.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.【答案】(1)12,21;(2)()22+n ,()41n +;(3)2005元. (1)第1个图形用白色正方形瓷砖的块数为()44211=+⨯-, 第2个图形用白色正方形瓷砖的块数为()64221=+⨯-, 第3个图形用白色正方形瓷砖的块数为()84231=+⨯-,归纳类推得:第n 个图形用白色正方形瓷砖的块数为()42122n n +-=+,其中n 为正整数;第1个图形用黑色正方形瓷砖的块数为()55411=+⨯-, 第2个图形用黑色正方形瓷砖的块数为()95421=+⨯-, 第3个图形用黑色正方形瓷砖的块数为()135431=+⨯-,归纳类推得:第n 个图形用黑色正方形瓷砖的块数为()54141n n +-=+,其中n 为正整数; 则铺第5个图形用白色正方形瓷砖的块数为25212⨯+=,黑色正方形瓷砖的块数为45121⨯+=,故答案为:12,21;(2)由(1)已知:铺第n 个图形用白色正方形瓷砖()22+n 块,用黑色正方形瓷砖()41n +块,故答案为:()22+n ,()41n +;(3)由题意得:()()410.50.5 1.512.522n n +⨯⨯=+⨯⎡⎤⎣⎦+, 解得12n =,铺满该段小路所需瓷砖的总费用为()()2541302216085n n n +++=+, 则当12n =时,1608516012852005n +=⨯+=(元), 答:铺满该段小路所需瓷砖的总费用为2005元. 【点睛】本题考查了列代数式表示图形的规律型问题、整式的化简求值、一元一次方程的应用等知识点,观察图形,正确归纳类推出一般规律是解题关键.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?【答案】(1)0;(2)当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点.解:(1)设所求的数为x ,根据题意得:()422x x -=+,解得:0x =,∴所求的数为0; 故答案为0;(2)设点P 表示的数为y ,则有:①当点P 为,A B 【】的好点,由题意得:()20240y y +=-,解得:20y =,∴()4020210t =-÷=s ;②当P 为,B A 【】的好点,由题意得:()40220y y -=+,解得y=0,∴()400220t s =-÷=;③当B 为,A P 【】的好点,由题意得: ()()4020240y --=-,解得:10y =,∴()4010215t s =-÷=;④当A 为,B P 【】的好点,由题意得:()()4020220y --=+,解得:10y =,与③相同;综上所述:当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点. 【点睛】本题主要考查数轴上的动点问题及一元一次方程的应用,熟练掌握数轴上的动点问题及一元一次方程的应用是解题的关键.5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数. 【答案】(1)15;(2)15或13;(3)点P 表示的数为18,点Q 表示的数为18. (1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒),故答案为:15;(2)由题意,分以下六种情况: ①当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -, 点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;②当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去; ③当点P 在BO ,点Q 在CO 时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,不在BO上,不符题设,舍去;④当点P、Q相遇时,点P、Q均在BC上,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,4174t t∴-=-,解得215t=,此时点P表示的数为15,点Q表示的数为15,均符合题设;⑤当点P在OC,点Q在OB时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,点Q表示的数为13-,均符合题设;⑥当点P在OC,点Q在BA时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为410128224t t⎛⎫----=-⎪⎝⎭,点P、Q到原点的距离相同,()4820t t∴-+-=,解得4t=,此时点Q表示的数为0,不在BA上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=,点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=,∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18. 【点睛】本题考查了数轴、一元一次方程的几何应用等知识点,结合数轴的定义,正确分情况讨论,并建立一元一次方程是解题关键.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌都为m 张,且10;m ≥ 第二步:从右边一堆拿出五张,放入中间一堆; 第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆. (1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?【答案】(1)5m +;12m +;17;210m -;见解析;(2)每堆牌分别是11张、16张、6张解:()1第二步后中间牌的张数为:5m + 第三步后中间牌的张数为: 5712m m ++=+ 第四步后中间的张数为:()()12 517m m +--= 右边的牌数为:()55)2(10m m m -+-=-,()2由题意可知:2103( 7)m m -=-解得:11m =,第二步后左边的牌数为: 11m =, 中间的牌数为:511516m +=+=, 右边的牌数为:51156m -=-=.答:第一步后,每堆牌分别是11张、16张、6张. 【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的加减是解题的关键. 7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?【答案】(1)2;(2)①16d t =+,242d t =+,存在,4m =;②t 为113或173时,点P 与点Q 距离3个单位长度 解:(1)由题意得:AC=8. ∵AC=AB+BC , ∴当AB=BC 时,AB=4.设向左移动后的点B 表示的数为x , 则AB=x-(-7)=4,解得x=-3, ∵向左移动前点B 表示的数为-1, ∴点B 向左移动了2个单位长度. 故答案为:2.(2)①由题意得:经过时间t 秒点P 向左移动了4t 个单位长度,点Q 向左移动了3t 个单位长度,点R 向右移动了t 个单位长度,∴经过时间t 后点P 在数轴上表示的数为-7-4t ,点Q 在数轴上表示的数为-1-3t ,点R 在数轴上表示的数为1+t .∴113(74)6d t t t =-----=+21(13)42d t t t =+---=+.∴()()()12642462md d m t t m t m -=+-+=-+-.∴当40m -=,即4m =时,12md d -的值不随t 的变化而改变. (3)解:∵AB=6,∴点Q 到达A 点的时间为623t ==(秒). ∴当t>2时,点Q 向左移动了6+7(t-2)=7t-8个单位长度. ∴经过时间t 后点Q 在数轴上表示的数为-1-(7t-8)=-7t+7. 由(2)①可得:经过时间t 后点P 在数轴上表示的数为-7-4t . ∴ 777()1443P t t t Q -+--=-=- . 当PQ=3,即143t -=3时, 可得:14-3t=3或3t-14=3,解得113t =或173t =. 综上所述,t 为113或173时,点P 与点Q 距离3个单位长度.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把数和形结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)【答案】【问题解决】①8;②t+1;③13;【关联运用】①3;②,226p x q q p ≤≤-+ 解:【问题解决】①MN=(t+5)-(t -3)= t+5-t+3=8; 故答案为:8; ②点Q 表示的数是5312t t t ++-=+,故答案为:t+1;③由题意知:0t <,30t -<,50t +>, ∴30t ->,50t --<,∴原式()()()535t t t t =-+++-++535t t t t =-+++-++=13; 【关联运用】①点T 对应数为m 、点S 对应数为3m -,3ST ∴=,设EF n =个单位长度, 则有:312n n +=,解得3n =,31nx ∴==; ②当数x 在数p 与数q 之间时,=p x q x x p q x q p +-+-=---,当数x 在数p 的左边时,=22x p x q x q p q q x p p p x +-+-=-+-->--,。

初一上册数学期中考试考点

初一上册数学期中考试考点

初一上册数学期中考试考点1.初一上册数学期中考试考点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

王朝霞考点梳理时习卷七年级上册英语unit9答案

王朝霞考点梳理时习卷七年级上册英语unit9答案

王朝霞考点梳理时习卷七年级上册英语unit9答案初一英语上册Unit9练习题:题组训练一、useful的用法Ⅰ.单项选择。

( )1.I think it is ________ useful book.A.anB.aC.theD./( )2.—Why do you like English?—Because I think it is very ________.efulB.difficultC.tidyD.boring( )3.The dictionary is ________ for my daughter.I want to buy it.A.coolB.interestingefulD.freeⅡ.根据汉语意思完成句子,每空一词。

4.——数学难吗?——是的,但它很有用。

—Is math ________?—Yes.But it is very ________.5.我们找到了一张有用的卡片。

We find ________ ________ card.____题组训练二__finish的用法Ⅰ.单项选择。

( )1.Our last class________at 4:30 in the afternoon.A.hasB.hasC.finishD.finishes( )2.—Can I go out to play football,Mom?—When you________your homework,you can go out.A.takeB.finishC.helpD.call( )3.—When will you finish________computer games?—At 9:30.A.playingB.playsC.playD.to playⅡ.用括号内所给单词的适当形式填空。

4.The meeting ________(finish) at 11:50 in the morning.5.She plays sports after she finishes ________ (eat) dinner.____题组训练三__because的用法Ⅰ.单项选择。

初一上册必考课外知识题

初一上册必考课外知识题

初一上册必考课外知识题在初一上册的学习中,我们积累了许多重要的课内知识,而掌握了一些必考的课外知识则是为了更全面地发展自己。

下面将介绍初一上册必考的课外知识题,帮助同学们更好地备战考试。

1. 中国古代四大发明之一是什么?中国古代四大发明包括造纸术、印刷术、火药、指南针。

这四大发明在古代中国的科技进步和社会发展中起到了重要的作用。

其中,最早出现的发明是造纸术。

2. 《西游记》的作者是谁?《西游记》是中国四大名著之一,它的作者是明代的吴承恩。

这部小说以孙悟空等人的西天取经故事为主线,深受读者喜爱,也是世界文学宝库中的经典之作。

3. 世界上最高的山峰是哪座?世界上最高的山峰是珠穆朗玛峰,位于喜马拉雅山脉上的尼泊尔和中国的边界之间。

它海拔8848米,是登山家们向往的挑战目标。

4. 地球上最大的洲是哪个?地球上最大的洲是亚洲,它占地球陆地总面积的三分之一以上。

亚洲拥有丰富的自然资源和多样的文化,是人类历史上的重要发展地区。

5. 世界上最长的河流是哪条?世界上最长的河流是尼罗河,它位于非洲大陆,全长约6650公里。

尼罗河对周边地区的农业和交通有着重要的意义,也是生态系统的重要组成部分。

6. 《论语》的作者是谁?《论语》是一部记录孔子及其弟子言行的经典著作,它的作者是孔子的学生及其后的弟子。

《论语》是中国古代文化遗产中的重要组成部分,具有深厚的思想内涵。

7. 中国的四大发明之一-指南针最早是用来做什么的?中国古代的指南针最早是用来指示方向的。

在航海和探险活动中,指南针起到了非常重要的作用,帮助人们确定方向,开辟新的航路。

8. 中国古代的四大发明对世界产生了什么影响?中国古代的四大发明对世界产生了深远的影响。

通过造纸术、印刷术、火药和指南针的传播,中国的科技和文化成就被引入世界各地,对文明进步起到了重要的推动作用。

通过对初一上册必考的课外知识题的学习,我们加深了对世界和中国历史文化的了解,不仅扩宽了视野,还为我们今后的学习和生活奠定了坚实的基础。

专练09 线段与角(20题)-2020~2021学年七年级上学期期末考点必杀200题(试题)

专练09  线段与角(20题)-2020~2021学年七年级上学期期末考点必杀200题(试题)

专练09 线段与角(20题)一、解答题1.(2020·常熟市第一中学初一月考)如图,己知线段AB =20cm ,CD =2cm ,线段CD 在线段AB 上运动,,E F 分别是,AC BD 的中点.(1)若AC =4cm ,则EF = cm .(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由.2.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数; (3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.3.(2020·辽宁辽阳二中初一期中)画直线l ,并在直线l 上任取三个点,,A B C ,使104AB BC ==,,分别画线段,AB BC 的中点,,E F 求线段EF 的长4.(2020·丹东市第二十中学初一期中)如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若8,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能猜想MN 的长度吗?你能用一句简洁的话描述你发现的结论吗?5.(2020·山西初一期中)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.6.(2020·隆化县第二中学初一期中)如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.7.(2020·大庆市第五十七中学初一月考)如图按下列语句画图(1)连接BC.(2)画直线AB、CD相交于E.(3)作射线AD.(4)连接AC、BD,相交于点O.8.(2020·大庆市第五十七中学初一月考)如图,∠AOC 和∠BOD 都是直角(1)猜想∠COB 与图中哪个角相等?(2)如果∠DOC=30°,求∠AOB 的度数9.(2020·四川邻水实验学校初一月考)如图,AOB ∠是直角,射线OC 从OA 出发,以每秒8度的速度顺时针方向转动;射线OD 从OB 出发,以每秒2度的速度逆时针方向转动.当OC 与OA 成一直线时停止转动.(1)__________秒时,OC 与OD 重合;(2)当OC 与OD 的夹角是30度时,求转动的时间是多少秒?(3)若OB 平分COD ∠,求转动的时间是多少秒?10.(2020·四川邻水实验学校初一月考)如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数11.(2020·山东省昌乐第一中学初一月考)如图,邮递员骑车从邮局B 出发,先向南骑行到达M 村,继续向南骑行8km 到达A 村,然后向北骑行到达C 村,最后回到邮局B ,点M 、N 分别为AC 、BC 的中点.(1)若C 村与邮局B 相距6km ,则N 村与M 村相距多少?请计算说明;(2)请你求出邮递员一共骑行了多少km ?12.(2020·山东省昌乐第一中学初一月考)如图,平面内的线段AB ,BC ,CD ,DA 首尾相接,按照下列要求画图:(1)连接AC ,BD 相交于点O ;(2)延长线段BC ,反向延长线段DA 相交于点P ;(3)在直线AB 上用圆规截取线段BE=BD .13.(2020·山东东埠初中初一月考)如图,点C 在线段AB 上,8,6AC cm CB cm ==,点,M N 分别是AC BC ,的中点.()1求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB a +=,其它条件不变,猜想MN 的长度,并说明理由; ()3若C 在线段AB 的延长线上,且满足,,AC BC b M N -=分别为AC BC ,的中点,猜想MN 的长度,请画出图形,写出你的结论,并说明理由;()4请用一句简洁的话,描述你发现的结论.14.(2020·哈尔滨德强学校初一月考)已知点O 在直线EF 上,点A 、B 与点C 、D 分别在直线EF 两侧,且70AOB ∠=︒,120COD ∠=︒(1)如图1,若OB 平分AOD ∠,求AOC ∠的度数;(2)如图2,在(1)的条件下,OE 平分AOC ∠,过点O 作射线OG ,90GOD ∠=︒,求EOG ∠的度数;(3)如图3,若2105AOE EOC ∠-∠=︒,在BOD ∠的内部作一条射线OM ,若2:3BOM DOM ∠∠=:,求AOE FOM∠∠的值 15.(2020·湖北初一期末)如图,OC 平分∠AOB ,OD 为∠BOC 内一条射线,且∠AOD =2∠BOD . (1)若已知∠AOB =120°,试求∠COD 的度数;(2)若已知∠COD =18°,试求∠AOB 的度数;(3)若已知∠COD =α°,请直接写出∠AOB 的度数.16.(2020·哈尔滨市第六十九中学校初一月考)如图,点О为直线MN 上一点,90,BOM AOC OD ∠=∠=︒平分COM ∠.(1)若COD x ∠=︒,则BOC ∠=_________________,AOB ∠=_________________.(用含x 的代数式表示)(2)在(1)的条件下,若12AOB BOD ∠=∠,求AON ∠的度数. 17.(2020·重庆初一月考)将一三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°;(2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由;(4)三角尺AOB 不动,将三角尺COD 的OD 边与OA 边重合,然后绕点O 按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD <90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.18.(2020·丽水市莲都区教研室初一期末)如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数;(2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.19.(2020·重庆初一月考)如图,将一幅直角三角板的直角顶点C 叠放在一起.()1若33DCE ∠=︒,则BCD ∠=______;若138ACB ∠=︒,则DCE ∠=______.()2猜想ACB ∠与DCE ∠的大小有何特殊关系?并说明理由.()3如图()2,若是两个同样的直角三角板60︒锐角的顶点A 重合在一起,则DAB ∠与CAE ∠的数量关系为______.20.(2020·广东揭阳·初一期中)如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.。

初一初二数学考点练习题及答案

初一初二数学考点练习题及答案

初一初二数学考点练习题及答案导言:数学是一门基础学科,对于初中学生来说,掌握数学的基本概念和解题方法是非常重要的。

本文将为初一和初二学生提供一些数学考点的练习题及答案,帮助他们巩固知识,提高解题能力。

一、整数的四则运算1. 计算下列运算式的值:a) 12 - (-3)b) 5 × (-4)c) (-24) ÷ 6d) (-9) + 7答案:a) 12 - (-3) = 12 + 3 = 15b) 5 × (-4) = -20c) (-24) ÷ 6 = -4d) (-9) + 7 = -2二、分数的加减乘除1. 计算下列分数运算:a) 2/3 + 1/6b) 5/8 - 1/4c) 2/5 × 3/4d) 4/7 ÷ 2/3答案:a) 2/3 + 1/6 = 4/6 + 1/6 = 5/6b) 5/8 - 1/4 = 5/8 - 2/8 = 3/8c) 2/5 × 3/4 = 6/20 = 3/10d) 4/7 ÷ 2/3 = 4/7 × 3/2 = 12/14 = 6/7三、有理数的比较和排序1. 按大小顺序排列下列数:-3/4,-7/8,1/2,-5/6,2/3。

答案:-7/8,-5/6,-3/4,1/2,2/3四、代数式与方程式1. 化简下列代数式:a) 3x + 2 - (x - 5)b) 2(2x - 3) - 3(4 - x)答案:a) 3x + 2 - (x - 5) = 3x + 2 - x + 5 = 2x + 7b) 2(2x - 3) - 3(4 - x) = 4x - 6 - 12 + 3x = 7x - 18五、图形的性质与变换1. 下列哪个是正三角形?a) 一个内角为90°的三角形b) 三条边长相等的三角形c) 一个内角为120°的三角形答案:b) 三条边长相等的三角形六、几何运算1. 求下列图形的面积:a) 边长为5cm的正方形b) 半径为6cm的圆c) 长为8cm,宽为4cm的矩形答案:a) 正方形的面积为边长的平方,即5 × 5 = 25平方厘米b) 圆的面积为πr²,即3.14 × 6 × 6 ≈ 113.04 平方厘米c) 矩形的面积为长 ×宽,即8 × 4 = 32 平方厘米七、概率与统计1. 甲、乙、丙三个人依次掷一颗骰子,他们的点数分别是2、4、6的概率分别是多少?答案:骰子一共有6个面,每个面的点数是等可能出现的。

【常考压轴题】2023年七年级数学上册(人教版)一元一次方程压轴题考点训练(原卷版)

【常考压轴题】2023年七年级数学上册(人教版)一元一次方程压轴题考点训练(原卷版)

第三章 一元一次方程压轴题考点训练1.满足方程24233x x ++-=的整数x 有( )个 A .0个B .1个C .2个D .3个2.A ,B 两地相距100km ,甲车以30km/h 的速度由A 地出发驶向B 地,同一时间乙车以40km/h 的速度由B 地驶向A 地,两车中途相遇后继续前行,直到其中一辆车先到达终点时,两车停止运动,下列选项中,能正确反映两车离A 地的距离s (km )与时间t (h )函数关系的图象是( ) A . B .C .D .3.如图,点,C D 为线段AB 上两点,9AC BD +=,且75AD BC AB +=,设CD t =,则方程()()371232t x x x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =4.方程 (13153520192021)x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .101020215.若m 、n 是有理数,关于x 的方程3m (2x ﹣1)﹣n =3(2﹣n )x 有至少两个不同的解,则另一个关于x 的方程(m +n )x +3=4x +m 的解的情况是( )A .有至少两个不同的解B .有无限多个解C .只有一个解D .无解6.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元7.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( )A .()130%90%85x x +⋅=-B .()130%90%85x x +⋅=+C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+8.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk 的解总是x =2,则ab =_________.9.万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡 万盛茶飘香”为主题的采茶制茶、品茶赏茶、茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶:清明香、云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1.由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的12,此时清明香总数量达到三种茶叶总量的49,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元、380元,清明香的售价为每盒640元,活动中将清明香的18供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价不高于另外两种茶叶销售单价之和的511,则滴翠剑茗的单价最低为______元.10.甲、乙两人分别从A 、B 两地同时相向匀速前进,在距A 点700米处第一次相遇,然后继续前进,甲到A 地、乙到B 地后都立即返回,第二次相遇在距B 点400米处,则A 、B 两地间的距离是_____米.11.关于x的方程2a(x+5)=3x+1无解,则a=______.12.学校为了让学生积极参加体育锻炼强健体魄,做好大课间活动,计划购买体育用品,价格如下表:2:3,排球与羽毛球拍数量的比为4:5,求篮球、排球和羽毛球拍的购买数量各为多少?(2)初一学年计划购买篮球,初二学年计划购买排球,商场的优惠促销活动如下:元,初二年级一次性付款504元,那么这两个年级购买两种体育用品的数量一共是多少?13.A,B两地相距300千米,甲车从A地驶向B地,行驶80千米后,乙车从B地出发驶向A地,乙车行驶5小时到达A地,并原地休息.甲、乙两车匀速行驶,甲车速度是乙车速度的43倍.(1)甲车的行驶速度是________千米/ 时,乙车的行驶速度是________千米/ 时;(2)求乙车出发后几小时两车相遇;(列方程解答此问)(3)若甲车到达B地休息一段时间后按原路原速返回,且比乙车晚2小时到达A地.甲车从A 地出发到返回A地过程中,甲车出发________小时,两车相距40千米;甲车在B地休息________小时.14.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有240m墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷230m的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?(3)已知每名师傅,徒弟每天的工资分别是95元,75元,张老板要求在3天内完成36个房间的粉刷,问如何在这8个人中雇用人员,才合算呢?请直接写出你的雇佣方案.(被雇工人要求:他们必须同时开工,同时收工,不可无故在工作期间辞掉某个人)15.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离,而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的有|5﹣3|表示5、3在数轴上对应的两点之间的距离:|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B两点之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和﹣3的两点之间的距离是;数轴上P、Q两点之间的距离为3,若点P表示的数是﹣2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣4、3,那么A到B的距离是;A到C 的距离.(用含绝对值的式子表示)(3)若|x﹣3|+|x+4|=11,则x的值为.(4)若|x﹣3|+|x+4|=7,则x的取值范围值为.。

地理初一上册期中考点

地理初一上册期中考点

地理初一上册期中考点1.地理初一上册期中考点1、世界海峡的地理位置马六甲海峡:马来半岛——苏门答腊岛之间;沟通南海——印度洋的安达里海。

太平洋——印度洋航运的咽喉要道,被称为日本的“海上生命线”霍尔木兹海峡:伊朗——阿拉伯半岛之间,沟通波斯湾——阿拉伯海。

波斯湾通往阿拉伯海的咽喉,世界的“石油海峡”。

白令海峡:楚科奇半岛―阿拉斯加半岛;沟通北冰洋―太平洋。

亚洲与北美洲的分界线,太平洋和北冰洋间通道。

曼德海峡:阿拉伯半岛——非洲大陆之间;沟通红海——印度洋。

沟通红海、地中海和印度洋的要道。

土耳其海峡:黑海―爱琴海、地中海之间。

黑海出地中海的门户,亚欧分界线。

直布罗陀海峡:伊比利亚半岛——非洲大陆;沟通地中海——大西洋。

地中海出大西洋的门户,亚欧航线必经的要道。

英吉利海峡:大不列颠岛——欧洲大陆;沟通北海——比斯开湾。

北海——大西洋航运要道,世界货运最获忙、通过船只最多的海峡。

麦哲伦海峡:南美大陆——火地岛之间;沟通南大西洋——南太平洋。

大西洋和太平洋之间的大型轮船和航运要道。

德雷克海峡:南美洲——南极半岛之间;沟通大西洋——南太平洋。

南美洲与南极洲的分界线;各国科考队赴南极考察必经之道。

莫桑比克海峡:非洲大陆——马达加斯加岛之间。

沟通南北印度洋,世界上最长的海峡。

2、美洲知识点⑴白令海峡:“三线”交界处(亚洲与北美洲分界线;俄罗斯与美国的国界线;日界线通过的地方)。

⑵巴拿马运河:位于中美地峡南部,巴拿马境内,沟通大西洋和太平洋。

⑶北美洲面积的国家是加拿大、南美洲是巴西⑷主要地区:①亚马孙平原——世界上的平原;②巴西高原——世界上面积的高原。

⑸拉丁美洲:美国以南的美洲地区。

主要通行西班牙语、和葡萄牙语,以混血人为主。

⑹居民:①北美洲的居民主要是欧洲等国的居民,以白种人为主。

②南美洲是世界人种大熔炉,以混血人种为主。

2.地理初一上册期中考点1.地球纬线的周长是赤道,长约4万km。

地球的表面积是5.1亿平方千米。

初一语文上册知识点考点

初一语文上册知识点考点

初一语文上册知识点考点初一语文上册知识点考点一、重点字词1.给下列加点字注音。

擎天撼hàn地糟蹋zāotà庸碌lù小憩qì2.根据拼音写出相应的汉字。

(sāo)骚扰(gū)辜负3.解词。

(1)擎天撼地:形容力量巨大。

(2)肃然起敬:由于受感动而产生恭敬和钦佩之情。

(3)庸碌:形容人平庸,没有作为。

(4)应许:答应。

二、重点句子虽然肉体的生命短暂,生老病死也往往令人无法捉摸,但是,让有限的生命发挥出无限的价值,使我们活得更为光彩有力,却在于我们自己掌握。

三、文学常识《生命生命》的作者是台湾(地名)女作家杏林子,她写了四十多个剧本和许多散文。

初一语文上册知识点考点一、重点字词1.给下列加点字注音。

啜chuò泣纳罕hǎn峭qìao壁目眩xuàn颤chàn抖闷mēn热屡lǚ次。

2.根据拼音写出相应的汉字。

训(jiè)诫瘦骨(línxún)嶙峋小心(yìyì)翼翼(sǒng)耸立3.解词。

(1)纳罕:惊奇,诧异。

(2)啜泣:抽噎,抽抽搭搭地哭。

二、重点句子我提醒自己,不要想着远在下面的岩石,而要着眼于那最初的一小步,走了这一步再走下一步,直到抵达我所要到的地方。

(点拨:本句是主旨句,含义深刻。

)三、文学常识《走一步,再走一步》的作者是美国作家莫顿?亨特。

初一语文上册知识点考点一、重点字词1.给下列加点字注音。

痴chī想诱yòu惑喧xuān腾点拨:不要把"诱"误读成xiù。

2.根据拼音写出相应的汉字。

(huàn)幻想(shùn)瞬间(níng)凝成3.解词。

(1)隐秘:隐蔽,不外露。

(2)一瞬间:一眨眼之间。

4.诗中的"山"指的是困难、挫折,"海"指的是理想、信念。

二、重点句子1.在山的那边,是海!是用信念凝成的海。

初一数学|第2章考点汇总+检测题(附答案).doc

初一数学|第2章考点汇总+检测题(附答案).doc

初一数学|第2章考点汇总+检测题(附答案)人教版七年级数学上册第二章《整式的加减》同步检测与解析一.选择题:1.单项式9xmy3与单项式4x2yn是同类项,则m+n的值是()A.2 B.3 C.4 D.52.下列各式运算正确的是()A.2(a﹣1)=2a﹣1 B.a2b﹣ab2=0C.2a3﹣3a3=a3 D.a2+a2=2a23.下列运算正确的是()A.3a+2a=5a2 B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a34.若﹣x3ya与xby是同类项,则a+b的值为()A.5 B.4 C.3 D.2A.6B.5C.4D.3A.5个B.4个C.3个D.2个9.若﹣2amb4与5an+2b2m+n可以合并成一项,则mn 的值是()A.2 B.0 C.﹣1 D.110.如果A=﹣x2+4x﹣1,B=﹣x2﹣4x+1,那么B﹣A等于()A.﹣2x2 B.8x﹣2 C.2﹣8x D.0二.填空题:14.若4x2mym+n与﹣3x6y2的和是单项式,则mn=.15.若单项式﹣8x3m+ny的次数为5,若m,n均为正整数,则m﹣n的值为.16.多项式(mx+4)(2﹣3x)展开后不含x项,则m=.17.如果单项式2xm+2nyn﹣2m+2与x5y7是同类项,那么nm的值是.18.如果单项式x1﹣ay3与2x3yb是同类项,那么ab=.19.下列各题中的两项是同类项的有(只填序号)20.观察下列单项式:﹣x2,2x3,﹣3x4,4x5,…,则按此规律第2008个单项式是.三.解答题:22.计算:2x2+(3y2﹣xy)﹣(x2﹣3xy).23.先化简再求值:a2﹣(5a2﹣3b)﹣2(b﹣2a2),其中a=﹣1,b=1/2.25.求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2﹣4a),其中a=﹣2.26.关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求6m﹣2n+2的值.27.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.28.化简关于x的代数式(2x2+x)﹣[kx2﹣(3x2﹣x+1)],当k为何值时,代数式的值是常数?29.(1)一个数的绝对值是指在数轴上表示这个数的点到的距离;(2)若|a|=﹣a,则a0;(3)有理数a、b在数轴上的位置如图所示,请化简|a|+|b|+|a+b|.30.有一道题目,是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,正确的结果应该是多少?参考答案1.D2.D3.C4.B5.C6.C7.C8.B9.D 10.C11.﹣123.1/229.原点,≤;﹣2a.。

初一线段上的动点问题专题(含答案)

初一线段上的动点问题专题(含答案)

七年级(上)动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q 在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=4,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE 的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。

初一上考点

初一上考点

初一上考点1.正数和负数1、在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.2.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.(2)有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【规律方法】有理数大小比较的三种方法1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.3.作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.3.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.4.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.5.整式的加减(1)几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.(2)整式的加减实质上就是合并同类项.(3)整式加减的应用:①认真审题,弄清已知和未知的关系;②根据题意列出算式;③计算结果,根据结果解答实际问题.【规律方法】整式的加减步骤及注意问题1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.6.整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.7.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.8.一元一次方程的应用(一)、一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润÷进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)、利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.9.二元一次方程的解(1)定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(2)在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.(3)在求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.10.二元一次方程组的解(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.11.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.12.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..13.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.14.直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.15.线段的性质:两点之间线段最短线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.16.钟面角(1)钟面一周平均分60格,相邻两格刻度之间的时间间隔是1分钟,时针1分钟走112格,分针1分钟走1格.钟面上每一格的度数为360°÷12=30°.(2)计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.(3)钟面上的路程问题分针:60分钟转一圈,每分钟转动的角度为:360°÷60=6°时针:12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.17.角的计算(1)角的和差倍分①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB.(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.18.余角和补角(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.(3)性质:等角的补角相等.等角的余角相等.(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联.注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.19.直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.20.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.21.用样本估计总体用样本估计总体是统计的基本思想.1、用样本的频率分布估计总体分布:从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.22.扇形统计图(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.(3)制作扇形图的步骤①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°.②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.23.条形统计图(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(2)特点:从条形图可以很容易看出数据的大小,便于比较.(3)制作条形图的一般步骤:①根据图纸的大小,画出两条互相垂直的射线.②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.④按照数据大小,画出长短不同的直条,并注明数量.。

初中数学初一专题考试卷模拟考题考试卷考点.doc

初中数学初一专题考试卷模拟考题考试卷考点.doc

初中数学初一专题考试卷模拟考题考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题4.全等三角形面积相等.()20.粮库天内进出库的粮食吨数如下(“”表示进库,“”表示出库):,,,,,.(1)经过这天,库里的粮食是增多了还是减少了?(2)经过这天,仓库管理员结算时发现库里还存吨粮食,那么天前库里存粮多少吨?(3)如果进出的装卸费都是每吨元,那么这天要付多少装卸费?24.设m=2100,n=375,为了比较m与n的大小.小明想到了如下方法:m=2100=(24)25=1625,即25个16相乘的积;n=375=(33)25=2725,即25个27相乘的积,显然m<n,现在设x=430,y=340,请你用小明的方法比较x与y的大小22.如图,已知直线AB∥CD,∠A=∠C=1000,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF,(1)求∠DBE的度数(2)如果平行移动AD,那么∠BFC:∠BDC的比值是否发生变化?如果变化,找出变化的规律,如果没有变化,求出其比值。

(3)在平行的移动AD的过程中,是否存在某种情况,使得∠BEC=∠ADB?如果存在,求出此时∠BEC度数,如果不存在,请说明理由?21.你能把1个三角形分成面积相等的4个三角形吗?试画出相应的图形.(至少画出两种分法)18.简算:(4分)评卷人得分①②102.31×5919.(2015秋•苍南县期末)计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).19.计算:(1)(+)+(﹣2)﹣(﹣2)﹣(+3);(2)﹣24+5×(﹣3)﹣6÷(﹣).19.计算:(1)-3-(-4)+7;(2)(+-)×(-36);(3)-14―(―5)×+(-2)321.已知线段AB=5cm,回答下列问题:是否存在一点C,使它到A、B两点的距离之和等于4?25.马小哈在解一元一次方程“☉x-3=2x+9”时,一不小心将墨水泼在作业本上了,其中有一个未知数x的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以原方程的解为x=-2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?17.已知数轴有A、B、C三点,位置如图,分别对应的数为x、2、y,若,BA=BC,求4x+4y+30的值。

最新人教版七年级初一数学上册第一学期一元一次方程知识点考点及经典应用题专练及答案

最新人教版七年级初一数学上册第一学期一元一次方程知识点考点及经典应用题专练及答案

最新人教版七年级初一数学上册第一学期一元一次方程知识点考点及经典应用题专练及答案(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。

(费用=灯的售价+电费)(2).小刚想在这种灯中选购两盏。

假定照明时间是3000小时,使用寿命都是2800小时。

请你设计一种费用最低的选灯照明方案,并说明理由。

知能点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税(2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)11.某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)一年2.25三年2.70六年2.88 12.为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:(1)直接存入一个6年期;(2)先存入一个三年期,3年后将本息和自动转存一个三年期;(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?13.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).14.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,•把每件的销售价降低x%出售,•但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于().A.1B.1.8C.2D.1015.用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。

初中数学初一专题考试卷测试考试题考点.doc

初中数学初一专题考试卷测试考试题考点.doc

初中数学初一专题考试卷测试考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题评卷人得分2.三角形的角平分线是射线.()18.解方程:20.如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.22.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.(2)如图2,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?(不需证明)(3)如图3,写出∠BPD﹑∠B﹑∠D﹑∠BQD之间的数量关系?请证明你的结论.(4)如图4,求出∠A+∠B+∠C+∠D+∠E+∠F的度数.23.+10,-9,+7,-15,+6,-5,+4,-2(1)最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?(2)警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?21.化简(每题3分,共计9分)(1)(2);(3)先化简,再求值:,其中.17.计算:2+(-3)-(-5)21.计算:(1)(2)18.解方程【小题1】【小题2】18.计算与化简(1);(2);(3);(4);(5)6ab2 - 2( a2b + 3ab2 )(6)( 5x - 3y )-( 2x – y ) + ( 3y - 2x ).22.某市的出租车因车型不同,收费标准也不同:A型车的起步价10元,3千米后每千米价为1.2元;B型车的起步价9元,3千米后,每千米价为1.4元.(1)请你用代数式表示乘坐A型与B型出租车x(x&gt;3)千米的费用,A型:______________;B型:______________.(2)若你要乘坐出租车到20千米处的地方,从节省费用的角度,请通过计算说明应该乘坐哪种型号的出租车?21.列式表示:(1)x的与y的差的是多少?(2)甲数a与乙数b的差除以甲、乙两数的积是多少?20.先化简,再求值:(x+2)2+(x+1)(x-1),其中x=-.11.一副三角板如上图摆放,若∠BAE=135°17′,则∠CAD的度数是______________2.填空:(1)-7的倒数是__,它的相反数是__,它的绝对值是___;(2)的倒数是___,-2.5的倒数是___;(3)倒数等于它本身的有理数是___。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上考点训练
三. 练习:(a/ an)
1. There is ______ “a” in the word “ant”.
2. There is _______ “b” in the word “bus”.
3.There is ______ “c” in the word “act”.
4. There is _______ “d” in the word “dog”.
5. There is ______ “e” in the word “egg”.
6. There is _______ “f” in the word “fox”.
7. There is ______ “g” in the word “age”.
8. There is _______ “h” in the word “hand”.
9. There is ______ “i” in the word “in”.
10. There is _______ “j” in the word “just”.
11. There is ______ “k” in the word “keep”.
12 There is _______ “l” in the word “luck”.
13.There is ______ “m” in the word “must”.
14.There is _______ “n” in the word “nose”.
15.There is ______ “o” in the word “oil”.
16.There is _______ “p” in the word “put”.
17.There is ______ “q” in the word “quite”.
18.There is _______ “r” in the word “rose”.
19.There is ______ “s” in the word “as”.
20.There is _______ “t” in the word “but”.
21.There is ______ “u” in the word “aunt”.
22.There is _______ “v” in the word “very”.
23.There is ______ “y” in the word “yes”.
24.There is _______ “z” in the word “zoo”
25.There is _______ “w” in the word “wall”.
26.There is _________ “x” in the word “fox”.
答案:1. an 2. a 3. a 4. a 5. an 6. an 7. a 8. an 9. an 10.a 11. a
12.an 13. an 14. an 15.an 16. a 17.a 18. an 19. an20. a 21.a 22.
a 23. a 24. a 25. a 26. an
四. u 在单词中的发音:
u 在词首的发音:
用a/ an 填空:
1. __________ unit
2. ___________ umbrella
3.__________ uncle
4. _________ hour
5. _______ useful book
6._________ American boy
7._________ European wolf 8.__________ Asian camel 9._______ English teacher
答案:1. a 2.an 3.an 4.an 5. a 6. an 7. a 8. an 9. an
五、用所给词正确形式填空。

1.Would you like ________ ( see) films?
2.Do you like _______ (swim)?
3.He’d like _________ (drink) some coffee.
4.He likes ___________ (play) basketball very much.
5.What about ___________ (make) a cake for Lucy?
6.How about _____________ (connect) the screen to the computer?
7.Thanks for ______________ (help) me.
8.Thank you for _________________(buy) a pair of trousers for me.
9.Are you good at ___________________ (play) the piano?
10.He spends two hours _____________(listen) to English every day.
11.How long do you spend ___________ ( read ) books very day?
12.Let’s _______ (dance) together.
13.My mother makes me ________ (play) the piano every day.
14.Do you enjoy _______________ (lie) in the sun?
答案:1. to see 2. swimming 3. to drink 4. playing 5.making 6. connecting 7.helping 8. buying 9. playing 10.listening 11. reading 12.dance 13. play 14. lying
翻译句子:
1.我每天花半个小时听音乐。

________________________________________ (spend)
_______________________________________________ (take)
2.他每天花费两个小时写作业。

________________________________________ (spend)
_______________________________________________ (take)
3.作业每天花费他两个小时的时间。

________________________________________ (spend...on)
_______________________________________________ (take)
答案:1. I spend half an hour (in) listening to music every day.
It takes me half an hour to listen to music every day.
2. He spends two hours (in) doing his homework every day.
It takes two hours to do his homework every day.
3. He spends two hours on his homework every day.
His homework takes him two hours every day.
9. If it _____ tomorrow, we’ll go for a picnic.
A.won’t rain
B.doesn’t rain
C.will rain
D. is raining
12. The policeman always tells the kids _____the street when the traffic light is red
A.not to cross
B.don’t cross
C.to cross
D. doesn’t cross
13. I can finish ____________ the book in two days.
A. read
B. to read
C. reading
D. reads
14. -- Would you like __________ coffee? –Yes, please.
A. any
B. some
C. many
D. Much
答案:9. B 12. A 13. C 14. B
VII. 书面表达。

1. 假如你要送给你最好的朋友生日礼物,你准备送给她/ 他什么?请用英语描述一下。

2. 给你最喜欢的动物做一张海报。

提示:1. What’s its name?
2. Where does it live?
3. What does it like eating?
4. What does it like ?
3.一天的学校生活
4.一天的假期生活
5.我们能用电脑干什么?怎样正确使用网络?
6.你正在怎样为春节做准备?
思考以上话题,认真看和它们有关的课文。

相关文档
最新文档