二次函数中的等腰三角形

合集下载

二次函数中的等腰三角形问题

二次函数中的等腰三角形问题

二次函数中的等腰三角形问题式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2ba ,244acb a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 等腰三角形的性质1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形的腰与它的高的关系直接的关系是:腰大于高。

间接的关系是:腰的平方等于高的平方加底的一半的平方。

考点3 相似三角形的性质1.相似三角形对应角相等,对应边成正比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项7.c/d=a/b 等同于ad=bc.8.不必是在同一平面内的三角形里(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比三、例题精析【例题1】如图,抛物线y=-x2+x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M。

二次函数中的等腰三角形

二次函数中的等腰三角形

专题11 二次函数中的等腰三角形类型一 在坐标轴上找点成等腰1.如图,二次函数2142y x x =--+的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)若点P 在x 轴上,且△PBC 为等腰三角形,请求出所有符合条件的点P 的坐标.(1) 解:令21402x x --+= 解得12x =,24x =-△A (2,0), B (4,0)-令0x =,得4y =,△C (0,4)△点A 的坐标为(2,0),点B 的坐标为(4,0)-,点C 的坐标为(0,4).(2)解:设P 点的坐标为(,0)m△(4,0)B -,(0,4)C △BC =22(4)BP m =+,2216CP m =+当△PBC 是等腰三角形时,分三种情况求解:①当BP CP =时,由题意可得22(4)16m m +=+解得0m =△P 的坐标为(0,0);②当BP BC =时,由题意可得()(224m +=解得4m =-+4m =--△P 的坐标为()4-+或()4--;③当CP CB =时,由题意可得(2216m +=解得4m =或4m =-(不合题意,舍去)△P 的坐标为(4,0);综上所述,P 点的坐标为(0,0) 或 (4,0) 或()4-+ 或()4--.【点睛】本题考查了二次函数与坐标轴的交点坐标,对称的性质,二次函数与周长的综合,二次函数与特殊三角形的综合等知识.解题的关键在于对知识的熟练掌握与灵活运用.2.如图,已知二次函数23y x bx =-++的图象与x 轴的两个交点为A (4,0)与点C ,与y 轴交于点B .(1)求此二次函数关系式和点C 的坐标;(2)在x 轴上是否存在点P ,使得△PAB 是等腰三角形?若存在,请你直接写出点P 的坐标;若不存在,请说明理由.解:(1)△二次函数23y x bx =-++的图象与x 轴的一个交点为()4,0A ,△20443=-++b ,解得134b =, △此二次函数关系式为:21334y x x =-++,当0y =时,213304-++=x x 解得134x =-,24x = △点C 的坐标为3,04⎛⎫- ⎪⎝⎭. (2)存在,设点P 的坐标为(x ,0),由题意得:AB 2=42+32=25,AP 2=(x -4)2,BP 2=x 2+9,①当AB=AP 时,则25=(x -4)2,解得x=9或-1,△P(9,0)或P (﹣1,0);②当AB=BP 时,同理可得x=4(舍去)或-4,△P (﹣4,0)③当AP=BP 时,如图所示△OP=x ,△AP=BP=4-x在Rt△OBP 中,222OB OP BP +=△()2223+x =4x - △x=78△P (78,0) 综上点P 的坐标为(9,0)或(-1,0)或(-4,0)或(78,0).【点睛】本题考查的是二次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.如图所示,关于x 的二次函数2y x bx c =++的图象与x 轴交于点1,0A 和点B ,与y 轴交于点()0,3C ,抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使PBC 为等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由;解:(1)把()1,0A 和()0,3C 代入2y x bx c =++,10,3,b c c ++=⎧⎨=⎩解得:4b =-,3c =,∴二次函数的表达式为:243y x x =-+.(2)令0y =,则2430x x -+=,解得:1x =或3x =,()3,0B ∴,BC ∴=点P 在y 轴上,当PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP CB =时,PC =3OP OC PC ∴=+=+或(10,3P ∴+,(20,3P -; ②当BP BC =时,3OP OB ==,()30,3P ∴-;③当PB PC =时,3OC OB ==,∴此时P 与O 重合,()40,0P ∴;综上所述,点P 的坐标为:(0,3+或(0,3-或()03-,或()0,0.4.如图,已知二次函数21134=-++y x x c 的图像与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过,A B 的直线为2y kx b =+.(1)求二次函数1y 的解析式及点B 的坐标;(2)在两坐标轴上是否存在点P ,使得ABP △是以AB 为底边的等腰三角形?若存在,求出P 的坐标;若不存在,说明理由.【答案】(1)211334y x x =-++,()0,3B (2)存在,点P 的坐标为7,08⎛⎫ ⎪⎝⎭或70,6⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)根据待定系数法,可得函数解析式,根据自变量为零,可得B 点坐标(2)根据线段垂直平分线上的点到线段两点间的距离相等,可得点P 在线段的垂直平分线上,利用两点间距离公式求解即可(1)解:将(4,0)A 代入21134=-++y x x c ,得16130c -++= 解得c =3△二次函数1y 的解析式为211334y x x =-++ △点B 是二次函数与y 轴的交点所以点B 的横坐标为0将x =0带入解析式中,求得y =3所以点B 的坐标为()0,3(2) 存在,满足题意的点P ,使得ABP △是以AB 为底边的等腰三角形.当使得ABP △是以AB 为底边的等腰三角形,点P 在线段AB 的垂直平分线上①当点P 在y 轴上时,P A=PB设()0,P m△(4,0)A ,()0,3B=解得76m =- 此时17(0,)6P - ②当点P 在x 轴上时,P A=PB设(),0P n△(4,0)A ,()0,3B解得78n = 此时27(0)8,P 综上所述:17(0,)6P -,27(0)8,P ,使得ABP △是以AB 为底边的等腰三角形 【点睛】此题考察了二次函数的相关知识点,(1)利用待定系数法求函数解析式;(2)抛物线和坐标轴的交点,勾股定理,等腰三角形的性质,熟练运用相关知识点是解题关键类型二 在对称轴上找点成等腰5.如图,直线y =﹣12x +2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点A (﹣1,0).(1)求B 、C 两点的坐标;(2)求该二次函数的解析式;(3)若抛物线的对称轴与x 轴交于点D ,则在抛物线的对称轴上是否存在一点N ,使NCD 为等腰三角形?若存在,求点N 的坐标;若不存在,请说明理由.【答案】(1)B (4,0),C (0,2);(2)213222y x x =-++;(3)存在,123435353325(,),(,),(,4),(,),22222216N N N N - 【解析】【分析】(1)令直线y =12-x +2的x =0,y =0,求出对应的y 和x 的值,得到点C 、B 的坐标; (2)用待定系数法设二次函数解析式,代入点A 、B 、C 的坐标求出解析式;(3)利用“两圆一中垂”找到对应的等腰三角形,结合勾股定理和等腰三角形的性质求点P 的坐标.【详解】(1)对直线y =12-x +2,当x =0时,y =2;y =0时,x =4, △B (4,0),C (0,2).(2)设二次函数为y =a (x ﹣m )(x ﹣n )(a ≠0),△二次函数图象经过B (4,0),A (﹣1,0),△y =a (x ﹣4)(x +1),把点C (0,2)代入y =a (x ﹣4)(x +1)得:a (0﹣4)(0+1)=2,解得:a =12-, △y =12-(x ﹣4)(x +1)=12-x 2+32x +2. (3)存在,理由如下:△二次函数图象经过B(4,0),A(﹣1,0),△对称轴为直线x=32,△D(32,0),△C(0,2),△CD=52,①如图1,当DC=DN时,DN=52,△N1(32,52),N2(32,﹣52),②如图2,当CD=CN3时,过点C作CH△DN3于点H,△CD=CN3,CH△DN3,△DH=N3H,△C(0,2),△DH=2,△N3H=2,△N3D=4,△N3(32,4),③如图3,当N 4C =DN 4时,过点C 作CE △DN 4于点E ,设DN 4=t ,则EN 4=2﹣t ,CE =32, 由勾股定理可知,(2﹣t )2+(32)2=t 2, 解得t =2516. △N 4(32,2516), 综上所述:存在123435353325(,),(,),(,4),(,),22222216N N N N -,使△NCD 是等腰三角形. 【点睛】本题考查了待定系数法求二次函数的解析式,直线与坐标轴的交点,等腰三角形的性质,用到了分类讨论思想.6.如图,直线122y x =-+与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B ,C 和点()1,0A -.(1)求B ,C 两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使PCD是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)()4,0B ,()0,2C (2)213222y x x =-++ (3)存在135,22P ⎛⎫ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭,33,42P ⎛⎫ ⎪⎝⎭,使PCD 是以CD 为腰的等腰三角形 【解析】【分析】(1)令直线122y x =-+的x =0,y =0,求出对应的y 和x 的值,得到点C 、B 的坐标; (2)用待定系数法设二次函数解析式,代入点A 、B 、C 的坐标求出解析式;(3)利用“两圆一中垂”找到对应的等腰三角形,结合勾股定理和等腰三角形的性质求点P 的坐标.(1) 解:对直线122y x =-+,当0x =时,2y =,0y =时,4x =, ()4,0B ∴,()0,2C .(2)解:设二次函数为()()()0y a x m x n a =--≠,二次函数图象经过()4,0B ,()1,0A -,()()41y a x x ∴=-+,把点()0,2C 代入()()41y a x x =-+得:()()04012a -+=, 解得:12a =-, ()()2113412222y x x x x ∴=--+=-++. (3) 解:二次函数图象经过()4,0B ,()1,0A -,∴对称轴为41322x -==, 3,02D ⎛⎫∴ ⎪⎝⎭, ()0,2C ,52CD ∴=, ①如图1,当CD PD =时,52PD =, 135,22P ⎛⎫∴ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭, ②如图2,当3CD CP =时,过点C 作3CH DP ⊥于点H ,3CD CP =,3CH DP ⊥,3DH P H ∴=,()0,2C ,2DH ∴=,32P H ∴=,34P D ∴=,33,42P ⎛⎫∴ ⎪⎝⎭, 综上所述:存在135,22P ⎛⎫ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭,33,42P ⎛⎫ ⎪⎝⎭,使PCD 是以CD 为腰的等腰三角形. 【点睛】本题考查了一次函数与坐标轴的交点、二次函数的解析式、等腰三角形的性质、勾股定理,解题的关键是用一般式或者两点式结合待定系数法求解,求点P 的坐标的时候要学会用“两圆一中垂”找到P 点,注意这里只要用“两圆”即可.7.如图,抛物线y =ax 2-bx -3与x 轴交于点A 、C ,交y 轴于点B ,OB =OC =3OA .(1)求抛物线的解析式及对称轴方程;(2)如图1,连接AB ,点M 是对称轴上一点且在第四象限,若△AMB 是以△MBA 为底角的等腰三角形,求点M 的坐标;(1)解:在y =ax 2-bx -3中,令x =0得y =-3,△B (0,-3),△OB =3,△OB =OC =3OA ,△OA =1,OC =3,△A (-1,0)、C (3,0),把A (-1,0)、C (3,0)代入y =ax 2-bx -3得:309330a b a b +-=⎧⎨--=⎩,解得12a b =⎧⎨=⎩, △抛物线的解析式为y =x 2-2x -3,而y =x 2-2x -3=(x -1)2-4,△对称轴方程为x =1;(2)解:设M (1,m ),而A (-1,0)、B (0,-3),△MA 2=4+m 2,MB 2=1+(m +3)2,AB 2=10,△AMB 是以△MBA 为底角的等腰三角形,分两种情况:①若MA =AB ,则MA 2=AB 2,如图:△4+m2=10,解得m m=,△M是对称轴上一点且在第四象限,△M(1,,②若MB=MA,则MA2=MB2,如图:△4+m2=1+(m+3)2,解得m=-1,△M(1,-1),综上所述,M坐标为(1,)或(1,-1);类型三在抛物线上或已知直线上找点成等腰8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m 的值.(1)将(1,0)A ,(3,0)B 代入函数解析式,得309330a b a b ++=⎧⎨++=⎩, 解得14a b =⎧⎨=-⎩, 这个二次函数的表达式是243y xx =-+;(2)(,3)M m m -+,2(,43)N m m m -+ 23MN m m =-,3|BM m =-,当MN BM =时,①233)m m m -=-,解得m②233)m m m -=-,解得m =当BN MN =时,45NBM BMN ∠=∠=︒,2430m m -+=,解得1m =或3m =(舍)当BM BN =时,45BMN BNM ∠=∠=︒,2(43)3m m m --+=-+,解得2m =或3m =(舍),当BMN ∆是等腰三角形时,m ,1,2.【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m 的方程,要分类讨论,以防遗漏.9.如图,已知二次函数()20y x bx c c =-++>的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求该二次函数的解析式;(2)探索:线段BM 上是否存在点P ,使PMC 为等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由.解:(1)△3OB OC ==,△()3,0B ,()0,3C ,代入2y x bx c =-++中,得930,3.b c c -++=⎧⎨=⎩, 解得2,3.b c =⎧⎨=⎩, △该二次函数的解析式为2y x 2x 3=-++;(2)线段BM 上存在点716,55P ⎛⎫ ⎪⎝⎭,14⎛ ⎝⎭,()2,2,使PMC △为等腰三角形.理由如下:设点P 的坐标为(),26x x -+,由题意可得CM =CP =MP =①当CM PC =整理得251270x x -+=,解得175x =,21x =(舍去),经检验是方程的根 当75x =,716262655x -+=-⨯+=, 此时716,55P ⎛⎫ ⎪⎝⎭;②当CM MP =整理得251030x x -+=,△△=40,△x =解得11x =21x =,经检验是方程的根此时1P ⎛ ⎝⎭;③当CP MP =整理得24=x ,解得2x =,经检验是方程的根此时()2,2P ;综上所述,线段BM 上存在点716,55P ⎛⎫ ⎪⎝⎭,14⎛ ⎝⎭,()2,2, 使PMC △为等腰三角形.【点睛】本题考查二次函数与几何综合题型,利用待定系数法求函数解析式;求坐标系中四边形的面积,需分割三角形与梯形来解,注意动点所在的位置决定了自变量的取值范围;等腰三角形分类考虑,可以用勾股定理,构造方程是解题关键.10.如图,已知二次函数y =ax 2+bx +3的图象与x 轴交于点A (﹣1,0)、B (4,0),与y轴交于点C .(1)二次函数的表达式为 ;(2)点M 在直线BC 上,当△ABM 为等腰三角形时,求点M 的坐标;解:(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx +3得: 3016430a b a b -+=⎧⎨++=⎩, △a =34-,b =94, △239344y x x =-++, 故二次函数表达式为:239344y x x =-++; (2)当x =0时,y =3,△点C 的坐标是(0,3),设直线BC 的表达式为:y =kx +c (k ≠0),将B (4,0),C (0,3)代入y =kx +c 得:4303k c +=⎧⎨=⎩, △343k c ⎧=-⎪⎨⎪=⎩,△直线BC 的解析式为:334y x =-+,使得△ABM 为等腰三角形,存在如图所示的三种情况:过点M 1作M 1D △AB ,△A (﹣1,0),B (4,0),△AD =12AB =52, △OD =32, 设M 1(x ,﹣34x +3), △M 1(32,158), △△ABM 为等腰三角形,△AB =BM 2=5或AB =BM 3=5,设M 2(x 1,﹣34x 1+3),△BM 25, 解得x 1=8或0,当x 1=0时,y =3,当x 1=8时,y =﹣3,△点M 为(0,3)或(8,﹣3)或(32,158); 11.如图,已知二次函数213442y x x =--的图象与y 轴交于点C ,与x 轴交于A 、B 两点,其对称轴与x 轴交于点D .(1)点C 的坐标为___________,点B 的坐标为___________; (2)连接BC ,在线段BC 上是否存在点E ,使得EDB △为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由; 解(1)213442y x x =--, 当x=0时,y=-4,C (0,-4),当y=0时,2134=042x x --, 整理得:2616=0x x --,变形得:()()820x x -+=,解得122,8x x =-=,△B 点坐标为(8,0);(2)C(0,-4),B(8,0),设BC 解析式为y kx b =+,把C 、B 坐标代入得, 480b k b =-⎧⎨+=⎩, 解得412b k =-⎧⎪⎨=⎪⎩, BC 解析式为1-42y x =, EDB △为等腰三角形,点E 在线段BC 上,设E (x, 1-42x )D(3,0), 以DB 为底边,作BD 中垂线与BC 交点为E ,x=()13+8=5.52,115-4= 5.5-4224x ⨯=-, E 11524⎛⎫ ⎪⎝⎭,-,以BD为腰,当BD=EB=5时5,()2820x-=,x=-(舍去,81x2E(8-,当ED=BD=5时点E与点C重合,E(0,-4),EDB △为等腰三角形符合条件的点E 的坐标为:E (0,-4),(8-,11524⎛⎫ ⎪⎝⎭,-; 类型四 综合探究12.如图,二次函数2y ax bx c(a 0)=++>图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为1-,3.与y 轴负半轴交于点C .()1若ABD 是等腰直角三角形,求a 的值.()2探究:是否存在a ,使得ACB 是等腰三角形?若存在,求出符合条件的a 的值;不存在,说明理由.【答案】(1)1a 2=;(2)存在,a =. 【解析】【分析】 ()1作DE AB ⊥于点E ,根据ABD 是等腰直角三角形,即可求得D 的坐标,利用待定系数法求得函数的解析式,从而求得a 的值.()2根据三边分别相等可以分三种情况:①当AB BC =时,根据勾股定理列方程:222OC BC OB 1697=-=-=,可得a 的值; ②当AB AC =时,根据勾股定理列方程:2OC 16115=-=,可得a 的值;③当AC BC =时,由于OA 1=,OB 3=,不成立.【详解】()1如图,作DE AB ⊥于点E ,()AB 314=--=, ABD 是等腰直角三角形,1DE AB 22∴==, 则D 的坐标是()1,2-.设二次函数的解析式是2y a(x 1)2=--,把()1,0-代入得4a 20-=, 解得:1a 2=. ()2存在,分三种情况:①当AB BC =时,CB AB 4∴==,在Rt OBC 中,222OB OC BC +=,222OC BC OB 1697∴=-=-=,OC ∴=(C 0,∴, 设二次函数的解析式为:()()y a x 1x 3=+-,将(C 0,代入,a ∴= ②当AB AC =时,AC AB 4∴==,在Rt AOC 中,222AO OC AC +=,2OC 16115∴=-=,OC ∴=(C 0,, ()()y a x 1x 3=+-,a ∴= ③当AC BC =时,CO AB ⊥,O ∴是AB 的中点,而AO 1=,BO 3=,AO BO ∴≠,AC BC ∴=不成立,a ∴= 【点睛】本题是二次函数的综合题,考查了待定系数法求函数的解析式,第1问正确根据等腰直角三角形的性质求得D 的坐标是关键,第二问根据等腰三角形的判定正确分类讨论是关键. 13.综合与探究 如图,抛物线2315344y x x =-+与x 轴交于A ,B 两点,且点A 在点B 的左侧,与y 轴交于点C .(1)求点A ,B 和C 的坐标;(2)点P 从点B 出发沿BC 以1个单位长度/秒的速度向终点C 运动,同时,点Q 从点O 出发以相同的速度沿x 轴的正半轴向终点B 运动,一点到达,两点同时停止运动.连接PQ ,当BPQ 是等腰三角形时,请直接写出运动的时间.(1)解:把0x =代入2315344y x x =-+中,得3y =.△点C 的坐标是(0,3).把0y =代入2315344y x x =-+中,得23153044-+=x x . 解得11x =,24x =.△点A 的坐标是(1,0),点B 的坐标是(4,0).△点A 的坐标是(1,0),点B 的坐标是(4,0),点C 的坐标是(0,3).(2)2秒,2013秒和3213秒 解:设运动时间为t ,根据题意,若要构成BPQ ,则P 、Q 不与点B 重合,t 的取值范围为04t <<,△PB OQ t ==,4BQ t =-,如图,过点P 作PD x ⊥轴于点D ,设点P 的坐标为3,34a a ⎛⎫-+ ⎪⎝⎭,则4BD a =-,334PD a =-+,根据勾股定理,在Rt PDB △中,222PD DB PB +=,()2223344a a t ⎛⎫-++-= ⎪⎝⎭, 解得1445a t =-,2445a t =+(不符合题意,舍去), △点P 的坐标为434,55t t ⎛⎫- ⎪⎝⎭, △点Q 的坐标为(),0t △222243907241655255t t t PQ t t ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭, △PB OQ t ==,4BQ t =-,222243907241655255t t t PQ t t ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭,①当BP BQ =时,即4t t =-,解得:2t =;②当BP PQ =时,22907216255t t t =-+, 解得:12013t =,24t =(不符合题意,舍去), ③当BQ PQ =时,()229072416255t t t -=-+, 解得:13213t =,20t =(不符合题意,舍去),综上所述:当BPQ 是等腰三角形时,时间为2秒,2013秒,3213秒. 【点睛】本题考查二次函数综合运用,包括求抛物线与x 轴的坐标,一次函数的解析式,利用坐标求线段长度,等腰三角形的性质,熟悉掌握求抛物线与x 轴的交点坐标、顶点坐标以及等腰三角形的性质本题的解题关系.。

专题01 二次函数中的等腰三角形存在性问题 (学生版)

专题01 二次函数中的等腰三角形存在性问题 (学生版)

专题01 二次函数中的等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.【模型解读】如图,点A 坐标为(1,1),点B 坐标为(4,3),在x 轴上取点C 使得△ABC 是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB=AC ;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA=BC ;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA=CB .【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.同理可求,下求.显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解:而对于本题的,或许代数法更好用一些.故C 5坐标为(196,0)解得:x =1363-x ()2+22=x 2设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3,BH =234C C 、5C 5CC 21+23,0()C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=13【代数法】表示线段构相等(1)表示点:设点坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3),(2)表示线段:,(3)分类讨论:根据,(4)求解得答案:解得:,故坐标为.【小结】几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标A 、B 、C ;(2)由点坐标表示出三条线段:AB 、AC 、BC ;(3)根据题意要求取①AB=AC 、②AB=BC 、③AC=BC ;(4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解;(3)三动点:分析可能存在的特殊边、角,以此为突破口.5C 5AC =5BC =55AC BC ==236m =5C 23,06⎛⎫⎪⎝⎭【模型实例】1.如图,已知两直线,分别经过点,点,且两条直线相交于轴的正半轴上的点,当点的坐标为时,恰好有,经过点、、的抛物线的对称轴与、、轴分别交于点、、,为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明与的数量关系?并说明理由;(3)若直线绕点旋转时,与抛物线的另一个交点为,当为等腰三角形时,请直接写出点的坐标.2.如图,抛物线交轴于,两点,与轴交于点,连接,.为线段上的一个动点,过点作轴,交抛物线于点,交于点.(1)求抛物线的表达式;(2)试探究点在运动过程中,是否存在这样的点,使得以,,为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标;若不存在,请说明理由.1l 2l (1,0)A (3,0)B -y CC 12l l ⊥A B C 1l 2l x G E FD DG DE 2l C M MCG ∆M 24y ax bx =++x (3,0)A -(4,0)B y C AC BC M OB M PM x ⊥P BC Q M Q A C QQ3.如图,抛物线与轴交于、两点,且(1)求抛物线的解析式和点的坐标;(2)如图,已知直线分别与轴、轴交于、两点,点是直线下方的抛物线上的一个动点,过点作轴的平行线,交直线于点,点在线段的延长线上,连接.问:以为腰的等腰的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.4.如图,抛物线与轴交于,两点,与轴交于点,点的坐标是,为抛物线上的一个动点,过点作轴于点,交直线于点,抛物线的对称轴是直线.(1)求抛物线的函数表达式;(2)若点在第二象限内,且,求的面积.(3)在(2)的条件下,若为直线上一点,在轴的上方,是否存在点,使是以为腰的等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.223y ax x =+-x A B (1,0)B A 2439y x =-x y C F Q CF Q y CF D E CD QE QD QDE ∆x A B y (0,2)C -A (2,0)P P PD x ⊥D BC E 1x =-P 14OD PBE ∆M BC x M BDM ∆BDM5.抛物线过点,点,顶点为.(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;6.如图,在中,,且点的坐标为,点坐标为,点在轴的负半轴上,抛物线经过点和点(1)求,的值;(2)在抛物线的对称轴上是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由23y ax bx =++(1,0)A -(3,0)B C C P CP x D AC DAC ∆AC P ABC ∆AB AC =A (3,0)-C By 2y x bx c =++A C b c Q ACQ ∆Q7.如图,开口向上的抛物线与轴交于,、,两点,与轴交于点,且,其中,是方程的两个根.(1)求点的坐标,并求出抛物线的表达式;(2)垂直于线段的直线交轴于点,交线段于点,连接,求的面积的最大值及此时点的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在点,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标,若不存在,请说明理由.9.如图,已知抛物线与轴交于、两点,与轴交于点(1)求点,,的坐标;(2)此抛物线的对称轴上是否存在点,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.x 1(A x 0)2(B x 0)y C AC BC ⊥1x 2x 2340x x +-=C BC l x D BC E CD CDE ∆D P PDE ∆P 2y ax bx c =++x (4,0)A -(2,0)B y (0,6)C y (0,2)E -AE P AEP ∆P 211242y x x =--+x A B y CA B C M ACM ∆M。

二次函数中的等腰三角形

二次函数中的等腰三角形

)1与x 轴交线=y 25,A BCD O Ex y(第3题图) (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。

具有怎样的关系?证明你的结论。

例4.如图1,已知直线12y x =-与抛物线2164y x =-+交于A B ,两点.两点.(1)求A B ,两点的坐标;两点的坐标;(2)求线段A B 的垂直平分线的解析式;的垂直平分线的解析式; (3)如图2,取与线段A B 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线A B 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.点的坐标;如果不存在,请简要说明理由.二.与三角形形状二.与三角形形状例 5. 如图,抛物线254y ax ax =-+经过A B C △的三个顶点,已知B C x ∥轴,点A 在x 轴上,点C 在y 轴上,且A CBC =.(1)求抛物线的对称轴;)求抛物线的对称轴;(2)写出A B C,,三点的坐标并求抛物线的解析式;三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在P A B △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.坐标;不存在,请说明理由.ACByx0 1 1 y x OyxO PA图2 图1 BBA例6.如图①,在平面直角坐标系中,点A的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:线的函数表达式: (任写一个即可)(任写一个即可). (2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若A B KA B CSS=△△,求点K 的坐标.的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使A B P △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.BO yx1l图①图① A 1 1 BO yx2l图②图②AC1 1 BO yx2l图③图③A1 1 例7. 已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点.三点. (1)求抛物线的函数关系式;)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值;的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并写出0P 点的坐标;点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.,请说明理由.例8.如图,在直角坐标系中,如图,在直角坐标系中,点点A 的坐标为(-2,0),连接OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式;三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?的周长最小? 若存在,求出点C 的坐标;若不存在,请说明理由;的坐标;若不存在,请说明理由;(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,轴的下方, 那么△PAB 是否有最大面积?是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.的最大面积;若没有,请说明理由.xy CB AE–1 1 OA O xB 1-1 y 1(注意:本题中的结果均保留根号)。

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

二次函数中等腰直角三角形 -回复

二次函数中等腰直角三角形 -回复

二次函数中等腰直角三角形 -回复
您好,关于二次函数中等腰直角三角形,我们可以通过以下步骤来解决:
1. 二次函数一般式:$y=ax^2+bx+c$。

2. 因为中位线长度为右腰,所以这个中位线对应的$x$可以用平移的方法求出:设中位线长度为$t$,则该中位线对应的$x$值为$-\frac{b}{2a}+t$。

3. 由直角三角形性质可知,斜边的平方等于直角腰的平方和,即$(\frac{t}{2})^2+(at^2+c)^2=(\frac{t}{2}+b)^2$。

4. 将第3步中的方程式化简后解出$t$,再带回第2步中的式子,求出该中位线对应的$x$值。

5. 根据对称性,可以得出第二条中位线的长度与第一条中位线相等,且对应的$x$值也相等。

6. 根据中位线长度与底边长度相等的定义,可以得出三角形的底边长度为$2\times(\frac{t}{2}+b)$。

7. 最终,我们就可以得出该等腰直角三角形的底边长、两条直角边长及其顶点的坐标。

希望以上解释能够解决您的问题,任何疑问,请随时追问。

二次函数与等腰三角形判定

二次函数与等腰三角形判定

二次函数与等腰三角形判定
二次函数与等腰三角形之间的关系可以从几何和代数两个角度来进行探讨。

首先从几何角度来看,等腰三角形是指具有两条边相等的三角形。

而二次函数的图像是一个抛物线,其开口方向可以是向上或向下。

当二次函数的图像是向上开口或向下开口的抛物线时,我们可以通过观察其顶点来判断与等腰三角形的关系。

如果顶点恰好落在等腰三角形的顶角上,那么二次函数的图像与等腰三角形的顶角部分重合,这时二次函数与等腰三角形有一定的关联。

其次从代数角度来看,我们可以通过二次函数的标准形式或一般形式来判断与等腰三角形的关系。

二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c分别代表抛物线的开口方向、顶点横坐标和纵坐标。

等腰三角形的特点是两条边相等,因此可以通过二次函数的一般形式y = a(x h)^2 + k来判断与等腰三角形的关系。

如果二次函数的a值相等,即a = -a,那么这个二次函数就是一个关于y轴对称的函数,其图像是关于y轴对称的,这与等腰三角形的特点相吻合。

综上所述,二次函数与等腰三角形之间的关系可以从几何和代数两个角度来进行分析。

通过观察二次函数的图像和代数形式,我们可以得出二次函数与等腰三角形有一定的关联,这种关联可以从图像重合和函数对称性两个方面来进行解释。

二次函数顶点与x轴两交点为等腰直角三角形

二次函数顶点与x轴两交点为等腰直角三角形

二次函数顶点与x轴两交点为等腰直角三角形题目中的问题是关于二次函数顶点和x轴两交点构成等腰直角三角形的情况。

在这篇文章中,我们将一步一步解答这个问题,并对相关的数学概念进行详细解释。

接下来,我们来开始探索这个问题。

第一部分:二次函数基础知识在讨论题目之前,我们先来回顾一下二次函数的基本知识。

二次函数是指形式为f(x) = ax^2 + bx + c 的函数,其中a, b, c 是实数且a \neq 0。

二次函数的图像呈现出抛物线的形态,可以开口向上、向下。

其中,a 控制了图像的开口方向:当a > 0 时,抛物线开口向上,这种函数称为上凹函数;当a < 0 时,抛物线开口向下,这种函数称为下凹函数。

第二部分:顶点坐标与x轴交点现在,我们考虑一个二次函数的顶点坐标和与x轴的交点。

顶点坐标可以通过计算二次函数的极值点得出,而与x轴的交点可以通过令二次函数等于零求解。

我们假设该二次函数的顶点坐标为(h, k),与x轴的两个交点分别为x1 和x2。

根据题目要求,我们知道这两个交点构成了一个等腰直角三角形。

首先,我们可以通过求导数来找到二次函数的极值点,即顶点坐标。

对f(x) 求导可以得到f'(x) = 2ax + b。

极值点的横坐标可以通过求解方程f'(x) = 0 来得到,即2ah + b = 0,解得h = -\frac{b}{2a}。

接下来,我们来计算与x轴的交点。

我们令f(x) = ax^2 + bx + c 等于零,即ax^2 + bx + c = 0。

通过求解这个二次方程,我们可以得到与x轴的交点的横坐标:x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} 和x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}。

根据题目的要求,我们知道这两个交点构成了一个等腰直角三角形。

我们可以通过计算两个交点之间的距离和两个交点到顶点的距离,来验证这一点。

二次函数中等腰三角形的存在问题

二次函数中等腰三角形的存在问题

零点是函数图像与x轴相交的点,用于解方程 和确定函数的根。
二次函数的最值是函数图像的最高点(最大 值)或最低点(最小值),在寻求极值时非 常重要。Leabharlann II. 等腰三角形的性质定义
等腰三角形是一种具有两条边相等的三角形, 拥有一些特殊的性质和几何关系。
面积
等腰三角形的面积可以通过底边的长度和高度 来计算,其中高度与等边的长度有关。
2. Johnson, L. (2019). "Exploring the Existence of Isosceles Triangles in Quadratic Functions." Geometrical Review, 30(4), 267-286.
3. Wang, Y. (2018). "Applications of Isosceles Triangles in Quadratic Function Analysis." Mathematica, 55(3), 189-205.
二次函数中等腰三角形的 存在问题
本演示将探讨二次函数中等腰三角形的存在问题。我们将介绍二次函数和等 腰三角形的基本概念,并深入研究二次函数中等腰三角形的性质及其应用。
I. 介绍
二次函数
二次函数是一个具有二次方的多项式函数,可呈现多种形态和特征。
等腰三角形
等腰三角形是一种具有两条边相等的三角形,具有一些特殊的几何性质。
周长
等腰三角形的周长可以通过两条等边的长度和 第三条边的长度来计算。
内角
等腰三角形的内角具有特定的测量值,其中包 括基角、等边角和顶角。
IV. 二次函数中等腰三角形的探讨
1
确定三角形三个顶点坐标

专题 二次函数与等腰三角形有关的问题(知识解读)-中考数学(全国通用)

专题 二次函数与等腰三角形有关的问题(知识解读)-中考数学(全国通用)

专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。

【解题思路】等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.注意:若有重合的情况,则需排除.以点C1 为例,具体求点坐标:过点A作AH⊥x轴交x轴于点H,则AH=1,又32121131311==-=∴=HC AC ,()03211,坐标为故点-C类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C总结:【典例分析】【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A (﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【变式11】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【变式1-2】(2022•荣昌区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+x+c (a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式;(2)将抛物线y=ax2+x+c沿射线BC平移,B,C的对应点分别为M,N,当以点A,M,N为顶点的三角形是以MN为腰的等腰三角形时,请直接写出点M的坐标,并任选其中一个点的坐标,写出求解过程.【典例2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【变式2-1】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【变式2-1】(2021•大渡口区自主招生)如图,若抛物线y=x2+bx+c与x轴相交于A,B 两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。

二次函数构建等腰三角形问题的解决方式

二次函数构建等腰三角形问题的解决方式

二次函数构建等腰三角形问题的解决方式二次函数构建等腰三角形问题的解决方式1. 引言等腰三角形是几何学中常见的一种三角形,它具有两边相等的特点。

在解决等腰三角形问题时,二次函数可以作为一种强有力的解决工具。

本文将探讨如何利用二次函数构建等腰三角形,并提供一种解决问题的方法。

2. 二次函数的基本知识回顾在开始讨论如何利用二次函数构建等腰三角形之前,我们首先回顾一下二次函数的基本知识。

二次函数由一个变量x的平方项、一个一次项和一个常数项组成,一般可以表示为y = ax^2 + bx + c 的形式。

其中,a、b和c分别代表二次项系数、一次项系数和常数项。

3. 构建等腰三角形的思路构建等腰三角形的关键是确定三角形的顶点坐标。

我们可以通过二次函数的顶点形式来轻松找到这些坐标。

二次函数的顶点可以由公式 x = -b / (2a) 计算得到,其中a和b是二次函数的系数。

一旦我们确定了顶点坐标,就可以通过连结顶点和其他边上的两个点来构建等腰三角形。

4. 具体解决步骤下面是一种解决构建等腰三角形问题的具体步骤:4.1 确定等腰三角形的底边长度。

在问题中,通常会给出底边的长度,我们可以使用底边长度来确定顶点的横坐标。

4.2 确定等腰三角形的顶点坐标。

利用顶点的横坐标和二次函数的顶点公式,我们可以计算出顶点的纵坐标。

4.3 确定等腰三角形的斜边长度。

等腰三角形的斜边长度等于底边长度的两倍乘以sinθ,其中θ是等腰三角形顶角的一半。

利用斜边长度和顶点坐标,我们可以计算出其他两个顶点的坐标。

4.4 检验结果。

根据所构建的等腰三角形的顶点坐标,我们可以计算出各边的长度,并通过比较来确认所构建的三角形是否真的是等腰三角形。

5. 示例问题为了更好地理解如何利用二次函数构建等腰三角形,我们通过以下问题来进行示例:问题:已知等腰三角形的底边长度为6,顶角的一半为30°,求等腰三角形的顶点坐标。

解答:步骤1:确定底边长度已知底边长度为6。

二次函数构造等腰三角形问题

二次函数构造等腰三角形问题

二次函数构造等腰三角形问题一、问题描述已知二次函数 $y=ax^2+bx+c$,且其图像与 $x$ 轴交于两点$(x_1,0)$ 和 $(x_2,0)$,要求构造一个等腰三角形,使其底边为$x_1x_2$,顶点在抛物线上。

二、解决思路首先我们需要根据已知条件求出二次函数的系数 $a,b,c$ 和交点坐标$(x_1,0)$ 和 $(x_2,0)$。

然后我们可以通过以下步骤来构造等腰三角形:1. 将底边 $x_1x_2$ 作为直线段 AB。

2. 在直线 AB 上取一点 C,使得 AC=BC。

3. 连接顶点 D 和底边中点 E,并延长 DE 相交于直线 AB 的延长线上的点 F。

4. 连接 CF,并将 CF 延长至与抛物线相交于点 G。

5. 连接 DG,并将 DG 延长至与抛物线相交于点 H。

则 DH 即为所求等腰三角形的高。

6. 求出 DH 的长度并验证是否符合要求。

三、具体实现下面我们来逐步实现这个构造过程。

首先是求解二次函数的系数和交点坐标:```pythondef get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a)x2 = (-b - math.sqrt(delta)) / (2 * a)return (x1, 0), (x2, 0)```接下来,我们来实现构造等腰三角形的过程:```pythondef construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2:print("构造成功!")else:print("构造失败!")```最后,我们来测试一下这个函数:```pythonconstruct_isosceles_triangle(-2, 3)```输出结果为:```构造成功!```四、完整代码```pythonimport mathfrom sympy.geometry import *def get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a) x2 = (-b - math.sqrt(delta)) / (2 * a) return (x1, 0), (x2, 0)def construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2: print("构造成功!")else:print("构造失败!")construct_isosceles_triangle(-2, 3) ```。

二次函数中等腰三角形的存在性

二次函数中等腰三角形的存在性

知识回顾:1、二次函数的三种形式:2、已知一边,求等腰三角形周长的方法: 3、等腰三角形的特点: 例题分析:例1、如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)求抛物线的解析式; (3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.例2、已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点.(1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CB E的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形,并写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?P (要求简要说明理由,但不证明);若不存在这样2,将这个直角三角形放置在平面直角坐标系中,其斜边AB 与x轴重合(其中O A<OB),直角顶点C 落在y 轴正半轴上(如图1)。

(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式。

(2)如图2,点D的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),图9B C Oy x A 连接DP交BC 于点E 。

①当△BDE是等腰三角形时,直接写出....此时点E的坐标。

②又连接C D、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由。

例4、如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于、两点(点在点的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC .(1)求线段OC 的长.:(2)求该抛物线的函数关系式.:(3)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.例5、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点(02)A ,,点(10)C -,,如图所示:抛物线22y ax ax =+-经过点B . 图1 图2图3(1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使ACP △仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.课堂练习:1、如图11所示,在梯形ABCD 中,已知A B∥CD, AD ⊥DB,AD =DC =CB,AB=4.以AB所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.(1)求∠DA B的度数及A 、D 、C三点的坐标;(2)求过A 、D、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L上的点,那么使 P DB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)思考题:如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、BA C x y (0,2)(-1,0)D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.。

二次函数中的等腰直角三角形问题

二次函数中的等腰直角三角形问题

二次函数中的等腰直角三角形问题1.如图,抛物线$y=ax^2+bx+2$交$x$轴于点$A(-3,0)$和点$B(1,0)$,交$y$轴于点$C$。

1) 求这个抛物线的函数表达式。

2) 点$D$的坐标为$(-1,0)$,点$P$为第二象限内抛物线上的一个动点,求四边形$ADCP$面积的最大值。

3) 点$M$为抛物线对称轴上的点,问:在抛物线上是否存在点$N$,使$\triangle MNO$为等腰直角三角形,且$\angle MNO$为直角?若存在,请直接写出点$N$的坐标;若不存在,请说明理由。

2.如图,抛物线$y=ax^2+bx+3$与坐标轴分别交于点$A(-3,0)$,$B(1,0)$,$C$,点$P$是线段$AB$上方抛物线上的一个动点。

1) 求抛物线解析式。

2) 当点$P$运动到什么位置时,$\triangle PAB$的面积最大?3) 过点$P$作$x$轴的垂线,交线段$AB$于点$D$,再过点$P$作$PE\parallel x$轴交抛物线于点$E$,连接$DE$,请问是否存在点$P$使$\triangle PDE$为等腰直角三角形?若存在,求点$P$的坐标;若不存在,说明理由。

3.二次函数$y=ax^2+bx+2$的图象交$x$轴于点$(-1,0)$,$B(4,0)$两点,交$y$轴于点$C$。

动点$M$从点$A$出发,以每秒$2$个单位长度的速度沿$AB$方向运动,过点$M$作$MN\perp x$轴交直线$BC$于点$N$,交抛物线于点$D$,连接$AC$,设运动的时间为$t$秒。

1) 求二次函数$y=ax^2+bx+2$的表达式。

2) 连接$BD$,当$t=1$时,求$\triangle DNB$的面积。

3) 在直线$MN$上存在一点$P$,当$\triangle PBC$是以$\angle BPC$为直角的等腰直角三角形时,求此时点$D$的坐标。

4) 当$t=2$时,在直线$MN$上存在一点$Q$,使得$\angle AQC+\angle OAC=90^\circ$,求点$Q$的坐标。

二次函数与等腰三角形

二次函数与等腰三角形

二次函数与等腰三角形方法引导:已知点A,B和直线l,在l上找点P,使ΔPAB为等腰三角形。

作图找点:①情况一:若AB为腰分别以点A,B为圆心,以AB长为半径画圆,与直线l的交点P1,P2,P3,P4即为所求;②情况二:若AB为底作线段AB的垂直平分线与直线l的交点P5即为所求.求解方法:对于等腰三角形的腰和底不确定问题,需按照三条边两两相等分三种情况进行讨论。

通常先设点坐标,再利用两点间的距离公式,分别表示出三条边的长度,然后再分三种情况列方程求解;在分析定线段是底时,也可根据动点在定线段的垂直平分线上求解;若已知角相等也可通过全等或相似三角形求解。

1.如图,点A,B在正方形网格的格点上,请在所给的网格中确定格点C,使得ΔABC是以AB为腰的等腰三角形。

2.如图,在平面直角坐标系中,点A的坐标为(2, 3),在x轴的正半轴上有一点B,使ΔAOB为等腰三角形,且BA=B0,求点B的坐标.3.如图,在平面直角坐标系中,直线l1:y=-12x-3与x轴交于点A,与直线l2:y=-2x交于点B,点C为l2上一点,当ΔABC是以AB为腰的等腰三角形时,求点C的坐标。

4.如图,已知抛物线y=23x-43x-2与x轴交于A,B两点,与y轴交于点C,连接AC,点P是y轴上一点,若ΔPAC是等腰三角形,求点P的坐标1.如图,直线y=x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c(a≠0)经过点A,C,与x轴交于另一点B,且B(1, 0).(1)求抛物线的解析式;(2)点D是y轴上一动点,若BD=CD,求此时点D的坐标;(3)在抛物线上是否存在点E,使ΔEAC是以AC为底的等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由;(4)连接BC,在直线AC上是否存在点F,使ΔBCF是以BC为腰的等腰三角形?若存在,求出点F的坐标;若不存在,请说明理由;(5)在抛物线的对称轴上是否存在点G,使ΔACG是等腰三角形?若存在,求出点G的坐标;若不存在,请说明理由。

专题一:二次函数中等腰三角形存在性问题

专题一:二次函数中等腰三角形存在性问题

专题:二次函数中等腰三角形存在性问题类型一、等腰三角形存在性问题以(,)A A A x y 、(,)B B B x y 为三角形的边,在x 轴上找一点P 使得△PAB 为等腰三角形(二定一动)一.找法:画圆和作垂直平分线①以A 为圆心,线段AB 为半径画圆,与x 轴交点即为1P 、2P 点;(AB=AP )②以B 为圆心,线段AB 为半径画圆,与x 轴交点即为3P 、4P 点;(AB=BP )③作线段AB 的垂直平分线,与x 轴交点即为5P 点;(AP=BP )二、算法:利用两点距离公式进行计算 公式:22()()A B A B AB x x y y =-+- ,设(,)p p P x y ,分三种情况:①AB=AP 时 2222()()()()A B A B A P A P x x y y x x y y -+-=-+-可得1P 、2P ,(特殊情况可能是一个点,例如2P 与B 重合)②AB=BP 时2222()()()()A B A B B P B P x x y y x x y y -+-=-+-可得3P 、4P ,(特殊情况可能是一个点,例如3P 与A 重合)③AP=BP 时2222()()()()A P A P B P B P x x y y x x y y -+-=-+-可得5P 、例题1、如图,已知二次函数2y x bx c =++的图像与x 轴交于点A 、B 两点,其中A 点坐标为(-3,0),与y 轴交于点C ,点D (-2,-3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在动点Q ,使得△BCQ 为等腰三角形?若存在,求出点Q 的坐标;若不存在,说明理由.1、(2021·云南九年级一模)如图所示,抛物线()240y ax bx a =++≠经过点()1,0A -,点()4,0B ,与y 轴交于点C ,连接AC ,BC .点M 是线段OB 上不与点O 、B 重合的点,过点M 作DM x ⊥轴,交抛物线于点D ,交BC 于点E .(1)求抛物线的表达式;(2)过点D 作DF BC ⊥,垂足为点F .设M 点的坐标为(),0M m ,请用含m 的代数式表示线段DF 的长,并求出当m 为何值时DF 有最大值,最大值是多少?(3)试探究是否存在这样的点E ,使得以A ,C ,E 为顶点的三角形是等腰三角形.若存在,请求出此时点E 的坐标;若不存在,请说明理由.2、(八中2020级初三第三次月考)如图在平面直角坐标系中,已知抛物线2(0)y ax bx c a =++≠交x 轴于A (-4,0),B (1,0),交y 轴于C (0,3)(1)求此抛物线解析式;(2)如图1,点P 为直线AC 上方抛物线上一点,过点P 作PQ ⊥x 轴于点Q ,再过点Q 作QR//AC 交y 轴于点R ,求PQ+QR 的最大值及此时点P 的坐标;(3)如图2,点E 在抛物线上,横坐标为-3,连接AE ,将线段AE 沿直线AC 平移,得到线段''A E ,连接'CE ,当△''A E C 为等腰三角形时,只写写出点'A 的坐标。

二次函数求等腰三角形

二次函数求等腰三角形

二次函数求等腰三角形
假设我们需要构造一个等腰三角形,其中两条边的长度相等,设
为a。

我们可以选择二次函数来描述这个等腰三角形的形状。

首先,我们选取一个坐标系来描述三角形的位置。

假设其中一个
顶点位于原点(0, 0),另外两个顶点分别在横坐标为-x和x的位置上。

接下来,我们需要找到一个二次函数的图像来描述等腰三角形的
形状。

为此,我们可以使用带有参数h和k的标准二次函数形式:f(x) = a(x-h)^2 + k。

由于我们希望三角形的两条边的长度相等,而且顶点位于原点,
我们可以确定k为0。

这样,我们的二次函数形式变为:f(x) = a(x-h)^2。

接下来,我们需要确定参数a和h的值。

由于等腰三角形的两条
边相等,我们可以假设这条边的长度为a,从而可以确定三角形的形状。

假设我们想要的等腰三角形的高度为b,这即为三角形顶部的点
到x轴的距离。

根据等腰三角形的性质,我们可以确定等腰三角形的
顶点坐标为(0, b)。

从而,我们可以得出以下关系:f(0) = a(0-h)^2 = b。

解这个
方程可以得到h的值。

进一步地,我们可以将某个边沿着x轴取值一
半的位置,这样我们的等腰三角形就形成了。

综上所述,通过选择适当的参数a和h,并根据我们想要的等腰
三角形的高度b,我们可以使用二次函数f(x) = a(x-h)^2来构造一个等腰三角形。

二次函数顶点与x轴两交点为等腰直角三角形

二次函数顶点与x轴两交点为等腰直角三角形

二次函数顶点与x轴两交点为等腰直角三角形数学中的二次函数是一种常见的函数形式,它的一般形式可以表示为y = ax^2 + bx + c,其中a、b、c都是实数且a不为0。

而顶点形式则可以写成y = a(x - h)^2 + k,其中(h, k)为顶点的坐标。

令二次函数的顶点坐标为(h,k)。

根据等腰直角三角形的性质,顶点与x轴两交点的距离应该相等,即,x₁-h,=,x₂-h。

令其中一个交点为(x₁,0),另一个交点为(x₂,0)。

接下来,我们来推导顶点与x轴两交点为等腰直角三角形的条件下,a、h、k和x₁、x₂之间的关系。

根据等腰直角三角形的性质,顶点与x轴两交点的距离应该相等,即,x₁-h,=,x₂-h。

我们可以有以下两种情况进行讨论:情况一:x₁>h(即x₁在顶点右侧)那么,x₁-h,=x₁-h。

同样地,我们有,x₂-h,=h-x₂。

由于顶点与x轴两交点的距离相等,我们有:x₁-h=h-x₂化简得:2h=x₁+x₂又因为顶点的x坐标为h,代入二次函数的顶点形式,我们有:h=-b/(2a)所以,当顶点与x轴两交点为等腰直角三角形时,h=-b/(2a)。

情况二:x₂>h(即x₂在顶点右侧)那么,x₁-h,=h-x₁。

同样地,我们有,x₂-h,=x₂-h。

由于顶点与x轴两交点的距离相等,我们有:h-x₁=x₂-h化简得:2h=x₁+x₂同理可得h=-b/(2a)。

所以,不论x₁>h还是x₂>h,当顶点与x轴两交点为等腰直角三角形时,h=-b/(2a)。

接下来,我们考虑顶点的纵坐标k。

由于顶点是二次函数的最值点,因此顶点的纵坐标k等于二次函数的值在该点的取值。

代入二次函数的顶点形式,我们有:k=a(h-h)^2+k化简得:k=k所以,顶点的纵坐标k可以是任意实数。

最后,我们来具体说明一个例子。

假设我们有一个二次函数y=-2(x-3)^2+5、根据前面的推导,我们可以得出顶点的坐标为(h,k)=(3,5)。

二次函数等腰三角形代数法

二次函数等腰三角形代数法

二次函数等腰三角形代数法在数学中,二次函数是一个非常重要的概念。

它是一种形式为f(x) =ax^2+bx+c的函数,其中a、b、c为常数,且a不等于0。

二次函数的图像通常是一条抛物线,可以向上开口或向下开口,具有很多有趣的性质和应用。

而等腰三角形是一种有两条边相等的三角形,也是几何学中的基本概念之一。

本文将探讨二次函数与等腰三角形之间的联系,介绍一种用代数方法解决等腰三角形问题的方法。

首先,我们来回顾一下二次函数的基本性质。

二次函数的图像是一条抛物线,其开口方向由二次系数a的符号决定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

抛物线的顶点坐标由如下公式给出:(-b/2a,f(-b/2a))接下来,我们来研究如何利用二次函数的性质解决等腰三角形问题。

考虑一个等腰三角形,已知其顶角的度数为θ,底边的长度为L。

我们的目标是求解该等腰三角形的高度h。

首先,我们可以根据等腰三角形的性质得到一个关系式。

根据三角函数的定义,我们知道:sin(θ)=h/L接下来,我们将sin(θ)用二次函数的形式表示出来。

根据三角函数的定义,我们知道sin(θ)可以表示为:sin(θ)=2sin(θ/2)cos(θ/2)进一步展开,可以得到:sin(θ)=2sin(θ/2)√(1-sin^2(θ/2))接下来,我们将sin(θ)表示为二次函数的形式。

假设sin(θ/2)= x,那么我们可以得到:sin(θ)=2x√(1-x^2)现在,我们将等腰三角形的高度h表示为二次函数的形式。

由于sin(θ)=h/L,我们可以得到:h=L*2x√(1-x^2)现在,我们的目标是求解二次函数h关于x的最大值。

我们可以通过计算二次函数的顶点来实现这一目标。

根据前面提到的二次函数顶点的公式,我们可以得到:x=-b/2a=0代入二次函数的表达式,可以得到:h=L*2*0*√(1-0^2)=0由此可见,当x=0时,二次函数h取得最大值0。

二次函数等腰三角形两动一定问题

二次函数等腰三角形两动一定问题

二次函数在数学中是一个非常重要的概念,它在各个领域都有广泛的应用。

其中,二次函数等腰三角形两动一定问题是一个较为常见的数学问题,本文将从基本概念入手,逐步展开对二次函数等腰三角形两动一定问题的解析。

1. 二次函数的基本概念二次函数是指数学中的一种函数形式,其一般形式为y=ax^2+bx+c,其中a、b、c是实数且a≠0。

二次函数的图像是一条开口朝上或朝下的抛物线,其开口方向取决于a的正负。

二次函数在代数、几何、物理等领域都有着广泛的应用,因此对二次函数的研究具有重要意义。

2. 等腰三角形的基本概念等腰三角形是指具有两条边相等的三角形。

在等腰三角形中,两个相等的边称为等腰边,而夹在等腰边之间的角称为顶角。

等腰三角形在几何学中具有重要的地位,其性质和应用也是我们在学习和实际生活中经常遇到的。

3. 二次函数等腰三角形两动一定问题在数学问题中,我们经常会遇到求解关于二次函数和等腰三角形的结合问题。

其中,二次函数等腰三角形两动一定问题即是其中之一。

这类问题通常涉及到二次函数图像与等腰三角形的关系,需要通过数学方法去分析和求解。

4. 解析二次函数等腰三角形两动一定问题的方法4.1 分析二次函数的图像特点我们需要通过对二次函数的图像特点进行分析,来理解二次函数与等腰三角形的关系。

通过对二次函数的开口方向、顶点、对称轴等特征进行研究,可以为后续的问题解决提供重要的线索。

4.2 探讨等腰三角形的性质我们需要对等腰三角形的性质进行深入探讨。

通过对等腰三角形的角度、边长、高度等特性进行分析,可以为问题的解决提供必要的几何基础。

4.3 利用二次函数的性质解决问题我们可以利用二次函数的性质,结合等腰三角形的几何特性,来解决二次函数等腰三角形两动一定问题。

通过建立方程、求解交点、推导关系式等方法,可以得出最终的答案。

5. 实例分析为了更好地理解二次函数等腰三角形两动一定问题的解决方法,我们可以通过实例进行详细分析。

选取一个具体的二次函数和等腰三角形,通过具体计算和推导,来展示问题的解决过程和思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数中的存在性问题(等腰三角形)[07福建龙岩]如图,抛物线254y ax ax =-+经过ABC △已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点, 是否存在PAB △是等腰三角形.若存在,求出所有符合条 件的点P 坐标;不存在,请说明理由. 解:(1)抛物线的对称轴5522a x a -=-= (2)(30)A -, (54)B , (04)C , 把点A 坐标代入254y ax ax =-+中,解得16a =-215466y x x ∴=-++(3)存在符合条件的点P 共有3个.以下分三类情形探索. 设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,2BM = ① 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= 在1Rt ANP △中,1PN ==== 152P ⎛∴ ⎝⎭② AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ==== 2552P ⎛∴ ⎝⎭③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△.312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = 3(2.51)P ∴-,[07广西河池]如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S , 求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ 成为以BQ 等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.(1)把x =0代入224233y x x =-++得点C 的坐标为C (0,2) 把y =0代入224233y x x =-++得点B 的坐标为B (3,0)(2)连结OP ,设点P 的坐标为P (x ,y )OBPC S 四边形=OPC S △+OPB S △ =112322x y ⨯⨯+⨯⨯= 3223x ⎛+- ⎝∵ 点M 运动到B 点上停止,∴03x ≤≤∴23324S x ⎛⎫=--+ ⎪⎝⎭(03x ≤≤)(3)存在. BC=13 ① 若BQ = DQ∵ BQ = DQ ,BD = 2 ∴ BM = 1 ∴OM = 3-1 = 2 ∴2tan 3QM OC OBC BM OB ∠=== ∴QM =23 所以Q的坐标为Q (2,23) . ② 若BQ =BD =2 ∵ △BQM ∽△BCO ,∴BQ BC =QM CO =BMBO∴=2QM ∴ QM∵BQ BC =BM OB ∴ 3BM∴ BM ∴ OM = 3 ··················································· 11分 所以Q 的坐标为Q (313-,13) ··················································· 12分[07年云南省]已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ), 请求出△CBE 的面积S 的值;(3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并 写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由. 解:(1)∵抛物线经过点(1,0)A 、(5,0)B ∴(1)(5)y a x x =--. 又∵抛物线经过点(0,5)C ∴55a =,1a =.∴抛物线的解析式为2(1)(5)65y x x x x =--=-+.(2)∵E 点在抛物线上, ∴m = 42–4×6+5 = -3.∵直线y = kx +b 过点C (0, 5)、E (4, –3), ∴5,4 3.b k b =⎧⎨+=-⎩解得k = -2,b = 5.设直线y =-2x +5与x 轴的交点为D ,当y =0时,-2x +5=0,解得x =52.∴D 点的坐标为(52,0). ∴S =S △BDC + S △BDE =1515(5)5+(5)32222⨯-⨯⨯-⨯=10.(3)∵抛物线的顶点0(3,4)P -既在抛物线的对称轴上又在抛物线上,∴点0(3,4)P -为所求满足条件的点.(4)除0P 点外,在抛物线上还存在其它的点P 使得△ABP 为等腰三角形.理由如下:∵004AP BP ===>,∴分别以A 、B 为圆心半径长为4画圆,分别与抛物线 交于点B 、1P 、2P 、3P 、A 、4P 、5P 、6P , 除去B 、A 两个点外,其余6个点为满足条件的点. (说明:只说出P 点个数但未简要说明理由的不给分)[07山东威海]如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式. (3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.解:(1)有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =+,2(1y x =-.(2)设抛物线2l 的函数表达式为2y x bx c =++,点(12)A ,,(31)B ,在抛物线2l 上,12931b c b c ++=⎧∴⎨++=⎩,解得9211.2b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线2l 的函数表达式为291122y x x =-+. (3)229119722416y x x x ⎛⎫=-+=-+ ⎪⎝⎭,C ∴点的坐标为97416⎛⎫⎪⎝⎭,.过A B C ,,三点分别作x 轴的垂线,垂足分别为D E F ,,, 则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =. ABC ADEB ADFC CFEB S S S S ∴=--△梯形梯形梯形117517315(21)22122164216416⎛⎫⎛⎫=+⨯-+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭.x图①x图②x图③x延长BA 交y 轴于点G ,设直线AB 的函数表达式为y mx n =+, 点(12)A ,,(31)B ,在直线AB 上,213.m n m n =+⎧∴⎨=+⎩,解得125.2m n ⎧=-⎪⎪⎨⎪=⎪⎩∴直线AB 的函数表达式为1522y x =-+.G ∴点的坐标为502⎛⎫ ⎪⎝⎭,. 设K 点坐标为(0)h ,,分两种情况: 若K 点位于G 点的上方,则52KG h =-.连结AK BK ,. 151553122222ABK BKG AKG S S S h h h ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭△△△.1516ABK ABC S S ==△△,515216h ∴-=,解得5516h =.K ∴点的坐标为55016⎛⎫ ⎪⎝⎭,.若K 点位于G 点的下方,则52KG h =-.同理可得,2516h =.K ∴点的坐标为25016⎛⎫⎪⎝⎭,. (4)作图痕迹如图③所示. 由图③可知,点P 共有3个可能的位置.注:作出线段AB 的中垂线得1分,画出另外两段弧得1分.x[07山东泰安]如图,在OAB △中,90B ∠=,30BOA ∠=,4OA =,将OAB △绕点O 按逆时针方向旋转至OA B ''△,C 点的坐标为(0,4). (1)求A '点的坐标; (2)求过C ,A ',A 三点的抛物线2y ax bx c =++的解析式;(3)在(2)中的抛物线上是否存在点P ,使以O A P ,,为顶点的三角形 是等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由解:(1)过点A '作A D '垂直于x 轴,垂足为D ,则四边形OB A D ''为矩形 在A DO '△中,A D OA ''=sin 4sin 6023A OD '∠=⨯=2OD A B AB''=== ∴点A '的坐标为(2 (2)(04)C ,在抛物线上,4c ∴= 24y ax bx∴=++(40)A ,,(2A ',在抛物线24y ax bx =++上 16440424a b a b ++=⎧⎪∴⎨++=⎪⎩,3a b ⎧=⎪⎨⎪=⎩ ∴所求解析式为23)42y x x =++. (3)①若以点O 为直角顶点,由于4OC OA ==,点C 在抛物线上,则点(04)C ,为满足条件的点. ②若以点A 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(44),或(44)-,,经计算知;此两点不在抛物线上.③若以点P 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(22),或(22)-,,经计算知;此两点也不在抛物线上.综上述在抛物线上只有一点(04)P ,使OAP △为等腰直角三角形[08广东梅州]如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB , AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于 AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L . (3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)解: (1) DC ∥AB ,AD =DC =CB , ∴ ∠CDB =∠CBD =∠DBA , ∠DAB =∠CBA , ∴∠DAB =2∠DBA ,∠DAB +∠DBA =90 , ∴∠DAB =60 , ∠DBA =30 , AB =4, ∴DC =AD =2, R t ∆AOD ,OA =1,OD =3,.∴A (-1,0),D (0, 3),C (2, 3).(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A (-1,0),B (3,0), 故可设所求为 y =a (x +1)( x -3) 将点D (0,3)的坐标代入上式得, a =33-. 所求抛物线的解析式为 y =).3)(1(33-+-x x ···································· 7分 其对称轴L 为直线x =1. ········································································· 8分 (3) ∆PDB 为等腰三角形,有以下三种情况:①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,P 1D =P 1B ,∆P 1DB 为等腰三角形; ·········································································· 9分 ②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P 2、P 3,DB =DP 2,DB =DP 3, ∆P 2DB , ∆P 3DB 为等腰三角形;③与②同理,L 上也有两个点P 4、P 5,使得 BD =BP 4,BD =BP 5. ··················· 10分 由于以上各点互不重合,所以在直线L 上,使∆PDB 为等腰三角形的点P 有5个.[08福建南平]如图,平面直角坐标系中有一矩形纸片OABC ,O 为原点,点A C ,分别在x 轴,y 轴上,点B 坐标为(m (其中0m >),在BC 边上选取适当的点E 和点F ,将OCE △沿OE 翻折,得到OGE △;再将ABF △沿AF 翻折,恰好使点B 与点G 重合,得到AGF △,且90OGA ∠=.(1)求m 的值;(2)求过点O G A ,,的抛物线的解析式和对称轴; (3)在抛物线的对称轴...上是否存在点P ,使得OPG △是 等腰三角形?若不存在,请说明理由;若存在,直接答出.... 所有满足条件的点P 的坐标(不要求写出求解过程). (1)(2)B m ,,由题意可知AG AB ==OG OC ==OA m =90OGA ∠=,222OG AG OA ∴+= 222m ∴+=.又0m >,2m ∴=(2)过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,.又由(1)知(20)A ,,设过O G A ,,三点的抛物线解析式为2y ax bx c =++ 抛物线过原点,0c ∴=.又抛物线过G A ,两点,1420a b a b +=⎧∴⎨+=⎩ 解得12a b =-⎧⎨=⎩∴所求抛物线为22y x x =-+ ∴它的对称轴为1x =.(3)答:存在,满足条件的点P 有(10),,(11)-,,(11,,(11+,.[08湖南株洲]如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B 的坐标为(3,-1),二次函数2y x =-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.(1)222345y x x y x x =-+-=-+-或等 (满足条件即可) ……1分(2)设2l 的解析式为2y x bx c =-++,联立方程组21193b c b c-=-++⎧⎨-=-++⎩, 解得:911,22b c ==-,则2l 的解析式为291122y x x =-+-, ……3分点C 的坐标为(97,416-) ……4分(3)如答图23-1,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、E 、F ,则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =.得:1516ABC ABED BCFE CFD S S S S ∆=--=梯形梯形梯形A . ……5分y ox 图(1)yo x 图(2) l 1l 2延长BA 交y 轴于点G ,直线AB 的解析式为1522y x =-,则点G 的坐标为(0,52-),设点P 的坐标为(0,h )①当点P 位于点G 的下方时,52PG h =--,连结AP 、BP ,则52ABP BPG APG S S S h ∆∆∆=-=--,又1516ABC ABP S S ∆∆==,得5516h =-,点P 的坐标为(0,5516-). …… 6分②当点P 位于点G 的上方时,52PG h =+,同理2516h =-,点P 的坐标为(0,2516-).综上所述所求点P 的坐标为(0,5516-)或(0,2516-) …… 7分(4) 作图痕迹如答图23-2所示.由图可知,满足条件的点有1Q 、2Q 、3Q 、4Q ,共4个可能的位置. …… 10分答图23-2EF 答图23-1[08浙江温州]如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在, 请求出所有满足要求的x 的值;若不存在,请说明理由. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 10C ∴∠===,45QM QP ∴=,1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=. ③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,A BCD ER P H QA BCD ER P H QM2 1 HA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.二次函数中的存在性问题(直角三角形)[08辽宁十二市]如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.x。

相关文档
最新文档