平方根立方根练习题(1)
人教版七年级下第六章实数“平方根、立方根"习题
人教版七年级下 第六章 实数 “平方根、立方根"习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(1)=; (2= ; (3)|2.5= ;(4= ; (5)n =; (6)= .2的立方根是;的平方根是.3.28y x =-,且y 的立方根是2,求x 的值 .4=,其中x 的取值范围 ;=,其中y 的取值范围.5 1.289====462.6=,则x =;;= ;若 5.981=,则y =.6.已知21a -与5a -是m 的平方根,那么m =.二、单选题7.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列等式不一定成立的是( ).A=B a=C a=D .3a=9.下列说法错误的是( ).A .4是16的算术平方根B .37-是949的一个平方根C .0的平方根与算术平方根都是0D .2(9)-的平方根是9-10.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数11.若01x <<,则2x 、x 这四个数中( ).A 2x 最小B .x 最小C .2x 小D .x 最大,2x 最小12xy的值为( ).A .23B .32C .23-D .32-三、解答题13.计算:(1- (214.(1)已知5b =,求35a b +的立方根;(2)已知2(3)0x -=,求4x y +的平方根.15.已知3既是5a +的平方根,也是721a b -+的立方根,解关于x 的方程()2290a x b --=.答案第1页,共1页参考答案:1. 6-0.2 2.54π- 1a-2. 2 2±3.4±4. 0任意数1y =5.214000 0.1463± 0.1289-2146.81或97.C 8.B 9.D 10.B 11.A 12.A 13.(1)558;(2)112-.14.(1)3;(2)4±15.72x =或12x =。
完整版)平方根立方根提高练习题
完整版)平方根立方根提高练习题平方根和立方根的练一、选择题(共8小题)1.4的平方根是±2,那么9的平方根是(B)。
2.若2m-4与3m-1是同一个数的平方根,则m的值是(C)。
3.一个数的立方根是它本身,则这个数是(A)。
4.数n的平方根是x,则n+1的算术平方根是(C)。
5.如果y=6+2,那么xy的算术平方根是(D)。
6.若a-b=3,则xy的值为(B)。
7.已知:a-b=2,那么xy的算术平方根是(C)。
8.若a<b<c,化简3a-b+c的结果为(B)。
二、填空题(共8小题)9.已知a、b为两个连续的整数,且a>b,则a+b=a+b。
10.若a的一个平方根是b,那么它的另一个平方根是-b,若a的一个平方根是b,则a的平方根是±b。
11.已知:a+b=3,ab=2,则a和b的值分别为1和2.12.设等式(x-1)(y-2)(z-3)=0在实数范围内成立,其中m,x,y是互不相同的值,则z=m+x+y-6.13.如图是一个按某种规律排列的数阵:根据数阵的规律,___第一个数是n(n-1)+1.14.已知有理数a,满足|2016-a|+|2017-a|=1,则a的值为2016或2017.15.若两个连续整数x、y满足x<y,则x+y的值是2x+1.16.一组按规律排列的式子:1,3,7,13,…则第n个式子是n²-n+1.三、解答题(共9小题)17.(1)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。
解:由2a-1的平方根是±3可得2a-1=9或2a-1=-9,解得a=5或a=-4.由3a+b-1的算术平方根是4可得3a+b-1=16,解得a=5,b=4.因此,a+2b=13.2)已知m是x²的整数部分,n是x的小数部分,求m-n的值。
解:由题意可得x²≤m<(x+1)²,即x≤√m<x+1.又因为n=x-√m,所以x=n+√m。
平方根立方根基础训练及答案
平方根立方根基础训练姓名: 速度: 一.判断正误(1) 5是25的算术平方根.( ) (2)4是2的算术平方根.( )(3)6.( ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( ) (5)56-是2536的一个平方根.( ) (6)81的平方根是9.( ) (7)9的平方根是3 ( ) (8)8的立方根是2 ( )(9)-0.027的立方根是-0.3( ) (10)31271±的立方根是 ( ) (11)-9的平方根是-3 ( ) (12)-3是9的平方根 ( )二.选择题1的值为 ( ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( )A .2B .2-C .±2D 11.下列运算正确的是 ( )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 ).A ..13.如果a 是实数,则下列各式中一定有意义的是( ).A B14的大小估计正确的是( ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是_______.2.749±=±的意义是 .3.如果一个数的平方等于a ,这个数就叫做 .4.一个正数的平方根有 个,它们互为 .5. 0的平方根是 ,0的算术平方根是 .6.一个数的平方为719,这个数为 . 7.若x 的一个平方根,则这个数是 .8.比3的算术平方根小2的数是 .9.若a 9-的算术平方根等于6,则a= .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是 .12.已知1y 3=,则x= ,y= . 13. 64的平方根是 ,立方根是 ,算术平方根是 14. =31-,=3216125 ,15.若==m m 则,10 ,若的平方根是,则m m 43= 16.8的立方根与25的平方根之差是17.若==m m m 则,3182=_____________________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是 .20.若a 、b 互为相反数,c 、d互为负倒数,则______3=++cd b a ;21= .22.若13是的一个平方根,则m 的另一个平方根为 .23.比较大小π, 24.满足不等式x <<x 共有 个.25.若实数x 、y0=,则x 与y 的关系是 . 26.-64 .27.(1)3027.0-- =(2)3125216-= (3= (4+= 28.求下列各式中的x .(1) 364125x = (2) 31(23)18x -=b a 0平方根、立方根基础训练答案一.判断正误 (1) 5是25的算术平方根.( √ ) (2)4是2的算术平方根.( × )(3)6.( × ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( √ ) (5)56-是2536的一个平方根.( √ ) (6)81的平方根是9.( × ) (7)9的平方根是3 ( × ) (8)8的立方根是2 ( √ )(9)-0.027的立方根是-0.3( √ ) (10)31271±的立方根是 ( × ) (11)-9的平方根是-3 ( × ) (12)-3是9的平方根 ( √ )二.选择题1的值为 ( B ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( D ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( A ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( C ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( C )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( D )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( C )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( D )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( D )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( A )A .2B .2-C .±2D 11.下列运算正确的是 ( D )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 C ).A ..13.如果a 是实数,则下列各式中一定有意义的是( D ).A B14的大小估计正确的是( D ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( D ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( A ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是4m <.2.749±=±的意义是 49的平方根是±7 .3.如果一个数的平方等于a ,这个数就叫做 a 的平方根 .4.一个正数的平方根有 两 个,它们互为 相反数 .5. 0的平方根是 0 ,0的算术平方根是 0 .6.一个数的平方为719,这个数为43± . 7.若x 的一个平方根,则这个数是 3 .8.比3的算术平方根小2的数是2 .9.若a 9-的算术平方根等于6,则a= 45 .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是12.已知1y 3=,则x=12,y= 13. 13. 64的平方根是 ±8 ,立方根是 4 ,算术平方根是 8 14. =31- -1,=3216125 56,3833= 32 15.若==m m 则,10 100 ,若的平方根是,则m m 43= ±8 16.8的立方根与25的平方根之差是 7或-317.若==m m m 则,3 ±1,0182=____6___________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 20.若a 、b 互为相反数,c 、d1=-;213.22.若13是m 的一个平方根,则m的另一个平方根为 -13 .23.比较大小2π, 24.满足不等式x <<x 共有 3 个. 25.互为相反数26. -6或-2 .27.(1)3027.0-- = 0.3 (2)3125216-=65-(323=-(415= 28. (1) 54x = (2) 52x = b a 0。
初二上册平方根和立方根的练习题
初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。
学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。
下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。
练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。
2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。
3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。
练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。
2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。
3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。
练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。
2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。
3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。
通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。
不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。
初中平方根立方根估算基础练习(含答案与解析)
初中平方根立方根估算基础练习(含答案与解析)平方根立方根估算基础练一.选择题(共16小题)1.在实数、π、、、﹣、0.中,无理数的个数有()A.1个B.2个C.3个D.4个2.36的平方根是()A.±XXX.±3.实数的平方根是()A.±4B.4C.2D.±24.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是(A.﹣3B.﹣1C.1D.﹣3或15.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5D.25的平方根是56.计算的结果是()A.﹣3B.3C.2D.7.下列各式化简后的结果为3的是()A.B.C.D.8.25的算术平方根是()A.5B.±5C.﹣5D.25 9.2的算术平方根是()XXX10.的值等于()A.4B.﹣4C.±2D.2 11.下列等式正确的是()A.B.C.D.12.的算术平方根是()第1页(共12页))A.﹣2B.213.C.﹣D.的算术平方根是()D.﹣A.B.﹣C.14.已知A.15.若+(b+3)2=0,则(a+b)2016的值为()C.﹣1D.1,则下列结论中正确的是()B.2016<a<A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<416.﹣A.1二.填空题(共8小题)17.的平方根是,﹣的立方根是.与B.2之间的整数个数是()C.3D.418.若x的立方根是﹣,则x=.19.实数﹣8的立方根是.20.计较:=.21.若一个正方体的体积是8,那末它的棱长是.22.的平方根是,(﹣5)2的算术平方根是,的立方根是﹣0.1.23.﹣的立方根为.24.立方根和算术平方根都等于它本身的数是.三.解答题(共3小题)25.比较与0.5的大小.26.先比力大小,再计较.(1)比力大小:与3,1.5与;与﹣;|﹣|﹣2|.(2)按照上述结论,比力大小:2(3)根据(2)的结论,计算:|第2页(共12页)27.比力3与2的大小.一.选择题(共16小题)1.在实数、π、、、﹣、0.中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π、故选:B.【点评】此题首要考查了在理数的定义,其中初中规模内研究的在理数有:π,2π等;开方开不尽的数;和像0.…,等有如许规律的数.2.36的平方根是()A.±XXX.±是无理数,【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(±6)2=36,∴36的平方根是±6.故选A.【点评】此题考查了平方根的定义.此题注意一个正数的平方根有两个,且它们互为相反数.3.实数的平方根是()C.2D.±2A.±4B.4【分析】直接利用算术平方根化简,进而利用平方根的定义分析得出答案.【解答】解:∵=4,第3页(共12页)∴的平方根是:±2.故选:D.【点评】此题主要考查了平方根,正确把握定义是解题关键.4.若2m﹣4与3m﹣1是统一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或1【分析】依据平方根的性质列方程求解即可.【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选;D.【点评】本题首要考查的是平方根的性质,明确2m﹣4与3m﹣1相称或互为相反数是解题的枢纽.5.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5D.25的平方根是5【分析】根据负数没有平方根,正数有两个平方根进行分析即可.【解答】解:A、﹣25的平方根是﹣5,说法错误;B、﹣5是25的平方根,说法精确;C、﹣25的平方根是5,说法错误;D、25的平方根是5,说法错误;故选:B.【点评】此题首要考查了平方根,枢纽是把握平方根的性质:正数a有两个平方根,它们互为相反数;的平方根是;负数没有平方根.6.计算A.﹣3B.3的成效是()C.2D.【分析】算术平方根,和有理数的平方的运算办法,求出计较几何便可.第4页(共12页)的成效是【解答】解:计较故选:B.的结果是3.【点评】此题主要考查了算术平方根,以及有理数的平方的运算方法,要熟练掌握.7.下列各式化简后的结果为3A.B.C.D.的是()【分析】按照二次根式的性质一一化简可得.【解答】解:A、B、C、D、=2=3不克不及化简;,此选项错误;,此选项精确;=6,此选项错误;故选:C.【点评】本题首要考查二次根式,闇练把握二次根式的性质是解题的枢纽.8.25的算术平方根是()A.5B.±5C.﹣5D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题首要考查的是算术平方根的定义,闇练把握算术平方根的定义是解题的枢纽.9.2的算术平方根是()XXX【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是故选B.第5页(共12页),【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.10.A.4的值等于()B.﹣4C.±2D.2透露表现16的算术平方根,需注意的是算术平方根必为非负数求【分析】按照出即可.【解答】解:按照算术平方根的意义,故选A.=4.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为11.下列等式正确的是()A.B.C.D..【分析】A、按照算术平方根的定义便可判定;B、按照负数没有平方根便可判定;C、按照立方根的定义便可判定;D、根据算术平方根的定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、D、故谜底选D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.第6页(共12页),故选项C错误;,故选项正确.12.的算术平方根是()C.﹣D.的值,然后再利用算术平方根的定A.﹣2B.2【分析】首先根据算术平方根的定义求出义即可求出结果.【解答】解:∵∴=4,=2.的算术平方根是故选:B.【点评】此题首要考查了算术平方根的定义,注意要第一计较13.的算术平方根是()D.﹣=4.A.B.﹣C.【分析】首先化简【解答】解:故选:C.,然后根据算术平方根的定义即可求出结果..=,的算术平方根是【点评】本题考查了算术平方根的定义.注意一个正数只有一个算术平方根.14.A.+(b+3)2=0,则(a+b)2016的值为()C.﹣1D.1B.2016【分析】根据非负数的性质列出算式,求出a、b的值,根据乘方法则计算即可.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故选:D.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为时,则其中的每一项都必须等于是解题的关键.15.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4第7页(共12页)【分析】首先估算【解答】解:∵1又∵<a<,和的大小,再做选择.<4,<2,3∴1<a<4,故选B.【点评】本题首要考查了估算在理数的大小,第一估算题的关键.16.﹣A.1与B.2之间的整数个数是()C.3D.4<﹣1,2<<3,由此确定﹣与的取值范围,再和的大小是解答此【分析】由于﹣2<﹣根据取值范围找出整数即可求解.【解答】解:∵﹣2<﹣∴﹣与<﹣1,2<<3,之间的整数有﹣1,,1,2共4个.故选D.【点评】此题主要考查了无理数的估算的能力,解题时先确定﹣范围是解答本题的关键.二.填空题(共8小题)17.的平方根是±2,﹣、=4,的立方根是﹣2.与的取值【分析】先找出【解答】解:∵∴∵∴﹣的值,再按照平方根与立方根便可得出结论.的平方根是±2;=8,的立方根是﹣2.故答案为:±2;﹣2.【点评】本题考查了平方根以及立方根,解题的关键是熟练掌握平方根与立方根的求法.第8页(共12页)18.若x的立方根是﹣,则x=﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣故答案为:﹣.,【点评】本题考查了立方根的应用,首要考查学生的计较本领.19.实数﹣8的立方根是﹣2.【分析】利用立方根的定义便可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故谜底﹣2.【点评】本题首要考查了立方根的观点.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那末这个数x就叫做a的立方根,也叫做三次方根.20.计较:=0.2.【分析】直接利用立方根的定义分析得出答案.【解答】解:故谜底为:0.2.【点评】此题主要考查了立方根,正确把握定义是解题关键.21.若一个正方体的体积是8,那末它的棱长是2.【分析】根据立方根解答即可.【解答】解:若一个正方体的体积是8,那末它的棱长是2;故答案为:2.【点评】本题考查了立方根的定义的应用,主要考查学生的计算能力.第9页(共12页)==0.2.22.的平方根是±,(﹣5)2的算术平方根是5,﹣0.001的立方根是﹣0.1.【分析】按照立方根和平方根和算术平方根的定义分别分析得出谜底便可.【解答】解:=3,3的平方根是±,(﹣5)2=25,25算术平方根是5,﹣0.001的立方根是﹣0.1.故答案为:±,5,﹣0.001.【点评】此题主要考查了立方根、平方根和算术平方根等定义,熟练掌握其定义是解题关键.23.﹣的立方根为﹣.的立方根.【分析】按照立方根的定义便可求出﹣【解答】解:﹣故答案为:﹣.的立方根为﹣.【点评】此题主要考查了立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.24.立方根和算术平方根都等于它本身的数是和1.【分析】首先设出这个数为x,根据立方根是它本身列式为x3=x,由算术平方根是它本身列式为=x,联立两式解得x.【解答】解:设这个数为x,根据题意可知,解得x=1或,故答案为:和1【点评】本题首要考查立方根宁静方根的知识点,注意一个正数有两个平方根,它们互为相反数,正数是它的算术平方根;的平方根是;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,的立方根第10页(共12页),式.三.解答题(共3小题)25.比较【分析】利用系.【解答】解:∵∴∴∴,>0.5.,,与0.5的大小.<得到2<,则﹣1>1,即可得到与0.5的大小关【点评】本题考查了实数的大小比较,运用算术平方根的性质估算无理数的大小是解答此题的关键.26.先比力大小,再计较.(1)比力大小:与3,1.5与;与﹣;|﹣|﹣2|.(2)依据上述结论,比较大小:2(3)按照(2)的结论,计较:|【分析】(1)利用平方根的概念进行比较;(2)先比力2和3的大小,由3与的关系获得谜底;(3)按照绝对值的性质解答.【解答】解:(1)∵7<9,∴<3,∵1.52=2.25<3,∴1.5<(2)∵∴2∴2;>1.5,,>3,又3>>;第11页(共12页)(3)原式=﹣﹣2+=2﹣3.【点评】本题考查的是实数的大小比较,掌握有理数的乘方法则、绝对值的性质是解题的关键.27.比较3与2的大小.【分析】先把根号外边的数移到根号里面,再比较被开方数的大小即可.【解答】解:∵3∴>,即3=,2>2.=,18>12,。
八年级数学上册综合算式专项练习题平方根与立方根的计算
八年级数学上册综合算式专项练习题平方根与立方根的计算在八年级数学上册中,综合算式是非常重要的一部分内容。
而在综合算式中,平方根与立方根的计算也是一个关键的知识点。
本文将为大家提供一些关于平方根与立方根计算的专项练习题。
1. 题目一:计算下列算式的平方根(1) √169(2) √225(3) √400(4) √576(5) √100解析:(1) √169 = 13(2) √225 = 15(3) √400 = 20(4) √576 = 24(5) √100 = 102. 题目二:计算下列算式的立方根(1) ³√8(2) ³√64(3) ³√125(4) ³√216(5) ³√1000解析:(1) ³√8 = 2(2) ³√64 = 4(3) ³√125 = 5(4) ³√216 = 6(5) ³√1000 = 103. 题目三:计算下列算式(1) (√16)² + (√25)²(2) (√81)² - (√49)²(3) (√256)² ÷ (√16)²(4) (√121)² × (√9)²(5) (√400)² - (√625)²解析:(1) (√16)² + (√25)² = 16 + 25 = 41(2) (√81)² - (√49)² = 81 - 49 = 32(3) (√256)² ÷ (√16)² = 256 ÷ 16 = 16(4) (√121)² × (√9)² = 121 × 9 = 1089(5) (√400)² - (√625)² = 400 - 625 = -2254. 题目四:计算下列算式的平方根与立方根(1) √(a² + b²)(2) ³√(a³ + b³)(3) (√a) × (√b)(4) (√a) ÷ (√b)(5) ³√(a³ - b³)解析:(1) √(a² + b²):将两个数的平方相加,再开平方根(2) ³√(a³ + b³):将两个数的立方相加,再求立方根(3) (√a) × (√b):将两个数分别开平方根,再相乘(4) (√a) ÷ (√b):将两个数分别开平方根,再相除(5) ³√(a³ - b³):将两个数的立方相减,再求立方根通过以上综合算式的专项练习题,我们可以更加熟练地掌握平方根与立方根的计算方法。
算术平方根、平方根与立方根练习题
算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。
‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。
2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。
被开方数越大,对应的算术平方根也‗‗‗‗‗。
3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。
4、81的算术平方根是‗‗‗‗‗。
16的算术平方根是‗‗‗‗‗。
5、求下列各数的算术平方根。
(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。
8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。
比较大小:215-‗‗‗21。
9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。
10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。
平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。
平方根和立方根(习题及答案).
平方根和立方根(习题)复习巩固1.下列说法错误的是()A .2(1)1-=B .33(1)1-=-C .2的平方根是2±D .-81的平方根是9± 2.下列说法正确的是()A .-0.064的立方根是0.4B .-9的平方根是3±C .16的立方根是316D .0.01的立方根是0.0000013.下列说法正确的是()A .7是49的算术平方根,即749±=B .7是2)7(-的算术平方根,即2(7)7-=C .7±是49的平方根,即749=±D .7±是49的平方根,即749±=4.若22(3)x =-,则x =_________. 5.0.09=________;30.027=_______;916=_________;2(4)-=_______;33(6)=-_______;2)196(=_______.6.若一个数的平方根是8±,则这个数的立方根是_________.7.若某个数的平方根是a +2与3a -6,则a 的值为________.8.已知一个正数的平方根是a +1与-2a +1,求这个正数.9.81的平方根是_______;210-的算术平方根是_________;8116的平方根是_______;2(2)-的算术平方根是______;25的立方根是_______;2(27)-的立方根是________.10.323(2)2-+=________;39216464-=________;3189-+=__________;2331(4)2-⎛⎫--= ⎪⎝⎭________;3644=12525-+_______;233(3)(3)-+-=________.11.若213a -=,则5a +2的立方根是________.12.若a 的平方根是±4,则a =__________.13.若a 的算术平方根是2,则a =_________.14.若一个正数的算术平方根是m ,则比这个正数大2的数的算术平方根是_________.15.若2m +2的平方根是±2,n +1的平方根是±3,则m +2n 的立方根是________.16.一个正方体木块的体积为1000cm 3,现要把它锯成8块同样大小的正方体小木块,小木块的棱长是________.17.若一个正方形的面积变为原来的4倍,则它的边长变为原来的______倍;若面积变为原来的9倍,则它的边长变为原来的______倍;若面积变为原来的100倍,则它的边长变为原来的______倍;若面积变为原来的n 倍,则它的边长变为原来的______倍.思考小结1.对于任意数a ,2a 一定等于a 吗?2()a 一定等于a 吗?①当a ≥0,2a =________;当a <0,2a =_________,所以2a ____________a .(“一定等于”或“不一定等于”)②对于2()a ,a 作为被开方数,所以a ______0,因为平方和开平方互为_________,所以2()a _______a .(“一定等于”或“不一定等于”)2.若一个直角三角形的两边长分别为3和4,则第三边的长为________.【参考答案】复习巩固1.D2.C3.B4.±35.0.3;0.3;34;4;-6;1966.47.18.这个正数为99.±3;110;±32;2;35;310.4;0;53-;6;25-;011.312.25613.414.22m+15.31716.5cm17.2,3,10,n思考小结1.①a,a-,不一定等于②≥,逆运算,一定等于2.5或7。
平方根立方根练习题及答案
平方根立方根练习题及答案一、选择题1. 下列哪个数是4的平方根?A) 2B) 4C) 8D) 162. 下列哪个数是8的立方根?A) 2B) 4C) 6D) 83. 当一个数的立方根等于16时,这个数是多少?A) 2B) 4C) 8D) 164. 下列哪个数是27的平方根?A) 3B) 9C) 27D) 815. 下列哪个数的平方根和立方根相等?A) 4B) 8C) 16D) 64二、填空题1. 27的平方根是____。
2. 125的立方根是____。
3. 当一个数的平方根等于9时,这个数是____。
4. 64的平方根是____,立方根是____。
5. 49的平方根是____,立方根是____。
三、解答题1. 想要计算一个数的平方根和立方根,你可以使用什么数学运算符号?请简要描述一下平方根和立方根的运算符号。
2. 用数学方法证明:一个数的平方根和立方根不可能相等。
3. 计算以下数的平方根和立方根,并保留两位小数:a) 16b) 64c) 125d) 216四、答案及解析一、选择题1. A) 22. A) 23. D) 164. A) 35. A) 4二、填空题1. 32. 53. 814. 8, 45. 7, 343三、解答题1. 平方根可以使用√符号表示,立方根可以使用³√符号表示。
2. 设一个数的平方根是x,立方根是y。
根据定义,平方根满足x²= x * x,立方根满足y³ = y * y * y。
假设x=y,则有x²=y³。
两边开根号得到√(x²) = √(y³),即x = y√y。
左边是一个实数,右边是一个实数乘以非实数,这是不可能相等的,所以假设不成立,一个数的平方根和立方根不可能相等。
3.a) 平方根:√16 = 4;立方根:∛16 = 2.67b) 平方根:√64 = 8;立方根:∛64 = 4c) 平方根:√125 = 11.18;立方根:∛125 = 5d) 平方根:√216 = 14.70;立方根:∛216 = 6通过以上练习题和解答,你可以巩固和加深对平方根和立方根的理解和运用能力。
八年级平方根立方根练习题1
1八年级平方根立方根练习题一、填空题1.如果9=x ,那么x =_____;如果92=x ,那么=x _______ 2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 ,13-的相反数是 ;4.一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是________;6.算术平方根等于它本身的数有__ __,立方根等于本身的数有_ ___. 7.81的平方根是____,4的算术平方根是____,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ; 9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ;12.21++a 的最小值是______,此时a 的取值是________. 13.12+x 的算术平方根是2,则x =________. 二、选择题14.下列说法错误的是( ) A 、1)1(2=- B 、()1133-=- C 、2的平方根是2± D 、81-的平方根是9±15.2)3(-的值是( ).A .3-B .3C .9-D .9 16.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1 B 、9 C 、4 D 、5 17.下列各数没有平方根的是( ). A .-﹙-2﹚ B .3)3(- C .2)1(- D .11.118.计算3825-的结果是( ).2A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ). A .0 B .1 C .2 D .3 21.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x24.4(x+1)2=8 25.264(3)90x --=四、计算 26914414449⋅27.41613+-五、解答28.互为相反数,求代数式12xy+的值.29知a x =是M的立方根,y =是x 的相反数,且37M a =-,请你求出x 的平方根.30.若2y x =+,求2x y +的值.。
(完整版)平方根立方根基础练习题
平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.4.若一个实数的算术平方根等于它的立方根,则这个数是_________;5.算术平方根等于它本身的数有________,立方根等于本身的数有________. 6.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;_______;9的立方根是_______;______的平方根是311±。
7.若一个数的平方根是8±,则这个数的立方根是 ;8.当______m 时,m -3有意义;当______m 时,33-m 有意义;9.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;10.已知0)3(122=++-b a ,则=332ab ; 11.21++a 的最小值是________,此时a 的取值是________;12.12+x 的算术平方根是2,则x =________;二、选择题1.9的算术平方根是( )A .-3B .3C .±3D .812.下列计算不正确的是( )A ±2B ==0.4 D 3.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( )A .4B .18C .-14D .146.下列说法错误的是( ) A.1)1(2=- B.()1133-=- C.2的平方根是2±D.81-的平方根是9±7.2)3(-的值是( ).A .3-B .3C .9-D .98.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( ) A. 1 B. 9 C. 4 D. 59.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(- D .11.110.计算3825-的结果是( ). A.3 B.7 C.-3 D.-7 11.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a12.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .313.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x 2+1C +1 D14.若2m-4与3m-1是同一个数的平方根,则m 的值是( )A .-3B .1C .-3或1D .-115.已知x ,y +(y-3)2=0,则xy 的值是( )A .4B .-4C .94D .-94三、计算、求值1.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.2.计算:(1)(2 (3(4三、解方程0252=-x8)12(3-=-x 4(x+1)2=8(2x-1)2-169=0; 12(x+3)3=4.。
平方根立方根实数练习题[1]
平方根、立方根、实数练习题1、若a x =2,则( ) A 、x>0 B 、x ≥0 C 、a>0 D 、a ≥02、一个数若有两个不同的平方根,则这两个平方根的和为( )A 、大于0 B 、等于0 C 、小于0 D 、不能确定3、一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根 B 、a 是b 的的算术平方根 C 、b a ±= D 、a b =4、若a ≥0,则24a 的算术平方根是( ) A 、2a B 、±2a C 、a 2 D 、| 2a |5、若正数a 的算术平方根比它本身大,则( ) A 、0<a<1 B 、a>0 C 、a<1 D 、a>16、若n 为正整数,则121+-n 等于( ) A 、-1 B 、1 C 、±1 D 、2n+17、若a<0,则a a 22等于( ) A 、21 B 、21- C 、±21 D 、0 8、若x-5能开偶次方,则x 的取值范围是( ) A 、x ≥0 B 、x>5 C 、x ≥5 D 、x ≤59下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A , 0个 B ,1个 C ,2个 D ,3个10若一个数的平方根与它的立方根完全相同,则这个数是( )A , 1 B , -1 C , 0 D ,±1, 011,若x使(x-1)2=4成立,则x的值是( )A ,3 B ,-1 C ,3或-1 D ,±212.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D .13a 有( ).A .0个 B .1个 C .无数个 D .以上都不对14.下列说法中正确的是( ).A .若0a <0< B .x 是实数,且2x a =,则0a >C 有意义时,0x ≤D .的平方根是0.01±15.若一个数的平方根是8±,则这个数的立方根是( ).A .2 B .±2 C .4 D .±416.若22(5)a =-,33(5)b =-,则a b +的所有可能值为( ).A .0 B .-10 C .0或-10 D .0或±1017.若10m -<<,且n =,则m 、n 的大小关系是( )A .m n > B .m n < C .m n = D .不能确定18.27- ).A .0 B .6 C .-12或6 D .0或-619.若a ,b 满足2|(2)0b +-=,则ab 等于( ).A .2 B .12 C .-2 D .-1220.下列各式中无论x 为任何数都没有意义的是( ).A .1、化简(-3)2 的结果是( ) B.-3 C.±3 D .92.已知正方形的边长为a ,面积为S ,则( )A.S =a = C.a =D .a S =±3、算术平方根等于它本身的数( )A 、不存在;B 、只有1个;C 、有2个;D 、有无数多个;4、下列说法正确的是( )A .a 的平方根是±a ;B .a 的算术平方根是a ;C .a 的算术立方根3a ;D .-a 的立方根是-3a .5、满足-2<x <3的整数x 共有( )A .4个;B .3个;C .2个;D .1个.6、如果a 、b 两数在数轴上的位置如图 则()2b a +的算术平方根是( );A 、a+b ;B 、a-b ;C 、b-a ;D 、-a-b ;7、如果-()21x -有平方根,则x 的值是( )A 、x ≥1;B 、x ≤1;C 、x=1;D 、x ≥0;8a 是正数,如果a 的值扩大100)A 、扩大100倍;B 、缩小100倍;C 、扩大10倍;D 、缩小10倍;9、2008最接近的一个是( )A .43;B 、44;C 、45;D 、4610.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A 、n+1;B 、2n +1;CD。
平方根立方根练习题及答案
平方根立方根练习题及答案平方根立方根练习题及答案数学是一门让人们充满好奇和挑战的学科。
在数学中,平方根和立方根是常见的概念。
平方根是指一个数的平方等于该数的数值,而立方根则是指一个数的立方等于该数的数值。
这两个概念在数学和实际生活中都有广泛的应用。
下面将介绍一些平方根和立方根的练习题及答案,帮助读者更好地理解和应用这些概念。
练习题一:求平方根1. 求下列数的平方根:a) 16b) 25c) 36d) 49e) 64解答:a) 16的平方根是4,因为4 * 4 = 16。
b) 25的平方根是5,因为5 * 5 = 25。
c) 36的平方根是6,因为6 * 6 = 36。
d) 49的平方根是7,因为7 * 7 = 49。
e) 64的平方根是8,因为8 * 8 = 64。
练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216解答:a) 8的立方根是2,因为2 * 2 * 2 = 8。
b) 27的立方根是3,因为3 * 3 * 3 = 27。
c) 64的立方根是4,因为4 * 4 * 4 = 64。
d) 125的立方根是5,因为5 * 5 * 5 = 125。
e) 216的立方根是6,因为6 * 6 * 6 = 216。
练习题三:混合练习3. 求下列数的平方根和立方根:a) 9b) 16c) 27d) 64e) 125解答:a) 9的平方根是3,因为3 * 3 = 9;9的立方根是1.732,约等于1.73,因为1.73 * 1.73 * 1.73 ≈ 9。
b) 16的平方根是4,因为4 * 4 = 16;16的立方根是2.519,约等于2.52,因为2.52 * 2.52 * 2.52 ≈ 16。
c) 27的平方根是5.196,约等于5.20,因为5.20 * 5.20 ≈ 27;27的立方根是3,因为3 * 3 * 3 = 27。
d) 64的平方根是8,因为8 * 8 = 64;64的立方根是4,因为4 * 4 * 4 = 64。
平方根立方根练习题
平方根立方根练习题
导言:
平方根和立方根是数学中常见的概念。
平方根表示一个数的二
次方根,即一个数的平方根是指满足该数的平方等于给定数的一个
实数。
而立方根表示一个数的三次方根,即一个数的立方根是指满
足该数的三次方等于给定数的一个实数。
在本文档中,我们将提供一系列的练习题,帮助读者更好地理
解和应用平方根和立方根的概念。
这些练习题将涵盖不同难度层次,从基础的计算到应用题,旨在巩固读者对平方根和立方根的理解,
并能熟练应用这些概念解决实际问题。
练习题一:简单计算平方根和立方根
1. 计算以下数的平方根:a) 9 b) 16 c) 25
2. 计算以下数的立方根:a) 8 b) 27 c) 64
练习题二:平方根和立方根的计算
1. 若一个数的平方根为4,那么这个数是多少?
2. 若一个数的立方根为5,那么这个数是多少?
练习题三:应用题
1. 一个正方形的面积为36平方米,那么它的边长是多少米?
2. 一块立方体的体积为64立方厘米,那么它的边长是多少厘米?
练习题四:复杂计算平方根和立方根
1. 计算以下数的平方根:a) 0.81 b)
2.25 c) 36.49
2. 计算以下数的立方根:a) 0.064 b) 0.125 c) 27.993
练习题五:平方根和立方根的运算规律
1. 若a和b是正整数,且a的平方等于b的平方根,那么a等
于多少?
2. 若a和b是正整数,且a的立方等于b的立方根,那么a等
于多少?
练习题六:开方和幂运算的关系
1. 若a和b是正整数,且a开平方后再开平方等于b开平方,
那么a等于多少?。
七年级数学平方根立方根计算题
七年级数学平方根立方根计算题在七年级数学课程中,我们学习了很多与数的平方根和立方根相关的知识。
平方根和立方根的计算是数学中重要的内容之一,对于提高我们的计算能力和解决问题的能力具有重要作用。
下面,我将通过一些例题来演示如何计算数的平方根和立方根。
一、平方根的计算平方根是一个数的平方等于被开方的数。
我们可以通过一些方法来计算平方根。
下面是一道例题:例题1:求下列数的平方根。
(1) √9解析:这个题目中,被开方的数是9,我们要求的是这个数的平方根。
根据平方根的定义,我们需要找到一个数,使得它的平方等于9。
很明显,3的平方等于9。
所以,√9 = 3。
(2) √16解析:在这个题目中,被开方的数是16。
与上一题类似,我们需要找到一个数,使得它的平方等于16。
5的平方等于25,4的平方等于16。
所以,√16 = 4。
通过上述例题,我们可以看出,计算平方根时,需要找到一个与被开方数的平方相等的数。
在进行练习时,我们可以通过列举平方根的递增序列来逼近正确的答案。
二、立方根的计算立方根是一个数的立方等于被开方的数。
与计算平方根相似,我们也可以通过一些方法来计算立方根。
下面是一道例题:例题2:求下列数的立方根。
(1) ³√8解析:这个题目中,被开方的数是8,我们要求的是这个数的立方根。
根据立方根的定义,我们需要找到一个数,使得它的立方等于8。
很明显,2的立方等于8。
所以,³√8 = 2。
(2) ³√27解析:在这个题目中,被开方的数是27。
与上一题类似,我们需要找到一个数,使得它的立方等于27。
3的立方等于27。
所以,³√27 = 3。
通过上述例题,我们可以看出,在计算立方根时,需要找到一个与被开方数的立方相等的数。
与计算平方根类似,我们可以通过列举立方根的递增序列来逼近正确的答案。
综上所述,计算数的平方根和立方根是七年级数学课程的重要内容之一。
通过掌握相关的计算方法,我们可以提高自己的数学运算能力,并且可以应用到解决实际问题中。
平方根立方根计算题50道
平方根立方根计算题50道一、平方根计算题(25道)1. 计算√(4)- 解析:因为2^2 = 4,所以√(4)=2。
2. 计算√(9)- 解析:由于3^2 = 9,所以√(9)=3。
3. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。
4. 计算√(25)- 解析:由于5^2 = 25,所以√(25)=5。
5. 计算√(36)- 解析:因为6^2 = 36,所以√(36)=6。
6. 计算√(49)- 解析:由于7^2 = 49,所以√(49)=7。
7. 计算√(64)- 解析:因为8^2 = 64,所以√(64)=8。
8. 计算√(81)- 解析:由于9^2 = 81,所以√(81)=9。
9. 计算√(100)- 解析:因为10^2 = 100,所以√(100)=10。
10. 计算√(121)- 解析:由于11^2 = 121,所以√(121)=11。
11. 计算√(144)- 解析:因为12^2 = 144,所以√(144)=12。
12. 计算√(169)- 解析:由于13^2 = 169,所以√(169)=13。
13. 计算√(196)- 解析:因为14^2 = 196,所以√(196)=14。
14. 计算√(225)- 解析:由于15^2 = 225,所以√(225)=15。
15. 计算√(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。
16. 计算√(0.09)- 解析:由于0.3^2 = 0.09,所以√(0.09)=0.3。
17. 计算√(0.16)- 解析:因为0.4^2 = 0.16,所以√(0.16)=0.4。
18. 计算√(0.25)- 解析:由于0.5^2 = 0.25,所以√(0.25)=0.5。
19. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。
平方根和立方根(习题及答案)
平方根和立方根(习题)例题示范例1:一个正数的平方根是a+1与-2a+1,求这个正数.解:∵一个正数的平方根是a+1与-2a+1∴a+1+(-2a+1)=0∴a=2∴a+1=3,-2a+1=-3∵(±3)2=9∴这个正数是9例2:364的平方根是__________.思路分析数学符号语言与文字语言同时出现,分两步运算,先开立方,再开平方.第一步:开立方,364=4,标注在旁边;第二步:转化为“4的平方根是_____”,4的平方根是±2.所以364的平方根是±2.巩固练习1.下列说法错误的是()-=-A.2(1)1-=B.33(1)1±D.-81的平方根是9±C.2的平方根是22.下列说法正确的是()A.-0.064的立方根是0.4B.-9的平方根是3±C.16的立方根是316D.0.01的立方根是0.0000013.下列说法正确的是()A.7是49的算术平方根,即7=49±B.7是2)7(-的算术平方根,即7(2=)7-C.7±是49的平方根,即7±49=D.7±是49的平方根,即7=49±4.若a 和a -都有意义,则a 满足的条件是()A .0a ≥B .0a ≤C .0=a D .0a ≠5.一个正数的两个平方根的和是________,商是___________.6.若一个实数的算术平方根等于它的立方根,则该数是______.7.算术平方根等于它本身的数是______________,立方根等于它本身的数是______________.8.0.09=________;30.027=_______;916=_________;2(4)-=_______;33(6)=-_______;2)196(=_______.9.若一个数的平方根是8±,则这个数的立方根是_________.10.36的平方根是_______;2(9)-的算术平方根是_________.11.323(2)2-+=________;39125464-=________.12.若0a ≥,则233()()a a -+-=__________.13.当m _________时,3m -有意义.14.若32a -有意义,则a 能取得的最小整数为________.思考小结1.请根据平方根和立方根的定义回答下列问题:①一个数的平方等于它本身,这个数是_______.②平方根等于它本身的数是_________.③算术平方根等于它本身的数是__________.④立方根等于它本身的数是_________.⑤一个数的立方等于它本身,这个数是_______.2.对于任意数a,2a一定等于a吗?2()a一定等于a吗?①当a≥0,2a=____,当a<0,2a=____,所以2a_____a.()a,a作为被开方数,所以a_____0,因为乘方和②对于2()a_______a.开方互为_________,所以2【参考答案】 巩固练习1.D2.C3.B4.C5.0,-16.1或07.1,0;±1,08.0.3;0.3;34;4;-6;1969.410.6±;911.4;1 412.013.≤314.1思考小结1.①0,1;②0;③0,1;④-1,0,1;⑤-1,0,12.①a,a-,≠②≥,逆运算,=。
(进阶版)平方根立方根实战练习题
(进阶版)平方根立方根实战练习题
本练题旨在帮助您巩固和应用平方根和立方根的知识。
它包含一系列实战练题,涵盖了不同难度级别的问题。
问题1:平方根计算
请计算以下数的平方根:
1. 16
2. 25
3. 36
4. 49
5. 100
请使用合适的数学运算符计算每个数的平方根,并将结果写在下面的空格处:
1. √16 = ___
2. √25 = ___
3. √36 = ___
4. √49 = ___
5. √100 = ___
问题2:立方根计算
请计算以下数的立方根:
1. 8
2. 27
3. 64
4. 125
5. 216
请使用适当的数学运算符计算每个数的立方根,并将结果写在下面的空格处:
1. ∛8 = ___
2. ∛27 = ___
3. ∛64 = ___
4. ∛125 = ___
5. ∛216 = ___
问题3:混合计算
请计算以下数的平方根和立方根,并将结果填入表格中:
总结
通过完成上述练习题,您可以巩固和应用平方根和立方根的知识。
这些计算技巧在数学和实际生活中都有广泛的应用。
继续练习和掌握这些概念,将帮助您在数学和相关领域取得更好的成绩和表现。
祝愉快学习!。
七年级数学下册平方根立方根练习题
新起点学苑2015七年级数学下平方根立方根练习题一一、填空题 1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________. 3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是______.一个正数的两个平方根的商是_______. 5.若一个实数的算术平方根等于它的立方根,则这个数是_________; 6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义; 10.若一个正数的平方根是12-a 和2+-a,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则 ;12.21++a 的最小值是________,此时a 的取值是________. 13.12+x 的算术平方根是2,则x =________. 二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9±15.2)3(-的值是( ).A .3-B .3C .9-D .9 16.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、5 17.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(- C .2)1(- D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-719.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ). A .0 B .1 C .2 D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定 三、解方程 22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8四、计算25. 26.494 27.新起点学苑2015七年级数学下平方根立方根练习题二一、选择题1、化简(-3)2的结果是()A.3B.-3C.±3 D.92.已知正方形的边长为a,面积为S,则()A.S=a= C.a=.a S=±3、算术平方根等于它本身的数()A、不存在;B、只有1个;C、有2个;D、有无数多个;4、下列说法正确的是()A.a的平方根是±a; B.a的算术平方根是a;C.a的算术立方根3a; D.-a的立方根是-3a.5、满足-2<x<3的整数x共有()A.4个;B.3个;C.2个;D.1个.6、如果a、b两数在数轴上的位置如图所示,则()2ba+的算术平方根是();A、a+b;B、a-b;C、b-a;D、-a-b;7、如果-()21x-有平方根,则x的值是()A、x≥1;B、x≤1;C、x=1;D、x≥0;8a是正数,如果a的值扩大100)A、扩大100倍;B、缩小100倍;C、扩大10倍;D、缩小10倍;9、2008)A.43;B、44;C、45;D、46;10.如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是()A、n+1;B、2n+1;CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根立方根练习题
一、填空题
1.如果9=x ,那么x =________;如果92=x ,那么=x ________
2.如果x 的一个平方根是7.12,那么另一个平方根是________.
3.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.
4.若一个实数的算术平方根等于它的立方根,则这个数是_________;
5.算术平方根等于它本身的数有________,立方根等于本身的数有________.
6.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;
7.若一个数的平方根是8±,则这个数的立方根是 ;
8.已知
0)3(122=++-b a ,则=332ab ; 9.21++a 的最小值是________,此时a 的取值是________. 10.12+x 的算术平方根是2,则x =________.
二、选择题
11.下列说法错误的是( )
A 、1)1(2=-
B 、()1133-=-
C 、2的平方根是2±
D 、81-的平方根是9±
12.2)3(-的值是( ).
A .3-
B .3
C .9-
D .9
13.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )
A 、1
B 、9
C 、4
D 、5
14.下列各数没有平方根的是( ).
A .-﹙-2﹚
B .3)3(-
C .
2)1(- D .11.1
15.计算3825-的结果是( ). A.3 B.7 C.-3 D.-7
16.如果53-x 有意义,则x 可以取的最小整数为( ).
A .0
B .1
C .2
D .3
三、解方程
17.0252=-x 18. 8)12(3-=-x 19.4(x+1)2=8
四、计算
20.
914414449⋅ 21.494 22.416
13+-。