2018年高考数学专题复习突破训练(高考真题专题练)_导数性质的简单应用及对含参问题的研究(1)

合集下载

2018版高考数学(江苏专用理科)专题复习:专题专题3 导数及其应用 第20练 Word版含解析

2018版高考数学(江苏专用理科)专题复习:专题专题3 导数及其应用 第20练 Word版含解析

线y=f(x)上任意一点的切线的倾斜角α的取值范围是________.2.(2017·福建福州三中月考)已知点A(1,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=f(x)的切线方程是____________________.3.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)<0的解集为__________________.4.(2016·兰州诊断)在直角坐标系xOy中,设P是曲线C:xy=1(x>0)上任意一点,l是曲线C在点P处的切线,且l交坐标轴于A,B两点,则以下结论正确的是________.①△OAB的面积为定值2;②△OAB的面积有最小值3;③△OAB的面积有最大值4;④△OAB的面积的取值范围是3,4].5.若函数f(x)=2x2-ln x在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是________.6.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是________.7.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是________.8.(2016·江苏南京、盐城第二次模拟)若存在两个正实数x,y,使得等式x+a(y-2e x)(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围为________.9.已知函数f (x )=12x -14sin x -34cos x 的图象在A (x 0,f (x 0))点处的切线斜率为12,则tan ⎝ ⎛⎭⎪⎫x 0+π4的值为__________. 10.若函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是____________________.11.(2016·景德镇第二次质检)已知f (x )=ax +a -2x +2-2a (a >0),若f (x )≥2ln x 在1,+∞)上恒成立,则a 的取值范围是________.12.函数f (x )=ax -cos x ,x ∈π4,π3],若∀x 1,x 2∈π4,π3],x 1≠x 2,f (x 2)-f (x 1)x 2-x 1<0,则实数a 的取值范围是________.13.若函数f (x )=ax 3+x 恰有3个单调区间,则a 的取值范围为________.14.已知函数f (x )=e x1+ax 2(a >0),若f (x )为R 上的单调函数,则实数a 的取值范围是________.答案精析1.π3,π2) 2.6x -y -4=0或3x -2y +1=0 3.(-∞,0)∪(12,2) 4.①5.1,32)解析 ∵f (x )=2x 2-ln x (x >0),∴f ′(x )=4x -1x =4x 2-1x (x >0),由f ′(x )=0,得x =12,当x ∈(0,12)时,f ′(x )<0;当x ∈(12,+∞)时,f ′(x )>0,根据题意,⎩⎪⎨⎪⎧ k -1<12<k +1,k -1≥0,解得1≤k <32.6.(1,4) 解析 y ′=3x 2-3a ,当a ≤0时,y ′≥0,函数y =x 3-3ax +a 为单调函数,不合题意,舍去;当a >0时,y ′=3x 2-3a =0⇒x =±a ,不难分析,当1<a <2,即1<a <4时,函数y =x 3-3ax +a 在(1,2)内有极小值.7.(3,2)解析 由题意可知f ′(x )=0的两个不同解都在区间(-1,1)内.因为f ′(x )=3x 2+2ax +1,所以根据导函数图象可得⎩⎪⎨⎪⎧ Δ=(2a )2-4×3×1>0,-1<-2a 6<1,f ′(-1)=3-2a +1>0,f ′(1)=3+2a +1>0,又a >0, 解得3<a <2.8.(-∞,0)∪1e ,+∞) 解析 由题意得当a =0时,x =0,所以a ≠0,所以原方程可化为-1a =(y x -2e)ln y x =(t -2e)ln t (t =y x >0),令m (t )=(t -2e)ln t ,t >0,则m ′(t )=ln t +t -2e t ,m ″(t )=1t +2e t 2>0,所以当t >e 时,m ′(t )>m ′(e)=0;当0<t <e 时,m ′(t )<m ′(e)=0.因此m (t )≥m (e)=-e ,从而-1a ≥-e.所以a <0或a ≥1e ,即a ∈(-∞,0)∪1e ,+∞).9.2+ 3解析 ∵f ′(x )=12-14cos x +34sin x =12sin ⎝ ⎛⎭⎪⎫x -π6+12, 又f ′(x 0)=12,故sin ⎝ ⎛⎭⎪⎫x 0-π6=0, ∴x 0=k π+π6,k ∈Z ,∴tan x 0=tan π6=33,∴tan ⎝ ⎛⎭⎪⎫x 0+π4=tan x 0+11-tan x 0=1+331-33=2+ 3. 10.(-∞,2-1e )∪(2-1e ,2)解析 f ′(x )=1x +a (x >0).∵函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,∴方程1x +a =2在区间(0,+∞)上有解,即a =2-1x 在区间(0,+∞)上有解,∴a <2.若直线2x -y =0与曲线f (x )=ln x +ax 相切,设切点为(x 0,2x 0),则⎩⎪⎨⎪⎧1x 0+a =2,2x 0=ln x 0+ax 0,解得x 0=e ,a =2-1e .综上,实数a 的取值范围是(-∞,2-1e )∪(2-1e ,2).11.1,+∞)解析 f (x )≥2ln x 在1,+∞)上恒成立,即f (x )-2ln x ≥0在1,+∞)上恒成立.设g (x )=f (x )-2ln x =ax +a -2x +2-2a -2ln x ,则g ′(x )=a -a -2x 2-2x =(x -1)(ax +a -2)x 2. 令g ′(x )=0,则x =1或x =2-a a .由于g (1)=0,a >0,因此2-a a ≤1(否则2-a a 是g (x )的极小值点,即g (2-a a )<g (1)=0),所以a ≥1.12.(-∞,-32]解析 由f (x 2)-f (x 1)x 2-x 1<0知,函数f (x )在π4,π3]上是减函数.又f ′(x )=a +sin x ,所以f ′(x )≤0在π4,π3]上恒成立,即a ≤-sin x 在π4,π3]上恒成立.当π4≤x ≤π3时,-32≤-sin x ≤-22,故-sin x 的最小值为-32,所以a ≤-32.13.(-∞,0)解析 由f (x )=ax 3+x ,得f ′(x )=3ax 2+1.若a ≥0,则f ′(x )>0恒成立,此时f (x )在(-∞,+∞)上为增函数,不满足题意;若a <0,由f ′(x )>0得--13a <x <-13a ,由f ′(x )<0,得x <--13a 或x >-13a .故当a <0时,f (x )的单调递增区间为(--13a ,-13a ),单调递减区间为(-∞,--13a ),( -13a ,+∞),满足题意.14.(0,1]解析f′(x)=e x(1+ax2)-2ax e x(1+ax2)2=e x(1+ax2-2ax)(1+ax2)2,由题意f(x)为R上的单调函数,所以f′(x)≥0或f′(x)≤0在R上恒成立.又a>0,所以f′(x)≥0在R上恒成立,即ax2-2ax+1≥0在R上恒成立,所以Δ=4a2-4a=4a(a-1)≤0,解得0<a≤1,所以实数a的取值范围是0<a≤1.。

精选江苏专用2018版高考数学专题复习专题3导数及其应用第23练导数综合练练习理

精选江苏专用2018版高考数学专题复习专题3导数及其应用第23练导数综合练练习理

(江苏专用)2018版高考数学专题复习 专题3 导数及其应用 第23练 导数综合练练习 理1.(2016·河北衡水中学调考)f (x )是定义在R 上的函数,其导函数为f ′(x ),若f (x )-f ′(x )<1,f (0)=2 016,则不等式f (x )>2 015·e x+1(其中e 为自然对数的底数)的解集为________.2.(2017·福建“四地六校”联考)已知曲线f (x )=23x 3-x 2+ax -1存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a 的取值范围为________________.3.(2016·泰州二模)若函数f (x )=x 2|x -a |在区间[0,2]上单调递增,则实数a 的取值范围是________________.4.(2016·扬州期末)若函数f (x )=ln x -mx(m ∈R )在区间[1,e]上取得最小值4,则实数m 的值是________.5.(2016·南京调研)已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________________. 6.函数y =ln 2xx的极小值为________.7.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).8.(2016·盐城模拟)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是__________.9.已知函数f (x )=⎩⎪⎨⎪⎧x -x 2x,x ≤0,-x 2+4x +3,x >0,g (x )=f (x )+2k ,若函数g (x )恰有两个不同的零点,则实数k 的取值范围为________________.10.(2016·苏州模拟)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 答案精析1.(0,+∞) 2.⎝ ⎛⎭⎪⎫3,72 3.(-∞,0]∪[3,+∞) 4.-3e 5.(32,4)解析 因为函数f (x )在(1,2)上有极值,则需函数f (x )在(1,2)上有极值点.方法一 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1∉(1,2),因此需1<x 2<2,即1<-1+1+2a <2,即4<1+2a <9,所以32<a <4,故实数a 的取值范围为(32,4).方法二 f ′(x )=x 2+2x -2a 的图象是开口向上的抛物线,且对称轴为x =-1,则f ′(x )在(1,2)上是单调递增函数,因此⎩⎪⎨⎪⎧f=3-2a <0,f =8-2a >0,解得32<a <4,故实数a 的取值范围为(32,4).6.0解析 函数的定义域为(0,+∞). 令y =f (x ),f ′(x )=2ln x -ln 2x x2=-ln xx -x2.令f ′(x )=0,解得x =1或x =e 2.f ′(x )与f (x )随x 的变化情况如下表:故当x =1时,函数y =x取到极小值0.7.30解析 由题意知,毛利润=销售收入-进货支出,设该商品的毛利润为L (p ),则L (p )=pQ -20Q =Q (p -20)=(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700. 令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0.所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值. 8.[-6,-2]解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=x -x 3-x 2-4x -x 2x 6=-x 2-8x -9x4=-x -x +x4>0,∴φ(x )在(0,1]上递增, φ(x )max =φ(1)=-6, ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-x -x +x 4.当x ∈[-2,-1)时,φ′(x )<0, 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.9.⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2解析 由y =(2x -x 2)e x (x ≤0)求导,得y ′=(2-x 2)e x ,故y =(2x -x 2)e x(x ≤0)在(-2,0]上单调递增,在(-∞,-2)上单调递减,且当x <0时,恒有y =(2x -x 2)e x<0. 又y =-x 2+4x +3(x >0)在(0,2)上单调递增,在(2,+∞)上单调递减,所以可作出函数y =f (x )的图象,如图.由图可知,要使函数g (x )恰有两个不同的零点,需-2k =0或-2k =-22-2e 2或3<-2k<7,即实数k 的取值范围为⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2. 10.(1)解 因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33, 则g ′(x )=f ′(x )-2(1+x 2)=2x41-x2.因为g ′(x )>0(0<x <1), 所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k -1-x2.所以当0<x < 4k -2k时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0, 4k -2k 上单调递减.当0<x < 4k -2k时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.。

(江苏版)2018年高考数学一轮复习(讲+练+测): 专题3.4 导数的实际应用(练)-数学备课大师【全免费】

(江苏版)2018年高考数学一轮复习(讲+练+测): 专题3.4 导数的实际应用(练)-数学备课大师【全免费】

专题3.4 导数的实际应用1.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【答案】(1) a=2. (2) x=42.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1 000万元的投资收益.现准备制订一个对科研课题组的奖励方案:奖金y(万元)随投资收益x(万元)的增加而增加,且资金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数f(x)模型制订奖励方案,试用数学语言表述公司对奖励函数f(x)模型的基本要求;(2)现有两个奖励函数模型:①y =x150+2;②y =4lg x -3.试分析这两个函数模型是否符合公司要求? 【答案】(1)详见解析(2) ①不符合②符合则f (x )max =f (1 000)=4lg 1 000-3=9. 所以f (x )≤9恒成立.设g (x )=4lg x -3-x 5,则g ′(x )=4x ln 10-15.当x ≥10时,g ′(x )=4x ln 10-15≤2-ln 105ln 10<0, 所以g (x )在[10,1 000]上是减函数, 从而g (x )≤g (10)=-1<0.所以4lg x -3-x 5<0,即4lg x -3<x5,所以f (x )≤x5恒成立. 故该函数模型符合公司要求.3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的年关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 x,x ,则总利润最大时,每年生产的产品是_______. 【答案】3004.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 【答案】(1) 17.5(2) 80千米/小时,11.25升【解析】(1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×(1128 000×403-380×40+8)=17.5(升).因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升. (2)当速度为x 千米/小时时, 汽车从甲地到乙地行驶了100x小时,设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8)·100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数; 当x ∈(80,120)时,h ′(x )>0,h (x )是增函数, ∴当x =80时,h (x )取得极小值h (80)=11.25. 易知h (80)是h (x )在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升. 5.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为________. 【答案】2∶1【解析】设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝ ⎛⎭⎪⎫6-x 2π2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1.6.用长为90cm ,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折900角,再焊接而成,问该容器的高为多少时,容器的容积最大?最大的容积是多少?【答案】该容器的高为10cm 时,容器有最大容积196003cm7.某厂生产某种产品x 件的总成本37521200)(x x c +=(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,产量定为多少时总利润最大? 【答案】258.某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4 m ,这种薄板须沿其对角线折叠后使用.如图所示,四边形ABCD (AB >AD )为长方形薄板,沿AC 折叠后AB ′交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB ′PD 的面积最大时制冷效果最好.(1)设AB =x m ,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?【答案】(1) y =2⎝ ⎛⎭⎪⎫1-1x ,1<x <2. (2) 长为32 m ,宽为(2-32)m【解析】(1)由题意AB =x ,BC =2-x . 因为x >2-x ,所以1<x <2. 设DP =y ,则PC =x -y .因为△ADP ≌△CB ′P ,所以PA =PC =x -y .9.轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1 m的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轮迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:m.(1)求助跑道所在的抛物线方程;(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4 m到6 m之间(包括4 m和6 m),试求运动员飞行过程中距离平台最大高度的取值范围.(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)【答案】(1) f (x )=x 2-4x +4,x ∈[0,3]. (2) 在2 m 到3 m 之间【解析】(1)设助跑道所在的抛物线方程为f (x )=a 0x 2+b 0x +c 0,依题意⎩⎪⎨⎪⎧c 0=4,4a 0+2b 0+c 0=0,9a 0+3b 0+c 0=1,解得 a 0=1,b 0=-4,c 0=4,所以助跑道所在的抛物线方程为10. 一位创业青年租用了一块边长为1百米的正方形田地ABCD 来养蜂、产蜜与售蜜,他在正方形的边,BC CD 上分别取点,E F (不与正方形的顶点重合),连接,,AE EF FA ,使得45EAF ∠=︒. 现拟将图中阴影部分规划为蜂源植物生长区,AEF ∆部分规划为蜂巢区,CEF ∆部分规划为蜂蜜交易区. 若蜂源植物生长区的投入约为5210⨯元/百米2,蜂巢区与蜂蜜交易区的投入约为510元/百米2,则这三个区域的总投入最少需要多少元?510从而三个区域的总投入T510元. ...............14分 (说明:这里S 的最小值也可以用导数来求解:因为2(1))(1))2(1)x x S x +-'=+,则由0S '=,得1x =.C E第17题图当1)x ∈时,0S '<,S递减;当1,1)x ∈时,0S '>,S 递增.所以当1x =时,S取得最小值为1).)解法二:设阴影部分面积为S ,三个区域的总投入为T . 则55521010(1)10(1)T S S S =⨯⋅+⋅-=⋅+,从而只要求S 的最小值. ...............2分因为9045EAF αβ+=︒-∠=︒,所以tan tan tan()11tan tan αβαβαβ++==-,........8分 所以2tan tan tan tan 1tan tan 1()2αβαβαβ++=-≥-, ..............10分即221S S ≥-,解得1S ≥,即S 取得最小值为1),从而三个区域的总投入T 510元. ...............14分11. 经市场调查,某商品每吨的价格为(114)x x <<百元时,该商品的月供给量为1y 万吨,217(0)2y ax a a a =+->;月需求量为2y 万吨,22111224112y x x =--+. 当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.(1)若17a =,问商品的价格为多少时,该商品的月销售额最大? (2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数a 的取值范围.【答案】(1)8(2)1(0,]7【解析】 (1) 若17a =,由21y y >,得221117111()2241127277x x x --+>+-. 解得406x -<< . …………………………………………………………………3分 因为114x <<,所以16x <<.(2)若该商品的均衡价格不低于每吨6百元,实数a 的取值范围是1(0,]7.12. 某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x (单位:元,0x >)时,销售量()q x (单位:百台)与x 的关系满足:若x 不超过20,则1260()1q x x =+;若x 大于或等于180,则销售量为零;当20180x ≤≤时,()q x a =-a ,b 为实常数). (1)求函数()q x 的表达式;(2)当x 为多少时,总利润(单位:元)取得最大值,并求出该最大值.【答案】(1)1260,020,1()90180,0,180x x q x x x ⎧<⎪+⎪⎪-<⎨⎪>⎪⎪⎩≤=≤(2)当x 等于80元时,总利润取得最大值240000元当20180x <≤时,()9000f x x -=()9000f x '-=令()0f x '=,得80x =. …………10分 当2080x <<时,()0f x '>,()f x 单调递增,当8080x <≤1时,()0f x '<,()f x 单调递减,所以当80x =时,()f x 有最大值240000. …………12分 当180x <时,()0f x =﹒答:当x 等于80元时,总利润取得最大值240000元. …………14分13.如图,已知海岛A 到海岸公路BC 的距离AB 为50㎞,B ,C 间的距离为100㎞,从A 到C必须先坐船到BC 上的某一点D ,船速为25㎞/h ,再乘汽车到C ,车速为50㎞/h ,记∠BDA =θ.(1)试将由A 到C 所用的时间t 表示为θ的函数t (θ);(2)问θ为多少时,由A 到C 所用的时间t 最少?【答案】(1)t (θ)=2cos sin θθ-+2(θ0<θ<2π,其中tan θ0=12)(2)θ=3π14.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m 的围墙.现有两种方案: 方案① 多边形为直角三角形AEB (90AEB ∠=),如图1所示,其中30m AE EB +=; 方案② 多边形为等腰梯形AEFB (AB EF >),如图2所示,其中10m AE EF BF ===. 请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.BACD θ【答案】方案①,②苗圃的最大面积分别为222252m ,建苗圃时用方案②,且3BAE π∠=所以当3θ=时,()2max S = ................................................12分因为2252<3BAE π∠=.答:方案①,②苗圃的最大面积分别为222252m ,建苗圃时用方案②,且3BAE π∠=.。

2018版高考数学(理)(全国)一轮复习练习 第三章 导数及其应用 第3讲含答案

2018版高考数学(理)(全国)一轮复习练习 第三章 导数及其应用 第3讲含答案

基础巩固题组(建议用时:40分钟)一、选择题1.(2017·西安调研)定积分错误!(2x+e x)d x的值为()A.e+2B.e+1 C。

e D。

e-1解析错误!(2x+e x)d x=(x2+e x)错误!)=1+e1-1=e。

故选C。

答案C2。

若错误!错误!d x=3+ln 2(a>1),则a的值是( )A.2 B。

3 C。

4 D.6解析错误!错误!d x=(x2+ln x)错误!=a2+ln a-1,∴a2+ln a-1=3+ln 2,则a=2。

答案A3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v=gt(g为常数),则电视塔高为()A。

错误!g B。

g C。

错误!g D.2g解析 电视塔高h =⎠⎜⎜⎛12gt d t =错误!错误!1=错误!g 。

答案 C4.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A.错误!|x 2-1|d xB.错误!C 。

错误!(x 2-1)d xD 。

错误!(x 2-1)d x +错误!(1-x 2)d x解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即错误!|x 2-1|d x .答案 A5。

若S 1=错误!x 2d x ,S 2=错误!错误!d x ,S 3=错误!e x d x ,则S 1,S 2,S 3的大小关系为( )A 。

S 1〈S 2〈S 3B 。

S 2<S 1<S 3 C.S 2<S 3<S 1 D.S 3〈S 2<S 1解析S2=错误!错误!d x=ln 2,S3=错误!e x d x=e2-e,∵e2-e=e(e-1)>e>错误!>ln 2,∴S2<S1<S3。

答案B二、填空题6.已知t>0,若错误!(2x-2)d x=8,则t=________.解析由错误!(2x-2)d x=8得,(x2-2x)错误!=t2-2t =8,解得t=4或t=-2(舍去)。

2018版高考数学复习导数及其应用3.3导数的综合应用真题演练集训理新人教A版

2018版高考数学复习导数及其应用3.3导数的综合应用真题演练集训理新人教A版

2018版高考数学一轮复习 第三章 导数及其应用 3.3 导数的综合应用真题演练集训 理 新人教A 版1.[2015·新课标全国卷Ⅰ]设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B .⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D .⎣⎢⎡⎭⎪⎫32e ,1 答案:D解析:∵ f (0)=-1+a <0,∴ x 0=0.又x 0=0是唯一的整数,∴ ⎩⎪⎨⎪⎧f-,f ,即⎩⎪⎨⎪⎧e-1--1]+a +a ≥0,--a +a ≥0,解得a ≥32e.又a <1,∴ 32e≤a <1,故选D.2.[2014·陕西卷]如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x答案:A解析:设所求函数解析式为y =f (x ),由题意知f (5)=-2,f (-5)=2,且f ′(±5)=0,代入验证易得y =1125x 3-35x 符合题意,故选A.3.[2014·辽宁卷]当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,φ′(x )=x -x 3-x 2-4x -x 2x 6=-x 2-8x -9x=-x -x +x>0,∴φ(x )在(0,1]上单调递增, φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-x -x +x4,当x ∈[-2,-1)时,φ′(x )<0; 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上可知,a 的取值范围为[-6,-2].4.[2016·新课标全国卷Ⅰ]已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ). (ⅰ)设a =0,则f (x )=(x -2)e x,f (x )只有一个零点. (ⅱ)设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.(ⅲ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))上单调递减, 在(ln(-2a ),+∞)上单调递增.又当x ≤1时f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),又f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e 2-x 2-(x 2-2)e x2. 设g (x )=-x e2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0. 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.5.[2015·新课标全国卷Ⅱ]设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围.(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解:由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f -f -1,f --f -1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1.①设函数g (t )=e t-t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].6.[2015·新课标全国卷Ⅰ]已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.解:(1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0,即 ⎩⎪⎨⎪⎧x 3+ax 0+14=0,3x 20+a =0,解得⎩⎪⎨⎪⎧x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)上无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0,所以只需考虑f (x )在(0,1)上的零点个数. ①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调. 而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0, -a 3上单调递减,在⎝⎛⎭⎪⎫-a3,1上单调递增,故在(0,1)上,当x = -a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫ -a 3=2a3-a3+14. a .若f ⎝ ⎛⎭⎪⎫-a 3>0,即-34<a <0,则f (x )在(0,1)上无零点.b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点.c .若f ⎝⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点. 综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.课外拓展阅读巧用导数妙解有关恒成立、存在性问题“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立问题,以免细节出错.方法一 分离参数法[典例1] [改编题]设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数.若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)[答案] A[解析] 解法一:f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时,f ′(x )≤0恒成立,即当x ∈(1,+∞)时,a ≥1x恒成立,则a ≥1.因为g ′(x )=e x-a 在(1,+∞)上单调递增, 所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e. 综上,可知a 的取值范围是(e ,+∞).解法二:f ′(x )=1x-a ,g ′(x )=e x-a .由题意得,当x ∈(1,+∞)时,f ′(x )≤0恒成立,即当x ∈(1,+∞)时,a ≥1x恒成立,则a ≥1.当a ≤0时,g ′(x )>0恒成立,从而g (x )在(1,+∞)上单调递增,故g (x )在(1,+∞)上无最值,不符合题意;当0<a ≤e 时,由g ′(x )>0得x >ln a ,又ln a ≤1,故g (x )在(1,+∞)上单调递增,故g (x )在(1,+∞)上无最值,不符合题意; 当a >e 时,由g ′(x )>0得x >ln a ,又ln a >1,故g (x )在(1,ln a )上单调递减,在(ln a ,+∞)上单调递增,此时有最小值,为g (ln a )=eln a-a ln a =a -a ln a .由题意知ln a >1,所以a >e. 综上,可知a 的取值范围是(e ,+∞). 技巧点拨在恒成立问题中有时需要取交集,有时需要取并集,本题结果取交集.一般而言,在同一“问题”中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集.方法二 构造函数法[典例2] 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2xx ,x +x >,若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][答案] D[解析] |f (x )|≥ax ⇔⎩⎪⎨⎪⎧--x 2+2xax x ,①x +ax x >②(1)由①得x (x -2)≥ax 在区间(-∞,0]上恒成立. 当x =0时,a ∈R ;当x <0时,有x -2≤a 在区间(-∞,0]上恒成立,所以a ≥-2.(2)由②得ln(x +1)-ax ≥0在区间(0,+∞)上恒成立,设h (x )=ln(x +1)-ax (x >0),则h ′(x )=1x +1-a (x >0),可知h ′(x )为减函数.当a ≤0时,h ′(x )>0,故h (x )为增函数,所以h (x )>h (0)=0恒成立;当a ≥1时,因为1x +1∈(0,1),所以h ′(x )=1x +1-a <0,故h (x )为减函数,所以h (x )<h (0)=0恒成立,显然不符合题意;当0<a <1时,对于给定的一个确定值a ,总可以至少找到一个x 0>0,满足h (x 0)=ln(x 0+1)-ax 0<0成立.如当a =12时,取x 0=4,则h (x 0)=ln 5-2<0成立,可知当0<a <1时,不符合题意.故a ≤0.由(1)(2)可知,a 的取值范围是[-2,0]. 方法探究本题的切入点不同,构造的函数也是不相同的,也可以构造函数结合选项利用函数图象及排除法去完成.典例2也可以通过构造函数求解,但是在问题的求解中如果可以分离出参数,尽量用分离参数法去求解.相对而言,多数题目都可以采用分离参数法去求解,而且采用分离参数法对于问题的求解会相对容易.方法三 等价转化法[典例3] 设f (x )=a x+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. [解] (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x ⎝ ⎛⎭⎪⎫x -23.由g ′(x )>0得x <0或x >23,又x ∈[0,2],所以g (x )在⎣⎢⎡⎦⎥⎤0,23上是单调递减函数, 在⎣⎢⎡⎦⎥⎤23,2上是单调递增函数, 所以g (x )min =g ⎝ ⎛⎭⎪⎫23=-8527, g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,等价于在⎣⎢⎡⎦⎥⎤12,2上,函数f (x )min ≥g (x )max .由(1)可知在⎣⎢⎡⎦⎥⎤12,2上,g (x )的最大值为g (2)=1.在⎣⎢⎡⎦⎥⎤12,2上,f (x )=a x +x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在⎣⎢⎡⎦⎥⎤12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0. 即函数h (x )=x -x 2ln x 在⎣⎢⎡⎦⎥⎤12,1上单调递增,在[1,2]上单调递减,所以h (x )max =h (1)=1,即实数a 的取值范围是[1,+∞).温馨提示如果一个问题的求解中既有“存在性”又有“恒成立”问题,那么需要对问题作等价转化,使之变成与典例2、典例3相关的问题去求解,这里一定要注意转化的等价性、巧妙性,防止在转化中出错而使问题的求解出错.。

2018版高考数学复习高考专题突破一高考中的导数应用问题文北师大版

2018版高考数学复习高考专题突破一高考中的导数应用问题文北师大版

2018版高考数学大一轮复习 高考专题突破一 高考中的导数应用问题 文 北师大版1.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A .3f (1)<f (3) B .3f (1)>f (3) C .3f (1)=f (3) D .f (1)=f (3)答案 B解析 由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f x x ′=fx x -f x x 2<0恒成立,因此f xx在R 上是减函数, ∴f3<f1,即3f (1)>f (3).故选B.2.若函数f (x )=kx -ln x 在区间(1,+∞)上是增加的,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上是增加的⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.(2016·宝鸡模拟)函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+x ,eaxx 在[-2,2]上的最大值为2,则a 的范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]答案 D解析 当x ≤0时,f ′(x )=6x 2+6x =6x (x +1),所以f (x )在(-∞,-1)上为增函数,在(-1,0]上为减函数, 所以f (x )在x ∈[-2,0]上的最大值为f (-1)=2,欲使得函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+x ,e axx 在[-2,2]上的最大值为2,则当x =2时,e 2a的值必须小于等于2, 即e 2a≤2,解得a ∈(-∞,12ln 2].4.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为_______________. 答案 3解析 f ′(x )=a (ln x +x ·1x)=a (ln x +1).因为f ′(1)=3,所以f ′(1)=a =3.5.(2016·陕西西工大附中模拟)设函数f (x )为(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 016)2f (x +2 016)-9f (-3)>0的解集为________. 答案 {x |x <-2 019}解析 由2f (x )+xf ′(x )>x 2(x <0), 得2xf (x )+x 2f ′(x )<x 3, 即[x 2f (x )]′<x 3<0. 令F (x )=x 2f (x ),则当x <0时,F ′(x )<0,即F (x )在(-∞,0)上是减函数, ∴F (x +2 016)=(x +2 016)2f (x +2 016),F (-3)=9f (-3),即不等式等价为F (x +2 016)-F (-3)>0. ∵F (x ) 在(-∞,0)上是减函数,∴由F (x +2 016)>F (-3),得x +2 016<-3, ∴x <-2 019.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上是增加的.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上是增加的,在⎝ ⎛⎭⎪⎫1a,+∞上是减少的.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上是增加的,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图像的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的递增区间;(2)若函数f (x )在(-1,1)上是增加的,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f ′(x )>0,即(-x 2+2)e x >0,因为e x>0, 所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上是增加的, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=[-x 2+(a -2)x +a ]e x,所以[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)都成立. 因为e x>0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2x x +1=x +2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1x +2>0,所以y =(x +1)-1x +1在(-1,1)上是增加的, 所以y <(1+1)-11+1=32,即a ≥32.因此a 的取值范围为[32, +∞).题型二 利用导数研究方程的根或函数的零点问题例2 (2015·北京)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上随x 的变化情况如下表:k-ln k2所以,f (x )的递减区间是(0,k ),递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k-ln k2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k-ln k2.因为f (x )存在零点,所以k-ln k2≤0,从而k ≥e,当k =e 时,f (x )在区间(1,e]上是减少的且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上是减少的且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图像,根据零点或图像的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a=-2,所以a =1.(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )是增加的,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上是减少的,在(2,+∞)上是增加的,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.题型三 利用导数研究不等式问题例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 对一切x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +x -x2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的, 所以h (x )min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4. (2)证明 问题等价于证明x ln x >x ex -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-xe x ,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值烦琐时,可采用直接构造函数的方法求解.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是________________. 答案 [-74,-32]解析 问题等价于f (x )的值域是g (x )的值域的子集, 显然,g (x )是减少的,∴g (x )max =g (2)=12,g (x )min =g (4)=-234;对于f (x ),f ′(x )=3x 2-4x +1, 令f ′(x )=0,解得x =13或x =1,当x 变化时,f ′(x ),f (x )的变化情况列表如下:∴f (x )max =a +2,f (x )min =a -4, ∴⎩⎪⎨⎪⎧a +2≤12,a -4≥-234,∴a ∈[-74,-32].1.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 2.(2016·千阳中学模拟)已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,从而f (x )在(0,1e )上是减少的,在(1e ,+∞)上是增加的.所以,当x =1e 时,f (x )取得最小值-1e.(2)依题意,得f (x )≥ax -1在[1,+∞)上恒成立, 即不等式a ≤ln x +1x对于x ∈[1,+∞)恒成立.令g (x )=ln x +1x,则g ′(x )=1x -1x 2=1x (1-1x).当x >1时,因为g ′(x )=1x (1-1x)>0,故g (x )在[1,+∞)上是增加的,所以g (x )的最小值是g (1)=1,从而a 的取值范围是(-∞,1].3.(2015·重庆)设函数f (x )=3x 2+ax ex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=x +ax-x 2+axxx2=-3x 2+-a x +aex,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+-a x +aex.令g (x )=-3x 2+(6-a )x +a , 由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.4.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 解 由f (x )=x 2+x sin x +cos x , 得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切, 所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0.当x 变化时,f (x )与f ′(x )的变化情况如下:所以函数f (x )在区间(-∞,0)上是减少的,在区间(0,+∞)上是增加的,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点; 当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调, 所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点. 综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点, 那么b 的取值范围是(1,+∞).5.(2016·四川)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内是减少的. 当a >0时,由f ′(x )=0,有x =12a .此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )是减少的; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )是增加的.(2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内是增加的.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0,所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1). 当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)内是增加的. 又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.。

2018年高考新课标数学(理)一轮考点突破练习第三章导数及其应用Word版含答案

2018年高考新课标数学(理)一轮考点突破练习第三章导数及其应用Word版含答案

第三章 导数及其应用1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数y =C (C 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数.4.能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.①常见的基本初等函数的导数公式: (C )′=0(C 为常数); (x n)′=nxn -1(n ∈N +);(sin x )′=cos x; (cos x )′=-sin x ; (e x)′=e x;(a x)′=a xln a (a >0,且a ≠1); (ln x )′=1x ;(log a x )′=1xlog a e(a >0,且a ≠1).②常用的导数运算法则: 法则1:′=u ′(x )±v ′(x ). 法则2:′=u ′(x )v (x )+u (x )v ′(x ). 法则3:⎣⎢⎡⎦⎥⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )v 2(x )(v (x )≠0).5.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).7.会用导数解决实际问题.8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.9.了解微积分基本定理的含义.3.1 导数的概念及运算1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx 就叫函数y =f (x )从x 0到x 0+Δx之间的平均变化率,即ΔyΔx=f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处 ,并把这个极限叫做f (x )在点x 0处的导数,记作 或y ′|x =x 0,即f ′(x 0)=lim ΔyΔx=limf (x 0+Δx )-f (x 0)Δx.(2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′= limf (x +Δx )-f (x )Δx.(3)用定义求函数y =f (x )在点x 0处导数的方法①求函数的增量Δy = ; ②求平均变化率ΔyΔx = ;③取极限,得导数f ′(x 0)=lim ΔyΔx .2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 .3.基本初等函数的导数公式 (1)c ′= (c 为常数), (x α)′= (α∈Q *); (2)(sin x )′=____________, (cos x )′=____________; (3)(ln x )′=____________, (log a x )′=____________; (4)(e x )′=____________, (a x)′=____________. 4.导数运算法则(1)′=__________________. (2)′=____________________;当g (x )=c (c 为常数)时,即′=____________.(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________ (g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ), u =g (x )的导数间的关系为______________.即y对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.自查自纠:1.(1)可导 f ′(x 0) (3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.f ′(x 0) y -y 0=f ′(x 0)(x -x 0) 3.(1)0 αx α-1(2)cos x -sin x(3)1x1x ln a(4)e x a x ln a4.(1)f ′(x )±g ′(x )(2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x ) (3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x(2014·全国卷)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解:因为y ′=a -1x +1,所以切线的斜率为a -1=2,解得a =3.故选D .(2015·陕西)函数y =x e x在其极值点处的切线方程为( )A .y =e xB .y =(1+e)xC .y =1eD .y =-1e解:记y =f (x )=x e x,则f ′(x )=(1+x )e x,令f ′(x )=0,得x =-1,此时f (-1)=-1e .故函数 y =x e x在其极值点处的切线方程为y =-1e .故选D .(2016·山东)若函数y =f (x )的图象上存在两点,使得函数的图象在此两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =x 3B .y =ln xC .y =e xD .y =sin x 解:选项A 、B 、C 中函数的导数均为正值或非负值,故两点处的导数之积不可能为-1,排除A 、B 、C.或由y ′=cos x ,cos0cos π=-1知D 正确,故选D .(2014·广东)曲线y =e-5x+2在点(0,3)处的切线方程为________.解:因为y ′=-5e-5x,所求切线的斜率为-5e 0=-5,故所求切线的方程为y -3=-5x ,即y =-5x +3(或5x +y -3=0).故填y =-5x +3(或5x +y -3=0).(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解:x >0时,-x <0,f (-x )=ln x -3x =f (x ),所以当x >0时,f ′(x )=1x -3,f ′(1)=-2,所以切线方程为y +3=-2(x -1),整理得y =-2x -1.故填y =-2x -1(或2x +y +1=0).类型一 导数的概念用定义法求函数f (x )=x 2-2x -1在x =1处的导数.解法一:Δy =f (x +Δx )-f (x )=(x +Δx )2-2(x +Δx )-1-(x 2-2x -1) =x 2+2x ·Δx +Δx 2-2x -2Δx -1-x 2+2x +1=(2x -2)Δx +Δx 2,所以 Δy Δx =lim (2x -2)Δx +Δx 2Δx =lim=2x -2.所以函数f (x )=x 2-2x -1在x =1处的导数为f ′(x )|x =1=2×1-2=0.解法二:Δy =f (1+Δx )-f (1)=(1+Δx )2-2(1+Δx )-1-(12-2×1-1) =1+2Δx +Δx 2-2-2Δx -1+2=Δx 2, 所以 Δy Δx = Δx 2Δx =Δx =0.故f ′(x )|x =1=0.点拨:利用导数定义求函数在某一点处的导数,首先写出函数在该点处的平均变化率ΔyΔx ,再化简平均变化率,最后判断当Δx →0时,ΔyΔx 无限趋近于哪一常数,该常数即为所求导数,这是定义法求导数的一般过程.航天飞机发射后的一段时间内,第t s时的高度h (t )=5t 3+30t 2+45t +4(单位:m).(1)求航天飞机在第1 s 内的平均速度; (2)用定义方法求航天飞机在第1 s 末的瞬时速度.解:(1)航天飞机在第1 s 内的平均速度为h (1)-h (0)1=5+30+45+4-41=80 m/s.(2)航天飞机第1 s 末高度的平均变化率为h (1+Δt )-h (1)Δt=错误!=5Δt 3+45Δt 2+120Δt Δt=5Δt 2+45Δt +120,当Δt →0时,5Δt 2+45Δt +120→120,所以航天飞机在第 1 s 末的瞬时速度为 120 m/s.类型二 求导运算求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x+e ; (4)y =ln xx 2+1;(5)y =ln(2x -5).解:(1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=(3x e x )′-(2x)′+e ′ =(3x )′e x +3x (e x )′-(2x)′ =3x e x ln3+3x e x -2xln2 =(ln3+1)(3e)x -2xln2. (4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2. (5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.点拨: 求导运算,一是熟记公式及运算法则,二是掌握求复合函数导数的步骤,遵从“由外到内”的原则,三是要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.求下列函数的导数:(1)y =e xcos x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =ln xe x ;(4)y =ln 1+x 2.解:(1)y ′=(e x)′cos x +e x(cos x )′= e x(cos x -sin x ).(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x3.(3)y ′=(ln x )′e x -(e x)′ln x(e x )2=1x e x -e xln x (e x )2=1x -ln x e x=1-x ln x x e x . (4)y =ln 1+x 2=12ln(1+x 2),所以y ′=12·11+x2(1+x 2)′=12·11+x 2·2x =x 1+x2. 类型三 导数的几何意义已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程. 解:(1)y ′=x 2,设切点为(x 0,y 0), 故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝ ⎛⎭⎪⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)因为y ′=x 2,且P (2,4)在曲线y =13x 3+43上, 所以在点P (2,4)处的切线的斜率k = y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,又因为切线的斜率k = y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0, 所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0, 所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y + 2=0.点拨:曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.(2016·四川)设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1 图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y轴相交于点A ,B ,则△PAB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)解:设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设 x 1>1,0<x 2<1),则由导数的几何意义易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1,所以x 2=1x 1.所以切线l 1的方程为y -ln x 1=1x 1(x -x 1),切线l 2的方程为y+ln x 2=-1x 2(x -x 2),即y -ln x 1=-x 1⎝ ⎛⎭⎪⎫x -1x 1.分别令 x =0得A (0,-1+ln x 1),B (0,1+ln x 1).易得l 1与l 2的交点P 的横坐标x P =21x 1+x 1,因为x 1>1,所以S △PAB =12|y A -y B |·|x P |=21x 1+x 1<1,所以0<S △PAB <1.故选A .1.“函数在点x 0处的导数”“导函数”“导数”的区别与联系(1)函数在点x 0处的导数f ′(x 0)是一个常数,不是变量.(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x ).(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.2.函数y =f (x )在x =x 0处的导数f ′(x 0)的两种常用求法(1)利用导数的定义,即求 limf (x 0+Δx )-f (x 0)Δx的值;(2)求导函数在x 0处的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.关于用导数求曲线的切线问题(1)圆是一种特殊的封闭曲线,注意圆的切线的定义并不适用于一般的曲线.(2)求曲线在某一点处的切线方程,这里的某一点即是切点,求解步骤为先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.(3)求过某点的曲线的切线方程,这里的某点可能是切点(点在曲线上的情形),也可能不是切点,即便点在曲线上,切线也不一定唯一,如本节例3(3),就极易漏掉切线x -y +2=0.1.(2016·衡水调研)曲线y =1-2x +2在点 (-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2 解:因为y =1-2x +2=xx +2,所以y ′=x +2-x (x +2)2=2(x +2)2,y ′|x =-1=2,所以曲线在点(-1,-1)处的切线斜率为2,所以所求切线方程为y +1=2(x +1),即y =2x +1.故选A .2.(2016·武汉模拟)若f (x )=2xf ′(1)+x 2,则f ′(0)等于( )A .2B .0C .-2D .-4解:f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2,所以 f ′(0)=2f ′(1)+0=-4.故选D .3.(2016·济南模拟)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2 解:设切点坐标为(x 0,y 0),由y ′=1x +a知 0x x y ='=1x 0+a=1,即x 0+a =1.解方程组⎩⎪⎨⎪⎧x 0+a =1,y 0=ln (x 0+a ),y 0=x 0+1, 得⎩⎪⎨⎪⎧x 0=-1,y 0=0,a =2.故选B . 4.(2016·丽水模拟)设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为( ) A .9x -y -16=0 B .9x +y -16=0C .6x -y -12=0D .6x +y -12=0解:f ′(x )=3x 2+2ax +a -3,由于f ′(x )是偶函数,所以a =0,此时f ′(x )=3x 2-3,f ′(2)=9,f (2)=2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2),即9x -y -16=0.故选A .5.下面四个函数图象中,有函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)=()A.13 B .-23 C.73 D .-13或53 解:因为f ′(x )=x 2+2ax +a 2-1,所以f ′(x )的图象开口向上,则排除②④.若f ′(x )的图象为①,此时a =0,f (-1)=53;若f ′(x )的图象为③,此时a 2-1=0,又对称轴x =-a >0,所以a =-1,所以f (-1)=-13.故选D .6.(2015·杭州质检)若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( )A .-1 B.164 C .1或164 D .1或-164解:易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上,(1)当O (0,0)是直线l 与曲线f (x )的切点时,易求出切线方程y =2x ,联立⎩⎪⎨⎪⎧y =2x ,y =x 2+a消y 后,令Δ=0,得a =1.(2)当O (0,0)不是直线l 与曲线f (x )的切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.①又k =y 0x 0=x 20-3x 0+2,② 由①②联立,得x 0=32或x 0=0(舍),所以k =-14,所以所求切线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a , 得x 2+14x +a =0.依题意,Δ=116-4a =0,所以a =164.综上,a =1或a =164.故选C .7.若函数f (x )=12x 2-ax +ln x 存在垂直于y轴的切线,则实数a 的取值范围是________.解:因为f (x )=12x 2-ax +ln x ,所以f ′(x )=x -a +1x.因为f (x )存在垂直于y 轴的切线, 所以f ′(x )存在零点,即x +1x -a =0有解,x >0,则a =x +1x≥2.故填上连续的函数f (x )在上必有最大值与最小值.(2)若函数f (x )在上单调递增,则________为函数在上的最小值, 为函数在上的最大值;若函数f (x )在上单调递减,则 为函数在上的最大值, 为函数在上的最小值.(3)设函数f (x )在上连续,在(a ,b )内可导,求f (x )在上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与端点处的函数值______,______进行比较,其中最大的一个是________,最小的一个是________.自查自纠:1.单调递增 单调递减 常数函数 2.(1)②f ′(x )<0 f ′(x )>0 (2)②f ′(x )=0 ③极大值 极小值 3.(2)f (a ) f (b ) f (a ) f (b ) (3)②f (a ) f (b ) 最大值 最小值(2016·宁夏模拟)函数f (x )=x +eln x 的单调递增区间为( )A .(0,+∞)B .(e ,+∞)C .(-∞,0)和(0,+∞)D .R解:函数定义域为(0,+∞),f ′(x )=1+ex>0,故单调递增区间是(0,+∞).故选A .(2016·四川模拟)已知函数y =f (x )的图象是下列四个图象之一,且其导数y =f ′(x )的图象如图所示,则该函数的图象是()解:由函数y =f (x )的导函数y =f ′(x )的图象从左到右先增后减,知y =f (x )图象切线的斜率对应先增后减.故选B .(2016·武汉模拟)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解:依题意得,当x <1时,f ′(x )>0,f (x )为增函数;又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .故选C.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解:由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,因为g (x )=-x +1x 在⎣⎢⎡⎦⎥⎤13,2上单调递减,所以g (x )≤g ⎝ ⎛⎭⎪⎫13=83,所以2a ≥83,即a ≥43.故填⎣⎢⎡⎭⎪⎫43,+∞.函数f (x )=x +2cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解:f ′(x )=1-2sin x ,令f ′(x )=0得sin x =12,从而x =π6,当x ∈⎝⎛⎭⎪⎫0,π6时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫π6,π2时,f ′(x )<0,f (x )单调递减,所以f (x )在x =π6处取得极大值,即最大值π6+ 3.故填π6+3.类型一 导数法判断函数的单调性已知函数y =f (x )的图象如图所示,则其导函数y =f ′(x )的图象可能是()解:由题意得函数y =f (x )在(0,+∞)上单调递减,则其导函数在(0,+∞)上恒小于0,排除B ,D ;又因为函数y =f (x )在(-∞,0)上先单调递增,后单调递减,再单调递增,则其导函数在(-∞,0)上先大于0,后小于0,再大于0,排除C ,故选A .点拨:导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).(2014·北京联考)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是()A .在(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .当x =2时,f (x )取极大值D .当x =4时,f (x )取极大值解:由y =f ′(x )的图象可得y =f (x )的大致图象如图.由图可知,A ,B ,D 均错.故选C .类型二 导数法研究函数的单调性(2015·嘉兴质检)已知函数f (x )=e x2-1ex -ax (a ∈R ). (1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在上为单调函数,求实数a 的取值范围.解:(1)当a =32时,f (x )=e x2-1e x -32x ,f ′(x )=12e x =12ex (e x -1)(e x-2),令f ′(x )=0,得e x=1或e x=2,即x =0或x =ln2.令f ′(x )>0,则x <0或x >ln2; 令f ′(x )<0,则0<x <ln2.所以f (x )的递增区间是(-∞,0),(ln2,+∞);递减区间是(0,ln2).(2)f ′(x )=e x2+1ex -a ,令e x=t ,由于x ∈,所以t ∈⎣⎢⎡⎦⎥⎤1e ,e .令h (t )=t 2+1t ⎝ ⎛⎭⎪⎫t ∈⎣⎢⎡⎦⎥⎤1e ,e ,h ′(t )=12-1t 2=t 2-22t2,所以当t ∈⎣⎢⎡⎦⎥⎤1e ,2时,h ′(t )≤0, 函数h (t )为单调减函数;当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数.故h (t )在⎣⎢⎡⎦⎥⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝ ⎛⎭⎪⎫1e =12e +e ,h (2)= 2.所以2≤h (t )≤e +12e .因为函数f (x )在上为单调函数, 若函数f (x )在上单调递增,则a ≤t 2+1t 对t ∈⎣⎢⎡⎦⎥⎤1e ,e 恒成立,所以a ≤2; 若函数f (x )在上单调递减,则a ≥t 2+1t 对t ∈⎣⎢⎡⎦⎥⎤1e ,e 恒成立,所以a ≥e +12e. 综上可得a 的取值范围是(-∞,2]∪⎣⎢⎡⎭⎪⎫e +12e ,+∞. 点拨:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.(3)存在单调区间问题可类似地转化为不等式有解问题.(1)(2016·山东)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(Ⅰ)讨论f (x )的单调性; (Ⅱ)略.解:(Ⅰ)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减;②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增;③a >2时,0<2a<1,当x ∈⎝⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,函数f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1 内单调递减,在(1,+∞)内单调递增.(2)(2016·兰州模拟)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解:因为f (x )=x 2-e x-ax ,所以f ′(x )= 2x -e x-a ,因为函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,所以f ′(x )=2x -e x-a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x,则g ′(x )=2-e x,令g ′(x )=0,解得x =ln2,则当x <ln2时,g ′(x )>0,g (x )单调递增;当x >ln2时,g ′(x )<0,g (x )单调递减,所以当x =ln2时,g (x )取得最大值,且g (x )ma x =g (ln2)=2ln2-2,所以a ≤2ln2-2.故填(-∞,2ln 2-2].类型三 导数法研究函数的极值问题(2014·重庆)已知函数f (x )=x 4+ax-ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y = 12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5. 因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln5.点拨:找函数的极值点,即先找导数的零点,但并不是说导数的零点就是极值点(如y =x 3),还要保证该零点为变号零点.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线斜率为2.(1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)f ′(x )=2a (x -5)+6x,依题意,f ′(1)=6-8a =2,得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=(x -2)(x -3)x.令f ′(x )=0,得x =2或3.x ,f ′(x ),f (x )的变化情况如下表:单调减区间为(2,3).f (x )的极大值f (2)=92+6ln2,极小值f (3)=2+6ln3.类型四 导数法研究函数的最值问题(2015·衡水中学二调)已知函数f (x )=x ln x .(1)求函数y =f (x )在x =1处的切线方程; (2)求f (x )在区间(t >0)上的最小值.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,所以f ′(1)=1,f (1)=0,所以所求切线方程为y -0=1×(x -1),即y=x -1.(2)当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥e 时,在区间上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .综上所述,当t ≥1e 时,f (x )在区间上的最小值为t ln t ,当0<t <1e 时,f (x )在区间上的最小值为-1e .点拨:函数在限定区间内最多只有一个最大值和一个最小值,如果存在最大或最小值,最大值一般是在端点或极大值点取得,最小值一般是在端点或极小值点取得.(2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a时取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝⎛⎭⎪⎫1-1a=-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2,等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).类型五 实际应用问题(优化问题) (2016·山东质检)某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳a 元(a 为常数,2≤a ≤5)的管理费,根据多年的统计经验,预计当每件产品的售价为x 元时,产品一年的销售量为ke x (e 为自然对数的底数)万件,已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价x 最低不低于35元,最高不超过41元.(1)求分公司经营该产品一年的利润L (x )万元与每件产品的售价x 元的函数关系式;(2)当每件产品的售价为多少元时,该产品一年的利润L (x )最大,并求出L (x )的最大值.解:(1)由题意,该产品一年的销售量为y =ke x .将x =40,y =500代入,得k =500e 40. 故该产品一年的销售量y (万件)关于x (元)的函数关系式为y =500e40-x.所以L (x )=(x -30-a )y =500(x -30-a )e40-x(35≤x ≤41).(2)由(1)得,L ′(x )=500=500e 40-x(31+a -x ).①当2≤a ≤4时,L ′(x )≤500e 40-35(31+4-35)=0,当且仅当a =4,x =35时取等号. 所以L (x )在上单调递减.因此,L (x )ma x =L (35)=500(5-a )e 5. ②当4<a ≤5时,L ′(x )>0⇔35≤x <31+a ,L ′(x )<0⇔31+a <x ≤41.所以L (x )在上单调递减. 因此,L (x )ma x =L (31+a )=500e9-a.综上所述,当2≤a ≤4时,每件产品的售价为35元,该产品一年的利润L (x )最大,最大为500(5-a )e 5万元;当4<a ≤5时,每件产品的售价为(31+a )元,该产品一年的利润L (x )最大,最大为500e9-a万元.点拨:解此类应用问题,应以读题、建模、求解、作答这四个步骤为主线,同时还应注意实际问题中函数的定义域.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解:(1)因为蓄水池侧面的总成本为 100·2πrh =200πrh 元,底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元.又据题意200πrh +160πr 2=12 000π, 所以h =15r(300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因为r >0,又由h >0可得r <53,故函数V (r )的定义域为(0,53). (2)因为V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2).令V ′(r )=0,解得r 1=5,r 2=-5(舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r∈(5,53)时,V′(r)<0,故V(r)在(5,53)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.1.用导数判断单调性用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.2.导数值为0的点不一定是函数的极值点,“函数在某点的导数值为0”是“函数在该点取得极值”的必要不充分条件.3.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,一个连续函数在闭区间内的最值一定存在且是唯一的,而极值可以同时存在若干个或不存在,且极大(小)值并不一定比极小(大)值大(小).(3)从位置上看,极值只能在定义域内部取得,而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,连续函数的最值只要不在端点处必定是极值.4.实际问题中的最值(1)要从问题的实际意义出发确定函数的定义域.(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.1.(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则( )A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解:由条件知由q可推出p,而由p推不出q.故选C.2.(2015·潍坊期末)函数f(x)=e x-x(e为自然对数的底数)在区间上的最大值是( ) A.1+1eB.1 C.e+1 D.e-1解:因为f(x)=e x-x,所以f′(x)=e x-1.令f′(x)=0,得x=0.且当x>0时,f′(x)=e x-1>0;x<0时,f′(x)=e x-1<0,即函数f(x)在x=0处取得极小值,f(0)=1,又f(-1)=1e+1,f(1)=e-1,比较得函数f(x)=e x-1在区间上的最大值是e-1.故选D.3.(2015·安徽)函数f(x)=ax3+bx2+cx+d 的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0解:f(0)=d>0;当x无限增大时f(x)无限增大,因此a >0;f ′(x )=3ax 2+2bx +c ,由图知x 1及x 2均大于0,而x 1与x 2为f ′(x )=0的两根,所以x 1+x 2=-2b 3a >0且x 1x 2=c3a>0,结合a >0得b <0,c >0.所以a >0,b <0,c >0,d >0.故选A .4.(2016·西安模拟)若函数f (x )=x 3-tx 2+3x 在区间上单调递减,则实数t 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,518B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞D .上单调递减,则有f ′(x )≤0在上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝ ⎛⎭⎪⎫x +1x 在上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在上单调递增,所以t ≥ 32⎝ ⎛⎭⎪⎫4+14=518.故选C .5.(2016·陕西模拟)已知函数f (x )=x ⎝⎛⎭⎪⎫e x -1e x ,若f (x 1)<f (x 2),则( )A .x 1>x 2B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解:因为f (-x )=-x ⎝⎛⎭⎪⎫e -x -1e -x =x ⎝ ⎛⎭⎪⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*). 又f ′(x )=e x -1e x +x ⎝⎛⎭⎪⎫e x +1e x =e 2x(x +1)+x -1ex, 当x ≥0时,e 2x(x +1)+x -1≥e 0(0+1)+0-1=0, 所以f ′(x )≥0,所以f (x )在(e 为自然对数的底数)上的最大值.解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故函数f (x )的极大值点为x =3;当x =0时,函数f (x )取得极小值为f (0)=0.(2)①当-1≤x <1时,由(1)知,函数f (x )在和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎝ ⎛⎭⎪⎫0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,所以f (x )在上单调递增,则f (x )在上的最大值为f (e)=a .综上所述,当a ≥2时,f (x )在上的最大值为a ;当a <2时,f (x )在上的最大值为2.(2015·全国卷Ⅱ)设函数f (x )=e mx+x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0, +∞)单调递增;(2)若对于任意x 1,x 2∈,都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.解:(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0. 所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在单调递减,在单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈,|f (x 1)-f (x 2)|≤e -1的充要条件是:⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1, 即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1,①,设函数g (t )=e t -t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e<0,故当t ∈时,g (t )≤0.当m ∈时,g (m )≤0,g (-m )≤0,即①式成立.当m >1时,由g (t )的单调性知,g (m )>0,即e m-m >e -1;当m <-1时,g (-m )>0,即e -m +m >e -1.综上,m 的取值范围是.3.3 导数的应用(二)1.当f ′(x )在某个区间内个别点处为零,在其余点处均为正(或负)时,f (x )在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f (x )=x 3,当x =0时,f ′(x )=________,当x ≠0时,f ′(x )>0,而f (x )=x 3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x )=0⇒x =x 1,x 2,…,x n ,x ∈.直接比较f (a ),f (b ),f (x 1),…,f (x n ),找出__________和____________即可.在此基础上还应注意:(1)结合____________可减少比较次数. (2)含参数的函数求最值时分类: ①按____________分类; ②按____________分类.3.实际问题中的导数,常见的有以下几种情形: (1)加速度是速度关于________的导数; (2)线密度是质量关于________的导数; (3)功率是功关于________的导数; (4)瞬时电流是电荷量关于________的导数; (5)水流的瞬时速度是流过的水量关于________的导数;(6)边际成本是成本关于________的导数. 4.N 型曲线与直线y =k 的位置关系问题如图,方程f (x )=0有三个根x 1,x 2,x 3时,极大值f (a )>0且极小值f (b )<0.曲线y =f (x )与直线y =k (k 是常数)有一个交点时,见图中的直线①或直线②,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有两个交点时,见图中的直线③或直线④,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有三个交点时,见图中的直线⑤.以上这些问题,常见于求参数的取值范围、讨论不等关系等形式的题目.自查自纠: 1.02.最小值 最大值 (1)单调性 (2)单调性 极值点3.(1)时间 (2)长度 (3)时间 (4)时间 (5)时间(6)产量4.< > = =(2016·岳阳模拟)函数f (x )=ln x -x 在区间(0,e]上的最大值为( )A .1-eB .-1C .-eD .0解:因为f ′(x )=1x -1=1-x x,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以当x =1时,f (x )取得最大值ln1-1=-1.故选B .(2016·长沙模拟)若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,4]C .(0,+∞)D .上有解,则实数m 的取值范围是( )A .B .C .D .(-∞,-2)∪(2,+∞)解:方程x 3-3x +m =0在上有解,等价于m =3x -x 3在上有解,故m 的取值范围即为函数f (x )=3x -x 3在上的值域,求导可得f ′(x )=3-3x 2=3(1-x 2),从而f (x )在(-1,1)上单调递增,在(-∞,-1)及(1,+∞)上单调递减,故当x ∈时,f (x )ma x =f (1)=2,f (x )min =min{f (0),f (2)}=f (2)=-2,故m 的取值范围为 .故选A .(2016·贵州模拟)函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________.解:令f ′(x )=3x 2-3a =0,得x =±a , 则f (x ),f ′(x )随x 的变化情况如下表:x(-∞,-a )-a(-a ,a )a(a ,+∞) f ′(x ) + 0 - 0+f (x )↗ 极大值 ↘ 极小值 ↗从而⎩⎨⎧(-a )3-3a (-a )+b =6,(a )3-3a a +b =2,解得⎩⎪⎨⎪⎧a =1,b =4. 所以f (x )的单调递减区间是(-1,1).故填(-1,1).(2016·常德模拟)已知函数f (x )=-12x 2+4x -3ln x 在上不单调,则实数t 的取值范围是________.解:由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1,3,两极值点间的距离大于区间的长度,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 故填(0,1)∪(2,3).类型一 函数单调性的进一步讨论已知实数a >0,函数f (x )=a (x -2)2+2ln x .(1)当a =1时,讨论函数f (x )的单调性;(2)若f (x )在区间上是增函数,求实数a 的取值范围.解:(1)当a =1时,f (x )=x 2-4x +4+2ln x , f ′(x )=2x -4+2x =2(x -1)2x,因为x >0,所以f ′(x )≥0,所以f (x )在区间(0,+∞)上单调递增.(2)因为f ′(x )=2ax -4a +2x =2ax 2-4ax +2x,又f (x )在区间上是增函数,所以f ′(x )=2ax 2-4ax +2x≥0对x ∈恒成立,即2ax 2-4ax +2≥0对x ∈恒成立, 令g (x )=2ax 2-4ax +2, 则g (x )=2a (x -1)2+2-2a , 因为a >0,所以g (x )在上单调递增, 只要使g (x )min =g (1)=2-2a ≥0即可,所以0<a ≤1.点拨:①函数f(x)在限定区间是单调函数,求参数范围的问题,可以转化为恒成立问题求解;而存在单调区间问题,可转化为不等式有解问题.②对导数进行研究时,不可忽略原函数的定义域,如本题中易忽略“x>0”.(2015·云南第一次检测)已知f(x)=e x(x3+mx2-2x+2).(1)假设m=-2,求f(x)的极大值与极小值;(2)是否存在实数m,使f(x)在上单调递增?如果存在,求m的取值范围;如果不存在,请说明理由.解:(1)当m=-2时,f(x)=e x(x3-2x2-2x+2),其定义域为(-∞,+∞).则f′(x)=e x(x3-2x2-2x+2)+e x(3x2-4x-2)=x e x(x2+x-6)=(x+3)x(x-2)e x,所以当x∈(-∞,-3)或x∈(0,2)时,f′(x)<0;当x∈(-3,0)或x∈(2,+∞)时,f′(x)>0.f′(-3)=f′(0)=f′(2)=0,所以f(x)在(-∞,-3)上单调递减,在(-3,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,所以当x=-3或x=2时,f(x)取得极小值;当x=0时,f(x)取得极大值,所以f(x)的极小值为f(-3)=-37e-3和f(2)=-2e2,f(x)的极大值为f(0)=2.(2)f′(x)=e x(x3+mx2-2x+2)+e x(3x2+2mx-2)=x e x.因为f(x)在上单调递增,所以当x∈时,f′(x)≥0.又因为当x∈时,x e x<0,所以当x∈时,x2+(m+3)x+2m-2≤0,所以⎩⎪⎨⎪⎧(-2)2-2(m+3)+2m-2≤0,(-1)2-(m+3)+2m-2≤0,解得m≤4,所以当m∈(-∞,4]时,f(x)在上单调递增.类型二极值与最值的进一步讨论(2016·云南模拟)已知函数f(x)=12ax2-(2a+1)x+2ln x(a∈R).(1)求f(x)的单调区间;(2)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.解:(1)f′(x)=(ax-1)(x-2)x(x>0).①当a≤0时,x>0,ax-1<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当0<a<12时,1a>2,在区间(0,2)和⎝⎛⎭⎪⎫1a,+∞上,f′(x)>0;在区间⎝⎛⎭⎪⎫2,1a上f′(x)<0.故f(x)的单调递增区间是(0,2)和⎝⎛⎭⎪⎫1a,+∞,单调递减区间是⎝⎛⎭⎪⎫2,1a.③当a=12时,f′(x)=(x-2)22x,故f(x)的单调递增区间是(0,+∞).④当a>12时,0<1a<2,在区间⎝⎛⎭⎪⎫0,1a和(2,+∞)上,f′(x)>0;在区间⎝⎛⎭⎪⎫1a,2上,f′(x)<0,故f(x)的单调递增区间是⎝⎛⎭⎪⎫0,1a和(2,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a,2.(2)由已知,在(0,2]上有f (x )ma x <g (x )ma x . 由已知,g (x )ma x =0,由(1)可知, ①当a ≤12时,f (x )在(0,2]上单调递增,故f (x )ma x =f (2)=2a -2(2a +1)+2ln2= -2a -2+2ln2,所以-2a -2+2ln2<0,解得a >ln2-1.故ln2-1<a ≤12.②当a >12时,f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎝ ⎛⎦⎥⎤1a ,2上单调递减,故f (x )ma x =f ⎝ ⎛⎭⎪⎫1a =-2-12a -2ln a .由a >12可知ln a >ln 12>ln 1e =-1,2ln a >-2,-2ln a <2,所以-2-2ln a <0,f (x )ma x <0,综上所述,a 的取值范围是(ln2-1,+∞). 点拨:(1)研究函数问题定义域应优先;(2)对任意x 1∈(0,2],指的是对区间内的任意一个自变量;存在x 2∈(0,2],指的是区间内存在一个自变量,故本题是恒成立问题和有解问题的综合,解题时注意最值的化归.(2015·山东改编)设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R ,讨论函数f (x )极值点的个数.解:f (x )=ln(x +1)+a (x 2-x ),定义域为(-1,+∞),f ′(x )=1x +1+a (2x -1) =a (2x -1)(x +1)+1x +1=2ax 2+ax +1-a x +1,当a =0时,f ′(x )=1x +1>0,函数f (x )在(-1,+∞)为增函数,无极值点.当a ≠0时,设g (x )=2ax 2+ax +1-a ,g (-1)=1,Δ=a 2-8a (1-a )=9a 2-8a ,若Δ=a (9a -8)≤0,即0<a ≤89时,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)为增函数,无极值点.若Δ=a (9a -8)>0,即a >89或a <0,而当a <0时,g (-1)≥0,此时方程g (x )=0在(-1,+∞)只有一个实数根,此时函数f (x )只有一个极值点;当a >89时,方程g (x )=0在(-1,+∞)总有两个不相等的实数根,此时函数f (x )有两个极值点.综上可知,当0≤a ≤89时,f (x )的极值点个数为0;当a <0时,f (x )的极值点个数为1;当a >89时,f (x )的极值点个数为2.类型三 方程根的讨论(2014·全国Ⅱ)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2.。

2018年高考数学复习演练第三章导数及其应用(含20142017年真题)

2018年高考数学复习演练第三章导数及其应用(含20142017年真题)

第三章导数及其应用考点1 导数与积分1.(2017•浙江,7)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A. B. C. D.1. D 由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D.2.(2017•新课标Ⅱ,11)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.12. A 函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1 =(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选A.3.(2014·大纲全国,7)曲线y=x e x-1在点(1,1)处切线的斜率等于( )A. 2eB.eC.2D.1 3.C[由题意可得y ′=e x -1+x ex -1,所以曲线在点(1,1)处切线的斜率等于2,故选C.]4.(2014·新课标全国Ⅱ,8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A.0B.1C.2D.3 4.D [y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.]5.(2014·陕西,3)定积分(2x +e x)d x 的值为( ) A.e +2 B.e +1 C.e D.e -15.C [∫10(2x +e x )d x =(x 2+e x )|10=(1+e)-(0+e 0)=e ,因此选C.]6.(2014·江西,8)若f (x )=x 2+2f (x )d x ,则f (x )d x =( ) A.-1 B.-13 C.13D.16.B [因为∫10f (x )d x 是常数,所以f ′(x )=2x ,所以可设f (x )=x 2+c (c 为常数),所以x 2+c =x 2+2(13x 3+cx )|10,解得c =-23,∫10f (x )d x =∫10(x 2+c )d x =∫10(x 2-23)d x =⎝ ⎛⎭⎪⎫13x 3-23x |10=-13.]7.(2014·山东,6)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A.2 2 B.4 2 C.2 D.47.D [由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为∫20(4x -x 3)d x =⎝⎛⎭⎪⎫2x 2-14x 4|20=4.]8.(2014·湖南,9)已知函数f (x )=sin(x -φ),且2π30()d f x x ⎰=0,则函数f (x )的图象的一条对称轴是( )A.x =5π6B.x =7π12C.x =π3D.x =π68.A [由定积分∫2π30sin(x -φ)d x =-cos(x -φ)|2π30=12cos φ-32sin φ+cos φ=0,得tan φ=3,所以φ=π3+k π(k ∈Z ),所以f (x )=sin(x -π3-k π)(k ∈Z ),由正弦函数的性质知y =sin(x -π3-k π)与y =sin(x -π3)的图象的对称轴相同,令x -π3=k π+π2,则x =k π+5π6(k ∈Z ),所以函数f (x )的图象的对称轴为x =k π+56π(k ∈Z ),当k =0,得x =5π6,选A.]9.(2014·湖北,6)若函数f (x ),g (x )满足11()()d f x g x x -⎰=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0 B.1 C.2 D.39.C [对于①,∫1-1sin 12x cos 12x d x =∫1-112sin x d x =0,所以①是一组正交函数;对于②,∫1-1(x +1)(x -1)d x =∫1-1(x 2-1)d x ≠0,所以②不是一组正交函数;对于③, ∫1-1x ·x 2d x =∫1-1x 3d x =0,所以③是一组正交函数.选C.]10.(2016·全国Ⅲ,15)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.10.2x +y +1=0[设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2,切线方程为y =-2x -1.]11.(2016·全国Ⅱ,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.11.1-ln 2 [y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1,(设切点横坐标为x 2).∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.]12.(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.12.(1,1) [∵(e x )′|x=0=e 0=1,设P (x 0,y 0),有(x1)′|x=x0=-1x 20=-1,又x 0>0,∴x 0=1,故P(1,1).] 13.(2015·湖南,11)⎰2(x -1)d x =________. 13.0 [∫20(x -1)d x =⎝⎛⎪⎪⎪⎭⎪⎫12x 2-x 20=12×22-2=0.] 14.(2015·天津,11)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.14.16 [曲线y =x 2与直线y =x 所围成的封闭图形如图,由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1),面积S =∫1x d x -∫10x 2d x =12x 2⎪⎪⎪⎪⎪⎪10-13x 210=12-13=16.]15.(2015·陕西,16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为________.15.1.2 [由题意可知最大流量的比即为横截面面积的比,建立以抛物线顶点为原点的直角坐标系,设抛物线方程为y =ax 2,将点(5,2)代入抛物线方程得a =225,故抛物线方程为y =225x 2,抛物线的横截面面积为S 1=2⎰5(2-252x 2)d x =2(2x-752x 3)|50=403(m 2),而原梯形上底为10-2tan 45°×2=6(m),故原梯形面积为S 2=12(10+6)×2=16,S 2S 1=16403=1.2.]16.(2014·江西,13)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.16.(-ln 2,2) [由题意有y ′=-e -x,设P (m ,n ),直线2x +y +1=0的斜率为-2,则由题意得-e -m=-2,解得m =-ln 2,所以n =e -(-ln 2)=2.]考点2 导数的应用1.(2015·福建,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( ) A.f(k 1)<1k B.f(k 1)>1k -1 C.f(11-k )<1k -1 D.f(11-k )>k k -11.C [∵导函数f ′(x )满足f ′(x )>k >1,∴f ′(x )-k >0,k -1>0,1k -1>0, 可构造函数g (x )=f (x )-kx ,可得g ′(x )>0,故g (x )在R 上为增函数, ∵f (0)=-1,∴g (0)=-1,∴g(11-k )>g (0), ∴f(11-k )-k k -1>-1,∴f(11-k )>1k -1,∴选项C 错误,故选C.]2.(2015·陕西,12)对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A.-1是f (x )的零点B.1是f (x )的极值点C.3是f (x )的极值D.点(2,8)在曲线y =f (x )上 2.A [A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b 24a =3,③D 正确等价于4a +2b +c =8.④ 下面分情况验证,若A 错,由②、③、④组成的方程组的解为⎩⎪⎨⎪⎧a =5,b =-10,c =8.符合题意;若B 错,由①、③、④组成的方程组消元转化为关于a 的方程后无实数解;若C 错,由①、②、④组成方程组,经验证a 无整数解; 若D 错,由①、②、③组成的方程组a 的解为-34也不是整数.综上,故选A.]3.(2015·新课标全国Ⅱ,12)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)3.A [因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=(x x f )()′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x>0⇔f (x )>0; 在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x<0⇔f (x )>0.综上,得使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A.]4.(2015·新课标全国Ⅰ,12)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34C.⎣⎢⎡⎭⎪⎫32e ,34D.⎣⎢⎡⎭⎪⎫32e ,1 4.D [设g (x )=e x(2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x(2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min =-2e -12,当x =0时,g (0)=-1,g (1)=3e>0,直线y =a (x -1)恒过(1,0)且斜率为a ,故-a >g (0)=-1, 且g (-1)=-3e -1≥-a -a ,解得32e≤a <1,故选D.]5.(2014·新课标全国Ⅱ,12)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)5.C[由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z ),从而得x 0=(k +12)m (k ∈Z ).所以不等式x 02+[f (x 0)]2<m 2即为(k +12)2m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫k +122>3,其中k ∈Z .由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.] 6.(2014·辽宁,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.[-6,-89] C.[-6,-2] D. [-4,-3] 6.C [当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2].]7.(2017•浙江,20)已知函数f (x )=(x ﹣ )e ﹣x(x≥ ).(Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间[ ,+∞)上的取值范围. 7. (Ⅰ)函数f (x )=(x ﹣)e ﹣x(x≥ ),导数f′(x )=(1﹣ • •2)e ﹣x﹣(x ﹣)e ﹣x=(1﹣x+ )e ﹣x=(1﹣x )(1﹣)e ﹣x;(Ⅱ)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥ ⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()= e ,f(1)=0,f()= e ,即有f(x)的最大值为 e ,最小值为f(1)=0.则f(x)在区间[ ,+∞)上的取值范围是[0, e ].8.(2017•山东,20)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.8.(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(Ⅱ)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h (x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h (x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].9.(2017•北京,19)已知函数f(x)=e x cosx﹣x.(13分)(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.9.(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos ﹣=﹣.10.(2017·天津,20)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0, g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0, 2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足| ﹣x0|≥ .10.(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x= .当x变化时,g′(x),g(x)的变化情况如下表:x (﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+ ﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0, 2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0, 2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g (x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0, 2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0, 2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m= ,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0, 2]时,h(x)在区间(x0, m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是| ﹣x0|= ≥ = .因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以| ﹣x0|≥ .所以,只要取A=g(2),就有| ﹣x0|≥ .11.(2017•江苏,20)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.11.(Ⅰ)因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+ ﹣+1=0,所以b= + (a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+ >0,解得a>3,所以b= + (a>3).(Ⅱ)由(I)可知h(a)=b2﹣3a= ﹣+ = (4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(I)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点,则x1+x2= ,x1x2= ,所以f(x1)+f(x2)= + +a(+ )+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2= ﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+ ﹣+2= ﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].12.(2017•新课标Ⅰ,21)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分)(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.12.(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+ )(e x﹣),令f′(x)=0,解得:x=ln ,当f′(x)>0,解得:x>ln ,当f′(x)<0,解得:x<ln ,∴x∈(﹣∞,ln )时,f(x)单调递减,x∈(ln ,+∞)单调递增;当a<0时,f′(x)=2a(e x+ )(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln )是减函数,在(ln ,+∞)是增函数;(2)由f(x)=ae2x+(a﹣2)e x﹣x=0,有两个零点,由(1)可知:当a>0时,f(x)=0,有两个零点,则f(x)min=a +(a﹣2)﹣ln ,=a()+(a﹣2)× ﹣ln ,=1﹣﹣ln ,由f(x)min<0,则1﹣﹣ln <0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).13.(2017•新课标Ⅱ,21)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(Ⅰ)求a;(Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.13.(Ⅰ)因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)由(I)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x= ,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0, x2,且不妨设f′(x)在(0,x0)上为正、在(x0, x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)= ﹣x0﹣x0lnx0= ﹣x0+2x0﹣2 =x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+ = ;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=﹣+ = >;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.14.(2017•新课标Ⅲ,21)已知函数f (x )=x ﹣1﹣alnx . (Ⅰ)若 f (x )≥0,求a 的值;(Ⅱ)设m 为整数,且对于任意正整数n ,(1+ )(1+ ) (1))<m ,求m 的最小值.14.(Ⅰ)因为函数f (x )=x ﹣1﹣alnx ,x >0, 所以f′(x )=1﹣ =,且f (1)=0.所以当a≤0时f ′(x )>0恒成立,此时y=f (x )在(0,+∞)上单调递增,所以在(0,1)上f(x)<0,这与f (x )≥0矛盾; 当a >0时令f′(x )=0,解得x=a ,所以y=f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,即f (x )min =f (a ), 又因为f (x )min =f (a )≥0, 所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f (x )=x ﹣1﹣lnx≥0,即lnx≤x﹣1, 所以ln (x+1)≤x 当且仅当x=0时取等号, 所以ln (1+ )<,k ∈N *,所以,k ∈N *.一方面,因为 + +…+=1﹣<1,所以,(1+ )(1+)…(1+ )<e ;另一方面,(1+ )(1+ ) (1))>(1+ )(1+)(1+)=>2,同时当n≥3时,(1+ )(1+ ) (1))∈(2,e ).因为m 为整数,且对于任意正整数n (1+ )(1+ ) (1))<m , 所以m 的最小值为3. 15.(2016·全国Ⅱ,21)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.15.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=(x -1)(x +2)e x-(x -2)e x(x +2)2=x 2ex(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)证明 g ′(x )=(x -2)e x+a (x +2)x 3=x +2x3(f (x )+a ). 由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)x 2a =e xa +f (x a )(x +1)x 2a=e xa x a +2. 于是h (a )=e x a x a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,e xx +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e24.因为e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.16.(2016·全国Ⅲ,21)设函数f (x )=a cos 2x +(a -1)·(cos x +1),其中a >0,记|f (x )|的最大值为4. (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .16.(1)解 f ′(x )=-2a sin 2x -(a -1)sin x .(2)解 当a ≥1时,|f (x )|=|a cos 2x +(a -1)(cos x +1)|≤a +2(a -1)=3a -2.因此A =3a -2.当0<a <1时,将f (x )变形为f (x )=2a cos 2x +(a -1)·cos x -1,令g (t )=2at 2+(a -1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝ ⎛⎭⎪⎫1-a 4a =-(a -1)28a -1=-a 2+6a +18a. 令-1<1-a 4a <1,解得a <-13(舍去),a >15.(ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a .(ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0,知g (-1)>g (1)>g ⎝ ⎛⎭⎪⎫1-a 4a . 又⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a -|g (-1)|=(1-a )(1+7a )8a >0,所以A =⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a =a 2+6a +18a . 综上,A =⎩⎪⎨⎪⎧2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′(x )|=|-2a sin 2x -(a -1)sin x |≤2a +|a -1|. 当0<a ≤15时,|f ′(x )|≤1+a ≤2-4a <2(2-3a )=2A .当15<a <1时,A =a 8+18a +34≥1,所以|f ′(x )|≤1+a <2A . 当a ≥1时,|f ′(x )|≤3a -1≤6a -4=2A .所以|f ′(x )|≤2A .17.(2016·全国Ⅰ,21)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.17.解(1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 2-x2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e 2-x2-(x 2-2)e x2.设g (x )=-x e 2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x),所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.18.(2016·北京,18)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间. 18. (1)f (x )的定义域为R . ∵f ′(x )=ea -x-x ea -x+b =(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e2-x+e x ,由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex-1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+ex -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).19.(2016·四川,21)设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).19.解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x2-e1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.20.(2016·山东,20)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎪⎫x -2a ⎝⎛⎭⎪⎫x +2a .①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减.②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③a >2时,0<2a<1,当x ∈⎝⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.(2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x2-⎝⎛⎭⎪⎫1-1x -2x2+2x 3=x -ln x +3x +1x 2-2x3-1,x ∈[1,2]. 设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x4. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0.所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.21.(2015·新课标全国Ⅱ,21)设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围. 21.(1)证明 f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].22.(2015·北京,18)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 22.(1)解 因为f (x )=ln(1+x )-ln(1-x ),所以f ′(x )=11+x +11-x ,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增.所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2. 所以当0<x <4k -2k时,h ′(x )<0,因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减.当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.23.(2015·四川,21)已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.23.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎪⎫1+a x,所以g ′(x )=2-2x+2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x 2,当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明 由f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎪⎫1+a x=0,解得a =x -1-ln x1+x-1, 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1, 则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0, 故存在x 0∈(1,e),使得φ(x 0)=0, 令a 0=x 0-1-ln x 01+x -1,u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增, 所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e-1<1,即a 0∈(0,1), 当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0, 由(1)知,f ′(x )在区间(1,+∞)上单调递增, 故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0,所以,当x ∈(1,+∞)时,f (x )≥0, 综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.24.(2015·天津,20)已知函数f (x )=nx -x n ,x ∈R ,其中n ∈N *,n ≥2. (1)讨论f (x )的单调性;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的正实数x ,都有f (x )≤g (x );(3)若关于x 的方程f (x )=a (a 为实数)有两个正实根x 1,x 2,求证:|x 2-x 1|<a1-n+2.24.(1)解 由f (x )=nx -x n ,可得f ′(x )=n -nx n -1=n (1-xn -1).其中n ∈N *,且n ≥2,下面分两种情况讨论:①当n 为奇数时.令f ′(x )=0,解得x =1,或x =-1. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)(-1,1) (1,+∞) f ′(x ) -+-f (x )所以,f (x )在(-∞,-1),(1,+∞)上单调递减,在(-1,1)内单调递增. ②当n 为偶数时.当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减;所以,f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 设点P 的坐标为(x 0,0),则x 0=n1n -1,f ′(x 0)=n -n 2. 曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0). 令F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0),则F ′(x )=f ′(x )-f ′(x 0). 由于f ′(x )=-nxn -1+n 在(0,+∞)上单调递减,故F ′(x )在(0,+∞)上单调递减,又因为F ′(x 0)=0,所以当x ∈(0,x 0)时,F ′(x )>0, 当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(0,x 0)内单调递增, 在(x 0,+∞)上单调递减,所以对于任意的正实数x ,都有F (x )≤F (x 0)=0,即对于任意的正实数x ,都有f (x )≤g (x ). (3)证明 不妨设x 1≤x 2.由(2)知g (x )=(n -n 2)(x -x 0), 设方程g (x )=a 的根为x 2′,可得x 2′=an -n 2+x 0.当n ≥2时,g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′),可得x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ),可得h (x )=nx . 当x ∈(0,+∞),f (x )-h (x )=-x n<0,即对于任意的x ∈(0,+∞),f (x )<h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=a n.因为h (x )=nx 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)<h (x 1),因此x 1′<x 1. 由此可得x 2-x 1<x 2′-x 1′=a1-n+x 0. 因为n ≥2,所以2n -1=(1+1)n -1≥1+C 1n -1=1+n -1=n ,故2≥n 1n -1=x 0.所以,|x 2-x 1|<a 1-n+2.25.(2015·江苏,19)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,求c 的值. 25.解 (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2>0(x ≠0),所以函数f (x )在(-∞,+∞)上单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝ ⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝ ⎛⎭⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎫427a 3+b <0,从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以当a > 0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎪⎫1,32∪⎝⎛⎭⎪⎫32,+∞,则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立. 从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1. 此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根, 所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0, 且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞.综上c =1.26.(2015·重庆,20)设函数f (x )=3x 2+axex(a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.26.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +ae x, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x. 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0, 故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.27.(2015·新课标全国Ⅰ,21)已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.27.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0.即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0,解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)无零点.。

2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题(2021年整理)

2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题(2021年整理)

2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题(word版可编辑修改)的全部内容。

构造函数解决高考导数问题1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1<a ,若存在唯一的整数0x 使得0)(0<x f ,则a 的取值范围是( )A .)1,23[e -B .)43,23[e -C .)43,23[eD .)1,23[e2。

(2016·课标全国II 卷理)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b = .3。

(2016·北京理)(本小题13分)设函数f (x)=x a x e -+bx ,曲线y =f (x)在点(2,f (2))处的切线方程为y =(e -1)x +4, (I )求a ,b 的值;(II) 求f (x )的单调区间.4.(2017·全国III 卷文)(12分)已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性;(2)当a ﹤0时,证明3()24f x a≤--.5. (2016•四川卷文)(本小题满分14分)设函数f (x )=ax 2-a -ln x ,g (x )=错误!-错误!,其中a ∈R ,e =2。

2018版高考数学复习高考专题突破一高考中的导数应用问题试题理北师大版

2018版高考数学复习高考专题突破一高考中的导数应用问题试题理北师大版

高考专题突破一 高考中的导数应用问题试题 理 北师大版1.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A .3f (1)<f (3) B .3f (1)>f (3) C .3f (1)=f (3) D .f (1)=f (3)答案 B解析 由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f x x ′=fx x -f x x 2<0恒成立,因此f xx在R 上是减函数, ∴f3<f1,即3f (1)>f (3).故选B.2.若函数f (x )=kx -ln x 在区间(1,+∞)上是增加的,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上是增加的⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.(2016·宝鸡模拟)函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+x ,e axx 在[-2,2]上的最大值为2,则a 的范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]答案 D解析 当x ≤0时,f ′(x )=6x 2+6x =6x (x +1), 所以f (x )在(-∞,-1)上为增函数, 在(-1,0]上为减函数,所以f (x )在x ∈[-2,0]上的最大值为f (-1)=2,欲使得函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+x ,e axx 在[-2,2]上的最大值为2,则当x =2时,e 2a的值必须小于等于2, 即e 2a≤2,解得a ∈(-∞,12ln 2].4.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x +1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=x 2+-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.5.(2016·陕西西工大附中模拟)设函数f (x )为(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 016)2f (x +2 016)-9f (-3)>0的解集为________. 答案 {x |x <-2 019}解析 由2f (x )+xf ′(x )>x 2(x <0), 得2xf (x )+x 2f ′(x )<x 3, 即[x 2f (x )]′<x 3<0. 令F (x )=x 2f (x ),则当x <0时,F ′(x )<0,即F (x )在(-∞,0)上是减函数, ∴F (x +2 016)=(x +2 016)2f (x +2 016),F (-3)=9f (-3),即不等式等价为F (x +2 016)-F (-3)>0. ∵F (x ) 在(-∞,0)上是减函数,∴由F (x +2 016)>F (-3),得x +2 016<-3, ∴x <-2 019.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上是增加的.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上是增加的,在⎝ ⎛⎭⎪⎫1a,+∞上是减少的.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上是增加的,g (1)=0.于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图像的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的递增区间;(2)若函数f (x )在(-1,1)上是增加的,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x, 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x.令f ′(x )>0,即(-x 2+2)e x >0,因为e x>0, 所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上是增加的, 所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=[-x 2+(a -2)x +a ]e x,所以[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)都成立. 因为e x>0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2x x +1=x +2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1x +2>0,所以y =(x +1)-1x +1在(-1,1)上是增加的, 所以y <(1+1)-11+1=32,即a ≥32.因此a 的取值范围为[32, +∞).题型二 利用导数研究方程的根或函数的零点问题 例2 (2015·北京)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上随x 的变化情况如下表:所以,f (x )的递减区间是(0,k ),递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k-ln k2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k-ln k2.因为f (x )存在零点,所以k-ln k2≤0,从而k ≥e,当k =e 时,f (x )在区间(1,e]上是减少的且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上是减少的且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图像,根据零点或图像的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a=-2,所以a =1.(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )是增加的,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上是减少的,在(2,+∞)上是增加的,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 题型三 利用导数研究不等式问题例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 对一切x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +x -x2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的, 所以h (x )min =h (1)=4. 因为对一切x ∈(0,+∞), 2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4. (2)证明 问题等价于证明x ln x >x ex -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-xe x ,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值烦琐时,可采用直接构造函数的方法求解.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是________________. 答案 [-74,-32]解析 问题等价于f (x )的值域是g (x )的值域的子集, 显然,g (x )是减少的,∴g (x )max =g (2)=12,g (x )min =g (4)=-234;对于f (x ),f ′(x )=3x 2-4x +1,令f ′(x )=0,解得x =13或x =1,当x 变化时,f ′(x ),f (x )的变化情况列表如下:∴f (x )max =a +2,f (x )min =a -4, ∴⎩⎪⎨⎪⎧a +2≤12,a -4≥-234,∴a ∈[-74,-32].1.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 2.(2016·千阳中学模拟)已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,从而f (x )在(0,1e )上是减少的,在(1e ,+∞)上是增加的.所以,当x =1e 时,f (x )取得最小值-1e.(2)依题意,得f (x )≥ax -1在[1,+∞)上恒成立, 即不等式a ≤ln x +1x对于x ∈[1,+∞)恒成立.令g (x )=ln x +1x,则g ′(x )=1x -1x 2=1x (1-1x).当x >1时,因为g ′(x )=1x (1-1x)>0,故g (x )在[1,+∞)上是增加的, 所以g (x )的最小值是g (1)=1, 从而a 的取值范围是(-∞,1].3.(2015·重庆)设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=x +ax-x 2+axxx2=-3x 2+-a x +aex, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+-a x +aex.令g (x )=-3x 2+(6-a )x +a , 由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.4.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 解 由f (x )=x 2+x sin x +cos x , 得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ).解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0.当x 变化时,f (x )与f ′(x )的变化情况如下:所以函数f (x )在区间(-∞,0)上是减少的,在区间(0,+∞)上是增加的,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b , f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).5.(2016·四川)设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内是减少的.当a >0时,由f ′(x )=0,有x =12a . 此时,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )是减少的; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )是增加的. (2)令g (x )=1x -1ex -1,s (x )=e x -1-x . 则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内是增加的.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1. 由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0, 而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1). 当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x=x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)内是增加的. 又因为h (1)=0,所以当x >1时, h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.。

2018版高考数学全国理科专题复习:专题3 导数及其应用

2018版高考数学全国理科专题复习:专题3 导数及其应用

一、选择题1.设函数f (x )=13x 3-x +m 的极大值为1,则函数f (x )的极小值为( )A .-13B .-1 C.13D .12.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ).若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )图象的是( )3.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( )A .-23B .-2C .-2或-23D .2或-234.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是( ) A .①② B .②③ C .③④⑤D .③5.已知二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ),f ′(x )>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为( ) A .1 B .2 C .-1D .-26.(2016·河北保定一中模拟)已知f (x )=ax 3,g (x )=9x 2+3x -1,当x ∈1,2]时,f (x )≥g (x )恒成立,则a 的取值范围为( ) A .a ≥11 B .a ≤11 C .a ≥418D .a ≤4187.(2016·唐山一模)直线y =a 分别与曲线y =2(x +1),y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324D.328.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( ) A .(-∞,0) B .(0,12)C .(0,1)D .(0,+∞)二、填空题9.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________________.10.已知函数f (x )=-12x 2+4x -3ln x 在t ,t +1]上不单调,则t 的取值范围是________________.11.(2017·郑州调研)已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈-1,1],则f (m )+f ′(n )的最小值是________.12.(2015·四川)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =f (x 1)-f (x 2)x 1-x 2,n =g (x 1)-g (x 2)x 1-x 2,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有________.(写出所有真命题的序号)答案精析1.A 求导可得f ′(x )=x 2-1,由f ′(x )=0得x 1=-1,x 2=1,又因为函数在区间(-∞,-1)上单调递增,在区间(-1,1)上单调递减,在区间(1,+∞)上单调递增,所以函数f (x )在x =-1处取得极大值,且f (-1)=1,即m =13,函数f (x )在x =1处取得极小值,且f (1)=13×13-1+13=-13,故选A.]2.D 因为f (x )e x ]′=f ′(x )e x +f (x )·(e x )′=f (x )+f ′(x )]e x ,又因为x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0.] 3.A 由题意知,f ′(x )=3x 2+2ax +b , f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10, 解得⎩⎪⎨⎪⎧ a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.]4.D 当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,①错;当x ∈⎝⎛⎭⎫-12,2时,f ′(x )>0,f (x )单调递增,当x ∈(2,3)时,f ′(x )<0,f (x )单调递减,②错;当x ∈(4,5)时,f ′(x )>0,f (x )单调递增,③正确;当x =2时,函数y =f (x )有极大值,④错;当x =-12时,函数y =f (x )无极值,⑤错.故选D.]5.B ∵f ′(x )=2ax +b ,∴f ′(0)=b >0.由题意知⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0a >0,∴ac ≥b 24,∴c >0,∴f 1 f ′ 0 =a +b +c b ≥b +2ac b ≥2bb =2,当且仅当a =c 时“=”成立.] 6.A f (x )≥g (x )恒成立,即ax 3≥9x 2+3x -1. ∵x ∈1,2],∴a ≥9x +3x 2-1x3.令1x =t ,则当t ∈12,1]时,a ≥9t +3t 2-t 3. 令h (t )=9t +3t 2-t 3,则h ′(t )=9+6t -3t 2=-3(t -1)2+12. ∴h ′(t )在12,1]上是增函数.∴h ′(x )min =h ′(12)=-34+12>0.∴h (t )在12,1]上是增函数.∴a ≥h (1)=11,故选A.]7.D 令2(x +1)=a ,解得x =a2-1.设方程x +ln x =a 的根为t (x >0,t >0),即t +ln t =a ,则|AB |=|t -a 2+1|=|t -t +ln t 2+1|=|t 2-ln t 2+1|.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.] 8.B 函数f (x )=x (ln x -ax )(x >0),则f ′(x )=ln x -ax +x (1x -a )=ln x -2ax +1.令f ′(x )=ln x -2ax+1=0,得ln x =2ax -1.函数f (x )=x (ln x -ax )有两个极值点,等价于f ′(x )=ln x -2ax +1有两个零点,等价于函数y =ln x 与y =2ax -1的图象有两个交点.在同一个坐标系中作出它们的图象(如图).当a =12时,直线y =2ax -1与y =ln x 的图象相切,由图可知,当0<a <12时,y =ln x 与y =2ax -1的图象有两个交点,则实数a 的取值范围是(0,12).]9.(-∞,-1)∪(2,+∞) 解析 f ′(x )=3x 2+6ax +3(a +2), 令f ′(x )=0,即x 2+2ax +a +2=0. 因为f (x )既有极大值又有极小值, 所以f ′(x )=0有两个不相等的实数根.所以Δ=4a 2-4(a +2)>0, 所以a >2或a <-1. 10.(0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x,由f ′(x )=0,得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 11.-13解析 f ′(x )=-3x 2+2ax ,根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9. f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13. 12.①④解析 设A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 1,g (x 1)),D (x 2,g (x 2)),对于①从y =2x 的图象可看出,m =k AB >0恒成立,故①正确;对于②直线CD 的斜率可为负,即n <0,故②不正确; 对于③由m =n ,得f (x 1)-f (x 2)=g (x 1)-g (x 2), 即f (x 1)-g (x 1)=f (x 2)-g (x 2), 令h (x )=f (x )-g (x )=2x -x 2-ax ,则h ′(x )=2x ln 2-2x -a ,由h ′(x )=0,得2x ln 2=2x +a ,结合图象知,当a 很小时,该方程无解, ∴函数h (x )不一定有极值点,就不一定存在x 1,x 2,使f (x 1)-g (x 1)=f (x 2)-g (x 2), 即不一定存在x 1,x 2使得m =n ,故③不正确; 对于④由m =-n ,得f (x 1)-f (x 2)=g (x 2)-g (x 1), 即f (x 1)+g (x 1)=f (x 2)+g (x 2),令F(x)=f(x)+g(x)=2x+x2+ax,则F′(x)=2x ln 2+2x+a,由F′(x)=0,得2x ln 2=-2x-a,结合如图所示图象可知,该方程有解,即F(x)必有极值点,∴存在x1,x2使F(x1)=F(x2),使m=-n.故④正确.综上可知①④正确.。

2018年高考新课标数学(理)一轮考点突破练习第三章 导数及其应用 Word版含答案

2018年高考新课标数学(理)一轮考点突破练习第三章 导数及其应用 Word版含答案

第三章导数及其应用.了解导数概念的实际背景..通过函数图象直观理解导数的几何意义..能根据导数的定义求函数=(为常数),=,=,=,=,=的导数..能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如=(+)的复合函数)的导数.①常见的基本初等函数的导数公式:()′=(为常数); ()′=-(∈+);()′=; ()′=-;()′=; ()′=(>,且≠);()′=;()′=(>,且≠).②常用的导数运算法则:法则:′=′()±′().法则:′=′()()+()′().法则:′=(()≠)..了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)..了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)..会用导数解决实际问题..了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念..了解微积分基本定理的含义..导数的概念及运算.导数的概念()定义如果函数=()的自变量在处有增量Δ,那么函数相应地有增量Δ=(+Δ)-(),比值就叫函数=()从到+Δ之间的平均变化率,即=.如果当Δ→时,有极限,我们就说函数=()在点处,并把这个极限叫做()在点处的导数,记作或′=,即′()==.()导函数当变化时,′()便是的一个函数,我们称它为()的导函数(简称导数).=()的导函数有时也记作′,即′()=′= .()用定义求函数=()在点处导数的方法①求函数的增量Δ=;②求平均变化率=;③取极限,得导数′()=..导数的几何意义函数=()在点处的导数的几何意义,就是曲线=()在点(,())处的切线的斜率.也就是说,曲线=()在点(,())处的切线的斜率是.相应的切线方程为..基本初等函数的导数公式()′= (为常数),(α)′= (α∈*);()()′=,()′=;()()′=,()′=;()()′=,()′=..导数运算法则()′=.()′=;当()=(为常数)时,即′=.()′=(()≠)..复合函数的导数复合函数=(())的导数和函数=(),=()的导数间的关系为.即对的导数等于对的导数与对的导数的乘积.自查自纠:.()可导′()()①(+Δ)-()②.′() -=′()(-).() αα-()-()().()′()±′()()′()()+()′()′()().′=′·′()设曲线=-(+)在点(,)处的切线方程为=,则=( )....解:因为′=-,所以切线的斜率为-=,解得=.故选.()函数=在其极值点处的切线方程为( ) .=.=(+).=.=-解:记=()=,则′()=(+),令′()=,得。

2018年高考数学理科训练试题:专题(10)导数的应用(一)

2018年高考数学理科训练试题:专题(10)导数的应用(一)

2021年高考数学理科训练试题:专题(10)导数的应用(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.函数443y x x =-+在区间[2,3]-上的最小值为( ) A .72B .36C .12D .02.若函数()sin f x x kx =-存在极值,则实数k 的取值范围是( ) A .()1,1- B .[)0,1C .()1,+∞D .(),1-∞-3.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.设()'f x 是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )A .B .C .D .5.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx ,11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值,又无极小值6.已知函数()ln f x x x x =+,若k Z ∈,且(2)()k x f x -<对任意的2x >恒成立,则k 的最大值为A .3B .4C .5D .67.已知函数()221ln f x x x a x =-++有两个极值点1x , 2x ,且12x x <,则( )A .()212ln24f x +<-B .()212ln24f x -< C .()212ln24f x +> D .()212ln24f x ->8.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .1-是()f x 的零点 B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上二、填空题9.若函数f(x)=13x 3−x 在(a, 10−a 2)上有最小值,则实数a 的取值范围为 . 10.在平面直角坐标系xOy 中,记曲线2(,2)my x x R m x=-∈≠-1x =处的切线为直线l .若直线l 在两坐标轴上的截距之和为12,则m 的值为 . 11.若不等式222()x y cx y x -≤-对任意满足0x y >>的实数x ,y 恒成立,则实数c 的最大值为__________.三、解答题12.已知函数f (x )=alnx +12x 2−ax (a 为常数)有两个极值点.(1)求实数a 的取值范围;(2)设f(x)的两个极值点分别为x 1,x 2,若不等式f(x 1)+f(x 2)<λ(x 1+x 2)恒成立,求λ的最小值.参考答案1.D 【分析】先根据给出的函数求出导函数;再令0y '>,求出单调递增区间,再令0y '<,求出单调递减区间,确定出函数[2,3]-上的单调性,从而求出最小值. 【详解】解:344y x '=-,令0y '=,即3440x -=解得1x = 当1x <时,0y '< 当1x >时,0y '> ∴1|0x y y ===极小值,而端点的函数值2|27x y =-=,3|72x y ==,得min 0y =. 故选D. 【点睛】本题主要考查了利用导数求函数的最值,关键是确定函数在区间上的单调区间,进而确定最值. 2.A 【分析】先求出函数()sin f x x kx =-不存在极值,即函数单调时k 的范围,即可根据其补集得出结果. 【详解】若函数()sin f x x kx =-不存在极值,则函数()sin f x x kx =-单调,当()sin f x x kx =-单调递增时,只需()0f x cosx k '=-≥恒成立,即k cosx ≤恒成立,因此1k ≤-;当()sin f x x kx =-单调递减时,只需()0f x cosx k '=-≤恒成立,即k cosx ≥恒成立,因此1k ≥;因为函数()sin f x x kx =-存在极值,所以函数()sin f x x kx =-不单调,因此11k -<<. 故选A 【点睛】本题主要考查导数的应用,根据函数有极值求参数时,可先求函数单调时参数的范围,进而可求出结果,属于常考题型. 3.B 【解析】当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则()cos 210f x k x =-<'.故()f x 在(0,)2x π∈单调递增,故()()022f x f ππ<=-<,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 22g x x x =-,则()cos 210g x x =-<',故()g x 在(0,)2x π∈递增,故()()022g x g ππ<=-<,则sin cos x x x <.综上所述,“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的必要不充分条件,选B .考点:导数的应用. 4.D 【解析】解析:检验易知A 、B 、C 均适合,不存在选项D 的图象所对应的函数,在整个定义域内,不具有单调性,但y=f (x )和y=f′(x )在整个定义域内具有完全相同的走势,不具有这样的函数,故选D . 5.D 【解析】因为xf ′(x )-f (x )=x ln x ,所以2()()ln xf x f x x x x '-=,所以()ln ()f x xx x'=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()xf xg x e=,()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f x g x x =,()()xf x f x +'构造()()g x xf x =等6.B 【解析】由2x >,则()()2k x f x -<= ln x x x +可化简为ln 2x x xk x +<-,构造函数()ln ,22x x x g x x x +=>-,()()()()()()22ln 22ln 2ln 422x x x x x x x g x x x +--+--==-'-,令()()222ln 4,10x h x x x h x x x-=--=-='>则,即()h x 在()2,+∞单调递增,设()00h x =,因为()842ln80h =-<,()952ln90h =->,所以089x <<,且004ln 2x x -=,故()g x 在()02,x 上单调递减, ()0,x +∞上单调递增,所以()()00000000min004·ln 924,2222x x x x x x x g x g x x x -++⎛⎫====∈ ⎪--⎝⎭,又()min k g x <,4k ∴≤,即k 的最小值为4,故选B.点睛:本题考查函数的恒成立和有解问题,属于较难题目.首先根据自变量x 的范围,分离参数和变量,转化为新函数g(x)的最值,通过构造函数求导判断单调性,可知()g x 在()02,x 上单调递减, ()0,x +∞上单调递增,所以()()0min g x g x =,且004ln 2x x -=,089x <<,通过对最小值化简得出()0g x 的范围,进而得出k 的范围. 7.D【解析】试题分析:由题意()221ln f x x x a x =-++的定义域为(0,+∞),∴()22222a x x af x x x x='-+=-+;∵f (x )有两个极值点1x , 2x ,∴f′(x )=0有两个不同的正实根1x , 2x ,∵120x x <<,且121x x +=,∴222211,222x a x x <<=-,∴()()222222222122ln f x x x x x x =-++-.令()()222122ln g t t t t t t =-++-,其中112t <<,则g′(t )=2(1-2t )lnt .当t ∈1,12⎛⎫⎪⎝⎭时,g′(t )>0,∴g (t )在1,12⎛⎫⎪⎝⎭上是增函数.∴()112ln224g t g -⎛⎫>=⎪⎝⎭. 故()()2212ln24f xg x -=>考点:利用导数研究函数的极值 8.A 【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b ='+,因为1是()f x 的极值点,3是()f x 的极值,所以()()10{13f f '==,即20{3a b a b c +=++=,解得:2{3b a c a=-=+,因为点()2,8在曲线()y f x =上,所以,即()42238a a a +⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .【考点定位】1、函数的零点;2、利用导数研究函数的极值.9.−2≤a <1 【解析】f ′(x )=x 2-1=(x +1)(x -1),令f ′(x )>0得x <-1或x >1,令f ′(x )<0得-1<x <1,所以函数f (x )的单调递增区间为(-∞,-1)和(1,+∞),减区间为(-1,1).所以要使函数f (x )=13x 3-x 在(a,10-a 2)上有最小值,只需{a <1<10−a 2f(a)≥f(1),即{a <1<10−a 213a 3−a ≥−23⇒{−3<a <1a ≥−2⇒-2≤a <1.10.3 4.--或 【解析】试题分析:22my x '=+,所以直线l 斜率为2m +,直线l 方程为(2)(2)(1)y m m x --=+-,直线l 在两坐标轴上的截距分别为22,2mm m -+,所以2212,2mm m -+=+解得27120m m ++=,3 4.m m =-=-或考点:曲线与方程,函数的切线,导数的运算及导数的几何意义 11.4 【解析】试题分析:因为0x y >>,所以由222()x y cx y x -≤-得222()22()(1)x x y y c x x x y x y y --≤=--,令1x t y =>,则22()22()(1)(1)xt y g t x x t t y y--==--,由22242()0,1(1)t t g t t t t =-'+-=>得2t =()g t取最小值4,又min c ()g t ≤,所以c的最大值为4 考点:利用导数求函数最值,不等式恒成立 12.(1)(4,+∞);(2)ln4−3 【解析】试题分析:(1)先求导数,转化为对应一元二次方程有两个正根,再根据实根分布列不等式组,解得实数a 的取值范围;(2)分离参数转化为对应函数最值问题:λ>f(x 1)+f(x 2)x 1+x 2最大值,再化简f(x 1)+f(x 2)x 1+x 2为a 的函数,利用导数可得其值域,即得λ的最小值.试题解析:(1)f′(x)=+x -a =(x >0),于是f(x)有两个极值点等价于二次方程x 2-ax +a =0有两正根, 设其两根为x 1,x 2,则,解得a >4,不妨设x 1<x 2,此时在(0,x 1)上f′(x)>0,在(x 1,x 2)上f′(x)<0,在(x 2,+∞)上f′(x)>0.因此x1,x2是f(x)的两个极值点,符合题意.所以a的取值范围是(4,+∞).(2)f(x1)+f(x2)=alnx1+x-ax1+alnx2+x-ax2=alnx1x2+ (x+x)-a(x1+x2)=alnx1x2+ (x1+x2)2-x1x2-a(x1+x2)=a(lna-a-1).于是=lna-a-1,令φ(a)=lna-a-1,则φ′(a)=-.因为a>4,所以φ′(a)<0.于是φ(a)=lna-a-1在(4,+∞)上单调递减,因此=φ(a)<φ(4)=ln4-3,且可无限接近ln4-3.又因为x1+x2>0,故不等式f(x1)+f(x2)<λ(x1+x2)等价于<λ,所以λ的最小值为ln4-3.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.。

精选江苏专用2018版高考数学专题复习专题3导数及其应用第24练高考大题突破练__导数练习文

精选江苏专用2018版高考数学专题复习专题3导数及其应用第24练高考大题突破练__导数练习文

(江苏专用)2018版高考数学专题复习 专题3 导数及其应用 第24练 高考大题突破练——导数练习 文1.(2016·常州一模)已知函数f (x )=ln x -x -x ,a ∈R .(1)当a =0时,求函数f (x )的极大值;(2)求函数f (x )的单调区间.2.(2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.3.已知函数f (x )=ln x +a x (a >0).(1)求f (x )的单调区间;(2)讨论关于x 的方程f (x )=x 3+bx +a 2x -12的实根情况.4.已知函数f (x )=(1+x )e-2x ,当x ∈[0,1]时,求证:1-x ≤f (x )≤11+x.5.已知函数f (x )=x ln x 和g (x )=m (x 2-1)(m ∈R ). (1)m =1时,求方程f (x )=g (x )的实根;(2)若对任意的x ∈(1,+∞),函数y =g (x )的图象总在函数y =f (x )图象的上方,求m 的取值范围;(3)求证:44×12-1+4×24×22-1+…+4×n 4×n 2-1>ln(2n +1)(n ∈N *).答案精析1.解 函数f (x )的定义域为(0,+∞).(1)当a =0时,f (x )=ln x -x ,f ′(x )=1x-1. 令f ′(x )=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的极大值为f (1)=-1. (2)f ′(x )=1x -1+a x 2=-x 2+x +a x2. 令f ′(x )=0,得-x 2+x +a =0,则Δ=1+4a .①当a ≤-14时,f ′(x )≤0恒成立, 所以函数f (x )的单调减区间为(0,+∞);②当a >-14时,由f ′(x )=0, 得x 1=1+1+4a 2,x 2=1-1+4a 2. (i)若-14<a <0,则x 1>x 2>0, 由f ′(x )<0,得0<x <x 2,x >x 1;由f ′(x )>0,得x 2<x <x 1.所以f (x )的单调减区间为(0,1-1+4a 2),(1+1+4a 2,+∞),单调增区间为(1-1+4a 2,1+1+4a 2). (ii)若a =0,由(1)知f (x )的单调增区间为(0,1),单调减区间为(1,+∞).(iii)若a >0,则x 1>0>x 2,由f ′(x )<0,得x >x 1;由f ′(x )>0,得0<x <x 1.所以f (x )的单调减区间为(1+1+4a 2,+∞), 单调增区间为(0,1+1+4a 2). 综上所述,当a ≤-14时, f (x )的单调减区间为(0,+∞);当-14<a <0时,f (x )的单调减区间为(0,1-1+4a 2),(1+1+4a 2,+∞),单调增区间为(1-1+4a 2,1+1+4a 2); 当a ≥0时,f (x )的单调减区间为(1+1+4a 2,+∞), 单调增区间为(0,1+1+4a 2). 2.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增, 在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).3.解 (1)f (x )=ln x +a x 的定义域为(0,+∞),则f ′(x )=1x -a x 2=x -a x 2. 因为a >0,由f ′(x )>0,得x ∈(a ,+∞),由f ′(x )<0,得x ∈(0,a ),所以f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(2)由题意,将方程f (x )=x 3+bx +a 2x -12化简得 b =ln x -12x 2+12,x ∈(0,+∞).令h (x )=ln x -12x 2-b +12, 则h ′(x )=1x -x =+x -x x .当x ∈(0,1)时,h ′(x )>0,当x ∈(1,+∞)时,h ′(x )<0,所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.所以h (x )在x =1处取得极大值,即最大值,最大值为h (1)=ln 1-12×12-b +12=-b . 所以当-b >0,即b <0时,y =h (x )的图象与x 轴恰有两个交点,方程f (x )=x 3+bx +a 2x -12有两个实根; 当b =0时,y =h (x )的图象与x 轴恰有一个交点,方程f (x )=x 3+bx +a 2x -12有一个实根; 当b >0时,y =h (x )的图象与x 轴无交点,方程f (x )=x 3+bx +a 2x -12无实根. 4.证明 要证x ∈[0,1]时,(1+x )e-2x ≥1-x , 只需证明(1+x )e -x ≥(1-x )e x .记h (x )=(1+x )e -x -(1-x )e x,则h ′(x )=x (e x -e -x ).显然,当x ∈(0,1)时,h ′(x )>0,∴h (x )在[0,1]上是增函数,∴h (x )≥h (0)=0.∴f (x )≥1-x ,x ∈[0,1].要证x ∈[0,1]时,(1+x )e-2x ≤11+x , 只需证明e x ≥x +1.记K (x )=e x -x -1,则K ′(x )=e x -1.当x ∈(0,1)时,K ′(x )>0,∴K (x )在[0,1]上是增函数.∴K (x )≥K (0)=0,∴f (x )≤11+x,x ∈[0,1]. 综上,1-x ≤f (x )≤11+x,x ∈[0,1]. 5.(1)解 m =1时,f (x )=g (x ),即x ln x =x 2-1,而x >0,所以方程即为ln x -x +1x=0. 令h (x )=ln x -x +1x, 则h ′(x )=1x -1-1x 2=-x 2+x -1x 2 =-x -122+34]x 2<0,而h (1)=0,故方程f (x )=g (x )有唯一的实根x =1.(2)解 对于任意的x ∈(1,+∞),函数y =g (x )的图象总在函数y =f (x )图象的上方, 即∀x ∈(1,+∞),f (x )<g (x ),即ln x <m (x -1x), 设F (x )=ln x -m (x -1x),即∀x ∈(1,+∞),F (x )<0, F ′(x )=1x -m (1+1x2) =-mx 2+x -m x2. ①若m ≤0,则F ′(x )>0,F (x )>F (1)=0,这与题设F (x )<0矛盾.②若m >0,方程-mx 2+x -m =0的判别式Δ=1-4m 2,当Δ≤0,即m ≥12时,F ′(x )≤0,∴F (x )在(1,+∞)上单调递减,∴F (x )<F (1)=0,即不等式成立.当Δ>0,即0<m <12时,方程-mx 2+x -m =0有两个实根,设两根为x 1,x 2且x 1<x 2,则⎩⎪⎨⎪⎧ x 1+x 2=1m >2,x 1x 2=1,∴方程有两个正实根且0<x 1<1<x 2.当x ∈(1,x 2)时,F ′(x )>0,F (x )单调递增,F (x )>F (1)=0与题设矛盾.综上所述,实数m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. (3)证明 由(2)知,当x >1时,m =12时, ln x <12(x -1x)成立. 不妨令x =2k +12k -1>1(k ∈N *), ∴ln 2k +12k -1<12⎝ ⎛⎭⎪⎫2k +12k -1-2k -12k +1 =4k 4k 2-1, ln(2k +1)-ln(2k -1)<4k 4k 2-1(k ∈N *), ⎩⎪⎨⎪⎧ ln 3-ln 1<44×12-1,ln 5-ln 3<4×24×22-1n ∈N *,…n +-n -<4×n 4×n 2-1,累加可得44×12-1+4×24×22-1+… +4×n 4×n 2-1>ln(2n +1)(n ∈N *).。

2018届高三理科数学(新课标):专题二 函数与导数 专题能力训练6 Word版含答案

2018届高三理科数学(新课标):专题二 函数与导数 专题能力训练6 Word版含答案

专题能力训练6函数与方程及函数的应用能力突破训练1.f(x)=-+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)2.设函数f(x)的零点为x1,函数g(x)=4x+2x-2的零点为x2,若|x1-x2|>,则f(x)可以是()A.f(x)=2x-B.f(x)=-x2+x-C.f(x)=1-10xD.f(x)=ln(8x-2)3.(2017山西三区八校二模)如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12),不考虑树的粗细.现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图象大致是()4.(2017贵州贵阳模拟)已知M是函数f(x)=e-2|x-1|+2sin在区间[-3,5]上的所有零点之和,则M的值为()A.4B.6C.8D.105.(2017湖北武汉质检)已知函数f(x)是奇函数,且满足f(2-x)=f(x)(x∈R),当0<x≤1时,f(x)=ln x+2,则函数y=f(x)在区间(-2,4]上的零点个数是()A.7B.8C.9D.106.已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则f(a),f(1),f(b)的大小关系为.7.已知函数f(x)=若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是.8.某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①若一次性购物不超过200元,则不给予优惠;②若一次性购物超过200元但不超过500元,则按标价给予9折优惠;③若一次性购物超过500元,则500元按第②条给予优惠,剩余部分给予7折优惠.甲单独购买A商品实际付款100元,乙单独购买B商品实际付款450元,若丙一次性购买A,B 两件商品,则应付款元.9.已知函数f(x)=2x,g(x)=+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.10.如图,一个长方体形状的物体E在雨中沿面P(面积为S)的垂直方向做匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:①P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为;②其他面的淋雨量之和,其值为.记y为E移动过程中的总淋雨量.当移动距离d=100,面积S=时,(1)写出y的表达式;(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.思维提升训练11.如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N,若方程f(g(x))=0,g(f(x))=0的实根个数分别为m,n,则m+n=()A.18B.16C.14D.1212.已知函数f(x)=函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2B.3C.4D.513.设函数f(x)=①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.14.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(单位:万元)关于年产量x(单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大.(注:年利润=年销售收入-年总成本)15.甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x(单位:元)与年产量q(单位:t)满足函数关系:x=2 000.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格).(1)将乙方的年利润w(单位:元)表示为年产量q(单位:t)的函数,并求出乙方获得最大利润的年产量;(2)在乙方年产量为q(单位:t)时,甲方每年受乙方生产影响的经济损失金额y=0.002q2(单位:元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?参考答案专题能力训练6函数与方程及函数的应用能力突破训练1.B解析由题意得f(x)单调递增,f(1)=-1<0,f(2)=>0,所以f(x)=-+log2x的零点落在区间(1,2)内.2.C解析依题意得g-2<0,g=1>0,则x2若f(x)=1-10x,则有x1=0,此时|x1-x2|>,因此选C.3.B解析设AD长为x cm,则CD长为(16-x)cm,又因为要将点P围在矩形ABCD内,所以a≤x≤12,则矩形ABCD的面积S=x(16-x).当0<a≤8时,当且仅当x=8时,S=64,当8<a<12时,S=a(16-a),即f(a)=画出分段函数图形可得其形状与B接近,故选B.4.C解析因为f(x)=e-2|x-1|+2sin=e-2|x-1|-2cosπx,所以f(x)=f(2-x).因为f(1)≠0,所以函数零点有偶数个,且两两关于直线x=1对称.当x∈[1,5]时,函数y=e-2(x-1)∈(0,1],且单调递减;函数y=2cosπx∈[-2,2],且在[1,5]上有两个周期,因此当x∈[1,5]时,函数y=e-2(x-1)与y=2cosπx有4个不同的交点;从而所有零点之和为4×2=8,故选C.5.C解析由函数f(x)是奇函数且满足f(2-x)=f(x)知,f(x)是周期为4的周期函数,且关于直线x=1+2k(k∈Z)成轴对称,关于点(2k,0)(k∈Z)成中心对称.当0<x≤1时,令f(x)=ln x+2=0,得x=,由此得y=f(x)在区间(-2,4]上的零点分别为-2+,-,0,,2-,2,2+,-+4,4,共9个零点.故选C.6.f(a)<f(1)<f(b)解析由题意,知f'(x)=e x+1>0恒成立,则函数f(x)在R上是单调递增的,因为f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)的零点a∈(0,1).由题意,知g'(x)=+1>0,则函数g(x)在区间(0,+∞)上是单调递增的.又g(1)=ln1+1-2=-1<0,g(2)=ln2+2-2=ln2>0,则函数g(x)的零点b∈(1,2).综上,可得0<a<1<b<2.因为f(x)在R上是单调递增的,所以f(a)<f(1)<f(b).7.(-∞,0)∪(1,+∞)解析要使函数g(x)=f(x)-b有两个零点,应使f(x)图象与直线y=b有两个不同的交点.当0≤a≤1时,由f(x)的图象(图略)知f(x)在定义域R上单调递增,它与直线y=b不可能有两个交点.当a<0时,由f(x)的图象(如图①)知,f(x)在(-∞,a]上递增,在(a,0)上递减,在[0,+∞)上递增,且a3<0,a2>0,所以,当0<b<a2时,f(x)图象与y=b有两个不同的交点.图①图②当a>1时,由f(x)的图象(如图②)知,f(x)在区间(-∞,a]上递增,在区间(a,+∞)上递增,但a3>a2,所以当a2<b≤a3时,f(x)图象与y=b有两个不同的交点.综上,实数a的取值范围是a<0或a>1.8.520解析设商品价格为x元,实际付款为y元,则y=整理,得y=∵0.9×200=180>100,∴A商品的价格为100元.∵0.9×500=450,∴B商品的价格为500元.当x=100+500=600时,y=100+0.7×600=520,即若丙一次性购买A,B两件商品,则应付款520元.9.解(1)g(x)=+2=+2,因为|x|≥0,所以0<1,即2<g(x)≤3,故g(x)的值域是(2,3].(2)由f(x)-g(x)=0,得2x--2=0.当x≤0时,显然不满足方程,当x>0时,由2x--2=0整理,得(2x)2-2·2x-1=0,(2x-1)2=2,解得2x=1±因为2x>0,所以2x=1+,即x=log2(1+).10.解(1)由题意知,E移动时单位时间内的淋雨量为|v-c|+,故y=(3|v-c|+10)(v>0).(2)由(1)知,当0<v≤c时,y=(3c-3v+10)=-15;当c<v≤10时,y=(3v-3c+10)=+15.故y=①当0<c时,y是关于v的减函数.故当v=10时,y min=20-②当<c≤5时,在(0,c]内,y是关于v的减函数;在(c,10]内,y是关于v的增函数.故当v=c时,y min=思维提升训练11.A解析由题中图象知,f(x)=0有3个根0,a,b,且a∈(-2,-1),b∈(1,2);g(x)=0有3个根0,c,d,且c ∈(-1,0),d∈(0,1).由f(g(x))=0,得g(x)=0或a,b,由图象可知g(x)所对每一个值都能有3个根,因而m=9;由g(f(x))=0,知f(x)=0或c,d,由图象可以看出f(x)=0时对应有3个根,f(x)=d时有4个,f(x)=c 时只有2个,加在一起也是9个,即n=9,∴m+n=9+9=18,故选A.12.A解析因为f(x)=所以f(2-x)=f(2-x)=f(x)+f(2-x)=所以函数y=f(x)-g(x)=f(x)-3+f(2-x)=其图象如图所示.显然函数图象与x轴有2个交点,故函数有2个零点.13.①-1[2,+∞)解析①当a=1时,f(x)=当x<1时,2x-1∈(-1,1);当x≥1时,4(x-1)(x-2)∈[-1,+∞).故f(x)的最小值为-1.②若函数f(x)=2x-a的图象在x<1时与x轴有一个交点,则a>0,并且当x=1时,f(1)=2-a>0,所以0<a<2.同时函数f(x)=4(x-a)(x-2a)的图象在x≥1时与x轴有一个交点,所以a<1.若函数f(x)=2x-a的图象在x<1时与x轴没有交点,则函数f(x)=4(x-a)(x-2a)的图象在x≥1时与x轴有两个不同的交点,当a≤0时,函数f(x)=2x-a的图象与x轴无交点,函数f(x)=4(x-a)(x-2a)的图象在x≥1上与x轴也无交点,不满足题意.当21-a≤0,即a≥2时,函数f(x)=4(x-a)·(x-2a)的图象与x轴的两个交点x1=a,x2=2a都满足题意.综上,a的取值范围为[2,+∞).14.解(1)当0<x≤10时,W=xR(x)-(10+2.7x)=8.1x--10;当x>10时,W=xR(x)-(10+2.7x)=98--2.7x.故W=(2)①当0<x≤10时,由W'=8.1-=0,得x=9.当x∈(0,9)时,W'>0;当x∈(9,10]时,W'<0.所以当x=9时,W取得最大值,即W max=8.1×9-93-10=38.6.②当x>10时,W=98-98-2=38,当且仅当=2.7x,即x=时,W取得最大值38.综合①②知:当x=9时,W取得最大值38.6,故当年产量为9千件时,该公司在这一品牌服装的生产中所获的年利润最大.15.解(1)因为赔付价格为s元/吨,所以乙方的实际年利润为w=2000-sq(q≥0).因为w=2000-sq=-s,所以当q=时,w取得最大值.所以乙方取得最大利润的年产量q=t.(2)设甲方净收入为v元,则v=sq-0.002q2,将q=代入上式,得到甲方净收入v与赔付价格s之间的函数关系式:v=又v'=-,令v'=0得s=20.当s<20时,v'>0;当s>20时,v'<0.所以当s=20时,v取得最大值.因此甲方向乙方要求赔付价格s为20元/吨时,获最大净收入.。

2018高考数学小题精练:专题(12)导数及解析 含答案

2018高考数学小题精练:专题(12)导数及解析 含答案

2018高考数学小题精练+B 卷及解析:专题(12)导数及解析 专题(12)导数1.若函数()()sin xf x ex a =+在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则实数a 的取值范围是( )A . )+∞B . ()1,+∞C . ()+∞ D . [)1,+∞【答案】D2.设函数()2xf x e x a =+-(a R ∈),e 为自然对数的底数,若曲线sin y x =上存在点()00,x y ,使得()()00f f y y =,则a 的取值范围是( )A . 11,1e e -⎡⎤-++⎣⎦B . []1,1e +C . [],1e e +D . []1,e【答案】A【解析】曲线y=sinx 上存在点(x 0,y 0), ∴y 0=sinx 0∈[﹣1,1].函数f (x )=e x+2x ﹣a 在[﹣1,1]上单调递增. 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数f (x )=e x+2x ﹣a=x ,化为a=e x+x . 令g (x )=e x+x (x ∈[﹣1,1]).g′(x )=e x+1>0,∴函数g (x )在x ∈[﹣1,1]单调递增.∴e ﹣1﹣1≤g(x )≤e+1.∴a 的取值范围是11,1e e -⎡⎤-++⎣⎦.故选:A .点睛:本题利用正弦函数的有界性明确y 0∈[﹣1,1],结合函数f (x )=e x+2x ﹣a 在[﹣1,1]上单调递增, ()()00f f y y =等价于f (y 0)=y 0,从而问题转化为a=e x+x 在[﹣1,1]上的值域问题.3.设a R ∈,若函数ln y x a x =+在区间1,e e ⎛⎫ ⎪⎝⎭有极值点,则a 取值范围为( ) A . 1,e e ⎛⎫ ⎪⎝⎭ B . 1,e e ⎛⎫-- ⎪⎝⎭ C . ()1,,e e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D . ()1,,e e ⎛⎫-∞-⋃-+∞ ⎪⎝⎭【答案】B4.已知函数既存在极大值又存在极小值,则实数的取值范围是( )A .B .C .D .【答案】B【解析】函数既存在极大值,又存在极小值,,方程有两个不同的实数解,,解得或,实数的取值范围是,故选B .【方法点睛】本题主要考查利用导数研究函数的极值、一元二次方程根与系数的关系及数学的转化与划归思想.属于中档题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将极值问题转化为一元二次方程根的问题. 5.函数 在区间上单调递增,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】在区间上单调递增,在区间上恒成立,则,即在区间上恒成立,而在上单调递增,,故选D .6.若函数在上是增函数,则的取值范围是()A. B. C. D.【答案】Dg′(x)=6x2+2ax=2x(3x+a),当a=0时,g′(x)≥0,g(x)在R上为增函数,则有g()≥0,解得+﹣1≥0,a≥3(舍);当a>0时,g(x)在(0,+∞)上为增函数,则g()≥0,解得+﹣1≥0,a≥3;当a<0时,同理分析可知,满足函数f(x)=x2+ax+在(,+∞)是增函数的a的取值范围是a≥3(舍).故选:D.点睛:求出函数f(x)的导函数,由导函数在(,+∞)大于等于0恒成立解答案7.已知函数有三个不同的零点,,(其中),则的值为()A. B. C. D.【答案】D当x∈(0,1)时,g′(x)<0;当x∈(1,e)时,g′(x)>0;当x∈(e,+∞)时,g′(x)<0.即g(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.∴0<x1<1<x2<e<x3,a==,令μ=,则a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,对于μ=,μ′=则当0<x<e时,μ′>0;当x>e时,μ′<0.而当x>e时,μ恒大于0.画其简图,不妨设μ1<μ2,则μ1=,μ2===μ3,∴(1﹣)2(1﹣)(1﹣)=(1﹣μ1)2(1﹣μ2)(1﹣μ3)=[(1﹣μ1)(1﹣μ2)]2=[1﹣(1﹣a)+(1﹣a)]2=1.故选:D.点睛:先分离变量得到a=,令g(x)=.求导后得其极值点,求得函数极值,则使g(x)恰有三个零点的实数a的取值范围由g(x)==,再令μ=,转化为关于μ的方程后由根与系数关系得到μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,再结合着μ=的图象可得到(1﹣)2(1﹣)(1﹣)=1.8.已知函数,若对任意的,恒成立,则实数的取值范围是()A. B. C. D.【答案】B⇔恒成立,又在[1,2]上单调递增,∴,∴.则实数的取值范围是.本题选择B选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f(x1)-f(x2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.9.已知定义域为的奇函数的图像是一条连续不断的曲线,当时,;当时,,且,则关于的不等式的解集为()A. B. C. D.【答案】A10.点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =+的最小距离为( )A B C .D .2 【答案】B 【解析】试题分析:点P 是曲线2ln y x x =-上任意一点,当过点P 到直线2y x =+平行时,点P 到直线2y x =+的距离最小,直线2y x =+的斜率等于,令2ln y x x =-的导数1211y x x x '=-=⇒=或12x =-(舍去),所以曲线2ln y x x =-上和直线2y x =+平行的切线经过的切点坐标(1,1),点(1,1)到直线2y x =+,故选B . 考点:点到直线的距离公式、导数的几何意义.11.设函数(),y f x x R =∈的导函数为'()f x ,且()()f x f x =-,'()()f x f x <,则下列不等式成立的是( )A .12(0)(1)(2)f e f e f -<< B .12(1)(0)(2)e f f e f -<< C .21(2)(1)(0)e f e f f -<< D .21(2)(0)(1)e f f e f -<< 【答案】B 【解析】考点:利用导数研究函数的单调性及其应用.12.设曲线()e x f x x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A .[]1,2-B .()3,+∞C .21,33⎡⎤-⎢⎥⎣⎦ D .12,33⎡⎤-⎢⎥⎣⎦【答案】D 【解析】试题分析:由()e x f x x =--,得()e 1xf x '=--,因为11x e +>,所以1(0,1)1xe ∈+,由()32cos g x ax x =+,得()32sin g x a x '=-,又2sin [2,2]x -∈-,所以32sin [23,23]a x a a -∈-++,要使过曲线()e x f x x =--上任意一点的切线1l ,总存在过曲线()32cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则230231a a -+≤⎧⎨+≥⎩,解得1233a -≤≤,故选D . 考点:利用导数研究曲线在某点的切线方程.(12)导数1.已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A . e B . -e C . D . - 【答案】C【解析】设切点为00x y (,),'xy e =, 000000000001x x x ek y kx y e kx e k x k x k e ∴==∴==≠∴=∴=,,=,(,>),,.故选A 【点睛】本题考查了利用导数研究曲线上某点切线方程,解题的关键是准确理解导数的几何意义,运算准确. 2.曲线ln y x =在点1,22ln ⎛⎫-⎪⎝⎭处的切线方程为( ) A . 221y x ln =-- B . 2y x = C . ()21y x =+ D . 22y x =- 【答案】A3.已知函数()()3sin 2f x ax x a R =-∈,且在0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-,则实数a 的值为( ) A .12 B . 1 C . 32D . 2 【答案】B【解析】由已知得f ′(x )=a (sin x +x cos x ),对于任意的x ∈[0,2π],有sin x +x cos x >0,当a =0时,f (x )=−32,不合题意;当a <0时,x ∈[0, 2π],f ′(x )<0,从而f (x )在[0, 2π]单调递减,又函数在上图象是连续不断的,故函数f (x )在[0,2π]上的最大值为f (0)=− 32,不合题意; 当a >0时,x ∈[0,2π],f ′(x )>0,从而f (x )在[0,2π]单调递增,又函数在上图象是连续不断的,故函数f (x )在[0,2π]上的最大值为f (2π)=2πa −32=π−32,解得a =1故选B点睛:本题是利用导函数来研究函数单调性和最值的问题,要进行分类讨论.4.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为 ( )A . 1B .C . D/【答案】D5.设a R ∈,若函数ln y x a x =+在区间1,e e ⎛⎫ ⎪⎝⎭有极值点,则a 取值范围为( ) A . 1,e e ⎛⎫ ⎪⎝⎭ B . 1,e e ⎛⎫-- ⎪⎝⎭ C . ()1,,e e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D . ()1,,e e ⎛⎫-∞-⋃-+∞ ⎪⎝⎭【答案】B 【解析】1(0)a y x x '=+>, y '为单调函数,所以函数在区间1,e e ⎛⎫⎪⎝⎭有极值点,即()10f f e e ⎛⎫⎪⎭''< ⎝,代入解得()()211110100a ae a e a a e a e e e ⎛⎫⎛⎫⎛⎫++<⇔+++<⇔++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得a 取值范围为 1e a e-<<-,故选B .6.函数 在区间 上单调递增,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】在区间上单调递增,在区间上恒成立,则,即在区间上恒成立,而在上单调递增,,故选D .7.已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A .B .C .D .【答案】D8.设函数,若曲线在点处的切线方程为,则点的坐标为()A. B. C. D.或【答案】D【解析】∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x0))处的切线方程为x+y=0,∴3x02+2ax0=-1,∵x0+x03+ax02=0,解得x0=±1.当x0=1时,f(x0)=-1,当x0=-1时,f(x0)=1.本题选择D选项.点睛:求曲线的切线方程应首先确定已知点是否为切点是求解的关键,分清过点P的切线与在点P处的切线的差异.9.已知定义在上的可导函数的导函数为,若对于任意实数有,且,则不等式的解集为()A. B. C. D.【答案】B【解析】令,故,由可得,,故函数在上单调递增,又由得,故不等式的解集为,故选B.点睛:本题主要考查导数与函数的单调性关系,奇函数的结论的灵活应用,以及利用条件构造函数,利用函数的单调性解不等式是解决本题的关键,考查学生的解题构造能力和转化思想,属于中档题;根据条件构造函数令,由求导公式和法则求出,根据条件判断出的符号,得到函数的单调性,求出的值,将不等式进行转化后,利用的单调性可求出不等式的解集.10.已知函数()ln tan f x x α=+((0,))2πα∈的导函数为'()f x ,若使得'00()()f x f x =成立的0x满足01x <,则a 的取值范围为( )A .(0,)4πB .(,)42ππC .(,)64ππD .(0,)3π【答案】B考点:导数的运算.【方法点晴】本题主要考查了导数的运算及其应用,其中解答中涉及导数的运算公式、三角函数方程的求解,利用参数的分类法,结合正切函数的单调性是解答问题的关键,本题的解答中,求出函数的导数,利用参数法,构造函数设()001ln g x x x =-,利用函数的单调性,求解tan 1α>,即可求解α的范围,着重考查了学生分析问题和解答问题的能力,属于中档试题.11.已知定义域为{|0}x x ≠的偶函数()f x ,其导函数为'()f x ,对任意正实数x 满足'()2()xf x f x >-,若2()()g x x f x =,则()(1)g x g x <-不等式的解集是( )A .1(,)2+∞B .1(,)2-∞C .1(,0)(0,)2-∞D .1(0,)2【答案】C考点:函数的奇偶性与单调性的应用;利用导数研究函数的性质.【方法点晴】本题主要考查了利用导数研究函数的单调性、函数的奇偶性与函数的单调性的应用,本题的解答中根据函数的奇偶性和利用导数判定函数的单调性,得出函数()g x 在(0,)+∞上单调递增,所以()g x 在(,0)-∞上单调递减,列出不等式组是解答的关键,着重考查了学生的推理与运算能力,属于中档试题.3.已知()(2)(0)x b g x ax a e a x=-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的取值范围是( ) A .(1,)-+∞B .(1,0)-C . (2,)-+∞D .(2,0)-【答案】A考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得x 的范围就是递增区间;令()0f x '<,解不等式得x 的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).。

(全国通用)2018年高考数学 考点一遍过 专题12 导数的应用(含解析)文

(全国通用)2018年高考数学 考点一遍过 专题12 导数的应用(含解析)文

考点12导数的应用1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).3.会用导数解决实际问题.一、导数与函数的单调性一般地,在某个区间(a ,b )内:(1)如果()0f x '>,函数f (x )在这个区间内单调递增; (2)如果()0f x '<,函数f (x )在这个区间内单调递减; (3)如果()=0f x ',函数f (x )在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号; (2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性. 二、利用导数研究函数的极值和最值 1.函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值. (3)极小值点与极大值点通称极值点,极小值与极大值通称极值. 2.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为:(1)求()f x 在(,)a b 内的极值;(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值. 3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言; (2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点;(4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得. 三、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最值问题的有力工具. 解决优化问题的基本思路是:考向一利用导数研究函数的单调性1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为:(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点. 3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.典例1已知函数322()4361,,f x x tx t x t x =+-+-∈R 其中t ∈R . (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间.【解析】(1)当1t =时,32()436,(0)0,f x x x x f =+-=2()1266,(0)6f x x x f ''=+-=-,所以曲线()y f x =在点(0,(0))f 处的切线方程为6y x =-. (2)22()1266,f x x tx t '=+-令()0f x '=,解得x t =-或2tx =. 因为0t ≠,所以分两种情况讨论: ①若0t <,则2tt <-. 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 的单调递增区间是(,)2t -∞,(,)t -+∞;()f x 的单调递减区间是(,)2t t -. ②若0t >,则2tt >-. 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 的单调递增区间是(,)t -∞-,(,)2t+∞;()f x 的单调递减区间是(,)2t t -. 典例2设函数32().f x x ax bx c =+++(1)设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (2)求证:230a b ->是()f x 有三个不同零点的必要而不充分条件.综上所述,若函数()f x 有三个不同零点,则必有24120a b =->∆. 故230a b ->是()f x 有三个不同零点的必要条件.当4a b ==,0c =时,230a b ->,()232()442f x x x x x x =++=+只有两个不同零点,所以230a b ->不是()f x 有三个不同零点的充分条件. 因此230a b ->是()f x 有三个不同零点的必要而不充分条件.1.已知函数ln ()xf x x a=+在1x =处的切线方程为20x y b -+=. (1)求实数a b ,的值; (2)若函数21()()2g x f x x kx =+-,且()g x 是其定义域上的增函数,求实数k 的取值范围.考向二利用导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 2.求函数f (x )在a ,b ]上最值的方法(1)若函数f (x )在a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.典例3(2017北京文科)已知函数()e cos xf x x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 在区间π[0,]2上的最大值和最小值.所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>或()0h x '<恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果.典例4已知函数()ln f x x x =. (1)求函数的单调区间和极值;(2)若()4f x m k m≥+-对任意的恒成立,求实数的取值范围. 【解析】(1)函数的定义域为,()1ln f x x '=+, 令,得1e x >;令,得10e x <<. 故当10,e x ⎛⎫∈ ⎪⎝⎭时,单调递减;当1,ex ⎛⎫∈+∞ ⎪⎝⎭时,单调递增.故当1ex =时,取得极小值,且()1111=ln e e e ef x f ⎛⎫==- ⎪⎝⎭极小值,无极大值. (2)由(1)知,()min 1ef x =-. 要使()4f x m k m≥+-对恒成立,只需()min 4f x m k m≥+-对恒成立,即14e m k m -≥+-,即41em k m +≤-对恒成立,令()4g m m m=+,则()222441m g m m m -'=-=, 当时,,所以在上单调递增,故()()max 4295555g m g ==+=, 要使41e m k m +≤-对恒成立,只需()max 1ek g m -≥, 所以2915ek ≥+,即实数的取值范围是291,5e ⎡⎫++∞⎪⎢⎣⎭.2.设2()ln (21),f x x x ax a x a =-+-∈R . (1)令()()x x g f '=,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值.求实数a 的取值范围.考向三(导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴的交点的横坐标为函数的极值点.典例5设函数2()f x ax bx c =++(a ,b ,c ∈R ),若函数()e xy f x =在1x =-处取得极值,则下列图象不可能为()y f x =的图象是【答案】D对于A,由图可得0,(0)0,(1)0a f f >>-=,适合题意; 对于B,由图可得0,(0)0,(1)0a f f <<-=,适合题意;对于C, 对于D,D.3.设函数()f x 在定义域内可导,()f x 的图象如图所示,则导函数()f x '的图象可能为考向四 生活中的优化问题1.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值.2.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x 的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.典例6(2015江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l .如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米.以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy .假设曲线C 符合函数2y ax b=+(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.(2)①因为函数2(1000520)y x x =≤≤,所以点P 的坐标为(t ,21000t ),设在点P 处的切线l 交x ,y 轴分别于点A ,B , 因为函数21000y x =的导数为32000y x '=-,所以切线l 的斜率为32000|x ty t ='=-,所以切线l 的方程为2310002000()y x t t t -=--, 由此得)(3,02t A ,2300,(00)B t.所以[5,20]()t f t =∈=.②设624410()g t t t ⨯=+,则651610()2g t t t ⨯'=-.令()0g t '=,解得t =当5,(t ∈时,()0g t '<,()g t 是减函数;当(20)t ∈时,()0g t '>,()g t 是增函数.所以当t =,函数()g t 取得极小值,也是最小值,此时min ()300g t =,min ()f t =.所以当t =,公路l 的长度最短,最短长度为.4.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.设()sin f x x x =-,则()f xA .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数2上单调递减,则实数a 的取值范围是AC 3.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x =-'的图象如图所示,则下列结论中一定成立的是A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f4.若直线x t =分别与函数()e 1xf x =+的图象及()2g x x =的图象相交于点A 和点B ,A .2B .3C .42ln 2-D .32ln 2-5.若32()=242()()3f x m n x mx m x n ∈++-+R ,在R 上有两个极值点,则m 的取值范围为 A .(1,1)-B .(1,2)C .(,1)(2,)-∞+∞UD .(,1)(1,)-∞-+∞U6.设()f x ,()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()f x g x f x g x ''+>,且(3)0f -=,则不等式()()0f x g x <的解集是A .(3,0)(3,)-+∞B .(3,0)(0,3)-C .(,3)(3,)-∞-+∞D .(,3)(0,3)-∞-7.已知定义在R 上的奇函数()f x 满足:当0x ≥时,()s i n f x x x =-.若不等式2(4)(2)f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是A .(,-∞B .(0)C .(,0)(2,)-∞+∞D .(,(2,)-∞+∞8.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.9.已知函数()2f x x x =-,()e 1xg x ax =--(e 为自然对数的底数).(1)讨论函数()g x 的单调性;(2)当0x >时,()()f x g x ≤恒成立,求实数a 的取值范围.10.设函数2()eln xf x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,2()2ln f x a a a≥+.1.(2016四川文科)已知a 为函数()3–12f x x x =的极小值点,则a =A .–4B .–2C .4D .22.(2017浙江)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是3.(2016新课标全国Ⅰ文科)若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞上单调递增,则a 的取值范围是 A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--4.(2017浙江)已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.5.(2017新课标全国Ⅰ文科)已知函数()f x =e x (e x−a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.6.(2017新课标全国Ⅲ文科)已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.7.(2016江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥1111P A B C D -,下部的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍.(1)若16m,2m,AB PO ==则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?8.(2017山东文科)已知函数()3211,32f x x ax a =-∈R . (1)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.1.【解析】(1)∵ln ()x f x x a =+,∴1()1f x ax'=+, ∵()f x 在1x =处的切线方程为20x y b -+=,∴112a+=,210b -+=,解得1a =,1b =-.(2)()ln f x x x =+,21()ln 2g x x kx x x -=++, ∴1()1g x x k x'=-++, ∵()g x 在其定义域(0,+∞)上是增函数,∴()0g x '≥在其定义域上恒成立, ∴110x k x -++≥在其定义域上恒成立,∴11k x x≤++在其定义域上恒成立, 而1113x x ++≥=,当且仅当1x =时,等号成立,故3k ≤.当0a >时,1(0,)2x a∈时,()0g x '>,函数()g x 单调递增, 1(,)2ax +∞∈时,()0g x '<,函数()g x 单调递减. 所以当0a ≤时,()g x 的单调递增区间为(0,)+∞; 当0a >时,()g x 的单调递增区间为1(0,)2a ,单调递减区间为1(,)2a+∞. (2)由(1)知,(1)0f '=. ①当0a ≤时,()f x '单调递增.所以当(0,1)x ∈时,()0f x '<,()f x 单调递减. 当(1,)x ∈+∞时,()0f x '>,()f x 单调递增.所以()f x 在1x =处取得极小值,不合题意.所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,112a=,()f x '在(0,1)内单调递增,在(1,)+∞内单调递减, 所以当(0,)x ∈+∞时,()0f x '≤,()f x 单调递减,不合题意. ④当12a >时,1012a <<,当1(,1)2x a∈时,()0f x '>,()f x 单调递增, 当(1,)x ∈+∞时,()0f x '<,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >. 3.【答案】D【解析】由()f x 的图象可知,()y f x =在x <0时是增函数,因此其导函数在x <0时,有()f x '>0(即全部在x 轴上方),因此排除A 、C. 从函数()f x 的图象上可以看出,在区间1(0,)x 上,函数()f x 是增函数,()f x '>0;在区间12(,)x x 上,函数()f x 是减函数,()f x '<0;在区间2(,)x +∞上,函数()f x 是增函数,()f x '>0,故选D.4.【解析】(1)因为蓄水池侧面的总成本为1002π200πrh rh ⨯=元,底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元. 又由题意得200πrh +160πr 2=12000π,所以h =15r(300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3). 因为r >0,又h >0,所以可得r <,故函数V (r )的定义域为(0,.(2)因为V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2). 令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,时,V ′(r )<0,故V (r )在(5,)上为减函数.由此可知,V (r )在r =5处取得最大值,此时h =8.即当r =5,h =8时,该蓄水池的体积最大.1.【答案】B 【解析】因为()sin()(sin )()f x x x x x f x -=---=--=-,所以()f x 是奇函数. 又()1cos 0f x x '=-≥,所以()f x 单调递增,故()f x 既是奇函数又是增函数.2.【答案】C3.【答案】D【解析】由函数的图象可知,(2)0f '-=,(2)0f '=,并且当2-<x 时,()0f x '>,当12<<-x ,()0f x '<,则函数()f x 有极大值(2)f -.又当21<<x 时,()0f x '<,当2>x 时,()0f x '>,故函数()f x 有极小值(2)f .故选D .4.【答案】D【解析】令||e 21()t AB t F t =-+=,所以()e 2tF t '=-,则当2ln >t 时, ()0F t '>,则函数()e 21t F t t =-+单调递增;当2ln <t 时,()0F t '<,函数()e 21t F t t =-+单调递减,故当2ln =t 时,函数()e 21t F t t =-+取得最小值(ln 2)22ln 2132ln 2F =-+=-,故选D.5.【答案】C 【解析】依题意,得22()1243f x x mx m '=++-,∴22()124=03f x x mx m '=++-有两个不相等的实数根,221648()03m m ∆=-->∴,即2320m m -+>,∴2m >,或1m <,故选C .6.【答案】D当0x <时,不等式()()0f x g x <的解集是(,3)x ∈-∞-;当0x >时,不等式()()0f x g x <的解集是(0,3x ∈,所以不等式()()0f x g x <的解集是(,3)(0,3)-∞-,故选D .【方法点睛】本题解答中涉及利用导数研究函数的单调性以及单调性的应用、函数的奇偶性及其应用、不等关系的求解等知识点,着重考查了学生分析问题和解答问题的能力,以及转化思想的应用.本题的解答中根据题设条件,得出函数()()()h x f x g x =的单调性和奇偶性是解答的关键,试题有一定的难度,属于中档试题.7.【答案】A【解析】由题意得,当0x ≥时,()1cos 0f x x '=-≥,则()f x 在[0,)+∞上单调递增,又根据奇函数的性质可知,()f x 在R 上单调递增,那么由2(4)(2)f t f m mt ->+可得242t m mt ->+在R 上恒成立,分离参数得242t m t <-+,令24()2t g t t =-+,求导可得,()g t 在(,-∞上单调递增,在(上单调递减,在)+∞上单调递增,故min ()g t g ==min ()m g t g <==.故选A .【思路点睛】本题主要考查导数的最值应用,奇函数的性质,分离参数的方法,属于中档题.本题有两种方法求解:(1)利用函数是奇函数,可将0x <时的函数解析式求出,再用函数的单调性求解;(2)直接先求出0x ≥时的单调性,再根据奇函数在对称区间上的单调性相同可得出()f x 在R 上单调递增,可得到242t m mt ->+在R 上恒成立,再利用分离参数的方法,可得到242t m t <-+,进而利用求导的方法求出24()2t g t t =-+的最小值即可.此题判断出()f x 在R 上的单调性是解题的关键.8.【解析】(1)因为3()f x ax bx c =++,所以2()3f x ax b '=+. 由于()f x 在点2x =处取得极值16c -,故有(2)0(2)16f f c '=⎧⎨=-⎩,即1208216a b a b c c +=⎧⎨++=-⎩,化简得12048a b a b +=⎧⎨+=-⎩,解得112a b =⎧⎨=-⎩.(2)由(1)知3()12f x x x c =-+,2()3123(2)(2)f x x x x '=-=-+.令()0f x '=,得122,2x x =-=.当(,2)x ∈-∞-时,()0f x '>,故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈-时,()0f x '<,故()f x 在(2,2)-上为减函数;当(2,)x ∈+∞时,()0f x '>,故()f x 在(2,)+∞上为增函数.由此可知()f x 在12x =-处取得极大值(2)16f c -=+,()f x 在22x =处取得极小值(2)16f c =-.由题设条件知1628c +=,得12c =,此时(3)921,(3)93,(2)164f c f c f c -=+==-+==-=-,因此()f x 在[3,3]-上的最小值为(2)4f =-.(2)当0x >时,2e 1xx x ax -≤--,即令()()2e 11(0)x x x x x =--+>ϕ,则()()e 2x x x '=-ϕ.当()0,ln2x ∈时,()0x ϕ'<,()x ϕ单调递减;当()ln2,x ∈+∞时,()0x ϕ'>,()x ϕ单调递增.又()00ϕ=,()10ϕ=,所以,当()0,1x ∈时,()0x ϕ<,即()0h x '<,所以()h x 单调递减;当()1,x ∈+∞时,()()1(e 1)0xx x x =--->ϕ,即()0h x '>,所以()h x 单调递增,所以()()min 1e 1h x h ==-,所以(],e 1a ∈-∞-.(2)由(1),可设()f x ¢在(0+),¥上的唯一零点为0x .当0(0)x x ,Î时,()0f x ¢<;当0(+)x x ,违时,()0f x ¢>.故()f x 在0(0)x ,上单调递减,在0(+)x ,¥上单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e =0x a x -,所以02000022()=e ln 2ln 2ln 2x a f x a x ax a a a x a a -=++?(当且仅当0022a ax x =,即012x =时,等号成立). 故当0a >时,2()2ln f x a a?. 1.【答案】D 【解析】()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.2.【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f'x 的正负,得出原函数()f x 的单调区间.3.【答案】C最小值的可能值为端点值,故只需保证1(1)031(1)03f a f a ⎧-=-⎪⎪⎨⎪=+⎪⎩……,解得1133a -剟.故选C . 【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解的关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,即注意正、余弦函数的有界性.4.【解析】(1)因为(1x '=(e )e x x '--=-,所以()(1(x x f'x x --=-1)2x =>.(2)由()0f'x ==,解得1x =或52x =. 因为又21()1)e 02x f x -=≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-. 【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2ax ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增. (2)①若0a =,则2()e x f x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2ax =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[l n ()]042a a --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值. 6.【解析】(1)()f x 的定义域为(0,+),()()1211()221x a x f x a x a x x ++'=+++=.若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a∈-+∞,时,()0f x '<.故()f x 在1(0,)2a -单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-. 当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间的大小关系,或利用放缩、等量代换将多元函数转化为一元函数.7.【解析】(1)由PO 1=2知OO 1=4PO 1=8.因为A 1B 1=AB =6,所以正四棱锥P −A 1B 1C 1D 1的体积22311111=6224(m );33V A B PO ⋅⋅=⨯⨯=锥 正四棱柱ABCD −A 1B 1C 1D 1的体积2231=68288(m ).V AB OO ⋅=⨯=柱所以仓库的容积V =V 锥+V 柱=24+288=3123(m ).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,OO 1=4h .连接O 1B 1.因为在11Rt PO B △中,2221111O B PO PB +=,所以22)362h +=,即222(36).a h =-当6h <<时,0V'<,V 是单调减函数.故h =V 取得极大值,也是最大值.因此,当1PO =时,仓库的容积最大.8.【解析】(1)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-,所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-,即390x y --=.(2)因为()()()cos sin g x f x x a x x =+--,所以()()cos ()sin cos g x f x x x a x x ''=+--- ()()sin x x a x a x =---()(sin )x a x x =--,令()sin h x x x =-,则()1cos 0h x x '=-≥,所以()h x 在R 上单调递增,因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <.所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-.②当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值.③当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减;当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当0x =时()g x 取到极大值,极大值是(0)g a =-;当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f′(x)=0,求出函数定义域内的所有根;④检验f′(x)在f′(x)=0的根x0左、右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.(2)若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数性质的简单应用及对含参问题的研究1.(2017·课标全国II 卷理)若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为 ( )A .1-B .32e --C .35e -D .1 2.(2015·天津理)已知函数⎩⎨⎧>-≤-=2,)2(,2|,|2)(2x x x x x f ,函数)2()(x f b x g --=,其中R b ∈.若函数)()(x g x f y -=恰有4个零点,则b 的取值范围是( )A .),47(+∞ B .)47,(-∞ C .)47,0( D .)2,47(3.(2015·山东理)设函数⎩⎨⎧≥<-=.1,2,1,13)(x x x x f x 则满足)(2))((a f a f f =的a 取值范围是( )A .]1,32[B .]1,0[C .),32[+∞ D .),1[+∞4. (2016•天津卷文)已知函数()(2+1),()xf x x e f x '=为()f x 的导函数,则(0)f '的值为_______.5.(2017·北京理)(本小题13分) 已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上的最大值和最小值.6.(2015•课标全国II 卷文)(本小题满分12分) 已知函数)1(ln )(x a x x f -+=. (I)讨论)(x f 的单调性;(II)当)(x f 有最大值,且最大值大于22-a 时,求a 的取值范围.7. (2015·山东理)(本小题满分14分)设函数)()1ln()(2x x a x x f -++=,其中R a ∈. (I)讨论函数)(x f 极值点的个数,并说明理由; (II)若0>∀x ,0)(≥x f 成立,求a 的取值范围.8.(2015·天津理)(本小题满分14分)已知函数n x nx x f -=)(,R x ∈,其中*N n ∈,且2≥n . (I)讨论)(x f 的单调性;(II)设曲线)(x f y =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为)(x g y =,求证:对于任意的正实数x ,都有)()(x g x f ≤;(III)若关于x 方程a x f =)((a 为实数)有两个正实数根1x ,2x ,求证:21||12+-<-nax x .9.(2017·课标全国I 卷理)(12分) 已知函数()()22x x f x ae a e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.10.(2017·课标全国I 卷文)(12分) 已知函数()2()x x f x e e a a x =--. (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.导数性质的简单应用及对含参问题的研究答案1.(2017·课标全国II 卷理)若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为 ( )A .1-B .32e --C .35e -D .1 【答案】A【解析】()()2121x f x x a x a e -'⎡⎤=+++-⋅⎣⎦,则()()32422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦, 则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅,令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.2.(2015·天津理)已知函数⎩⎨⎧>-≤-=2,)2(,2|,|2)(2x x x x x f ,函数)2()(x f b x g --=,其中R b ∈.若函数)()(x g x f y -=恰有4个零点,则b 的取值范围是( )A .),47(+∞ B .)47,(-∞ C .)47,0( D .)2,47( 【答案】D【解析】由题意,知f (2-x )=⎩⎪⎨⎪⎧x ,0≤x ≤2,4-x ,x >2,x 2,x <0.g (x )=b -f (2-x )=⎩⎪⎨⎪⎧-x +b ,0≤x ≤2,x +b -4,x >2,-x 2+b ,x <0.当函数f (x )与g (x )的图像如图所示相切时,设左边切点为B(x 0,y 0),g ′(x 0)=-2x 0=1, ∴x 0=-12,y 0=32.∴32=-⎝⎛⎭⎫-122+b , b =74,即当b =74时,f (x )与g (x )的图像有两个交点,g (x )的图像必须还要向上平移,但g (x )图像向上平移不能超过点A ,所以74<b <2.【点评】关键点拨:求解本题先由f (x )的解析式求出g (x )的解析式,再根据解析式结构选择适当的方法作出函数的图像,进而应用图像求解b 的取值范围.刷有所得:(1)根据分段函数确定另一个函数解析式要注意代入时自变量取值范围满足各段函数的定义域,如本题可先确定2-x 的取值范围,再分别代入,从而确定函数g (x )的解析式,亦可根据图像变换由f (x )画出-f (2-x )的图像,上下平移||b 个单位得到g (x )图像.(2)y =f (x )-g (x )有零点可以转化为f (x )与g (x )的函数图像有交点.(3)解决曲线与直线交点问题可借助导数几何意义求解.测训诊断:本题难度较大,主要考查已知函数有零点求参数取值范围,分段函数图像变换与导数的综合,意在考查学生分类讨论思想、数形结合解题思想和画图能力,学生失分较多.3.(2015·山东理)设函数⎩⎨⎧≥<-=.1,2,1,13)(x x x x f x 则满足)(2))((a f a f f =的a 取值范围是( )A .]1,32[ B .]1,0[ C .),32[+∞ D .),1[+∞ 【答案】C【解析】f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.(1)当a ≥1时,f (a )=2a >1,f [f (a )]=22a,又2f (a )=22a,∴f [f (a )]=2f (a )符合题意;(2)当a <1时,f (a )=3a -1.①若3a -1≥1,即23≤a <1,f [f (a )]=23a -1,而2f (a )=23a -1,故f [f (a )]=2f (a )符合题意;②若3a -1<1,即a <23, f [f (a )]=3(3a -1)-1=9a -4,而2f (a )=23a -1=12·8a.令h (a )=2f (a )-f [f (a )]=12·8a -9a +4⎝⎛⎭⎫a ∈⎝⎛⎭⎫-∞,23. 则h ′(a )=12·8a·ln 8-9.∵a <23,∴8a <4,∴h ′(a )<0,即y =h (a )在⎝⎛⎭⎫-∞,23上单调递减,h (a )>h ⎝⎛⎭⎫23=0,即当a <23时,方程f [f (a )]=2f (a )无解. 综上a ≥23,故选C.【点评】测训诊断:本题难度较大,主要考查函数与方程思想、分类与整合的思想. 关键点拨:确定f (a )的范围是解方程的关键,故首先对a 讨论,得到f (a )的范围,从而将复杂的方程化为简单方程,当a <23时,原方程的解转化求函数h (a )的零点问题,利用导数研究函数h (a )的单调性,进而解决.4. (2016•天津卷文)已知函数()(2+1),()xf x x e f x '=为()f x 的导函数,则(0)f '的值为_______. 【答案】3【解析】因为f ′(x )=(2x +3)e x ,所以f ′(0)=3.【点评】测训诊断:(1)本题难度易,主要考查导数的运算,考查学生的运算求解能力,意在让学生得分.(2)本题若出错,主要是求导法则应用错误.5.(2017·北京理)(本小题13分) 已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上的最大值和最小值. 解:(Ⅰ)f (x )=e x ·cos x -x ∴f (0)=1 ∴f ´(x)=e x (cos x -sin x )-1 ,f ´(0)=0 ∴y =f (x )在(0,f (0))处切线过点(0,1),k =0 ∴切线方程为y =1(Ⅱ) f ´(x )=e x (cos x -sin x )-1,设f ´(x)=g (x ) ∴g ´(x )=-2sin x ·e x ≤0 ∴g (x )在[0,π2]上单调递减, ∴g (x )≤g (0)=0∴f ´(x )≤0 ∴f (x )在[0,2π]上单调递减,f (x )max =f (0)=1 ∴f (x )m i n =f (2π)=-2π6.(2015•课标全国II 卷文)(本小题满分12分) 已知函数)1(ln )(x a x x f -+=. (I)讨论)(x f 的单调性;(II)当)(x f 有最大值,且最大值大于22-a 时,求a 的取值范围. 解:(1) f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).【点评】测训诊断:本题难度较大,是本套试题的压轴题之一,主要考查了函数的单调性判断、导数的应用、不等式的求解、函数的最值,意在考查考生的分类讨论思想及函数方程思想的应用,综合分析问题的能力.7. (2015·山东理)(本小题满分14分)设函数)()1ln()(2x x a x x f -++=,其中R a ∈. (I)讨论函数)(x f 极值点的个数,并说明理由; (II)若0>∀x ,0)(≥x f 成立,求a 的取值范围. 解:(1)由题意知函数f (x )的定义域为(-1,+∞).f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1.令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).当a =0时,g (x )=1,此时f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点.当a >0时,Δ=a 2-8a (1-a )=a (9a -8).a .当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点.b .当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2).因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14,所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,函数f (x )单调递增. 因此函数f (x )有两个极值点.当a <0时,Δ>0,当g (-1)=1>0,可得x 1<-1.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.(2)由(1)知,①当0≤a ≤89时,函数f (x )在(0,+∞)上单调递增,因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意. ②当89<a ≤1时,由g (0)≥0,得x 2≤0.所以函数f (x )在(0,+∞)上单调递增.又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意. ③当a >1时,由g (0)<0,可得x 2>0. 所以x ∈(0,x 2)时,函数f (x )单调递减.因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意.④当a <0时,设h (x )=x -ln(x +1),因为x ∈(0,+∞)时,h ′(x )=1-1x +1=xx +1>0,所以h (x )在(0,+∞)上单调递增,因此当x ∈(0,+∞)时,h (x )>h (0)=0,即ln(x +1)<x , 可得f (x )<x +a (x 2-x )=ax 2+(1-a )x , 当x >1-1a 时,ax 2+(1-a )x <0,此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].【点评】测训诊断:本题难度很大,主要考查含参函数的单调性、极值问题,及不等式恒成立问题求参数范围,考查分类与整合思想、转化与化归思想.关键点拨:利用导数研究函数在其定义域内的单调性f ′(x )=2ax 2+ax -a +1x +1中分子符号不确定,故构造函数令g (x )=2ax 2+ax -a +1(x >-1),研究g (x )的值域.一看最高次项的系数即x 2的系数,∵a ∈R ,∴讨论a 与0的大小;当a ≠0时,若g (x )=0无实根即Δ<0,则g (x )符号确定,若g (x )=0有2个实根x 1,x 2时,讨论x 1与x 2的大小,即二看两根大小,从而确定g (x )的符号,得到f (x )的单调性,将不等式恒成立问题转化为求函数f (x )的最小值,∀x >0,f (x )≥0成立,只需f (x )m i n ≥0;也可以将参数a 与变量x 分离,求得a 的范围.8.(2015·天津理)(本小题满分14分)已知函数n x nx x f -=)(,R x ∈,其中*N n ∈,且2≥n . (I)讨论)(x f 的单调性;(II)设曲线)(x f y =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为)(x g y =,求证:对于任意的正实数x ,都有)()(x g x f ≤;(III)若关于x 方程a x f =)((a 为实数)有两个正实数根1x ,2x ,求证:21||12+-<-nax x . 解:(1)由f (x )=nx -x n ,可得f ′(x )=n -nx n -1=n (1-x n -1),其中n ∈N *,且n ≥2.下面分两种情况讨论:① 当n 为奇数时.令f ′(x )=0,解得x =1,或x =-1. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.②当n为偶数时.当f ′(x)>0,即x<1时,函数f(x)单调递增;当f ′(x)<0,即x>1时,函数f(x)单调递减.所以f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减.(2)证明:设点P的坐标为(x0,0),则11nx n-=,f ′ (x0)=n-n2.曲线y=f(x)在点P处的切线方程为y=f ′(x0)(x-x0),即g(x)=f ′(x0)(x-x0).令F(x)=f(x)-g(x),即F(x)=f(x)-f ′(x0)·(x-x0),则F ′(x)=f ′(x)-f ′(x0).由于f ′(x)=-nx n-1+n在(0,+∞)上单调递减,故F ′(x)在(0,+∞)上单调递减.又因为F ′(x0)=0,所以当x∈(0,x0)时,F ′(x)>0,当x∈(x0,+∞)时,F ′(x)<0,所以F(x)在(0,x0)上单调递增,在(x0,+∞)上单调递减,所以对于任意的正实数x,都有F(x)≤F(x0)=0,即对于任意的正实数x,都有f(x)≤g(x).(3)证明:不妨设x1≤x2.由(2)知g(x)=(n-n2)(x-x0).设方程g(x)=a的根为x2′,可得x2′=a n-n2+x0.当n≥2时,g(x)在(-∞,+∞)上单调递减.又由(2)知g(x2)≥f(x2)=a=g(x2′),可得x2≤x2′.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=nx.当x∈(0,+∞)时,f(x)-h(x)=-x n<0,即对于任意的x∈(0,+∞),f(x)<h(x).设方程h(x)=a的根为x1′,可得x1′=an.因为h(x)=nx在(-∞,+∞)上单调递增,且h(x1′)=a=f(x1)<h(x1),因此x1′<x1.由此可得x2-x1<x2′-x1′=a1-n+x0.因为n≥2,所以2n-1=(1+1)n-1≥1+C1n-1=1+n-1=n,故2≥11nn-=x0.所以|x2-x1|<a1-n+2.【点评】关键点拨:(1)分类讨论,求导,确定函数单调区间.(2)、(3)构造函数利用函数单调性证明不等式.测训诊断:本题主要考查导数的运算、导数的几何意义、利用导数研究函数的性质、证明不等式等基础知识和方法,考查分类讨论思想、函数思想和化归思想,考查综合分析问题和解决问题的能力.9.(2017·课标全国I 卷理)(12分)已知函数()()22x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 解:(1)由于()()22x x f x ae a e x =+-- 故()()()()2221121x x x x f x ae a e ae e '=+--=-+①当0a ≤时,10x ae -<,210x e +>.从而()0f x '<恒成立.②当0a >时,令()0f x '=,从而10x ae -=,得ln x a =-.综上,当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增 (2)由(1)知,当0a ≤时,()f x 在R 上单调减,故()f x 在R 上至多一个零点,不满足条件. 当0a >时,()min 1ln 1ln f f a a a=-=-+. 令()()11ln 0g a a a a =-+>,则()211'0g a a a=+>.从而()g a 在()0+∞,上单调增,而()10g =.故当01a <<时,()0g a <.当1a =时()0g a =.当1a >时()0g a > 若1a >,则()min 11ln 0f a g a a=-+=>,故()0f x >恒成立,从而()f x 无零点,不满足条件.若1a =,则min 11ln 0f a a=-+=,故()0f x =仅有一个实根ln 0x a =-=,不满足条件. 若01a <<,则min 11ln 0f a a =-+<,注意到ln 0a ->.()22110a a f e e e-=++->. 故()f x 在()1ln a --,上有一个实根,而又31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭. 且33ln 1ln 133ln(1)2ln 1a a f e a e a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()3333132ln 11ln 10a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅-+---=---> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故()f x 在3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上有一个实根. 又()f x 在()ln a -∞-,上单调递减,在()ln a -+∞,单调递增,故()f x 在R 上至多两个实根.又()f x 在()1ln a --,及3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上均至少有一个实数根,故()f x 在R 上恰有两个实根.综上,a 的取值范围为01a <<.10.(2017·课标全国I 卷文)(12分)已知函数()2()x x f x e e a a x =--.(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.解:(1)f (x )=e x (e x -a )-a 2x =e 2x -e x a -a 2x ,∴f ′(x )=2e 2x -ae x -a 2=(2e x +a )(e x -a ),当a =0时,f ′(x )>0恒成立,∴f (x )在R 上单调递增,当a >0时,2e x +a >0,令f ′(x )=0,解得x =ln a ,当x <ln a 时,f ′(x )<0,函数f (x )单调递减,当x >ln a 时,f ′(x )>0,函数f (x )单调递增,当a <0时,e x -a >0,令f ′(x )=0,解得x =ln()2a -, 当x <ln()2a -时,f ′(x )<0,函数f (x )单调递减, 当x >ln()2a -时,f ′(x )>0,函数f (x )单调递增, 综上所述,当a =0时,f (x )在R 上单调递增,当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,当a <0时,f (x )在(-∞,ln()2a -)上单调递减,在(ln()2a -,+∞)上单调递增, (2)①当a =0时,f (x )=e 2x >0恒成立,②当a >0时,由(1)可得f (x )min =f (ln a )=-a 2ln a ≥0,∴ln a ≤0,解得0<a ≤1,③ 当a <0时,由(1)可得223()min (ln())ln()0242a a f x f a a =-=--≥, ∴3ln()24a -≤,解得3420e a -≤<. 综上所述a 的取值范围为342,1e ⎡⎤-⎢⎥⎣⎦.。

相关文档
最新文档