数理统计基础知识(一)(1)
概率论与数理统计基础知识和公式整理
第1章随机事件与概率A B=不可能同时发生,称事件A与事件互不相容或者互斥。
基本事件是互不相容的。
=且B互为逆事件,或对A BΦ,则(P B-A{ωω21,P) (2=ω1()(|)n i i P A P A B ==∑对全概率公式可以利用课堂讲解过的概率树来描述和分析。
设事件B 1,B 2,…,B n 及1(|))(|i n j j P A B P P A B ==∑此公式即为贝叶斯公式。
1=i 2n第二章随机变量及其分布第三章多维随机变量及其分布的联合分布函数。
通过全平面上的区域来形}1z-)]n第四章随机变量的数字特征第五章大数定律和中心极限定理1(数理统计部分的知识都是从样本和样本统计量出发来分析总体的属性,例如:分析已知分布中的未知参数等)第六章数理统计的基本概念与抽样分布总体有相同分布的随机变量;观察之后,样本就是nk=2,3,.()},max{n n X X =常用统计量的基本性质~X N 221)~S χ-(X-第七章 参数估计,)mA θ=),,2∧m θ 即为参数n12,,,,)(;,)m i m P X θθθθ=∏=∂法的流程。
第八章 假设检验假设检验的基本步骤如下:1. 根据实际问题,提出原假设0H 及备择假设1H ;(可确定是单侧还是双侧假设检验)2. 依据实际条件构造检验统计量;(检验统计量不含任何未知参数且分布已知)3.对于给定显著性水平α,确定检验统计量的拒绝域;(拒绝域要与0H 为真时检验统计量的趋势相反)4.将样本值或者样本统计量的值代入检验统计量的表达式计算实际值,判断是否落入拒绝域,若落入拒绝域,则否定0H ,否则接受0H 。
数理统计的基础知识
其中 x1, x2, , xn 在集合{0,1}中取值.
总体、样本、样本值的关系
事实上, 我们抽样后得到的资料都是具体的、确定的值. 比如我 们从某班大学生中抽取 10 人测量身高, 得到 10 个数. 它们是样本 取到的值而不是样本. 我们只能观察到随机变量取的值而见不到随
机变量.
总体(理论分布)?
则样本的概率分布为
p( x1,x2 ,
, xn ) P{ X1 x1, X2 x2 ,
n
p( xi ).
, Xn xn }
i 1
例 设总体X ~ P( ), ( X1, X 2 , , X n )为其样本,
则样本的概率分布为:
n
P{ X1 i1 , X2 i2 , , X n in } P{ X ik }
然而在统计研究中,人们往往关心每个个体的一项 (或几项)数量指标和该数量指标在总体中的分布情况. 这时,每个个体具有的数量指标的全体就是总体.
灯泡的寿命
国产轿车每公里 的耗油量
该批灯泡寿命的 全体就是总体
所有国产轿车每公里耗油 量的全体就是总体
由于每个个体的出现带有随机性,即相应的数量指标 值的出现带有随机性。从而可把此种数量指标看作随 机变量,我们用一个随机变量或其分布来描述总体。 定义 统计学中称随机变量(或向量)X为总体,并把
样本值
样本
统计是从手中已有的资料 — 样本值, 去推断总体的情况 —总体
分布F(x)的性质. ?样? 本? 是联系二者的桥梁
总体分布决定了样本取值的概率规律,也就是样本取到样本值
的规律, 因而可以由样本值去推断总体.
分散、复杂
是总体的代表, 含有总体的信息
数理统计知识点总结
数理统计知识点总结一、概述数理统计是一门研究收集、整理、分析和解释数据的学科。
它在各个领域中发挥着重要作用,包括科学研究、经济学、社会学等。
二、基本概念1. 数据:指收集到的观察结果或实验结果,是进行统计分析的基础。
2. 总体和样本:总体指研究对象的全体,样本是从总体中选取的一部分。
3. 变量:指研究对象的性质或特征,分为定性变量和定量变量。
4. 频数和频率:频数是某一数值在样本中出现的次数,频率是某一数值在样本中出现的相对次数。
三、数据的整理与描述1. 数据的收集:可以通过实验、调查或观察等方式获取数据。
2. 数据的整理:包括数据的分类、排序和归纳等处理。
3. 数据的描述:使用统计指标如均值、方差、标准差等来描述数据分布的中心趋势和变异程度。
四、概率与概率分布1. 概率:指事件发生的可能性,可通过频率或理论推导计算得到。
2. 概率分布:描述随机变量取值与其概率之间的关系,包括离散概率分布和连续概率分布。
五、统计推断1. 参数估计:根据样本数据估计总体的参数,如均值、比例等。
2. 假设检验:根据样本数据判断总体参数是否符合某个假设。
3. 置信区间:给出总体参数的估计范围。
六、相关性与回归分析1. 相关性:描述两个变量之间的关联程度,可以通过相关系数来度量。
2. 简单线性回归:通过一条直线描述两个变量之间的函数关系。
3. 多元线性回归:通过多个变量来描述一个变量的线性关系。
七、抽样与实验设计1. 抽样方法:包括随机抽样、分层抽样等,确保样本具有代表性。
2. 实验设计:设计合理的实验方案,控制其他因素对结果的影响。
以上是数理统计的一些基本知识点总结,希望对您有所帮助。
数理统计主要知识点
数理统计主要知识点数理统计是统计学的重要分支,旨在通过对概率论和数学方法的研究和应用,解决实际问题上的不确定性和随机性。
本文将介绍数理统计中的主要知识点,包括概率分布、参数估计、假设检验和回归分析。
一、概率分布概率分布是数理统计的基础。
它描述了一个随机变量所有可能的取值及其对应的概率。
常见的概率分布包括:1. 均匀分布:假设一个随机变量在某一区间内取值的概率是相等的,则该随机变量服从均匀分布。
2. 正态分布:正态分布是最常见的连续型概率分布,其概率密度函数呈钟形曲线,具有均值和标准差两个参数。
3. 泊松分布:泊松分布描述了在一定时间内发生某个事件的次数的概率分布,例如在一天内发生交通事故的次数。
4. 二项分布:二项分布描述了进行一系列独立实验,每次实验成功的概率为p时,实验成功的次数在n次内取特定值的概率。
二、参数估计参数估计是根据样本数据来推断随机变量的参数值。
常见的参数估计方法包括:1. 最大似然估计:假设数据服从某种分布,最大似然估计方法寻找最能“解释”数据的那个分布,计算出分布的参数值。
2. 矩估计:矩估计方法利用样本矩来估计分布的参数值,例如用样本均值估计正态分布的均值,样本方差估计正态分布的方差。
三、假设检验假设检验是为了判断一个统计假设是否成立而进行的一种统计方法。
它包括假设、检验统计量和显著性水平三个重要概念。
1. 假设:假设指的是要进行验证的观察结果,分为零假设和备择假设两种。
2. 检验统计量:检验统计量是为了检验零假设而构造的统计量,其值代表目标样本符合零假设的程度。
3. 显著性水平:显著性水平是用来决定是否拒绝零假设的标准,通常为0.01或0.05。
四、回归分析回归分析是用来研究和描述两个或多个变量之间关系的统计方法。
它可以帮助人们了解因果关系,做出预测和控制因素的效果。
1. 简单线性回归:简单线性回归是一种简单的回归分析方法,它描述一个因变量和一个自变量之间的线性关系。
2. 多元线性回归:多元线性回归描述多个自变量和一个因变量之间的关系,通过多元回归模型可以找到最佳的回归系数,从而用来预测未来的结果。
数理统计(第一章)
数理统计学•主讲人: 沈玉波•办公室地址: 校本部,大黑楼B1005•办公室电话: 84708351-8205•E-mail: shenyubo@•大连理工大学概率统计教研室常见的离散型随机变量1.二项分布:()p B ,”分布“11-0=()为参数为自然数,其中10<<p n ().的二项分布,服从参数为则称随机变量p n X 显然,当n=1 时()()n k p p C k X P kn kk n,,, 101)(=-==-()p n B X ,记作~如果随机变量X 的分布律为()∑=--nk kn kknp p C1()[]11=-+=np p4.帕斯卡分布(负二项分布)如果随机变量X 的分布律为(),,21,)1()(11++=-==---r r r k pp C k X P rrk r k ()为常数其中10<<p 则称随机变量X 服从参数为r , p 的帕斯卡分布.)B(r,~p N X 记为:1)独立重复试验,第r 次成功时实验次数的分布律。
则独立同分布,且已知),(~,,,)221p G X X X X i r ),(~21p r NB X X X r +++1. 概念设X 是一个随机变量,x 是任意实数,函数)()(x X P x F ≤=称为X 的分布函数.2. 分布函数的性质1)(0,)1≤≤∈x F R x 1)(lim )(,0)(lim )()2==∞==-∞∞→-∞→x F F x F F x x 分布函数.)(),()0()5是右连续的即x F x F x F =+3) F (x ) 是一个不减的函数.)()(}{)41221x F x F x X x P -=≤<。
概率论与数理统计基础知识
从集合的角度看
B
A
事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。
考研数学数理统计基础知识点总结
考研数学数理统计基础知识点总结在准备考研数学的过程中,掌握数理统计基础知识是非常重要的。
本文将为您总结一些常见的数理统计基础知识点,帮助您更好地备考。
一、概率论基础知识1. 事件与样本空间:事件是指样本空间中的某个子集,样本空间则是指随机试验的所有可能结果的集合。
2. 概率的定义:概率是指事件发生的可能性大小,其取值范围在0到1之间。
3. 概率的运算:包括加法公式和乘法公式。
加法公式适用于互斥事件的概率计算,乘法公式则适用于独立事件的概率计算。
4. 条件概率:指在已知某一事件发生的条件下,另一事件发生的概率。
5. 贝叶斯定理:用于计算事件的后验概率,在已经得到一些信息的情况下,通过先验概率和条件概率计算出事件的后验概率。
二、随机变量与概率分布1. 随机变量的概念:随机变量是指随机试验结果的某个函数,可以是离散的或连续的。
2. 概率质量函数与概率密度函数:对于离散型随机变量,其概率可以通过概率质量函数来描述;对于连续型随机变量,则需要使用概率密度函数。
3. 常见的离散型随机变量:包括伯努利分布、二项分布、泊松分布等。
4. 常见的连续型随机变量:包括均匀分布、正态分布、指数分布等。
三、统计推断1. 抽样与抽样分布:抽样是指从总体中选取一部分个体进行研究,抽样分布则是指统计量在大量抽样下的分布情况。
2. 参数估计:根据样本数据对总体的某个参数进行估计,可以使用点估计和区间估计两种方法。
3. 假设检验:对总体参数的某个假设进行检验,包括设置原假设和备择假设,以及计算检验统计量和判断拒绝域。
4. 方差分析:一种用于比较两个或多个总体均值是否有显著差异的统计方法,适用于独立样本、配对样本和重复测量样本。
四、相关与回归分析1. 相关分析:用于判断两个变量之间的相关性强弱,包括计算相关系数和进行假设检验。
2. 简单线性回归分析:用于建立一个自变量与因变量之间的线性关系模型,通过最小二乘法来估计回归系数。
3. 多元线性回归分析:在简单线性回归的基础上,将多个自变量引入回归模型中进行分析,以探究多个变量对因变量的影响。
数理统计的基础知识-精品
数理统计的基础知识-精品2020-12-12【关键字】建议、情况、方法、前提、质量、问题、有效、深入、充分、合理、了解、研究、规律、特点、突出、思想、基础、需要、重点、方式、办法、标准、水平、反映、关系、检验、分析、推广、满足、解决、适应、中心、关心在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。
知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。
在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。
但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。
例如:1、某种电子元件的寿命服从什么分布是完全不知道的。
2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0-1)分布,但其中的参数p未知。
对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数。
数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数。
数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。
数理统计研究的内容非常广泛,可分为两大类:一是:怎样有效地收集、整理有限的数据资料。
二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。
第一节数理统计的基本概念一、总体与总体的分布在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。
总体中所包含的个体的个数称为总体的容量.容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系.在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X。
01第一章 数理统计的基础知识
为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干 个体进行观察,称为抽样。
2
第一章 数理统计的基础知识
第一节 总体与样本
一 . 总体与样本
定义1:研究的对象称为总体,总体往往以某一项数量指标为其特征。实 际上总体就是一个随机变量 X 。
为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干 个体进行观察,称为抽样。 定义2:从总体中抽取的 n 个个体 (X1,X2,…,Xn) 称为样本,实际上样本就 是一个 n 维随机变量(或向量)。
简单随机样本: (X1,X2,…,Xn) 是相互独立的随机变量(独立性);且 Xi ~ X (同分布) 。 样本容量 n:样本中所含个体数目,为已知的一个自然数。 样本观察值: (X1,X2,…,Xn) = (x1,x2,…,xn)
上例中,若某次抽样得: (X1,X2,X3,X4,X5) = (0,0,1,0,1)
P(Y 15) f ( y)dy
15
10 0 15 20 y y 1 3 7 dy dy 10 100 100 2 8 8
例3:设总体 X ~ b(1,p)。现从中抽取容量为 2 的样本,得到样本 (X1, X2),求样本的函数 Y = X12 + X22 的概率分布,并求出事件 P(Y < 15) 的概率。
i 1 n
如上例:总体 X ~ b(1,p),概率分布为:P(X = x) = (1 – p)1 – x p x (x = 0,1) 则样本 (X1,X2,…,Xn) 的联合分布为:
P( X 1 x1 , X n xn ) p x1 (1 p)1 x1 p xn (1 p)1 xn p i1 (1 p)
概率论与数理统计复习资料知识点总结
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
数理统计的基本知识数理统计的内容主要包括以下两个方面一
第六章数理统计的基本知识数理统计的内容主要包括以下两个方面:一、如何收集、整理数据资料;二、如何对所得的数据资料进行分析、研究,从而对所研究的对象的性质、特点作出推断.后者就是我们所说的统计推断问题.本书只讲述统计推断的基本内容,即数理统计的基本知识、参数估计、假设检验、方差分析及回归分析等.在概率论中,我们是在假设随机变量的分布已知的前提下去研究它的性质、特点和规律性,例如介绍常用的各种分布、讨论其随机变量的函数的分布、求出其随机变量的数字特征等.在数理统计中,我们研究的随机变量,其分布是未知的,或者是不完全知道的,人们是通过对所研究的随机变量进行重复独立的观察,得到许多观察值,对这些数据进行分析,从而对所研究的随机变量的分布作出种种推断的.本章我们将介绍总体、随机样本及统计量等基本概念,并着重介绍几个常用统计量及抽样分布.§6.1 随机样本一、总体与总体分布1.总体:将研究对象的某项数量指标的值的全体称为总体.总体中的每个元素称为个体.总体中所包含的个体的个数称为总体的容量.容量为有限的称为有限总体.否则称为无限总体.注:有些有限总体,它的容量很大,我们可以认为它是一个无限总体.例如考察全国正在使用的某种型号灯泡的寿命所形成的总体,由于个体的个数很多,就可以认为是无限总体.在总体中,由于每个个体的出现是随机的,所以研究对象的该项数量指标X的取值就具有随机性,X是一个随机变量.因此,我们所研究的总体,即研究对象的某项数量指标X,它的取值在客观上有一定的分布.我们对总体的研究,就是对相应的随机变量X的分布的研究.X的分布函数和数字特征就称为总体的分布函数和数字特征,今后将不区分总体与相应的随机变量,笼统称为总体X.二、样本与样本分布在实际中,总体的分布一般是未知的,或只知道它具有某种形式,其中包含着未知参数.在数理统计中,人们都是通过从总体中抽取一部分个体,然后根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的一个样本.从总体抽取一个个体,可以看作是对代表总体的随机变量X 进行一次试验(或观测),得到X 的一个试验数据(或观测值).从总体中抽取一部分个体,就看作是对随机变量X 进行若干次试验(或观测),得到X 的一些试验数据(或观测值).从总体中抽取若干个个体的过程称为抽样.抽样结果得到X 的一组试验数据(或观测值)称为样本.样本中所含个体的数量称为样本容量.为了使样本能很好地反映总体的情况,从总体中抽取样本,必须满足下述两个条件: 1.代表性因抽取样本要反映总体,自然要求每个个体和总体具有相同分布. 2.独立性各次抽取必须是相互独立的,即每次抽样的结果既不影响其他各次抽样的 结果,也不受其他各次抽样结果的影响.这种随机的、独立的抽样方法称为简单随机抽样.由此得到的样本称为简单随机样本.从总体中进行放回抽样,显然是简单随机抽样,得到的是简单随机样本.从 有限总体中进行不放回抽样,显然不是简单随机抽样,但是当总体容量N很大而样本容量n 较小0.1n N ⎛⎫≤ ⎪⎝⎭时,也可以近似地看作是放回抽样,即可以近似地看作是简单随机抽样,得到的样本可以近似地看作是简单随机样本. 注:从总体抽取容量为n 的样本,就是对代表总体的随机变量X在相同条件下随机地、独立地进行n 次试验(或观测),将n 次试验结果按试验的次序记为n X X X ,,,21 .由于n X X X ,,,21 是对随机变量X 试验的结果,且各次试验是在相同条件下独立地进行的,所以可认为n X X X ,,,21 是相互独立的,且与总体X 服从相同的分布.定义1:设总体X 是具有某一分布函数的随机变量,如果随机变量n X X X ,,,21 相互独立,且都与X 具有相同的分布,则称n X X X ,,,21 为来自总体X 的简单随机样本,简称样本.n 称为样本容量.在对总体X 进行一次具体的抽样并做观测之后,得到样本n X X X ,,,21 的确切数值12,,,n x x x ,称为样本观察值(或观测值),简称为样本值.如果总体X 的分布函数为()F X ,则样本n X X X ,,,21 的联合分布函数为*12121(,,,)()()()()nn n i i F x x x F x F x F x F x ===∏如果总体X 是离散型随机变量,且概率分布为{},1,2,i P X x i ==则样本n X X X ,,,21 的联合概率分布为12121{,,,}{}{}{}{}nn n i i i P X x X x X x P X x P X x P X x P X x ∙==========∏如果总体X 是连续型随机变量,且具有概率密度)(x f ,则样本n X X X ,,,21 的联合概率密度为12121(,,,)()()()()nn n i i f x x x f x f x f x f x ∙===∏三、统计推断问题简述总体和样本是数理统计中的两个基本概念. 样本来自总体,自然带有总体的信息,从而可以从这些信息出发去研究总体的某些特征(分布或分布中的参数). 另一方面,由样本研究总体可以省时省力(特别是针对破坏性的抽样试验而言). 我们称通过总体X 的一个样本n X X X ,,,21 对总体X 的分布进行推断的问题为统计推断问题.总体、样本、样本值的关系:总体↙ ↖推断(个体)样本 → 样本值抽样在实际应用中, 总体的分布一般是未知的, 或虽然知道总体分布所属的类型, 但其中包含着未知参数. 统计推断就是利用样本值对总体的分布类型、未知参数进行估计和推断.为对总体进行统计推断, 还需借助样本构造一些合适的统计量, 即样本的函数, 下面将对相关统计量进行深入的讨论.例1:设总体X 服从正态分布),(2σμN ,概率密度为22()2(), x f x x R μσ--=∈则其样本n X X X ,,,21 的联合概率密度为22211()()2212/211(,,,).(2)ni i x nx n n ni f x x x e μμσσπσ=----*=∑==§6.2 抽样分布样本是进行统计推断的依据.在应用时,往往不是直接使用样本本身,而是针对不同的问题构造样本的适当函数,利用这些样本的函数进行统计推断.一、统计量的概念定义1:设12,,,n X X X 是来自总体X 的一个样本,()12,,,n g X X X 是 12,,,n X X X 的函数,若g 中不含未知参数,则称()12,,,n g X X X 是一个统计量.设12,n x x x 是相应于样本12,,,n X X X 的样本值,则12(,)n g x x x 称为()12,,,n g X X X 的观察值.注: 统计量是随机变量.不一定和总体同分布,不同的统计量有不同的分布.二、常用的统计量1. 样本均值 ∑==ni i X n X 11 观测值记为 11nii x xn==∑2. 样本方差 ()2222111111nn i i i i S X X X nX n n ==⎛⎫=-=- ⎪--⎝⎭∑∑ 观测值记为 ()2222111111nn i i i i s x x x nx n n ==⎛⎫=-=- ⎪--⎝⎭∑∑ 3. 样本标准差S ==观测值记为s ==4. 样本(k 阶)原点矩 ,2,1,11==∑=k X n A n i ki k观测值记为 11,1,2,n kk i i a xk n ===∑5. 样本(k 阶)中心矩 ,3,2,)(11=-=∑=k X X n B ni k i k观测值记为 ()11,1,2,knk i i b x x kn ==-=∑注: (1)上述五种统计量可统称为矩统计量,简称为样本矩,它们都是样本的显示函数,它们的观察值仍分别称为样本均值、样本方差、样本标准差、样本(k 阶)原点矩、样本(k 阶)中心矩.(2)样本的一阶原点矩就是样本均值,样本一阶中心矩恒等于零21121,0,n A X B B S n-===, 三、矩估计法的理论根据若总体X 的k 阶矩()k k E X μ=存在,则当n →∞时Pk k A μ−−→ 1,2,k=证:12,,,n X X X 独立且与X 同分布12,,,k k knX X X ∴独立且与k X 同分布.故有 ()()()()12k kkk n k E X E X E X E X μ=====从而由第五章的大数定理知11n P k k i k i A X n μ==−−→∑ 1,2,k=进而由第五章中关于依概率收敛的序列的性质知道()()1212,,,,,,Pk k g A A A g μμμ−−→其中g 为连续函数,这就是下一章所要介绍的矩估计法的理论根据。
《概率论与数理统计》第一章知识点
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
概率论与数理统计知识总结之第一章
n
P(Bi|A)=P(A|BJP(Bi)/、P(A|Bj)P(Bj)
1
先验概率:
根据以往数据分析得到的概率
后验概率:
在得到信息之后再重新加以修正的概率
设代B,C为事件,则有
交换律:
A B=B A; A ' B=B * A.
结合律:
A (B C)= (A B) C;
A' (B ~C) =(A一B厂C.
分配律:
A (B一C) =(A B厂(A C);
A一(B C)=(A一B) (A一C).
德摩根律:
A一B = A「B;
A B = A _ B.
频率与概率
生、B不发生时事件A-B发生
5.若^8=,则称事件A与B是互不相容的,或互斥的。这指的是事件A与
事件B不能同时发生。基本事件是两两互不相容的。
6.若A一B=S且^8=,则称事件A与事件B互为逆事件。又称事件A与事件B互为对立事件。这指的是对每次试验而言,事件A,B中必有一个发性质:
1.非负性:P(B| A) M)
2.规范性:对于必然事件S,有P(S|A)=1
3.可列可加性:设B,B2,••是两两互不相容的事件,则有
P(UBiI 2、P(Bi|A)
i4
对于任意事件B,C,有
P(BUC|A)=P(B|A)+P(C|A)-P(BC|A)
乘法定理:
设P(A)>0,则有P(AB)=P(B|A)P(A)
P(A -A2-…一An)=P(A1) + P(A2)+…+P(An)
3.设A,B是两个事件,若A B,则有
P(B-A)=P(B)-P(A),P(B) >P(A)
数理统计主要知识点
《数理统计》的主要知识点 一.统计量及其抽样分布 (一)统计量的概念1. 统计量的定义: 简单地说,统计量就是样本i x 的函数,它除i x 外不含其它未知参数。
2. 简单随机抽样:从总体中抽取样本n x x x 21,若它们相互独立同分布 ,且分布与总体相同,则称其为简单随机抽样。
3. 常见的统计量:(1)样本均值: ∑==n i i x n x 11 (2)样本方差:()21211∑=--=n i i x x n s (3)样本k 阶原点距: ∑==n i k i k x n a 11 (4)样本k 阶中心距: ()∑=-=ni k i k x x n b 11(二)抽样分布的结构和性质1. 2χ分布: 若 n X X X ,,21 是来自总体X 的简单随机抽样,且X ~()1,0N ,则随机变量2χ=22221n X X X +++ ,此时称其分布为自由度为n 的2χ分布,记2χ~()n 2χ性质: ①()n E =2χ② ()n D 22=χ2.F 分布:若X ~()n 2χ,Y ~()m 2χ,且Y X 与相互独立,记随机变量F mY n X=,称其分布为自由度为n 与m 的F 分布,记 F ~F ()m n ,性质:()()n m F m n F ,1,1αα-=3.t 分布:设随机变量Y X 与相互独立,且X ~()1,0N ,Y ~()n 2χ,则称 nY X t =的分布为自由度为n 的t 分布,记t ~t ()n性质:①自由度为1的t 分布是标准柯西分布,它的均值不存在;②1>n 时,t 分布的数学期望存在且为0;③1>n 时,t 分布的方差存在且为2-n n ④当自由度较大时,t 分布可以用()1,0N 近似。
二.参数估计: (一)点估计:1. 矩估计:(替换原理)一般地:①用样本均值估计总体均值;即 ()x X E =②用样本二阶中心矩估计总体方差;()()2121∑=-==n i i n x x n s X D③用事件A 出现的频率估计事件A 发生的概率。
数理统计知识点
数理统计知识点数理统计是一门研究如何从数据中提取有用信息并做出推断的学科。
它不仅在科学研究、工业生产中具有重要应用,也经常被普通人用来分析数据和做出决策。
以下是一些数理统计中常见的知识点。
1. 总体与样本在数理统计中,我们通常关注的是一个特定的总体,总体是我们要研究或分析的对象。
由于总体往往很大,很难对其所有个体进行观察或测量,因此我们从总体中选取一部分称为样本进行研究。
样本是总体的一个子集,通过对样本的研究,我们可以对总体做出推断。
2. 数据类型在数理统计中,数据可以分为两种类型:定量数据和定性数据。
定量数据是可量化的,可以用数字表示,如身高、体重等。
而定性数据则是描述性的,不能用数字表示,如性别、颜色等。
根据数据类型的不同,我们可以采用不同的统计方法进行分析。
3. 描述统计描述统计是数理统计的一项重要工作,它旨在通过对数据进行整理、汇总和可视化,直观地揭示数据的特征和规律。
常见的描述统计方法包括平均数、中位数、众数、方差、标准差等。
通过描述统计,我们可以对数据的分布、集中趋势和离散程度有一个初步的了解。
4. 参数统计与非参数统计在进行统计推断时,我们可以利用样本数据对总体参数进行估计。
参数统计是基于总体分布形态的方法,如正态分布、泊松分布等,通过对样本数据的分析,来推断总体参数的值。
非参数统计则是不对总体分布形态做出任何假设,通过对样本数据的分析,得出推断结果。
5. 假设检验假设检验是数理统计中的一项重要内容,它用于判断样本数据是否支持某个假设。
在假设检验中,我们首先提出原假设和备择假设,然后通过对样本数据的分析,得出是否拒绝原假设的结论。
假设检验可以帮助我们做出科学的决策,并保证决策的可靠性。
6. 回归分析回归分析是数理统计中一种常用的方法,用于研究两个或多个变量之间的关系。
通过回归分析,我们可以建立数学模型,预测因变量对自变量的影响。
回归分析不仅可以用于预测和控制,还可以用于发现变量间的关联和趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计的基本概念 随机变量 如果事前我们无法准确地知道变量的具体取值,这样的变量 就是随机变量;在6西格玛项目中,我们处理的大都是随机变 量。如: 每周所收到的定单的数量; 每批零件的报废数量; 每天接到的顾客服务电话数量;
每批产品的交付时间;
每个零件的加工尺寸等。 概率是研究随机变量的工具
数理统计的基本概念
0.9607 0.9993 1.0000
0.9227 0.9973 0.9999 1.0000
0.8508 0.9897 0.9996 1.0000
0.7837 0.9777 0.9987 0.9999 1.0000
0.6634 0.9428 0.9942 0.9996 1.0000
数理统计的基本概念 二项分布的例子
是整数的X的值,相应的分布函数值列在中间。
例:设随机变量X服从二项分布b(8,0.01),求P(X≤2)及P(X=2). 解:由于P(X≤2)=F(2), 这里n=8,p=0.01,c=2, F(2)=0.9999,即P(X≤2)=0.9999 同理可查出F(1)=0.9973, 因此:P(X=2)=F(2)-F(1)=0.9999-0.9973=0.0026
随机现象与概率
概率:
事件A发生的可能性大小称为事件A的概率简称A的概 率,用符号P(A)=p表示。
概率的统计定义: 在相同的条件下,重复进行n次试验,若在n次试验中, 事件A发生的次数为nA, 则称比值nA/n为事件A在n次试验 中发生的频率。随着试验次数的逐渐增多,这个比值逐 渐稳定于一个常数p,我们定义这个常数为A的概率。
数理统计的基本概念
掷骰子练习:
1 1 2 3 4 5 6 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12
点数 2 3 4 5 6 7 8 9 10 11 12 总和
组合 1 2 3 4 5 6 7 8 9 10 11 36
累积二项分布表
0.02 0.9604 0.9996 0.9412 0.9988 1.0000 0.9224 0.9977 1.0000 0.9039 0.9962 0.9999 1.0000 0.8858 0.9943 0.9998 1.0000 0.03 0.9409 0.9991 0.9127 0.9974 1.0000 0.8853 0.9948 0.9999 1.0000 0.8587 0.9915 0.9997 1.0000 0.8330 0.9875 0.9995 1.0000 0.05 0.9025 0.9975 0.8574 0.9928 0.9999 0.8145 0.9860 0.9995 1.0000 0.7738 0.9774 0.9988 1.0000 0.7351 0.9672 0.9978 0.9999 1.0000 0.6983 0.9556 0.9962 0.9998 1.0000
其中:Cin=
n! i! ( n i )!
而n!=n(n-1)…3· 1 2· 二项分布的分布参数: 中心值:μ =np 分散性:σ 2=np(1-p)
数理统计的基本概念 累积二项概率分布表
“累积二项概率分布表”给出了n,p,x一定时,相对应的分布函数值F(X),
由二项概率分布表,我们可以很方便地列出常见的一些二项分布的分布律。 分布表的第一行给出了p的各种取值,第一列是试验的重复次数n,第二列
n 2 3
4
5
0.9950 1.0000
0.9900 1.0000
6
0.9940 1.0000
0.9881 0.9999 1.0000
0.9821 0.9999 1.0000
0.9704 0.9996 1.0000
0.9415 0.9985 1.0000
7
0.9930 1.0000
0.9861 0.9999 1.0000
数理统计的基本概念 抽样与样本容量 抽样: 指的是从总体中抽取一部分个体,并测试被抽到的 每个个体的指标,得到一组数据,并根据这些数据对总 体做出估计和判断。
样本容量: 又称样本大小,是一个样本中包含的个数数目,一 般用字幕n表示。
从总体Y中随机抽取的一个样本容量为n的样本一般可记为y1,y2…yn。
数理统计的基本概念
c x0
CxnPx(1-P)n-x值表
c 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 p 0.001 0.9980 1.0000 0.9970 1.0000 0.9960 1.0000 0.002 0.9960 1.0000 0.9940 1.0000 0.9920 1.0000 0.003 0.9940 1.0000 1.9910 1.0000 0.9881 0.9999 1.0000 0.9851 0.9999 1.0000 0.005 0.9900 1.0000 0.9851 0.9999 1.0000 0.9801 0.9999 1.0000 0.9752 0.9998 1.0000 0.01 0.9801 0.9999 0.9703 0.9997 1.0000 0.9606 0.9994 1.0000 0.9510 0.9990 1.0000
区分型数据:服从二项分布
记数型数据:服从泊松分布 连续型数据:服从正态分布
不同数据类型需要的分析方法不同
数理统计的基本概念
二项分布
将随机试验独立重复进行n次, 每次试验只有两种结果:或为成功,或为失败。 设每次试验成功的概率为p,失败的概率为(1-p)=q,则在n次试验 中成功的次数X服从二项分布,记作X~B(N,P),其概率为 P(X=i)=Cinpi(1-p)n-I i=0,1,2,…,n
数理统计的基本概念
数理统计基础知识(一)
数理统计的基本概念
随机现象与概率
确定性现象: 在一定的条件下进行某种试验或观察,必然发生某一 结果,这类现象称为确定行现象。 随机现象: 在一定条件下进行某种试验或观察,可能出现的结果 不止一个,至于出现哪一个,事先无法确定,这样的现 象称为随机现象。
数理统计的基本概念
例:已知一批晶体管中,一级品率为20%,现在从中任意抽取 10只,计算取出的一级品个数的分布律。 解:设抽出的一级品的个数为X,X所取的全部可能值为0,1, 2,…10,根据二项分布的分布公式,分别计算X取这些值的概 率。 抽取出的晶体管中没有一级品的概率为
0 P(X=0)=C 10 p0(1-p)10-0
随机变量
随机变量是定义域为样本空间的函数。在每次抽样或试 验之前,只知道随机变量可能取哪些值,但不能预知取什 么值;对于每次抽样或试验,随机变量在某一确定范围中 取值的概率是确定的。 随机变量一般用大写字幕X,Y,Z…表示,用相应的小写 字母x,y,z…表示它的具体取值 离散型随机变量 随机变量
连续型随机变量
数理统计的基本概念 随机变量的例子 某一铸件上的缺陷数X是取值为0,1,2…的离散型随机 变量 一台电视机的寿命X是取值在【0,+∞)上的连续型随机 变量 某一零件的长度Y是取值在(0, +∞)上的连续型随机变 量 十件产品中不合格品的件数Z是取值为0,1,2…10的离 散型随机变量
数理统计的基本概念 总体、个体与样本 总体:总体又称母体。是指所研究对象的全体。 个体:构成总体的基本单位,叫做个体。 样本:从总体中用随机抽样方法取出来进行测量、分析的 一部分样品
数理统计的基本概念 概率的性质 度量事件发生的可能性大小是数的就是该事件发生的概 率。 概率有以下性质
非负性,P(A)≥0。
正则性,P(Ω)=1;即必然事件的概率等于1。 可加性,P(∪ Ak)=∑P(Ak),其中A1、A2、……An是 k+1 k+1 互不相容的时间
概率的统计定义
在相同的条件下,重复进行n次试验,若在n次试验中,事件A发生的次数为nA,则称比值 nA/n为事件A在n次试验中发生的频率。随着试验次数的逐渐增多,这个比值逐渐稳定与一个常熟 p,我们定义这个常数为A的概率。 n n
概率 0.0278 0.0556 0.0833 0.1111 0.1389 0.1667 0.1389 0.1111 0.0833 0.0556 0.0278 1
数理统计的基本概念
数理统计的基本概念
数理统计的基本概念
数理统计的基本概念 概率分布: 注意:不同的数据类型的随机变量服从不同的概率分布,其 典型分布有
数理统计的基本概念 概率与数理统计 如果你了解随机变量的总体,那么通过概率及其分布 的知识,你可以确定从该总体中获得的样本的特性 如果你了解随机变量的样本,那么通过统计知识,你 可以确定关于该样本所代表的总体的特性 概率是通过总体的分布规律了解样本特性的工具 数量统计是通过样本对总体及其特性进行推断的工具
0 10 0 =C 10 x(0.2) x(1-0.2)
=0.107
数理统计的基本概念
数理统计的基本概念
数理统计的基本概念
0.9792 0.9998 1.000980 1.0000
0.8681 0.9921 0.9997 1.0000
0.8080 0.9829 0.9991 1.0000
8
0.9920 1.0000
0.9841 0.9999 1.0000
0.6397 0.9998 1.0000