函数导数压轴题隐零点的处理技巧

合集下载

导数隐零点问题处理的8大技巧(附30道经典题目)

导数隐零点问题处理的8大技巧(附30道经典题目)

导数隐零点问题处理的8大技巧(附30道经典题目)导数隐零点问题处理的8大技巧如下:1.分类讨论:对于含参数的零点问题,常常需要根据参数的不同取值范围进行分类讨论。

2.构造函数:利用导数研究函数的单调性,进而研究不等式恒成立问题。

3.分离参数:通过分离参数将参数与变量分开,转化为求最值问题。

4.数形结合:利用数形结合思想,将函数图像与x轴的交点问题转化为求函数的最值问题。

5.转化与化归:将复杂问题转化为简单问题,将陌生问题转化为熟悉问题。

6.构造法:通过构造新的函数或方程,将问题转化为已知的问题进行求解。

7.放缩法:通过对不等式进行放缩,将问题转化为易于处理的形式。

8.判别式法:通过引入判别式,将方程问题转化为二次方程的判别式问题。

以下是30道经典题目,以供练习:1.已知函数f(x)=x3−3x2+5,则f(x)的单调递增区间为( )A.(−∞,1)和(2,+∞)B.(−∞,−1)和(1,+∞)C.(−∞,−1)和(2,+∞)D.(−∞,2)和(1,+∞)2.已知函数f(x)=x3−3x2+5,则f(x)在区间[−2,3]上的最大值是____.3.已知函数f(x)=x3+ax2+bx+c在x=1和x=−21时取极值.(1)求a,b的值;(2)求函数极值.4. 已知函数f(x)=x3−3ax2+4,若x∈[0,2]时,f(x)的最大值为417,求实数a的取值范围.5. 已知函数f(x)=ln x−mx+m有唯一的零点,则实数m的取值范围是____.6. 已知函数 f(x) = x^3 - 3ax^2 + 3x + 1,若 x ∈ [0,1] 时,f(x) ≤ f(0) 恒成立,则 m 的取值范围是 _______.7. 已知函数 f(x) = ax^3 + bx^2 - 3x (a、b ∈ Z) 在 x = ±1 和x = ±2 时取极值.(1) 求 f(x) 的解析式;(2) 求 f(x) 的单调区间和极值;8. 已知函数 f(x) = x^3 + ax^2 + bx + c 在 x = ±1 和 x = ±3时取极值.(1) 求 a,b 的值;(2) 求 f(x) 的单调区间和极值.1.已知函数 f(x) = x^3 - 3x^2 + 4 在 [0,3] 上的最大值和最小值分别为 M, N,则 M + N = _______.2.设f(x)=x3−3x2+4,则f(−x)+f(x)的值等于____3.已知函数f(x)=x3−3x2+4,则f(x)在(−3,2)上的最大值是____.4.已知函数f(x)=x3−3x2+4,则f(x)在区间[−1,3]上的最大值是____.5.已知函数f(x)=x3−3ax2+bx+c在x=±1时取极值,且函数y=f(x)图象过原点.(1) 求函数y=f(x)的表达式;(2) 求函数的单调区间和极值;14. 已知函数 f(x) = x^3 - 3ax^2 + bx 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-2,4] 上的最大值和最小值.15. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±2 时取极值.(1) 求 a,b 的值;(2) 若 f(x) 的最大值为 8,求 c 的值.16. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±√2 时取极值,且 f(-2) = -4.(1) 求 a,b,c 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.17. 已知函数 f(x) = x^3 - 3ax^2 + b (a > 0),若 f(x) 在区间[-1,0] 上是减函数,则 a 的取值范围是 _______.18. 若关于 x 的方程 x^3 - 3ax + a^3 = 0 有实根,则实数 a 的取值范围是 _______.19. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 a,b 应满足的条件是 _______.20. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b应满足的条件是 _______.1.函数 f(x) = x^3 - 3x^2 + 4 在区间 [-1,3] 上的最大值和最小值分别为 _______.2.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) +3x^2 ≤ f(y) + 3y^2,则 x + y 的取值范围是 _______.3.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) ≤f(y) + 3,则 x + y 的取值范围是 _______.4.若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则a,b 应满足的条件是 _______.5.已知函数 f(x) = x^3 - 3ax^2 + b 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.26. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b 应满足的条件是 _______.27. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.28. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.29. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个相等的实根,则 a,b 应满足的条件是 _______.30. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个相等的实根,则 a,b 应满足的条件是 _______.。

高考数学之隐零点问题

高考数学之隐零点问题

高考数学之隐零点问题在高考数学中,隐零点问题是一类重要的问题,它涉及到函数的性质、不等式、方程等多个方面,是考查学生数学综合能力和计算能力的典型题型。

本文将从隐零点的定义、解题思路和常见问题三个方面来探讨隐零点问题。

一、隐零点的定义隐零点是指函数在某区间内存在零点,但无法直接通过零点定理或判别式等方法得出。

这类问题需要学生通过观察函数的性质、分析函数的值域、判断函数的单调性等方式来寻找隐零点。

二、解题思路解决隐零点问题的核心思路是“化归思想”,即将复杂问题转化为简单问题,将抽象问题转化为具体问题。

具体来说,解决隐零点问题的步骤如下:1、观察函数的性质,确定函数的可能零点区间;2、分析函数的值域,确定函数在可能零点区间的端点值的符号;3、判断函数的单调性,确定函数在可能零点区间的单调性;4、根据函数的性质、值域和单调性,得出函数在可能零点区间的端点值的符号,从而得出隐零点的存在性和位置。

三、常见问题解决隐零点问题时,学生常常会出现以下问题:1、对函数的性质、值域和单调性等概念理解不准确,导致解题思路错误;2、无法将复杂问题转化为简单问题,无法将抽象问题转化为具体问题,导致解题过程繁琐;3、无法灵活运用数学知识进行推理和计算,导致解题结果错误。

因此,学生在解决隐零点问题时,需要加强对函数性质、值域和单调性等概念的理解,提高对复杂问题和抽象问题的转化能力,同时加强数学知识和计算能力的训练,以提高解题的准确性和效率。

总之,解决隐零点问题需要学生具备扎实的数学基础、灵活的思维方式和熟练的计算技巧。

只有通过不断的训练和思考,才能真正掌握解决隐零点问题的技巧和方法。

高考导数综合应用中的“隐零点”在数学的学习中,我们常常遇到许多复杂的问题需要解决。

而在这些难题中,导数往往扮演着关键的角色。

特别是在高考数学中,导数的综合应用是一个重点也是一个难点。

其中,“隐零点”是一个特别需要的概念。

“隐零点”,顾名思义,这是一种不易被直接观察或找到的零点。

导数大题零点问题解题技巧

导数大题零点问题解题技巧

导数大题零点问题解题技巧
导数大题零点问题的解题技巧主要包括以下几个方面:
1. 确定函数的单调性:通过求导数并判断导数的正负,可以确定函数的单调性。

如果函数在某区间内单调递增或递减,那么该区间内函数的值域就是连续的,因此在这个区间内函数最多只有一个零点。

2. 利用零点存在定理:如果函数在区间端点的函数值异号,即 f(a)f(b)<0,则函数在这个区间内至少有一个零点。

3. 构造函数:通过构造函数,可以将问题转化为求函数的最值问题,从而找到函数的零点。

4. 结合图像:通过画出函数的图像,可以直观地观察函数的零点位置和个数。

5. 转化问题:将问题转化为其他形式,例如转化为求函数的最值问题、不等式问题等,从而简化问题。

在解题过程中,要注意以下几点:
1. 确定函数的定义域和值域,确保函数的连续性和可导性。

2. 注意函数的奇偶性和周期性,这些性质可能会影响函数的零点位置和个数。

3. 注意函数的极值点和拐点,这些点可能是函数的零点或拐点。

4. 注意题目中的隐含条件,例如函数在某点的导数值、函数在某区间的单调性等。

5. 注意计算精度和误差控制,避免计算错误导致答案不准确。

函数隐性零点的处理技巧

函数隐性零点的处理技巧

.函数隐性零点的处理技巧大招总结导数用来处理函数综合性问题,最终都会归于函数单调性的判断,而函数的单调性与其导函数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计是导数综合应用中最核心的问题。

导函数的零点,根据其数值计算上的差异可以分为两类:一类是数值上能精确求解的,称为“显零点”;另一类是能够判断其存在但无法直接表示的,称为“隐零点”。

此讲通过几个具体的例题来体会隐性零点的处理步骤和思想方法:隐零点的虚设和代换。

一般步骤如下:①确定零点的存在范围。

确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也可以由函数的图像特征得到,甚至可以由题设直接得到,等等;至于隐性零点的范围精确到多少,由所求解问题确定,因此必要时尽可能缩小其范围。

②根据零点的意义进行代数式的替换,尽可能将目标式变形为整式或分式,那么就需要尽可能将指数、对数函数式用有理式替换,这是能否继续深入的关键。

③结合前两步,确定目标式的范围。

隐性零点代换实际上是一种明修栈道,暗度陈仓的策略,也是数学中“设而不求”思想的体现。

典型例题的最大值。

求时,>为整数,且当)若(的单调区间;)求(:设函数例k x x f k x x k a x f ax e x f x ,01)()-(0,12)(12--)(1≥++′==.2)(),3,2(1)(,2,0)().()∞,0()(0)(),(0)(),0().2,1(,)∞,0()()∞,0(2--)(0)2(0)1()∞,0(2--)(11,)1-()2--()(,1-1)()0(1-101)1-)(-(0,1)1-)(-(1)()-(,12)∞,(ln )ln ∞-()(0-)()∞,(ln ∈0-)()ln ∞-(∈02--)(0-)(,0≤,-)(2--)(1000000000020的最大值为,故整数<由于①式等价于所以可得又由上的最小值为在所以;>时,;当<时,当则有此零点为上存在唯一的零点,设在故上存在唯一的零点,在所以,>,<而上单调递增,在时,函数)知,当由(则令①,><等价于>时,>故当所以,)由于(上单调递增。

导函数隐零点问题的处理策略

导函数隐零点问题的处理策略

琐或无法 求 解 时,可 考 虑 虚 设 零 点 x0 ,再 对 f '( x0 ) = 0 进行合理的变形与代换,将超越式 化为普通式,从而达到化简 f( x0 ) 的目的.
例 2 已知关于 x 的函数 f( x) = x3 + x2
+
ax
+
1 27

3
个零点,求实数
a
的取值范围.
解 由 f '( x) = 3x2 + 2x + a,则依题意,
达到化简之功效. 这里采用设而不求的思想
可成功规避零点的求解.
例 3 ( 2015 年全国高考题) 设函数 f( x) = e2x - aln x.
( 1) 讨论 f( x) 的导函数 f '( x) 零点的个
数;
( 2) 证明: 当 a > 0 时,
f( x)
≥ 2a
+ aln
2 a


( 1)
f '( x)
第5 期
高中数学教与学
导函数隐零点问题的处理策略
高雄英
( 江苏省丹阳市第六中学,212300)
在近几年 高 考 中,函 数 与 导 数 备 受 命 题
专家的青睐,且多以压轴题的形式出现. 其内
容主要是通过导数研究函数的性质. 但我们
在求导后,导 函 数 往 往 呈 现 超 越 式 或 高 次 形
式,出现导 数 零 点 求 不 出 或 符 号 难 以 判 定 的
< 0,g( x) 单调递减;
当 x > 1 时,φ( x) > 0,即 g'( x) > 0,g( x)
单调递增.
故 g( x) > g( 1) = 0( x > 0 且 x ≠ 1) ,所

专题11 导数压轴题之隐零点问题(解析版)

专题11 导数压轴题之隐零点问题(解析版)

导数章节知识全归纳专题11 导数压轴题中有关隐零点问题一.隐零点问题知识方法讲解:1.“隐零点”概念:隐零点主要指在研究导数试题中遇到的对于导函数f ’(x)=0时,不能够直接运算出来或是不能够估算出来,导致自己知道方程有根存在,但是又不能够找到具体的根是多少,通常都是设x=x 0,使得f ’(x)=0成立,这样的x 0就称为“隐藏零点”。

2.“隐零点”解决方向:针对隐零点问题通常解决步骤:1.求导判定是否为隐零点问题,2.设x=x 0,使得f ’(x)=0成立,3.得到单调性,并找到最值,将x 0带入f(x),得到f(x 0),4.再将x 0的等式代换,再求解(注意:x 0的取值范围)二.隐零点问题中的典型例题:典例1.已知函数()ln f x x =,()2sin g x x x =-.(1)求()g x 在()0,π的极值;(2)证明:()()()h x f x g x =-在()0,2π有且只有两个零点.解:(1)由()12cos g x x '=-,()0,x π∈, 当03x π<<时,()0g x '<,此时函数()g x 单调递减, 当3x ππ<<时,()0g x '>,此时函数()g x 单调递增,所以,函数()g x 的极小值为33g ππ⎛⎫=- ⎪⎝⎭ (2)证明:()()()ln 2sin h x f x g x x x x =-=-+,其中02x π<<.则()112cos h x x x '=-+,令()12cos 1x x x ϕ=+-,则()212sin x x xϕ'=--. 当()0,x π∈时,()212sin 0x x x ϕ'=--<,则()x ϕ在()0,π上单调递减, 303πϕπ⎛⎫=> ⎪⎝⎭,2102πϕπ⎛⎫=-< ⎪⎝⎭, 所以,存在0,32x ππ⎛⎫∈ ⎪⎝⎭,使得()()000x h x ϕ'==. 当00x x <<时,()0h x '>,此时函数()h x 在()00,x 上单调递增,当0x x π<<时,()0h x '<,此时函数()h x 在()0,x π上单调递减.()()0h x h x ∴=极大值,而ln 0333h πππ⎛⎫=-+> ⎪⎝⎭,()2ln ln 20h e πππππ=-<-=-<,则()003h x h π⎛⎫>> ⎪⎝⎭,又ln 1666h πππ⎛⎫=-+ ⎪⎝⎭, 令()ln 1m x x x =-+,其中01x <<,则()1110x m x x x-'=-=>, 所以,函数()m x 在()0,1上单调递增,则()()10m x m <=,所以,ln 10666h πππ⎛⎫=-+< ⎪⎝⎭.由零点存在定理可知,函数()h x 在()0,π上有两个零点;当[),2x ππ∈时,2sin 0x ≤,()ln 2sin ln h x x x x x x =-+≤-,设ln y x x =-,则1110x y x x-'=-=<对任意的[),2x ππ∈恒成立, 所以,ln ln 0x x ππ-≤-<,所以,函数()h x 在[),2ππ上没有零点,综上所述,函数()()()h x f x g x =-在()0,2π上有且只有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.典例2.已知函数()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行.(1)求k 的值; (2)若()()2cos p x f x x =-,试讨论()p x 在π3π22⎡⎤⎢⎥⎣⎦,上的零点个数.解:(1)()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行, 则有()1πf a '=-,()k f x a x'=-,则(1)ππf k a a k '=-=-⇒= (2)()()2cos πln 2cos 2a p x f x x x ax x ⎛⎫=-=+-- ⎪⎝⎭,π3π,22x ⎡⎤∈⎢⎥⎣⎦, π()2sin p x x a x '=+-,令()()g x p x '=,则2π()2cos g x x x'=-+, 当π3π,22x ⎡⎤∈⎢⎥⎣⎦时,cos 0x ≤且2π0x -<,则2π()2cos 0g x x x '=-+<,则()g x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππ22422g p a a ⎛⎫⎛⎫'==+-=- ⎪ ⎪⎝⎭⎝⎭,3π3π2422233g p a a ⎛⎫⎛⎫'==--=-- ⎪ ⎪⎝⎭⎝⎭, 当4a ≥时,π02p ⎛⎫'≤ ⎪⎝⎭且()()p x g x '=在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≤,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππππππln 2cos πln 0222222a a p ⎛⎫⎛⎫=+--=> ⎪ ⎪⎝⎭⎝⎭,3π3π3π3π3ππln 2cos πln 222222a a p a π⎛⎫⎛⎫=+--=- ⎪ ⎪⎝⎭⎝⎭, 由于4a ≥,则03π2p ⎛⎫< ⎪⎝⎭,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则有一个零点, 当43a ≤-时,3π02p ⎛⎫'≥ ⎪⎝⎭,由于()()=p x g x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≥,()p x在π3π,22⎡⎤⎢⎥⎣⎦单调递增, ππ=πln 022p ⎛⎫> ⎪⎝⎭,则π()02p x p ⎛⎫≥> ⎪⎝⎭,则()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点, 当443a -<<时,π02p ⎛⎫'> ⎪⎝⎭,3π02p ⎛⎫'< ⎪⎝⎭,()p x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则存在0π3π,22x ⎛⎫∈ ⎪⎝⎭使()0p x '=, 当0π,2x x ⎛⎫∈⎪⎝⎭,()0p x '>,()p x 单调递增,当03π,2x x ⎛⎫∈ ⎪⎝⎭,()0p x '<,()p x 单调递减,πππln 022p ⎛⎫=> ⎪⎝⎭,3π3ππln π22p a ⎛⎫=- ⎪⎝⎭, 若3π3π0ln 22p a ⎛⎫>⇒< ⎪⎝⎭,则由0π2p ⎛⎫> ⎪⎝⎭,3π02p ⎛⎫> ⎪⎝⎭及()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,此时43πln 32a -<<, 若3π3π0ln 22p a ⎛⎫≤⇒≥⎪⎝⎭,由0π2p ⎛⎫> ⎪⎝⎭,3π02P ⎛⎫≤ ⎪⎝⎭和()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点,此时3πln 42a ≤<, 综上,当3πln2a <时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,当3πln 2a ≥时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点.【点睛】关键点点睛:本题第二问考查利用导数分析函数的零点个数问题,解答此问题的关键在于多次求导以及分类讨论思想的运用;当原函数()f x 的导函数()f x '无法直接判断出正负时,可先通过将原函数的导函数看作新函数()g x ,利用导数思想先分析()g x '的单调性以及取值正负,由此确定出()g x 的单调性并分析其取值正负,从而()f x '的正负可分析,则根据()f x 的单调性以及取值可讨论零点个数.典例3.已知函数()e sin 1xf x x =+-. (1)判断函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上的零点个数,并说明理由; (2)当[0,)x ∈+∞时,()0f x mx +,求实数m 的取值范围.解:(1)解法一:由题意得,()e cos x f x x '=+, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,易得函数()'f x 单调递增, 而()e 10f ππ--=-<',2e 02f ππ-⎛⎫-=> ⎪⎝⎭', 故()00,,02x f x ππ⎛⎫∃∈--= ⎪⎝'⎭, 当[)0,x x π∈-时,()0f x '<; 当0,2x x π⎛⎫∈- ⎪⎝⎭时,()0f x '>, 而2()e 10,e 202f f ππππ--⎛⎫-=-<-=-< ⎪⎝⎭, ∴函数f (x )在,2ππ⎡⎫--⎪⎢⎣⎭上无零点;当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,()e cos 0x f x x =+>', ∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增, 而(0)0f =,∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上有1个零点. 综上所述,函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上有1个零点. (2)令()()e sin 1x g x f x mx x mx =+=++-,[0,)x ∈+∞,则()e cos xg x x m =++'. 0(0)e sin 0010g m =++⨯-=,0(0)e cos02g m m =++=+',令()()e cos x h x g x x m +'==+,()e sin xh x x =-' 因为0x =时,0()e sin 010h x =-=>', 当0x >时,e 1x >,sin 1x ≤,()e sin 110xh x x =>-'-=,所以()e sin 0x h x x -'=>在()0,+∞上恒成立, 则h (x )为増函数,即()'g x 为增函数①当20m +,即2m -时,()(0)20g x g m '='+,∴g (x )在[0,)+∞上为增函数,()(0)0g x g ∴=,即()0g x 在[0,)+∞上恒成立;②当m +2<0,即m <-2时,(0)20g m =+<',0(0,)x ∴∃∈+∞,使()00g x '=,当()()00,,0,()x x g x g x ∞∈+>'为增函数;当[)()000,,0,()x x g x g x <'∈为减函数, ()0(0)0g x g ∴<=,与()0g x 在[0,)+∞上恒成立相矛盾,2m ∴<-不成立.综上所述,实数m 的取值范围是[2,)-+∞.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.典例4.设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数;(Ⅰ)证明:当0a >时()22ln f x a a a≥+. 解:(∴)()f x 的定义域为()0+∞,,()2()=20x a f x e x x '->.当0a ≤时,()0f x '>,()f x '没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x '在()0+∞,单调递增.又()0f a '>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点. (∴)由(∴),可设()f x '在()0+∞,的唯一零点为0x ,当()00x x ∈,时,()0f x '<; 当()0+x x ∈∞,时,()0f x '>. 故()f x 在()00x ,单调递减,在()0+x ∞,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++≥+. 故当0a >时,2()2ln f x a a a≥+. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.典例5.已知函数()()ln 1x a f x e x x a -=--∈R .(1)若1a =,讨论()f x 的单调性;(2)令()()(1)g x f x a x =--,讨论()g x 的极值点个数.解:(1)若1a =,则()1ln 1x f x e x x -=--,其定义域为()0,∞+,()1ln 1x f x e x -'=--.令()()1ln 1x m x f x e x -'==--,则()11x m x e x -'=-, 易知()m x '在()0,∞+上单调递增,且()10m '=,所以当()0,1x ∈时,()0m x '<,()m x 在()0,1上单调递减, 当()1,x ∈+∞时,()0m x '>,()m x 在()1,+∞上单调递增, 因此()()10m x m ≥=,即()0f x '≥,所以()f x 在()0,∞+上单调递增.(2)由题意知,()()ln 11x a g x e x x a x -=----,则()ln x a g x e x a -'=--,由(1)知,1ln 10x e x ---≥,当1a ≤时,()ln ln 10x a x a g x e x a e x --'=--≥--≥, 所以()g x 在()0,∞+上单调递增,此时()g x 无极值点. 当1a >时,令()()ln x a h x g x e x a -'==--,则()1x a h x ex -'=-,易知()h x '在()0,∞+上单调递增, 又()1110a h e -'=-<,()110h a a'=->, 故存在()01,x a ∈,使得()00010x a h x e x -'=-=, 此时有001x a e x -=,即00ln a x x =+, 当()00,x x ∈时,()0h x '<,()h x 在()00,x 上单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 在()0,x +∞上单调递增,所以()()00000min 01ln 2ln x ah x h x ex a x x x -==--=--. 令()12ln x x x xϕ=--,()1,x a ∈, 易知()x ϕ在()1,a 上单调递减, 所以()0x ϕ<,即()00h x <.因为()0aa eah e e---=>,()23ln 321ln 31ln 32ln 30a h a e a a a a a a =-->+--=+->->,且0013a e x a a -<<<<<,所以存在()10,ax e x -∈,()20,3x x a ∈,满足()()120h x h x ==,所以当()10,x x ∈时,()()0g x h x '=>,()g x 在()10,x 上单调递增, 当()12,x x x ∈时,()()0g x h x '=<,()g x 在()12,x x 上单调递减, 当()2,x x ∈+∞时,()()0g x h x '=>,()g x 在()2,x +∞上单调递增, 所以当1a >时,()g x 存在两个极值点.综上,当1a ≤时,()g x 不存在极值点;当1a >时,()g x 存在两个极值点. 【点睛】关键点点睛:本题第(2)问的关键有:(1)当1a ≤时,合理利用第(1)问中得到的1ln 10x e x ---≥以及不等式的性质得到()0g x '≥;(2)当1a >时,灵活构造函数,并根据等式将a 代换掉,得到()()090min 12ln nh x h x x x x ==--,最后巧妙取点,利用零点存在定理得到()h x 的零点,从而得到结果.变式1.已知函数()()xf x e ax a =-∈R . (1)讨论函数()f x 的单调性;(2)当2a =时,求函数()()cos g x f x x =-在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数. 解:(1)()x f x e ax =-,其定义域为R ,()xf x e a '=-①当0a ≤时,因为()0f x '>,所以()f x 在R 上单调递增, ②当0a >时,令()0f x '>得ln x a >,令()0f x '<得ln x a < 所以()f x 在(),ln a -∞上单调递减,()ln ,a +∞上单调递增, 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞单调递减,()ln ,a +∞单调递增,(2)已知得()2cos xg x e x x =--,,2x π⎛⎫∈-+∞ ⎪⎝⎭则()sin 2xg x e x '=+-①当,02x π⎛⎫∈- ⎪⎝⎭时,因为()()1(sin 1)0xg x e x '=-+-<所以()g x 在,02π⎛⎫- ⎪⎝⎭单调递减,所以()()00g x g >=, 所以()g x 在,02π⎛⎫- ⎪⎝⎭上无零点;②当0,2x π⎡⎤∈⎢⎥⎣⎦时,因为()g x '单调递增,且(0)10g '=-<,2102g e ππ⎛⎫'=-> ⎪⎝⎭,所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使()00g x '= 当()00,x x ∈时,()0g x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '> 所以()g x 在[)00,x 递减0,2x π⎛⎤⎥⎝⎦递增,且()00g =,所以()00g x <,又因为202g e πππ⎛⎫=-> ⎪⎝⎭所以()002g x g π⎛⎫⋅< ⎪⎝⎭所以()g x 在0,2x π⎛⎫⎪⎝⎭上存在一个零点, 所以()g x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; ③当,2x π⎛⎫∈+∞ ⎪⎝⎭时,2()sin 230x g x e x e π'=+->->,所以()g x 在,2π⎛⎫+∞⎪⎝⎭单调递增 因为02g π⎛⎫>⎪⎝⎭,所以()g x 在,2π⎛⎫+∞ ⎪⎝⎭上无零点;综上所述,()g x 在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数为2个. 【点睛】方法点睛:函数的零点问题常见的解法有:(1)方程法(直接解方程得解);(2)图象法(直接研究函数()f x 的图象得解);(3)方程+图象法(令()0f x =得到()()g x h x =,再研究函数(),()g x h x 图象性质即得解).要根据已知条件灵活选择方法求解.变式2.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明:(1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解:(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减 又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x ∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减 则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x ∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.变式3.已知函数3()sin (),2f x ax x a R =-∈且在,0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-,(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明 解:(1)由已知得f ′(x )=a (sinx +xcosx ),对于任意的x ∴(0,2π), 有sinx +xcosx >0,当a =0时,f (x )=−32,不合题意; 当a <0时,x ∴(0,2π),f ′(x )<0,从而f (x )在(0, 2π)单调递减, 又函数f (x )=axsinx −32 (a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上的最大值为f (0),不合题意; 当a >0时,x ∴(0,2π),f ′(x )>0,从而f (x )在(0, 2π)单调递增, 又函数f (x )=axsinx −32(a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上上的最大值为f (2π)=2πa −32=32π-,解得a =1,综上所述,得3()sin (),2f x x x a R =-∈; (2)函数f (x )在(0,π)内有且仅有两个零点。

函数隐性零点的处理技巧》

函数隐性零点的处理技巧》

函数隐性零点的处理技巧》函数的隐性零点处理技巧近年来,高考命题趋势是用导数研究函数的单调性、极值、最值及不等式问题。

函数的单调性与导函数的零点有密切联系,因此函数的零点的求解或估算是函数综合问题的核心。

函数的零点分为显性零点和隐性零点,本专题将通过几个例题来体会隐性零点的处理步骤和思想方法。

一、隐性零点问题示例及简要分析:1.求参数的最值或取值范围例1(2012年全国I卷)设函数f(x)=ex﹣ax﹣2.1)求f(x)的单调区间;2)若a=1,k为整数,且当x>时,(x﹣k)f′(x)+x+1>,求k的最大值.解析:(1)若a≤0,则f′(x)>,f(x)在R上单调递增;若a>,则f(x)的单调减区间是(﹣∞,lna),增区间是(lna,+∞).2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(ex﹣1)+x+1.当x>时,(x﹣k)f′(x)+x+1>等价于k<x 1x(x>)(*)。

xe 1ex(ex x2)x 1令g(x)=xx,则g′(x)=。

ex1)2e 1由于函数f(x)=ex﹣x﹣2在(,+∞)上单调递增,所以f(x)在(,+∞)存在唯一的零点,设此零点为a,则a∈(1,2).当x∈(,a)时,g′(x)<;当x∈(a,+∞)时,g′(x)>.所以g(x)在(,+∞)的最小值为g(a).又由g′(a)=0,可得ea=a+2。

所以g(a)=a+1∈(2,3).由于(*)式等价于k<g (a),故整数k的最大值为2.点评:处理函数隐性零点的步骤:①确定零点的存在范围;②根据零点的意义进行代数式的替换;③结合前两步,确定目标式的范围。

2.不等式的证明本段落格式错误,已删除)1) 已知函数$f(x)=\frac{1}{2(x+a)}\ln{x}$,其中$a$为常数。

求$f(x)$的极值。

解析:f(x)$的导数为:$f'(x)=\frac{1}{2x(x+a)}-\frac{1}{2(x+a)^2}$。

例析隐零点问题的三类处理技巧

例析隐零点问题的三类处理技巧

数理化解题研究2021年第07期总第500期例析隐零点问题的三类处理技巧魏东升(江西省瑞金第一中学342500)摘 要:本文探究了高考函数隐零点问题的几类处理技巧,并分别从虚设零点、化隐为显和变换主元等三个视角进行呈现,同时对导数压轴题的教学给出了一点建议•关键词:高考;隐零点;解题;策略中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)07 -0056 -02函数与导数主要是考查学生逻辑推理、直观想象和 数学运算等核心素养的主要载体,其一直是高考考查的重点之一 •在处理函数与导数的压轴题时,对零点的处理 往往是一个关键环节,有些函数的零点确实存在,但无法 精确求解,此谓之“隐零点”;有些导数的零点虽然可求,但因含参而需要讨论•对于这类问题,常见的处理方式主 要有虚设零点、化隐为显和变换主元三大类.一、虚设零点所谓虚设零点,是指为了处理函数的隐零点问题,通过采取假设函数零点却不直接求解,通过谋求整体的转 化,将函数转化为易求的形式进行求解的一种处理技巧•例1 (2019年全国I 卷理)已知函数/(%) — In % -•设%0是f (%)的一个零点,证明曲线y - In %在点% - 14( %0,ln %0)处的切线也是曲线y — e %的切线•证明 因为丄-e —ln %0,故点B ( - ln %0,丄)在曲线y —%0%0e %上 由题设知/(%0) —0,即ln %0-%°^4,故直线4B 的斜%0 - 1曲线y — e %在点B ( -ln %0, 1 )处的切线的斜率是1 ,%0%0曲线y - ln %在点4 ( %0, ln %0 )处的切线的斜率也是丄,所%0以曲线y — ln %在点4(%0,ln %0 )处的切线也是曲线y — e % 的切线•评析本题涉及了超越函数(指数函数、对数函数和三角函数等函数结合的函数),在假设零点后,可以考虑把超越式(如ln %、e %等)分离出来再代入表达式求解,以 达到将超越函数转化为普通函数的目的,此谓之整体消“超”•除此之外,对于一类函数零点个数判断(或根据零点个数求参、或零点所在区间判断)的问题,可以考虑利用该零点附近的特殊点的函数值来确定符号,谓之特点 定号(如2019年全国I 卷文);对于含有参数的函数,还 可以考虑整体消参(如2019年天津卷文)和降次留参(如2019年江苏卷)等方式,二、化隐为显所谓化隐为显,指的是为了避免出现直接求导带来的隐零点问题,通过采取重新构造函数的方式,把隐零点 转化为显零点的一种处理技巧•例2 (2017年全国I 卷理)已知函数/ (% ) — a%2 -a% - %ln %,且/(% ) M0.求 a.解析 由题知/(%) — % (a% - a - ln %)(% >0),且/(%)M0,所以 a (% - 1 ) - ln % M0,即当 % e (0,1 )时,a W ln% ;% - 1当 % e (1, + ¥)时,a M ln % ;当 % — 1 时,a (% - 1 ) - ln %M 0% - 1成立.令 g (% ) — % - 1 - ln %, g ‘ (% ) — 1 一丄—%,当 % e%%(0,1)时,g ‘ (%) <0,g (%)单调递减,g (%) >g (1) —0,所以% - 1 > ln %,即 ln % > 1,所以 a W 1 ;当 % e (1, + ¥)时,% - 1g ; (%) >0,g (%)单调递增,g (%) > g (1) —0,所以 %-1 >ln %,即 ln% < 1,所以 a M1.综上,a — 1.% - 1评注分离是化隐为显的一种常见手段,其通常用于分离参数,或者是分离含有类如%ln %这样的超越式•本 题中除了分离参数,还由于/ ( % )含有%ln %而导致求导后出现了隐零点问题,故而采取了将%和ln %分离的处理方收稿日期:2020 -12 -05作者简介:魏东升(1985. 4 -),男,江西省安远人,本科,中学一级教师,从事高中数学教学研究.—56—2021年第07期总第500期数理化解题研究式•除了分离构造,常见化隐为显的方法还有合并构造 (如2018年全国I 卷理)、放缩构造(如2018年全国I 卷 文)和双雄构造(指把一个函数拆成两个函数,如2014年全国I 卷理)等.三、变换主元有些数学问题中常含变量,在某些情况下为了解决问题的需要,可人为地突出该变量的主体地位作用,将之 当作主元构造新的函数,以达到化难为易的目的.这种思 路还适用于多元变量函数的问题.例3 (2015年全国I 卷文)设函数/(%) - e 2% - a ln %.2证明:当 a > 0 时,/(%)^2a + a ln —.a2证明当 a > 0 时,令 g ( a ) - / (% ) - 2 a - a ln — - e 2%2-a ln % - 2a - a ln ——,贝卩 g ‘ (a ) - ln a - ln(2e%).a当 a < 2e% 时,g ‘ (a ) < 0 ;当 a > 2e% 时,g ‘ (a ) > 0,所 以 a -2e% 时,g (a )取最小值为 g (2e%) - e 2% -2e%.令 h (t ) - e 2t - 2et ,则 h' (t ) - 2e 2t - 21,当 t < 1 时,L (t ) <0;当 t >1 时 ’ h' (t ) >0,所以 h (t ) M h (1) -0,即2g ( a ) M0,即 f ( % ) M2 a + a l n —.评注 本题如果直接对/ ( % )进行求导,会出现隐零点问题以致给解题带来不便,故这里采用了重新构造关于变量a 的对数超越函数的处理方式.除了重构对数超 越函数,变换主元往往还会重构指数超越函数(如2016 年全国H 卷文)、重构双勾型函数(如2017年全国H 卷 文)和重构二次函数(如2019年浙江卷)•通过上述几个高考真题我们知道,通过结合已知条件和结论虚设零点、化隐为显和变换主元是解决隐零点问题的主要处理策略•在导数压轴题的教学过程中,像这 样以专题的形式介绍隐零点问题的处理策略,尽量一次 性彻底地解决与其有关的问题,对学生解题水平的提升、逻辑思维的训练和核心素养的培养,想来都是极好的.参考文献:[1 ]王洪军.处理多元问题的几种方法[J ].数理化学 习(高中版),2015(02) :3 -4.[责任编辑:李 璟]赋值法处理抽象函数问题李小蛟(四川省成都市树德中学610091)摘 要:不给出具体解析式,只给出函数的特殊条件或特征的函数即抽象函数.由于抽象函数可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域、值域、单调性、奇偶性、周期性和图象 集于一身,所以在高考中出现频率较高.关键词:赋值法;抽象函数;函数性质中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)07 -0057 -03解答抽象函数题目的基础是熟悉函数的基本知 识•抽象函数无具体表达式,要通过我们所学的一般初 等函数的性质来解决比较困难(小题可借用一些类似函数解决),但抽象函数问题的解决本质上是将抽象 问题具体化,所以解决抽象函数问题可以将函数中变量具体赋值,即解决抽象函数有一个万能的方法—— 赋值法•下面我们分类例析用赋值法解决抽象函数问题•一、赋值法处理抽象函数的函数值抽象函数求值问题是要解决具体函数值问题,因此 抽象函数求值问题的关键在于赋值,即赋要求解自变量, 代入求出相应函数值即可.例1已知f(%)的定义域为R ,对任意的%,y e R ,有/(% + y )二/(%) +/(y ),则/(0)二____•分析本题函数没有具体表达式,即抽象函数求值收稿日期:2020 -12 -05作者简介:李小蛟(1984. 10 -),男,本科,中学高级教师,从事高中数学教学研究.— 57—。

六类技巧终结导数隐零点问题

六类技巧终结导数隐零点问题

例1. 已知函数=()ln f xx x ,(1)证明:≥-()1f x e⑵ 已知函数()2=-+-g x x x k ,若对区间e[1,1]上任意x 均有≤f x g x ()()恒成立,求k 的最大值。

解:⑴ 略 ⑵由题设条件知:ln 2≤-+-x x x x k 在e[1,1]上恒成立ln 2⇔≤--+k x x x x 在e[1,1]上恒成立⇔≤--+k x x x x (ln )2m in令()ln 2=--+h x x x x x ,∈x e [1,1]则'=--()2ln h x x xh x x e x ''=--<<<()210(11),即'h x ()为减函数,又h e e '=-+>(1)110 h '=-<(1)20∴'h x ()在e[1,1]上有唯一的零点x 0,且=-x x ln 200当∈x e x 0(1,)时'>h x h x ()0,()单调递增,当∈x x 0(,1)时'<h x h x ()0,()单调递减。

∴h x h e h min ()min (1),(1)=⎧⎨⎩⎫⎬⎭ 又 h e e e =->2(1)210 h =(1)0∴h x =min ()0 ∴k ≤0 故k =max 0技巧一虚设零点-----媒介过渡;技巧一:虚设零点-----媒介过渡技巧二:敏锐洞察——观察零点技巧三:反带消参—构造单变量函数,研究参数值及范围技巧四:降次或减元留参,达到证明或求值的目的技巧五:巧设零点---超越式划代数式技巧六:巧妙转化(含放缩,讨论等)24581410六类技巧终结导数隐零点问题例2(19课标1)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数. 证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解:(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭ ()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,在1,2π⎛⎫- ⎪⎝⎭上单调递减;()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减,又()0sin 0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++ 00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '= ∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上递增;在0,2x π⎛⎫⎪⎝⎭上递减,则0x x =为()g x 唯一极大值点;即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在00,x 上单调递增,此时()()00f x f >=,不存在零点,又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上递增,在1,2x π⎛⎫⎪⎝⎭上递减又()()000f x f >=,2sin ln 1ln ln102222e f ππππ⎛⎫⎛⎫=-+=>=⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上递减,又02f π⎛⎫> ⎪⎝⎭()()()sin ln 1ln 10f ππππ=-+=-+< 即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点 ④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 技巧二 敏锐洞察-----观察零点 例3 (13北京)设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的切线方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 解: (I) L : 1y x =-.(II)令()1()g x x f x =--,则除切点之外,曲线C 在直线l 的下方()0g x ⇔>(0,1)x x ∀>≠,()g x 满足(1)0g =, 221ln ()1()x xg x f x x -+''=-=. 当01x <<时,210x -<,ln 0x <,所以()0g x '<,故()g x 单调递减; 当1x >时,210x ->,ln 0x >,所以()0g x '>,故()g x 单调递增.所以()(1)0g x g >=(0,1x x >≠),即除切点之外,曲线C 在直线L 的下方.例4. (11浙江)设函数()f x =2()ln x a x -,a ∈R (Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立.注:e 为自然对数的底数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数导数压轴题隐零点的处理技巧
些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。

用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。

函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。

根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。

本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。

一、隐性零点问题示例及简要分析:
1.求参数的最值或取值范围
例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.
解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增;
若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞).
(2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1.
故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<
1
1
x
x
e
+
-
+x(x>0)(*),
令g(x)=
1
1
x
x
e
+
-
+x,则g′(x)=
2
(2)
(1)
x x
x
e e x
e
--
-

而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0,
所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点.
设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a).
③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2.
点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤:
①确定零点的存在范围(本题是由零点的存在性定理及单调性确定);
②根据零点的意义进行代数式的替换;
③结合前两步,确定目标式的范围。

2.不等式的证明
例2.(湖南部分重点高中联考试题)已知函数f (x )=2
ln ()x x a +,其中a 为常数. 若a =﹣1,设函数f (x )在(0,1)上的极值点为x 0,求证:f (x 0)<﹣2.
解析 证明:a =﹣1,则f (x )=2ln (1)x x -导数为f ′(x )=3112ln (1)x x x ---,
①设函数f (x )在(0,1)上的极值点为x 0,②可得00112ln 0x x --
=,即有0012ln 1x x =-,要证f (x 0)<﹣2,即020ln (1)x x -+2<0,由于0201
12(1)x x --+2=0012(1)x x -+2=2000(12)2(1)x x x --,由于x 0∈(0,1),且x 0=12
,2ln x 0=1﹣01x 不成立, ③则02
0ln 20(1)x x +<-,故f (x 0)<﹣2成立. 点评:处理函数隐性零点的三个步骤清晰可见。

3.对极值的估算
例3.(2017年全国课标1)已知函数f (x )=ax 2﹣ax ﹣x ln x ,且f (x )≥0.
(1)求a ;
(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f(x 0)<2﹣2.
解析(1)因为f (x )=ax 2﹣ax ﹣x ln x =x (ax ﹣a ﹣ln x )(x >0),则f (x )≥0等价于
h (x )=ax ﹣a ﹣ln x ≥0,求导可知h ′(x )=a ﹣1x
.则当a ≤0时h ′(x )<0,即y =h (x )在(0,+∞)上单调递减,所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0. 因为
当0<x <1a 时h ′(x )<0,当x >1a 时h ′(x )>0,所以h (x )min =h (1a ),又因为h (1)=a ﹣a ﹣ln1=0,所以1a =1,解得a =1;
(另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1),
所以等价于f (x )在x =1处是极小值,所以解得a =1;)
(2)证明:由(1)可知f (x )=x 2﹣x ﹣x ln x ,f ′(x )=2x ﹣2﹣ln x ,
令f ′(x )=0,可得2x ﹣2﹣ln x =0,记t (x )=2x ﹣2﹣ln x ,则t ′(x )=2﹣
1x
, 令t ′(x )=0,解得:x =12,所以t (x )在区间(0,12)上单调递减,在(12,+∞)上单调递增,所以t (x )min =t (12)=ln2﹣1<0,从而t (x )=0有解,即f ′(x )=0存在两根x 0,x 2,且不妨设f ′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正,
所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣ln x 0=0,所以f (x 0)=20x ﹣0x ﹣00ln x x =20x ﹣0x ﹣00(22)x x -=
﹣20x +0x ,由x 0<
12可知f (x 0)<200max 2111()224x x -+=-+=;由f ′(1e )<0可知x 0<1e <12
, 所以f (x )在(0,x 0)上单调递增,在(x 0,1e )上单调递减,所以f (x 0)>f (1e )=21e ; 综上所述,f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣
2.
点评:本题处理函数的隐性零点的三步亦清晰可见,请你标一标。

简要分析:通过上面三个典型案例,不难发现处理隐性零点的三个步骤;这里需要强调的是: 第一个步骤中确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也可以由函数的图象特征得到,甚至可以由题设直接得到,等等;至于隐性零点的范围精确到多少,由所求解问题决定,因此必要时尽可能缩小其范围;
第二个步骤中进行代数式的替换过程中,尽可能将目标式变形为整式或分式,那么就需要尽可能将指、对数函数式用有理式替换,这是能否继续深入的关键; 第三个步骤实质就是求函数的值域或最值。

最后值得说明的是,隐性零点代换实际上是一种明修栈道,暗渡陈仓的策略,也是数学中“设而不求”思想的体现。

相关文档
最新文档