2017-2018年上海市浦东新区中考一模数学试卷

合集下载

上海市2017各区中考数学一模试卷6套(包含答案解析)

上海市2017各区中考数学一模试卷6套(包含答案解析)

2017年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣13.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为.三、解答题:(本大题共7题,满分78分)19.计算:.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.2017年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出cotA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∴cotA=,∵BC=2,∠A=α,∴AC=2cotα,故选D.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=,cotA=.2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣1【考点】二次函数图象上点的坐标特征.【分析】分别求出x=0时y的值,即可判断是否过原点.【解答】解:A、y=x2﹣1中,当x=0时,y=﹣1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2﹣x﹣1中,当x=0时,y=﹣1,不过原点;故选:C.【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键.3.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米【考点】相似三角形的应用.【专题】应用题.【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度.【解答】解:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同.4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =【考点】*平面向量.【分析】根据向量的定义对各选项分析判断后利用排除法求解.【解答】解:A、∥,∥,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B.【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题.5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴=,故A正确;∵CD∥BE,AB=CD,∴△CDF∽△EBC∴=,故B正确;∵AD∥BC,∴△AEF∽△EBC∴=,故D正确.∴C错误.故选C.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9【考点】相似三角形的判定与性质.【分析】由△AEF∽△ABC,可知△AEF与△ABC的周长比=AE:AB,根据cosA==,即可解决问题.【解答】解:∵BE、CF分别是AC、AB边上的高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的周长比=AE:AB,∵cosA==,∴∴△AEF与△ABC的周长比=AE:AB=1:3,故选B.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.【考点】比例的性质.【分析】用a表示出b,然后代入比例式进行计算即可得解.【解答】解:∵ =,∴b=a,∴==.故答案为:.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.计算:(﹣3)﹣(+2)= .【考点】*平面向量.【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算.【解答】解::(﹣3)﹣(+2)=﹣3﹣﹣×2)=.故答案是:.【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型.9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是k<1 .【考点】二次函数的性质.【分析】由开口向下可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(k﹣1)x2+3x的开口向下,∴k﹣1<0,解得k<1,故答案为:k<1.【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x﹣4)2.【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x ﹣4)2.故答案为:y=(x﹣4)2.【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是8 .【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】利用锐角三角函数定义求出所求即可.【解答】解:∵在△ABC中,∠C=90°,sinA=,BC=6,∴sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC:CE=3:5,∴AC:AE=3:8,∵AB∥CD∥EF,∴,∴BD=,∴DF=,故答案为:.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1>y2.(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可.【解答】解:当x=2时,y1=﹣x2+1=﹣3;当x=5时,y2=﹣x2+1=﹣24;∵﹣3>﹣24,∴y1>y2.故答案为:>【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2 .【考点】二次函数的性质.【分析】根据函数值相等的点到对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,∴对称轴为x==2,故答案为:x=2.【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为 2 .【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为5+5米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】CF⊥AB于点F,构成两个直角三角形.运用三角函数定义分别求出AF和BF,即可解答.【解答】解:作CF⊥AB于点F.根据题意可得:在△FBC中,有BF=CE=5米.在△AFC中,有AF=FC×tan30°=5米.则AB=AF+BF=5+5米故答案为:5+5.【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形.17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【考点】线段垂直平分线的性质.【专题】探究型.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4.【考点】旋转的性质;解直角三角形.【分析】先解直角△ABC,得出BC=AB•cosB=9×=6,AC==3.再根据旋转的性质得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等边对等角以及三角形内角和定理得出∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN.解直角△ANC求出AN=AC•cos∠CAN=3×=2,根据等腰三角形三线合一的性质得出AE=2AN=4.【解答】解:∵在△ABC中,∠ACB=90°,AB=9,cosB=,∴BC=AB•cosB=9×=6,AC==3.∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,∴△ABC≌△EDC,BC=DC=6,AC=EC=3,∠BCD=∠ACE,∴∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∴∠BCM=∠ACN.∵在△ANC中,∠ANC=90°,AC=3,cos∠CAN=cosB=,∴AN=AC•cos∠CAN=3×=2,∴AE=2AN=4.故答案为4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了解直角三角形以及等腰三角形的性质.三、解答题:(本大题共7题,满分78分)19.计算:.【考点】实数的运算;特殊角的三角函数值.【分析】直接将特殊角的三角函数值代入求出答案.【解答】解:原式====.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】(1)在△ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量在、方向上的分向量.【解答】解:(1)∵,∴∵,∴∵,且∴;(2)解:如图,所以,向量、即为所求的分向量.【点评】本题考查平面向量,需要掌握一向量在另一向量方向上的分量的定义,以及向量加法的平行四边形法则.21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.【考点】相似三角形的判定与性质.【分析】(1)先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.【解答】解:(1)∵AC∥BD,∴∵AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.∴EF∥BD,∴,∴,∴(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴.∵,∴.∵S△BEF=4,∴,∴S△ABC=25.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)连接AB,作BG⊥AB交AC于点G,在Rt△ABG中,利用已知条件求出AB的长即可;(2)设直线EF交AD于点P,作CQ⊥EF于点Q,设AP=x,则PE=2x,PD=8﹣x,在Rt△ACD中利用已知数据可求出CD的长,进而可求出台EF的长度.【解答】解:(1)连接AB,作BG⊥AB交AC于点G,则∠ABG=90°∵AB∥CD,∴∠BAG=∠ACD=20°,在Rt△ABG中,,∵BG=2.26,tan20°≈0.36,∴,∴AB≈6.3,答:A、B之间的距离至少要6.3米.(2)设直线EF交AD于点P,作CQ⊥EF于点Q,∵AE和FC的坡度为1:2,∴,设AP=x,则PE=2x,PD=8﹣x,∵EF∥DC,∴CQ=PD=8﹣x,∴FQ=2(8﹣x)=16﹣2x,在Rt△ACD中,,∵AD=8,∠ACD=20°,∴CD≈22.22∵PE+EF+FQ=CD,∴2x+EF+16﹣2x=22.22,∴EF=6.22≈6.2答:平台EF的长度约为6.2米.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度角,关键是根据题意做出辅助线,构造直角三角形.23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.【考点】相似三角形的判定与性质.【分析】(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.【解答】证明:(1)∵AC2=CE•CB,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出二次函数的解析式,根据二次函数的性质解答即可;(2)过点E作EH⊥BC于点H,根据轴对称的性质求出点E的坐标,根据三角形的面积公式求出EH、BH,根据正切的定义计算即可;(3)分和两种情况,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点C(0,3)∴,解得,∴抛物线解析式为y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),(2)由(1)可知抛物线对称轴为直线x=1,∵点E与点C(0,3)关于直线x=1对称,∴点E(2,3),过点E作EH⊥BC于点H,∵OC=OB=3,∴BC=,∵,CE=2,∴,解得EH=,∵∠ECH=∠CBO=45°,∴CH=EH=,∴BH=2,∴在Rt△BEH中,;(3)当点M在点D的下方时设M(1,m),对称轴交x轴于点P,则P(1,0),∴BP=2,DP=4,∴,∵,∠CBE、∠BDP均为锐角,∴∠CBE=∠BDP,∵△DMB与△BEC相似,∴或,①,∵DM=4﹣m,,,∴,解得,,∴点M(1,)②,则,解得m=﹣2,∴点M(1,﹣2),当点M在点D的上方时,根据题意知点M不存在.综上所述,点M的坐标为(1,)或(1,﹣2).【点评】本题考查的是二次函数知识的综合运用、相似三角形的判定和性质,掌握待定系数法求二次函数解析式的一般步骤、熟记相似三角形的判定定理和性质定理、掌握二次函数的性质、灵活运用数形结合思想是解题的关键.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【考点】四边形综合题.【分析】(1)由矩形的性质和三角函数定义求出AD,由勾股定理求出BD即可;(2)证明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出结果;(3)当△DEF是等腰三角形时,△BDE也是等腰三角形,分情况讨论:①当BE=BD时;②当DE=DB时;③当EB=ED时;分别求出BE即可.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,在Rt△BAD中,,AB=16,∴AD=12∴;(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16∴在Rt△CDE中,,∵,∴,∴,定义域为0<x≤24(3)∵△EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,作EH⊥BD于H,则BH=,cos∠HBE=cos∠ADB,即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【点评】本题是四边形综合题目,考查了矩形的性质、三角函数定义、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x23.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥二、填空题(每题2分)7.如果x:y=4:3,那么=.8.计算:3﹣4(+)=.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=4x2﹣3x与y轴的交点坐标是.11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是.三、解答题19.计算:cos245°+﹣•tan30°.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y=不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误;B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;C、如果k=0或=,那么k=,故本选项错误;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥,故本选项错误;故选:B.二、填空题(每题2分)7.如果x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x=y,∴==,故答案为:.8.计算:3﹣4(+)=﹣﹣4.【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12.【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x﹣3的图象上,∴A(3,n)满足二次函数y=x2+2x﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于5﹣5厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,。

2018届浦东新区各科中考一模试卷

2018届浦东新区各科中考一模试卷

青浦区2017-2018学年第一学期九年级期终学业质量调研测试数学试卷 2018.1(完成时间:100分钟 满分:150分 )一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 计算32()x -的结果是(▲)(A )5x ; (B )5x -; (C )6x ; (D )6x -. 2. 如果一次函数y kx b =+的图像经过一、二、三象限,那么k 、b 应满足的条件是(▲) (A )0k >,且0b >;(B )0k <,且0b <;(C )0k >,且0b <;(D )0k <,且0b >.3. 下列各式中,2x -的有理化因式是(▲)(A )2x +; (B )2x -; (C )2x +; (D )2x -. 4.如图1,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD=6,那么:BC AC是(▲)(A )3:2; (B )2:3; (C )3:13; (D )2:13.5. 如图2,在□ABCD 中,点E 在边AD 上,射线CE 、BA 交于点F ,下列等式成立的是(▲)(A )AE CE ED EF =; (B )AE CDED AF =; (C )AE FA ED AB =; (D )AE FEEDFC=. 6. 在梯形ABCD 中,AD //BC ,下列条件中,不能判断梯形ABCD 是等腰梯形的是(▲) (A )ABC DCB ∠=∠; (B )DBC ACB ∠=∠; (C )DAC DBC ∠=∠; (D )ACD DAC ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:23a a += ▲ . 8. 函数11y x =+的定义域是 ▲ .ABCDEF 图2ABCD图19. 如果关于的一元二次方程2+20x x a -=没有实数根,那么a 的取值范围是 ▲ . 10. 抛物线24y x =+的对称轴是 ▲ .11. 将抛物线2y x =-平移,使它的顶点移到点P (-2,3),平移后新抛物线的表达式为▲ .12. 如果两个相似三角形周长的比是2:3,那么它们面积的比是 ▲ .13. 如图3,传送带和地面所成斜坡AB 的坡度为1:3,把物体从地面A 处送到坡顶B 处时,物体所经过的路程是12米,此时物体离地面的高度是 ▲ 米.14. 如图4,在△ABC 中,点D 是边AB 的中点.如果CA a =,CD b =,那么CB = ▲(结果用含a 、b 的式子表示).15. 已知点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且DE //BC ,如果BC =3DE ,AC =6,那么AE= ▲ .16. 在△ABC 中,∠C =90°,AC=4,点G 为△ABC 的重心.如果GC=2,那么sin GCB ∠的值是 ▲ .17. 将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是 ▲ .18. 如图5,在△ABC 中,AB =7,AC=6,45A ∠=,点D 、E 分别在边AB 、BC 上,将△BDE沿着DE 所在直线翻折,点B 落在点P 处,PD 、PE 分别交边AC 于点M 、N ,如果AD=2,PD ⊥AB ,垂足为点D ,那么MN 的长是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()027213+2cos30--+-.20.(本题满分10分)解方程:21421242x x x x +-=+--.21.(本题满分10分,第(1)小题5分,第(2)小题5分)x BA图3 DCBA图4ABC图5如图6,在平面直角坐标系xOy 中,直线)0(≠+=k b kx y 与双曲线xy 6=相交于点A (m ,6)和点B (-3,n ),直线AB 与y 轴交于点C .(1)求直线AB 的表达式; (2)求:AC CB 的值.22.(本题满分10分)如图7,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD // AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43,顶部D 的仰角是25,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47; sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D 、E 分别在△ABC 的边AC 、BC 上,线段BD 与AE 交于点F ,且CD CA CE CB ⋅=⋅.(1)求证:∠CAE =∠CBD ; (2)若BE ABEC AC=,求证:AB AD AF AE ⋅=⋅.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图9,在平面直角坐标系xOy 中,抛物线()20y axbx c a =++>与x 轴相交于点A (-1,0)和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC 、BC ,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当△CGF 为直角三角形时,求点Q 的坐标.AB C D E F图8AD图7图6xyO ABC25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图10,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 不与点A 、点 D 重合),点Q 是边CD 上一点,联结PB 、PQ ,且∠PBC =∠BPQ . (1)当QD =QC 时,求∠ABP 的正切值; (2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.图10QP D CBA备用图A BCD青浦区2017-2018学年第一学期九年级期末学业质量调研测试数学参考答案 2018.1一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.A ; 3.C ; 4.B ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.()31+a a; 8.1≠-x ; 9.1<-a ;10.直线0x =或y 轴; 11.()223=-++y x ;12.4:9;13.6; 14.2-b a ; 15.2; 16.23; 17. 18.187. 三、(本大题7题,第19~22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:原式=1+2.…………………………………………………………(8分)=2.………………………………………………………………………(2分) 20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分) 解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)21. 解:(1)∵点A (m ,6)和点B (-3,n )在双曲线xy 6=,∴m =1,n =-2. ∴点A (1,6),点B (-3,-2).………………………………………………………(2分)将点A 、B 代入直线=+y kx b ,得=63 2.;+⎧⎨-+=-⎩k b k b 解得=24.;⎧⎨=⎩k b …………………(2分)∴直线AB 的表达式为:24=+y x .…………………………………………………(1分)(2)分别过点A 、B 作AM ⊥y 轴,BN ⊥y 轴,垂足分别为点M 、N .……………………(1分)则∠AMO =∠BNO =90°,AM =1,BN =3,……………………………………………(1分) ∴AM //BN , ………………………………………………………………………………(1分) ∴1=3AC AM CB BN =.…………………………………………………………………………(2分)22.解:过点A 作AE ⊥CD ,垂足为点E .……………………………………………………(1分)由题意得,AE = BC =28,∠EAD =25°,∠EAC =43°.………………………………(1分) 在Rt △ADE 中,∵tan ∠=DE EAD AE,∴tan 25280.472813.2=︒⨯=⨯≈DE .………(3分)在Rt △ACE 中,∵tan CEEAC AE∠=,∴tan 43280.932826=︒⨯=⨯≈CE . ………(3分) ∴13.22639=+=+≈DC DE CE (米).………………………………………………(2分)答:建筑物CD 的高度约为39米. 23.(1)证明:∵CD CA CE CB ⋅=⋅,∴CE CACD CB=, ………………………………………(1分)∵∠ECA =∠DCB ,……………………………………………………………………(1分) ∴△CAE ∽△CBD ,……………………………………………………………………(1分) ∴∠CAE =∠CBD .……………………………………………………………………(1分) (2)证明:过点C 作CG //AB ,交AE 的延长线于点G .∴BEABEC CG =,…………………………………………………………………………(1分) ∵BEABEC AC =,∴ABABCG AC =,……………………………………………………………(1分)∴CG =CA , ……………………………………………………………………………(1分) ∴∠G =∠CAG ,………………………………………………………………………(1分)∵∠G =∠BAG ,∴∠CAG =∠BAG .………………………………………………(1分) ∵∠CAE =∠CBD ,∠AFD =∠BFE ,∴∠ADF =∠BEF .…………………………(1分) ∴△ADF ∽△AEB ,……………………………………………………………………(1分) ∴AD AFAE AB=,∴AB AD AF AE ⋅=⋅.…………………………………………………(1分)24.解:(1)∵抛物线()20=++>y ax bx c a 的对称轴为直线1x =,∴12=-=bx a,得2=-b a .…………………………………………………………(1分)把点A (-1,0)代入2=++y ax bx c ,得=0-+a b c ,∴3=-c a .………………………………………………………………………………(1分)∴C (0,-3a ).…………………………………………………………………………(1分) (2)∵点A 、B 关于直线1x =对称,∴点B 的坐标为(3,0).…………………………(1分)∴AB =4,OC =3a .…………………………………………………………………………(1分) ∵12ABCSAB OC =⋅,∴14362⨯⨯=a , ∴a =1,∴b =-2,c =-3,…………………………………………………………………(1分)∴223=--y x x .………………………………………………………………………(1分)(3)设点Q 的坐标为(m ,0).过点G 作GH ⊥x 轴,垂足为点H .∵点G 与点C ,点F 与点A 关于点Q 成中心对称, ∴QC =QG ,QA =QF = m +1,QO =QH = m ,OC =GH =3, ∴QF = m +1,QO =QH = m ,OC =GH =3,∴OF = 2m +1,HF = 1. Ⅰ.当∠CGF =90°时,可得∠FGH =∠GQH =∠OQC , ∴tan tan FGH OQC ∠=∠,∴HF OCGH OQ =,∴133=m,∴=9m∴Q 的坐标为(9,0).……………………………………………………………………(2分)Ⅱ.当∠CFG =90°时,可得,tan tan FGH OFC ∠=∠,∴HF OCGH OF =,∴13321=+m , ∴=4m ,Q 的坐标为(4,0).……………………………………………………………(1分)Ⅲ.当∠GCF =90°时,∵∠GCF<∠FCO<90°,∴此种情况不存在.……………………………………………(1分) 综上所述,点Q 的坐标为(4,0)或(9,0). 25.解:(1)延长PQ 交BC 延长线于点E .设PD =x .∵∠PBC =∠BPQ ,∴EB=EP .…………………………………………………………………………………(1分) ∵四边形ABCD 是正方形,∴AD //BC ,∴PD ∶CE= QD ∶QC= PQ ∶QE ,∵QD =QC ,∴PD =CE ,PQ =QE . ……………………………………………………(1分) ∴BE =EP= x +2,∴QP =()122x +.……………………………………………………(1分)在Rt △PDQ 中,∵222PD QD PQ +=,∴2221112x x ⎛⎫+=+ ⎪⎝⎭,解得43x =.……(1分)∴23AP AD PD =-=,∴211323tan AP AB ABP =⨯=∠=.………………………………(1分)(2)过点B 作BH ⊥PQ ,垂足为点H ,联结BQ .……………………………………(1分)∵AD //BC ,∴∠CBP =∠APB ,∵∠PBC =∠BPQ ,∴∠APB =∠HPB ,……………(1分) ∵∠A =∠PHB =90°,∴BH = AB =2,∵PB = PB ,∴Rt △PAB ≅ Rt △PHB , ∴AP = PH =x .……………………………………………………………………………(1分) ∵BC = BH=2,BQ = BQ ,∠C =∠BHQ =90°,∴Rt △BHQ ≅ Rt △BCQ ,∴QH = QC= y ,……………………………………………(1分)在Rt △PDQ 中,∵222PD QD PQ +=,∴()()()22222x y x y -+-=+,∴ 422x y x -=+.……………………………………………………………………………(1分)(3)存在,∠PBQ =45°.……………………………………………………………(1分)由(2)可得,21PBH ABH ∠=∠,21HBQ HBC ∠=∠,………………………………(2分)∴()90452211PBQ ABH HBC ∠=∠+∠=⨯︒=︒.…………………………………………(1分)2018届青浦区初三一模英语试卷 Part 2 Phonetics, Grammar and Vocabulary(第二部分 语音、语法和词汇)Ⅱ. Choose the best answer (选择最恰当的答案)26. Which of the following word matches the sound /f ʊl /? A. fill B. fool C. full D. fall27. Which of the following underlined parts is different in pronunciation from the others? A. What kind of food would you like? B. Please tell me the whole story. C. The flower is small and white. D. Where there is a will, there is a way. 28. Carl told us that his trip to the United States was _____ wonderful experience. A. a B. an C. the D. /29. Our headmaster always encourages the school cooks to serve healthy meals ___ junk food. A. under B. of C. with D. without 30. Instead ______ telling him the answer, the teacher helped him to read the text again. A. of B. for C. at D. to31. Sorry, I can’t quite understand you, Mr. Green. Would you please show us ____ example? A. another B. the other C. others D. the others 32. Would you please give us some ______ on how to keep fit, Doctor Wang? A. idea B. advice C. tip D. suggestion 33. Both my father and my brother like Sichuan Hot Pot because it tastes _____.A. wellB. badC. niceD. terribly34. Wolf-Warriors Ⅱ(战狼)was _____ popular than any other movie in China last year.A. manyB. muchC. mostD. more35. Don’t treat the animals like that, John. We ______ take good care of them.A. canB. shouldC. needD. may36. The company ______ a lot of money since the new project was carried out.A. has madeB. had madeC. will makeD. would make37. Nancy _____ for the speech contest while her classmates were watching the game.A. is preparingB. has preparedC. was preparingD. will prepare38. Women in China _____, have jobs, and are free to marry or not, as they choose.A. are educatedB. were educatedC. have been educatedD. can be educated39. After many year’s hard work, the twins made up their minds _____ a restaurant of their own.A. openB. openingC. openedD. to open40. The volunteers were busy ____ the old people in the nursing home do some cleaning.A. helpB. helpingC. helpedD. to help41. –Sorry, Mr. Oliver isn’t in.–What a pity! Let us leave a message, _____?A. will weB. shall weC. will youD. shall you42. ____ the old watch doesn’t work, my grandpa still keeps it as a treasure.A. SinceB. AlthoughC. BecauseD. Unless43. Martin was asked to finish his homework in time, ____ his parents would punish him.A. soB. forC. butD. or44. –Excuse me, would you mind my opening the window? It’s so stuffy(闷热)here.–______. Please go ahead.A. Never mind.B. You are welcome.C. Not at all.D. I agree.45. –A big tree fell on the roof of the concert hall in the storm last night.–_____.A. All rightB. No problemC. Take careD. That’s terribleⅡ. Complete the following passage with the words or phrases in the box. Each can only be used once(将下列单词或词组填入空格。

上海市2017浦东区初三数学一模试卷

上海市2017浦东区初三数学一模试卷

11 1 2016 学年浦东新区初三一模数学试卷一、选择题(本大题共 6 题,每题 4 分,满分 24 分)1.在下列 y 关于 x 的函数中,一定是二次函数的是………………………………………………( )2017.1(A ) y = 2x 2; (B ) y = 2x - 2 ; (C ) y = ax 2; (D ) y =a .x23 22. 如果向量a 、b 、x 满足 x + a = (a - 2 3b ) ,那么 x 用a 、b 表示正确的…………………()(A ) a - 2b ; (B ) 5a -b ; (C )a - 2 2b ; (D ) 3 1 a - b 23. 已知在 Rt ∆ABC 中, ∠C = 90O, ∠A = α , BC = 2 ,那么 AB 的长等于()(A )2sin α; (B ) 2sin α ;(C )2cos α; (D ) 2cos α4. 在∆ABC 中,点 D 、E 分别在边 AB 、AC ,如果 AD = 2 , BD =4 ,那么由下列条件能够判断DE ∥BC 的是( ) AE (A )AC = ; (B )DE 2BC = ; (C )AE 3AC = ; (D )DE = 13BC 25. 如图, ∆ABC 的两条中线 AD 、CE 交于点G ,且 AD ⊥ C E .联结 BG 并延长与 AC 交于点 F ,如果 AD = 9,CE =12 ,那么下列结论不正确的是( ) (A ) AC = 10; (B ) AB = 15 ; (C ) BG = 10 ;(D ) BF = 156. 如果抛物线 A :y = x2-1 通过左右平移得到抛物线 B ,再通过上下平移抛物线 B 得到抛物线C :y = x 2 - 2x + 2 ,那么抛物线 B 的表达式为()(A ) y = x 2+ 2 ; (B ) y = x 2- 2x -1; (C ) y = x 2- 2x 二、填空题(本大题共 12 题,每题 4 分,满分 48 分); (D ) y = x 2- 2x +1; 7. 已知线段a = 3cm ,b = 4cm ,那么线段a 、b 的比例中项等于 cm ;8. 已知 P 是线段 AB 上的黄金分割点, PB >PA , PB =2 ,那么 PA = ; 9. 已知 a = 2,b = 4 ,且b 和a 反向,用向量a 表示b =;10. 如果抛物线 y = mx2+ (m - 3)x - m + 2 经过原点,那么m =; 11. 如果抛物线 y = (a - 3)x 2- 2 有最低点,那么a 的取值范围是。

2017学年浦东新区初三一模数学试卷数学试卷及答案

2017学年浦东新区初三一模数学试卷数学试卷及答案

2017学年浦东新区初三一模数学试卷数学试卷数学试卷 a 2017/1/12(满分:150分,考试时间:100分钟)考生注意:1. 本试卷含三个大题,共25题2. 答题时,考生务必按答题要求在答题纸规定位置上作答,在草稿纸,本试卷上大题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。

一、选择题(本大题共6题,每题4分,满分24分)1.在下列y 关于x 的函数中,一定是二次函数的是………………………………………………( ) (A )22y x =; (B )22y x =-; (C )2y ax =; (D )2a y x=. 2.如果向量a b x r rr、、满足32()23x a a b +=-r r r r,那么x r 用a b r r 、表示正确的…………………( ) (A )2a b -r r ; (B )52a b -r r ; (C )23a b -r r ; (D )12a b -r r3.已知在Rt ABC ∆中,90O C ∠=,A α∠=,2BC =,那么AB 的长等于( ) (A )2sin α; (B )2sin α; (C )2cos α; (D )2cos α4.在ABC ∆中,点D E 、分别在边AB AC 、,如果2AD =,=4BD ,那么由下列条件能够判断DE BC ∥的是( ) (A )12AE AC =; (B )13DE BC =; (C )13AE AC =; (D )12DE BC =5.如图,ABC ∆的两条中线AD CE 、交于点G ,且AD CE ⊥.联结BG 并延长与AC 交于点F ,如果912AD CE ==,,那么下列结论不正确的是( )(A ) 10AC =; (B )15AB =; (C )10BG =; (D )15BF =6.如果抛物线21A y x =-:通过左右平移得到抛物线B ,再通过上下平移抛物线B 得到抛物线222C y x x =-+:,那么抛物线B 的表达式为( )(A )22y x =+; (B )221y x x =--; (C )22y x x =- ; (D )221y x x =-+;二、填空题(本大题共12题,每题4分,满分48分)7.已知线段34a cm b cm ==,,那么线段a b 、的比例中项等于 cm ; 8.已知P 是线段AB 上的黄金分割点,PB PA >,=2PB ,那么=PA ;9.已知24a b ==u u r r,,且b r 和a r 反向,用向量a r 表示b r = ; 10.如果抛物线2(3)2y mx m x m =+--+经过原点,那么m = ; 11.如果抛物线2(3)2y a x =--有最低点,那么a 的取值范围是 。

2017年上海浦东新区初三一模数学试卷-学生用卷

2017年上海浦东新区初三一模数学试卷-学生用卷

2017年上海浦东新区初三一模数学试卷-学生用卷选择题(本大题共6题,每题4分,共24分)1、在下列y 关于x 的函数中,一定是二次函数的是( ).A. y =2x 2B. y =2x −2C. y =ax 2D. y =a x 2、如果向量a →、b →、x →满足x →+a →=32(a →−23b →),那么x →用a →、b →表示正确的是( ). A. a →−2b → B. 52a →−b → C. a →−23b → D. 12a →−b →3、已知在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AB 的长等于( ). A. 2sin αB. 2sin⁡αC. 2cos αD. 2cos⁡α4、在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =4,那么由下列条件能够判断DE//BC 的是( ).A. AE AC =12B. DE BC =13C. AE AC =13D. DE BC =12 5、如图,△ABC 的两条中线AD 、CE 交于点G ,且AD ⊥CE ,联结BG 并延长与AC 交于点F ,如果AD =9,CE =12,那么下列结论不正确的是( ).A. AC =10B. AB =15C. BG =10D. BF =156、如果抛物线A:y=x2−1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2−2x+2,那么抛物线B的表达式为().A. y=x2+2B. y=x2−2x−1C. y=x2−2xD. y=x2−2x+1填空题(本大题共12题,每题4分,共48分)7、已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8、已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA=.9、已知|a→|=2,|b→|=4,且b→和a→反向,用向量a→表示向量b→=.10、如果抛物线y=mx2+(m−3)x−m+2经过原点,那么m=.11、如果抛物线y=(a−3)x2−2有最低点,那么a的取值范围是.12、在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是.13、如果抛物线y=ax2−2ax+1经过点A(−1,7)、B(x,7),那么x=.,y2),那么y1y2(填“>”、14、二次函数y=(x−1)2的图象上有两个点(3,y1)、(92“=”或“<”).15、如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=米.16、如图,梯形ABCD中,AD//BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG=.17、如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18、如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、=.C分别落在点B′、C′处,联结BC′与AC边交于点D,那么BDDC′解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19、计算:2cos230°−sin⁡30°+1.cot⁡30°−2sin⁡45°20、如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F.(1) 求EF的值.AF(2) 如果AB→=a→,AD→=b→,求向量EF→(用向量a→、b→表示).21、如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3.(1) 求证:△ADC∽△BAC.(2) 当AB=8时,求sin⁡B.22、如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:(1) 选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由.(2) 求斜坡底部点A与台阶底部点D的水平距离AD.23、如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF//AB交AE延长线于点F,连接FD并延长与AB交于点G.(1) 求证:AC=2CF.(2) 连接AD,如果∠ADG=∠B,求证:CD2=AC⋅CF.24、已知顶点为A(2,−1)的抛物线经过点B(0,3),与x轴交于C、D两点.(点C在点D的左侧)(1) 求这条抛物线的表达式.(2) 联结AB、BD、DA,求△ABD的面积.(3) 点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25、如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M.(1) 当点E在线段BC上时,求证:△AEF∽△ABD.(2) 在(1)的条件下,联结AG,设BE=x,tan⁡∠MAG=y,求y关于x的函数解析式,并写出x 的取值范围.(3) 当△AGM与△ADF相似时,求BE的长.1 、【答案】 A【解析】 A 、是二次函数,故A 符合题意;B 、是一次函数,故B 错误;C 、a =0时,不是二次函数,故C 错误;D 、a ≠0时是分式方程,故D 错误.故选A .2 、【答案】 D【解析】 ∵x →+a →=32(a →−23b →), ∴2(x →+a →)=3(a →−23b →), ∴2x →+2a →=3a →−2b →,∴2x →=a →−2b →,解得:x →=12a →−b →. 故选D .3 、【答案】 A【解析】 ∵在Rt △ABC 中,∠C =90°,∠A =α,BC =2, ∴sin⁡A =BC AB , ∴AB =BC sin A =2sin α, 故选A .4 、【答案】 C【解析】 由题得,若证得△ADE ∽△ABC 则可判断DE//BC .已知AD AC =22+4=13,且∠A =∠A . 则添加AB AC =AD AC =13即可证△ADE ∽△ABC . 5 、【答案】 B【解析】 ∵△ABC 的两条中线AD 、CE 交于点G ,∴点G 是△ABC 的重心,∴AG =23AD =6,CG =23CE =8,EG =13CE =4, ∵AD ⊥CE ,∴AC =√AG 2+CG 2=10,A 正确;AE =√AG 2+EG 2=2√13,∴AB =2AE =4√13,B 错误;∵AD ⊥CE ,F 是AC 的中点,∴GF =12AC =5, ∴BG =10,C 正确;BF =15,D 正确,故选:B .6 、【答案】 C【解析】 抛物线A :y =x 2−1的顶点坐标是(0,−1),抛物线C :y =x 2−2x +2=(x −1)2+1的顶点坐标是(1,1).则将抛物线A 向右平移1个单位,再向上平移2个单位得到抛物线C . 所以抛物线B 是将抛物线A 向右平移1个单位得到的,其解析式为y =(x −1)2−1=x 2−2x . 故选C .7 、【答案】 2√3【解析】 ∵线段a =3cm ,b =4cm ,∴线段a 、b 的比例中项=√3×4=2√3cm .8 、【答案】 √5−1【解析】∵点P是线段AB上的黄金分割点,PB>PA,∴PB=√5−12AB,解得,AB=√+1,∴PA=AB−PB=√5+1−2=√5−1.9 、【答案】−2a→【解析】|a→|=2,|b→|=4,且b→和a→反向,故可得:b→=−2a→.10 、【答案】2【解析】由抛物线y=mx2+(m−3)x−m+2经过原点,得−m+2=0.解得m=2.11 、【答案】a>3【解析】∵原点是抛物线y=(a−3)x2−2的最低点,∴a−3>0,即a>3.12 、【答案】y=−x2+4(0<x<2)【解析】设剩下部分的面积为y,则:y=−x2+4(0<x<2).13 、【答案】3【解析】∵抛物线的解析式为y=ax2−2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A(−1,7)、B(x,7),∴−1+x2=1,∴x=3.14 、【答案】<【解析】当x=3时,y1=(3−1)2=4,当x=92时,y2=(92−1)2=494,∴y1<y2.15 、【答案】4【解析】由题意知CD⊥BE、AB⊥BE,∴CD//AB,∴△CDE∽△ABE,∴CDAB =DEBE,即1.6AB=25,解得:AB=4.16 、【答案】4【解析】∵EF是梯形ABCD的中位线,∴EF//AD//BC,∴DG=BG,∴EG=12AD=12×2=1,∴FG=EF−EG=5−1=4.17 、【答案】1:4或14【解析】∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=12AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴S△ADES△ACB =(AMAT)2=(12)2=1:4.18 、【答案】23【解析】 ∵∠C =90°,∠B =60°,∴∠BAC =30°,∴BC =12AB ,由旋转的性质可知,∠CAC ′=60°,AB ′=AB ,B ′C ′=BC ,∠C ′=∠C =90°, ∴∠BAC ′=90°,∴AB //B ′C ′,∴B ′E EA =CE ′BE =B ′C ′AB =12, ∴AB AE =32, ∵∠BAC =∠B ′AC ,∴BD DE =AB AE =32,又CE′BE =12,∴BD DC ′=23. 19 、【答案】 1+√2+√3.【解析】 原式=2×(√32)2−12√3−2×√22=1+√2+√3. 20 、【答案】 (1) 35.(2) 35a →+32b →. 【解析】 (1) ∵四边形ABCD 是平行四边形,DE =2,CE =3, ∴AB =DC =DE +CE =5,且AB //EC , ∴△FEC ∽△FAB ,∴EF AF =EC AB =35. (2) ∵△FEC ∽△FAB ,∴ECAB =FC FB =EC AB =35,∴FC =32BC ,EC =35AB ,∵四边形ABCD 是平行四边形,∴AD //BC ,EC //AB , ∴AD →=BC →=b →,∴EC →=35AB →=35a →,FC →=32BC →=32b →, 则EF →=EC →+CF →=35a →+32b →. 21 、【答案】 (1) 证明见解析.(2) sin⁡B =√158.【解析】 (1) 如图,作AE ⊥BC 于点E ,∵S △ACD S △ABD =12CD⋅AE 12BD⋅AE =CD BD =13,∴BD =3CD =6,∴CB =CD +BD =8,则CACB =48=12,CD CA =24=12,∴CACB =CDCA,∵∠C=∠C,∴△ADC∽△BAC.(2) ∵△ADC∽△BAC,∴ADBA =ACBC,即AD8=48,∴AD=AC=4,∵AE⊥BC,∴DE=12CD=1,∴AE=√AD2−DE2=√15,∴sin⁡B=AEAB =√158.22 、【答案】 (1) 建设轮椅专用坡道AB选择符合要求的坡度是1:20.(2) 斜坡底部点A与台阶底部点D的水平距离AD为35.6米.【解析】 (1) ∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20.(2) 如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵BEAE =120,∴1.5AE =120,∴AE=30,∵DF=9×0.4=3.6,∴AD=AE+EF+DF=30+2+3.6=35.6,答:斜坡底部点A与台阶底部点D的水平距离AD为35.6米.23 、【答案】 (1) 证明见解析.(2) 证明见解析.【解析】 (1) ∵BD=DE=EC,∴BE=2CE,∵CF//AB,∴△ABE∽△FCE,∴ABFC =BECE=2,即AB=2FC,又∵AB=AC,∴AC=2CF.(2) 如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF//AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴CDCF =ACDC,即CD2=AC⋅CF.24 、【答案】 (1) y=x2−4x+3.(2) S△ABD=3.(3) 点P(3+√6,0).【解析】 (1) ∵顶点为A(2,−1)的抛物线经过点B(0,3),∴可以假设抛物线的解析式为y=a(x−2)2−1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x2−4x+3.(2) 令y=0,x2−4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,−1),D(3,0),作AF⊥CD,则AF=DF=1,∴△ADF是等腰直角三角形,∴∠ADO=45°,∴∠BDA=90°,∵BD=3√2,AD=√2,∴S△ABD=12⋅BD⋅AD=3.(3) ∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB =∠ADP =135°, ∴△PDB ∽△ADP ,∴PD 2=BD ⋅AD =3√2⋅√2=6, ∴PD =√6,∴OP =3+√6,∴点P(3+√6,0).25 、【答案】 (1) 证明见解析. (2) y =12−3x 9+4x(0⩽x ⩽4). (3) BE 的长为32或1. 【解析】 (1) ∵四边形ABCD 是矩形, ∴∠BAD =∠ADC =∠ADF =90°, ∵AF ⊥AE ,∴∠EAF =90°,∴∠BAD =∠EAF ,∴∠BAE =∠DAF ,∵∠ABE =∠ADF =90°, ∴△ABE ∽△ADF ,∴AB AD =AE AF , ∴AB AE =AD AF , ∵∠BAD =∠EAF ,∴△AEF ∽△ABD .(2) 如图,连接AG .∵△AEF ∽△ABD ,∴∠ABG =∠AEG , ∴A 、B 、E 、G 四点共圆,∴∠ABE +∠AGE =180°, ∵∠ABE =90°,∴∠AGE =90°,∴∠AGM =∠MDF ,∴∠AMG =∠FMD ,∴∠MAG =∠EFC ,∴y =tan⁡∠MAG =tan⁡∠EFC =EC CF, ∵△ABE ∽△ADF ,∴AB AD =BE DF , ∴DF=43x , ∴y =4−x3+43x ,即y =12−3x 9+4x (0⩽x ⩽4).(3) ①如图2中,当点E在线段CB上时,∵△AGM∽△ADF,∴tan⁡∠MAG=GMAG =DFAD,∴12−3x9+4x =43x4,解得x=32.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴ADEC =DFFC,∴4x+4=43x3−43x,解得x=1,∴BE的长为32或1.。

详解及答案-上海浦东新区2017-2018学年九年级上学期期末数学试卷(初三一模)

详解及答案-上海浦东新区2017-2018学年九年级上学期期末数学试卷(初三一模)

2018年上海浦东新区初三上学期期末数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值( )A. 扩大为原来的两倍B. 缩小为原来的 12 C. 不变 D. 不能确定【答案】C【解析】因为△ABC 三边的长度都扩大为原来的2倍所得的三角形与原三角形相似,所以锐角A 的大小没改变,所以锐角A 的余切值也不变.故选:C.2.下列函数中,二次函数是( )A. y =﹣4x+5B. y =x(2x ﹣3)C. y =(x+4)2﹣x 2D. y =21x 【答案】B【解析】A. y=-4x+5是一次函数,故此选项错误;B. y= x(2x -3)=2x 2-3x ,是二次函数,故此选项正确;C. y=(x+4)2−x 2=8x+16,为一次函数,故此选项错误;D. y=21x 是组合函数,故此选项错误.故选:B.3.已知在Rt △ABC 中,∠C =90°,AB =7,BC =5,那么下列式子中正确的是( )A sinA =57 B. cosA =57 C. tanA =57 D. cotA =57【答案】A【解析】如图:.由锐角三角函数定义,知:BC 5sinA AB 7==) 故选:A.4.已知非零向量,,a b c v v v )下列条件中,不能判定向量a v 与向量b v平行的是 A. a v ∥b v ,b v ∥c v B. 3a b =v v C. ,2a c b c ==v v v v D. 0a b +=v vv 【答案】B【解析】 A.由a C,b c v P v v P v 推知非零向量a,b,c v v v 的方向相同,则a b v P v,故本选项错误; B.由a 3b =v v 不能确定非零向量a,b v v 的方向,故不能判定其位置关系,故本选项正确;C.由a c,b 2c ==v v v v 推知b 2a =v v ,则非零向量a v 与b v 的方向相同,所以a v ∥b v ,故本选项错误;D.由a b 0+=v v v 推知非零向量a v 与b v 的方向相反,则a v ∥b v ,故本选项错误.故选:B.5.如果二次函数2y ax bx c =++的图像全部在x 轴的下方,那么下列判断中正确的是A. a)0)b)0B. a)0)b)0C. a)0)c)0D. a)0)c)0【答案】D【解析】如果二次函数2y ax bx c =++的图像全部在x 轴的下方,则抛物线开口向下,与y 轴交于负半轴,所以a)0)c)0.故选:D.6.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上,且DE△BC ,要使得EF△CD ,还需添加一个条件,这个条件可以是( )A. EF ADCD AB= B. AE ADAC AB= C.AF ADAD AB= D.AF ADAD DB=【答案】C 【解析】∵DE∥BC∴ADAB=AEAC.∵EF∥DC)∴AFAD=AEAC)∴AF ADAD AB=即AD2=AF⋅AB.故选:C.点睛:本题考查了平行线分线段成比例.平行于三角形一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.注意找对应关系,以防错解.二、填空题:(本大题共12题,每题4分,满分48分)7.已知32xy=,则x yx y-+=_____)【答案】1 5【解析】设x=3a时,y=2a)则x yx y-+=3a2a3a2a-+=a5a=15.故答案为:1 5 .8.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是cm)【答案】2较长的线段MP 的长为xcm ,则较短的线段长是(4−x)cm.则x 2=4(4−x))解得x=2或−2 (舍去).故答案为:2.9.已知△ABC△△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是32,BE 、B 1E 1分别是它们对应边上的中线,且BE=6,则B 1E 1= ________.【答案】4【解析】∵△ABC ∽△A 1B 1C 1,且周长的比值是32) ∴相似比为32) ∵BE)B 1E 1分别是它们对应边上的中线,∴BE)B 1E 1=3:2)∵BE=6)∴B 1E 1=4.故答案为:4.10.计算:132()2a ab +-v v v = ) 【答案】5a b -v v【解析】13a 2a b 2⎛⎫+- ⎪⎝⎭v v v = 3a 2a b +-v v v =5a b -v v . 故答案为:5a b -v v .11.计算:3tan30°+sin45°= )23tan30°+sin45°=332⨯+2.212.抛物线234y x =- 的最低点的坐标是 )【答案】)0,-4)【解析】根据二次函数的图象与性质可得抛物线234y x =-的最低点(顶点)的坐标是(0,4-).13.将抛物线22y x =向下平移3个单位,所得的抛物线的表达式是 )【答案】223y x =-【解析】抛物线y=2x 2的顶点坐标为(0)0))点(0)))向下平移3个单位后所得对应点的坐标为(0)-3))所以平移后的抛物线的表达式是y=2x 2-3.故答案为)y=2x 2−3.14.如图,已知直线l 1)l 2)l 3分别交直线l 4于点A)B)C ,交直线l 5于点D)E)F ,且l 1∥l 2∥l 3,若AB)4)AC)6)DF)9,则DE)) )A. 5B. 6C. 7D. 8 【答案】6【解析】∵l 1∥l 2∥l 3)∴AB DE AC DF=. ∵AB=4)AC=6)DF=9)) ∴469DE =) ∴DE=6.故答案为:6.15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是______(不写定义域).【答案】2210S x x =-+【解析】【分析】根据题意列出S 与x 的二次函数解析式即可.【详解】设垂直于墙的一边为x 米,则平行于墙的一边为(10﹣2x )米,根据题意得:S =x (10﹣2x )=﹣2x 2+10x .故答案为:S =﹣2x 2+10x .【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意是解答本题的关键.16.如图,湖心岛上有一凉亭B ,在凉亭B 的正东湖边有一棵大树A ,在湖边的C 处测得B 在北偏西45°方向上,测得A 在北偏东30°方向上,又测得A )C 之间的距离为100米,则A )B 之间的距离是 米(结果保留根号形式))【答案】50【解析】过点C ⊥AB 于点D,在Rt △ACD 中,∵∠ACD=30°)AC=100m)∴AD=100⋅sin ∠ACD=100×12=50(m))CD=100⋅cos ∠(m) 在Rt △BCD 中,∵∠BCD=45°)∴BD=CD=则AB=AD+BD=50+(m).故答案为:50+17.已知点(﹣1,m)、(2,n )在二次函数y =ax 2﹣2ax ﹣1的图象上,如果m >n ,那么a ____0(用“>”或“<”连接).【答案】>)【解析】【详解】∵2y ax 2ax 1=--=a(x -1)2-a -1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为:>18.如图,已知在Rt)ABC中,∠ACB=90°)cos45B=)BC=8,点D在边BC上,将)ABC沿着过点D的一条直线翻折,使点B落在AB边上的点E处,联结CE、DE,当)BDE=)AEC时,则BE的长是.【答案】39 5【解析】如图作CH)AB于H.在Rt)ABC中,)BC=8)4 cosB5=))AB=10)AC=8)CH=245,BH=325,由题意EF=BF,设EF=BF=a,则BD=5 4 a,))BDE=)AEC,))CED+)ECB=)ECB+)B,))CED =)B,))ECD=)BCE,))ECD))BCE,)EC2=CD·CB,)(245)2+(2a-325)2=(8-54a)×8,解得a=5910或0,(舍)BE=2a=59 5故答案为:59 5.点睛:此题考查相似三角形的判定和性质、勾股定理、翻折变换等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程解决问题,属于中考常考题型.三、解答题:(本大题共7题,满分78分)19.将抛物线245y x x =-+向左平移4个单位,求平移后抛物线的表达式、顶点坐标和对称轴)【答案】2(2)1y x =++ )顶点坐标是(-2)1))对称轴是直线2x =-)【解析】试题分析:平移抛物线的依据是,当二次函数的二次项系数a 的值相同时,二次函数图像的形状完全相同,即开口方向和开口大小完全相同,仅仅位置不同,所以他们之间可以进行平移.试题解析:∵2y x 4x 445=-+-+=()2x 21-+) ∴平移后的函数解析式是()2y x 21=++)顶点坐标是(-2)1))对称轴是直线x 2=-)20.如图,已知△ABC 中,点D )E 分别在边AB 和AC 上,DE )BC ,且DE 经过△ABC 的重心,设BC a =u u u r r ))1)DE =uuu r (用向量a r 表示)))2)设AB b =u u u v v )在图中求作12b a +r r ) (不要求写作法,但要指出所作图中表示结论的向量))【答案】)1)23DE a =u u u v v ))2)详见解析. 【解析】试题分析:)1)由DE ∥BC)DE 经过△ABC 的重心,可得AD)AB=DE)BC=2)3,即可求得DE u u u v ) )2)取点BC 的中点M ,连接AM ,则AM u u u u v 即为所求.试题解析:(1)∵DE ∥BC)DE 经过△ABC 的重心,∴AD)AB=DE)BC=2)3))∵BC a =u u u v v) ∴2DE a 3=u u u v v ) )2)如图,取点AB 的中点M)连接AM ,则AM u u u u v即为所求.21.如图,已知G )H 分别是□ABCD 对边AD )BC 上的点,直线GH 分别交BA 和DC 的延长线于点E )F ))1)当18CFHCDGH S S ∆=四边形时)求CH DG的值; )2)联结BD 交EF 于点M ,求证:MG·ME=MF·MH .【答案】(1)13;(2)详见解析. 【解析】试题分析:(1)由ΔCFHCDGH S 1S 8=四边形,得ΔCFH DFG S 1S 9=三角形.由于△CFH ∽△DFG ,由相似三角形面积的比等于相似比的平方,即可求得结果;)2)根据平行四边形的性质得出AB ∥CD)AD//BC)由平行线分线段成比例得出比例式,即可得出答案. 试题解析:)1)∵ΔCFHCDGH S 1S 8=四边形)∴ΔCFHDFG S 1S 9=三角形) ∵ □ABCD 中,AD//BC,∴ △CFH ∽△DFG ) ∴ΔCFHDFG S S =三角形(CH DG )219=, ∴CH DG =13) )2)证明:∵ □ABCD 中,AD//BC) ∴MB MH MD MG =, ∵ □ABCD 中,AB//CD)∴ME MB MF MD=, ∴ME MH MF MG =) ∴MG·ME=MF·MH)22.如图,为测量学校旗杆AB 的高度,小明从旗杆正前方3米处的点C 出发,沿坡度为i=1的斜坡CD 前进D ,在点D 处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A 、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D 的铅垂高度(结果保留根号);(2)求旗杆AB 的高度(精确到0.1).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【答案】(1)点D2)旗杆AB 的高度约为7.7米【解析】试题解析:(1)延长ED 交射线BC 于点H ,在Rt CDH V 中,求得∠DCH=30°,根据30°角直角三角形的性质即可求得DH 的长,即求得点D 的铅垂高度;(2)过点E 作EF ⊥AB 于F ,根据题意可得37AEF o ∠=,易证四边形FBHE 为矩形.从而求得EF)FB 的长;在Rt AEF V 中,根据锐角三角函数求得AF 的长,即可求得AB 的长.试题分析:()1延长ED 交射线BC 于点H )由题意得DH BC ⊥.在Rt CDH V 中,90tan 1DHC DCH i ∠=∠==o ,30DCH ∴∠=o .2CD DH ∴=.CD =Q ,3DH CH ∴==.答:点D .()2过点E 作EF AB ⊥于F .由题意得,AEF ∠即为点E 观察点A 时仰角,37AEF ∴∠=o .EF AB AB BC ED BC Q ,,⊥⊥⊥,90BFE B BHE ∴∠=∠=∠=o .∴四边形FBHE 为矩形.6EF BH BC CH ∴==+=.1.5FB EH ED DH ==+=+在Rt AEF V 中,90tan 60.75 4.5AFE AF EF AEF ∠==∠≈⨯≈o ,.66 1.737.7AB AF FB ∴=+=+≈+≈.答:旗杆AB 的高度约为7.7米.23.如图,已知,在锐角△ABC 中,CE )AB 于点E ,点D 在边AC 上,联结BD 交CE 于点F ,且EF·FC=FB·DF .)1)求证:BD )AC ))2)联结AF ,求证:AF·BE=BC·EF .【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)由两边成比例且夹角相等的两个三角形相似,可得△EFB ∽△DFC ,再由相似三角形对应角相等得∠FEB=∠FDC = 90°,即可得证;)2)由△EFB ∽△DFC 得∠ABD =∠ACE ,进而△AEC ∽△FEB ,由相似三角形对应边成比例得AE FE EC EB =,由此△AEF ∽△CEB ,可得AF BE BC EF ⋅=⋅.试题解析))1)∵AF·BE=BC·EF ) ∴EF FB DF FC=) ∵ ∠EFB=∠DFC)∴ △EFB ∽△DFC.∴ ∠FEB=∠FDC.∵ CE ⊥AB)∴ ∠FEB= 90°.∴ ∠FDC= 90°.∴ BD ⊥AC.)2)∵ △EFB ∽△DFC)∴ ∠ABD =∠ACE.∵ CE ⊥AB)∴ ∠FEB= ∠AEC= 90°∴ △AEC ∽△FEB. ∴AE EC FE EB=, ∴AE FE EC EB =. ∵ ∠AEC=∠FEB= 90°) ∴ △AEF ∽△CEB ∴AF EF CB EB=) ∴ AF BE BC EF ⋅=⋅.点睛:此题考查了相似三角形的判定和性质,关键是根据相似三角形的对应边比值相等的性质解答.24.已知抛物线y =ax 2+bx+5与x 轴交于点A(1,0)和点B(5,0),顶点为M .点C 在x 轴的负半轴上,且AC =AB ,点D 的坐标为(0,3),直线l 经过点C 、D .(1)求抛物线的表达式; (2)点P 是直线l 在第三象限上的点,联结AP ,且线段CP 是线段CA 、CB 的比例中项,求tan ∠CPA 的值; (3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E ,使得∠AEM =∠AMB ?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】 )1)265y x x =-+))2)13))3)E 的坐标为(-2)-4)或(4)-4). 【解析】 试题分析:)1)把A)B 两点带入抛物线解析式,求得a)b 的值,即可得到抛物线解析式;)2)由AC=AB 且点C 在点A 的左侧,及线段CP 是线段CA)CB 的比例中项,可得CP= 由两边对应成比例且夹角相等的三角形相似,可得△CPA ∽△CBP ,由此∠CPA= ∠CBP...过P 作PH ⊥x 轴于H ,易得PH=4)H)-7)0))BH=12. 由于P)-7)-4),可求1tan CBP tan CPA 3∠∠==) )3)分两种情况:点E 在M 左侧和点E 在M 右侧讨论即可.试题解析:)1)∵ 抛物线2y ax bx 5=++与x 轴交于点A)1)0))B)5)0))∴5025550a b a b ++=⎧⎨++=⎩,解得16.a b =⎧⎨=-⎩;∴ 抛物线的解析式为2y x 6x 5=-+ .)2)∵ A)1)0))B)5)0))∴ OA=1)AB=4.∵ AC=AB 且点C 在点A 的左侧,∴ AC=4 .∴ CB=CA+AB=8.∵ 线段CP 是线段CA)CB 的比例中项,∴ CA CPCP CB =.∴CP=又 ∵ ∠PCB 是公共角,∴ △CPA ∽△CBP .∴ ∠CPA= ∠CBP.过P 作PH ⊥x 轴于H.∵ OC=OD=3)∠DOC=90°)∴ ∠DCO=45°.∴ ∠PCH=45°∴ PH=CH=CP sin45o =4)∴ H)-7)0))BH=12)∴ P)-7)-4))∴ PH 1tan CBP BH 3∠==) tan ∠CPA=13)3) ∵ 抛物线的顶点是M)3)-4)).又∵P)-7)-4))∴ PM∥x轴 .当点E在M左侧,则∠BAM=∠AME.∵∠AEM=∠AMB)∴△AEM∽△BMA.∴ME AM AM BA=,=∴ ME=5)∴ E)-2)-4).过点A作AN⊥PM于点N,则N)1)-4).当点E在M右侧时,记为点E')∵∠A E'N=∠AEN)∴点E'与E 关于直线AN对称,则)4)-4).综上所述,E的坐标为(-2)-4)或(4)-4).点睛:本题主要考查二次函数的综合应用)解答本题主要应用了待定系数法求二次函数解析式)相似三角形的性质和判定)等腰直角三角形的性质)锐角三角函数的定义)证得△AEM∽△BMA是解题的关键.25.如图,已知在△ABC中,∠ACB)90°)BC)2)AC)4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G))1)求证:△EFG∽△AEG))2)设FG)x)△EFG的面积为y,求y关于x的函数解析式并写出定义域;)3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.【答案】(1)详见解析;(2)234(053y x x =≤p ;)3)当△EFD 为等腰三角形时,FG 的长度是:25425,,27312-) 【解析】试题分析:(1)由等边对等角得∠B=∠BED ,由同角的余角相等可得∠A=∠GEF ,进而由两角分别相等的两个三角形相似,可证△EFG ∽△AEG))2)作EH ⊥AF 于点H ,由tanA=12及△EFG ∽△AEG ,得AG=4x)AF=3x)EH=65x ) 可得y 关于x 的解析式;)3)△EFD 是等腰三角形,分三种情况讨论:①EF=ED)②ED=FD)③ED=EF 三种情况讨论即可. 试题解析:)1)∵ ED=BD)∴ ∠B=∠BED)∵ ∠ACB=90°)∴ ∠B+∠A=90°)∵ EF ⊥AB)∴ ∠BEF=90°)∴ ∠BED+∠GEF=90°)∴ ∠A=∠GEF)∵ ∠G 是公共角,∴ △EFG ∽△AEG))2)作EH ⊥AF 于点H)∵在Rt△ABC中,∠ACB=90°)BC=2)AC=4)∴tanA=BCAC=12)∴在Rt△AEF中,∠AEF=90°)tanA=EFAE=12,∵△EFG∽△AEG)∴FG GE EF1 EG GA AE2===,∵ FG=x)∴ EG=2x)AG=4x)∴ AF=3x)∵ EH⊥AF)∴∠AHE=∠EHF=90°)∴∠EFA+∠FEH=90°)∵∠AEF=90°)∴∠A+∠EFA=90°,∴∠A=∠FEH,∴ tanA =tan∠FEH,∴在Rt△EHF中,∠EHF=90°)tan∠FEH=HFEH=12,∴ EH=2HF,∵在Rt△AEH中,∠AHE=90°)tanA=EHAH=12)∴ AH=2EH)∴ AH=4HF)∴ AF=5HF)∴ HF=35 x)∴EH=65 x)∴y=12FG·EH=12x·65x=235x定义域:(0<x≤43)))3)当△EFD为等腰三角形时,①当ED=EF时,则有∠EDF=∠EFD,∵∠BED=∠EFH,∴∠BEH=∠AHG,∵∠ACB=∠AEH=90°,∴∠CEF=∠HEF,即EF为∠GEH的平分线,则ED=EF=x,DG=8−x,∵anA=12,∴x=3,即BE=3;②若FE=FD, 此时FG的长度是4 3 ;③若DE=DF, 此时FG的长度是2512.点睛:此题考查了相似三角形的性质与判定,也考查了求函数解析式,综合性比较强,解题的关键是多次利用相似三角形的判定和性质解决问题.。

{3套试卷汇总}2017-2018上海市知名初中中考单科质检数学试题

{3套试卷汇总}2017-2018上海市知名初中中考单科质检数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()+米A.200米B.2003米C.2203米D.100(31)【答案】D【解析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD=22-=1003米,200100∴AB=AD+BD=100+1003=100(1+3)米,故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.2.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C【解析】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.3.下列各式计算正确的是( )A.633-=B.1236⨯=C.3535+=D.1025÷=【答案】B【解析】A选项中,∵63、不是同类二次根式,不能合并,∴本选项错误;B选项中,∵123=36=6⨯,∴本选项正确;C选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D选项中,∵10102=52÷≠,∴本选项错误;故选B.4.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【答案】D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D. 【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.5.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数B.中位数C.众数D.方差【答案】B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.即中位数.故选B.6.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.7.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1【答案】B【解析】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.8.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB 绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.3π2B.πC.2πD.3π【答案】A【解析】根据旋转的性质和弧长公式解答即可.∴∠AOC =90°,∵OC =3,∴点A 经过的路径弧AC 的长=903180π⨯= 3π2, 故选:A .【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.9.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )A .30°B .50°C .40°D .70° 【答案】A【解析】利用三角形内角和求∠B ,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°【答案】C 【解析】分析:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC ﹣∠1=25°.∵GH ∥EF ,∴∠2=∠AEC=25°.故选C .二、填空题(本题包括8个小题)11.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 .【答案】7【解析】试题分析:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC .∴CD=BC -BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC .又∵∠B=∠C=60°,∴△ABD ∽△DCE . ∴AB DC BD CE =,即96CE 23CE=⇒=. ∴AE AC CE 927=-=-=. 12.已知654a b c ==,且26a b c +-=,则a 的值为__________. 【答案】1【解析】分析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案.详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.13.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.【答案】1.【解析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.14.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k yx =的图象相交于(2,)A m 、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是__________.【答案】②③④【解析】分析:根据一次函数和反比例函数的性质得到k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得到-2m=n 故②正确;把A (-2,m )、B (1,n )代入y=k 1x+b 得到y=-mx-m ,求得P (-1,0),Q (0,-m ),根据三角形的面积公式即可得到S △AOP =S △BOQ ;故③正确;根据图象得到不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确. 详解:由图象知,k 1<0,k 2<0,∴k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x 中得-2m=n , ∴m+12n=0,故②正确; 把A (-2,m )、B (1,n )代入y=k 1x+b 得112m k b n k b -+⎧⎨+⎩==, ∴1323n m k n m b -⎧⎪⎪⎨+⎪⎪⎩==,∴y=-mx-m ,∵已知直线y=k 1x+b 与x 轴、y 轴相交于P 、Q 两点,∴P (-1,0),Q (0,-m ),∴OP=1,OQ=m ,∴S △AOP =12m ,S △BOQ =12m , ∴S △AOP =S △BOQ ;故③正确;由图象知不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确; 故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.15.如图,AB 是⊙O 的直径,AC 与⊙O 相切于点A ,连接OC 交⊙O 于D ,连接BD ,若∠C=40°,则∠B=_____度.【答案】25【解析】∵AC 是⊙O 的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD ,∴∠ABD=∠BDO ,∵∠ABD+∠BDO=∠AOC ,∴∠ABD=25°,故答案为:25.16.已知一组数据-3,x ,-2, 3,1,6的众数为3,则这组数据的中位数为______.【答案】2【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.详解:∵-3,x ,-1, 3,1,6的众数是3,先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,∴这组数的中位数是132+=1. 故答案为: 1.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 17.2-的相反数是______,2-的倒数是______.【答案】2,12- 【解析】试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2, ﹣2的倒数是12-. 考点:倒数;相反数.18.方程3x(x-1)=2(x-1)的根是【答案】x 1=1,x 2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x 1=1,x 2=-.考点:解一元二次方程---因式分解法.三、解答题(本题包括8个小题) 19.如图所示,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点.求线段MN 的长.若C 为线段AB 上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN 的长度吗?并说明理由.若C 在线段AB 的延长线上,且满足AC-CB=b(cm),M 、N 分别为AC 、BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.【答案】(1)7cm (2)若C 为线段AB 上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=12a(cm);理由详见解析(3)12b(cm) 【解析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∴MN=12AC+12BC=12( AC+BC)=12AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=12a cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC+CB=acm,∴MN=12AC+12BC=12(AC+BC)=12a cm.(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC-CB=bcm,∴MN=12AC-12BC=12(AC-BC)=1b2cm.考点:两点间的距离.20.为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【答案】(1)300人(2)b=0.15,c=0.2;(3)1 6【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率. 详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.关键.21.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°. 操作发现如图1,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在BC 边上时,填空:线段DE 与AC 的位置关系是 ;②设△BDC 的面积为S 1,△AEC 的面积为S 1.则S 1与S 1的数量关系是 .猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 1的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=4,OE ∥AB 交BC 于点E (如图4),若在射线BA 上存在点F ,使S △DCF =S △BDC ,请直接写出相应的BF 的长【答案】解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2.【解析】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=1AC .又∵AD=AC∴BD=AC .∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,ACN DCMCMD NAC CD∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF1⊥BD,∵∠ABC=20°,F1D∥BE,∴∠F1F1D=∠ABC=20°,∵BF1=DF1,∠F1BD=12∠ABC=30°,∠F1DB=90°,∴∠F1DF1=∠ABC=20°,∴△DF1F1是等边三角形,∴DF1=DF1,过点D作DG⊥BC于G,∵BD=CD,∠ABC=20°,点D是角平分线上一点,∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92,∴3∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF1=320°-150°-20°=150°,∴∠CDF 1=∠CDF 1,∵在△CDF 1和△CDF 1中,1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===,∴△CDF 1≌△CDF 1(SAS ),∴点F 1也是所求的点,∵∠ABC=20°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×20°=30°, 又∵BD=33,∴BE=12×33÷cos30°=3, ∴BF 1=3,BF 1=BF 1+F 1F 1=3+3=2,故BF 的长为3或2.22.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a 的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?【答案】(1)25, 90°;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a 的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.23.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.【解析】(1)直接利用锐角三角函数关系得出cos∠FHE=12HEHF=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】(1 )由题意可得:cos∠FHE=12HEHF=,则∠FHE=60°;(2)延长FE 交CB 的延长线于M,过 A 作AG⊥FM 于G,在 Rt △ABC 中,tan ∠ACB =AB BC , ∴AB =BC•tan75°=0.60×3.732=2.2392,∴GM =AB =2.2392,在 Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =FG AF , ∴sin60°=2.5FG =32, ∴FG≈2.17(m ),∴FM =FG+GM≈4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.24.如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,DE 交AC 于点E ,且∠A =∠ADE .求证:DE 是⊙O 的切线;若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15.【解析】(1)先连接OD ,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE ,推出∠EDB=∠EBD ,∠ODB=∠OBD ,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt △ADC 中,DC=12,设BD=x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x+16)2-202,可得x 2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD ,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,22-=201612设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴22+=.12915【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.25.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣52,﹣32)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立①⑤并解得:x=﹣32或﹣4(舍去﹣4),故点P(﹣32,﹣74);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣32,﹣74)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.26.知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【答案】(20-53)千米.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=3x,在Rt△BCD中求得CD=43x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=BDcos DBC∠可得答案.详解:过点B作BD⊥ AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=AD BD即tan30°=33 ADBD=,∴,在Rt△DCB中,∴tan∠CBD=CDBD即tan53°=43 CDBD=,∴∵CD+AD=AC,∴x+3=13,解得,x=3∴BD=12-在Rt△BDC中,∴cos∠CBD=tan60°=BDBC,即:BC=205BDcos DBC==-∠(千米),故B、C两地的距离为()千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将抛物线y =x 2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )A .y =x 2+3x+6B .y =x 2+3xC .y =x 2﹣5x+10D .y =x 2﹣5x+4【答案】A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可. 【详解】 , 当向左平移2个单位长度,再向上平移3个单位长度,得.故选A .【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;2.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A 【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 3.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27°B.34°C.36°D.54°【答案】C【解析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解. 【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126=. 故答案为C .【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A .15°B .55°C .65°D .75°【答案】D 【解析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE ∥AB ,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C ﹣∠A=180°﹣90°﹣15°=75°,故选D .【点睛】 本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.6.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小,又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.7.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-1 4B.k>-14且0k≠C.k<-14D.k≥-14且0k≠【答案】B【解析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14-且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.8.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD 的面积为()A.30 B.27 C.14 D.32【答案】A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S 平行四边形ABCD =S △CDF +S 四边形ABFD =9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩ 【答案】C【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩ 故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.10.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )A .120元B .125元C .135元D .140元【答案】B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解:设这种服装每件的成本是x 元,根据题意列方程得:x+15=(x+40%x )×80%解这个方程得:x=125则这种服装每件的成本是125元.故选B .考点:一元一次方程的应用.二、填空题(本题包括8个小题)11.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是______.【答案】258或5或1. 【解析】根据以点A ,D ,E 为顶点的三角形是等腰三角形分类讨论即可.【详解】解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位:则223(m-4)+AD=m , 得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1, 所以答案:258或5或1. 【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性. 12.不等式组2012x x x -≤⎧⎪⎨-<⎪⎩的最大整数解是__________. 【答案】2【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:2012x x x -≤⎧⎪⎨-<⎪⎩①②, 由不等式①得x≤1,由不等式②得x >-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.函数y=2+1-1xx中自变量x的取值范围是___________.【答案】x≥﹣12且x≠1【解析】试题解析:根据题意得:2+10 {-10 xx≥≠解得:x≥﹣12且x≠1.故答案为:x≥﹣12且x≠1.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)【答案】(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).15.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.【答案】12 x≤【解析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x,x=12,此时无输出值当x>12时,数值越来越大,会有输出值;当x<12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12, 故答案为x≤12. 【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.16.地球上的海洋面积约为361000000km 1,则科学记数法可表示为_______km 1.【答案】3.61×2【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将361 000 000用科学记数法表示为3.61×2.故答案为3.61×2.17.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数k y x =的图象经过点B ,则k 的值是_____.3. 【解析】已知△ABO 是等边三角形,通过作高BC ,利用等边三角形的性质可以求出OB 和OC 的长度;由于Rt △OBC 中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC 的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式k y x =中,即可求出k 的值. 【详解】过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,3,∴点B 的坐标是(3,把(3代入k y x=,得3k =.。

2017年上海市初三数学一模试卷18题汇总解析

2017年上海市初三数学一模试卷18题汇总解析

2017年上海市初三一模数学考试18题解析2017.01一. 普陀区18. 如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线 段DE 上一点,CP 的延长线交AB 于点Q ,如果14DP DE ,那么:DPQ CPE S S【解析】根据题意,△DPQ ∽△BCQ ,∴0.251211.5436QP DP DE QC BC DE , 则15QP PC ,∴1113515DPQ Q CPE C S DP h DP QP S PE h PE PC二. 浦东新区18. 如图,在Rt △ABC 中,90C,60B,将△ABC 绕点A 逆时针旋转60, 点B 、C 分别落在点B 、C 处,联结BC 与AC 边交于点D ,那么BDDC【解析】根据题意,作C E AC ,∴60EAC,设2BC,则AC ACAE 3EC ,∴23BD BC DC EC三. 奉贤区18. 如图,在矩形ABCD 中,6AB ,3AD ,点P 是边AD 上的一点,联结BP ,将 ABP 沿着BP 所在直线翻折得到EBP ,点A 落在点E 处,边BE 与边CD 相交于点G , 如果2CG DG ,那么DP 的长是【解析】由题得,2CG DG ,∴4CG ,2DG ,∵3BC ,∴5BG ,1EG , 由图可知,△DPF ∽△EGF ∽△CGB ,∴54FG ,∴34DF ,1DP四. 长宁区/金山区18. 如图,在△ABC 中,90C,8AC ,6BC ,D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A 处,当A E AC 时,A B【解析】根据题意,第一种情况,如中图所示,作DG AC ,BF A E ,根据对称, ∴45DEG,∴3DG GE ,∴1EC BF ,7AE A E ,∴1A F ,∴A B 7EC A F BF ,即A B五. 闵行区18. 如图,已知△ABC 是边长为2的等边三角形,点D 在边BC 上,将△ABD 沿着直线AD 翻折,点B 落在点1B 处,如果1B D AC ,那么BD【解析】作DE AB ,∵1B D AC ,∴130B DC,∴175ADB ADB,∴145DAB DAB,设BE x ,则DE AE,2AB x ,解得1x ,∴22BD x六. 松江区18. 如图,在△ABC 中,90ACB,9AB ,2cos 3B,把△ABC 绕着点C 旋转, 使点B 与AB 边上的点D 重合,点A 落在点E 处,则点A 、E 之间的距离为【解析】作CF AB ,2cos 3B,6BC CD ,4BF DF ,AC CE∵BCD ACE ,∴△BCD ∽△ACE ,∴68BC CEBD AE,∴AE七. 徐汇区18. 如图,在平行四边形ABCD 中,:2:3AB BC ,点E 、F 分别在边CD 、BC 上, 点E 是边CD 的中点,2CF BF ,120A,过点A 分别作AP BE 、AQ DF , 垂足分别为P 、Q ,那么APAQ的值是【解析】延长BE 交直线AD 于H ,作BG AD ,设2AB ,由题得,2FC CD , ∴30DFC FDC ADF,∴32AQ,由图得,3DH ,1AG ,7GH ,BG ,∴BH BH AP AH BG ,即AP∴AP 2313AP AQ八. 虹口区18. 如图,在梯形ABCD 中,AD ∥BC ,AB BC ,1AD ,3BC ,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ADP 为【解析】作DE BC ,∴1AD BE ,2EC ,∵3CB CD ,∴DE AB ,设BP DP x ,则AP x ,勾股定理,∴22)1x x ,解得,5x,即5PD,5PA ,∴2sin 3ADP 【法二】∵90ADE PDC,∴ADP EDC ,∴2sin sin 3ADP EDC九. 崇明县18. 如图,△ABC 中,45ABC,AH BC 于点H ,点D 在AH 上,且DH CH , 联结BD ,将△BHD 绕点H 旋转,得到△EHF (点B 、D 分别与点E 、F 对应),联结 AE ,当点F 落在AC 上时(F 不与C 重合),若4BC ,tan 3C ,则AE【解析】作HG AC ,∵90EHF AHC,∴EHA FHC ,∵EH AH ,FH CH ,∴△EHA ∽△FHC ,∵4BC ,tan 3C ,∴3AH BH ,1HC ,∵tan 3C ,∴10GC ,5FC ,∵31AE AH FC CH ,∴5AE十. 黄浦区18. 如图,菱形ABCD 内两点M 、N ,满足MB BC ,MD DC ,NB BA ,ND DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A【解析】联结AC 、BD 交于点O ,延长BM 交AD 于点E ,∴AC BD ,AD BE ,设1MO ,根据题意,则5AO ,根据相似,∴25OB ON OA ,即OB∴AB AD ,BD BM BM BD MO ED,∴3ED ,∴3AE ,∴2cos 3AE A AB十一. 宝山区18. 如图,D 为直角ABC 的斜边AB 上一点,DE AB 交AC 于E ,如果AED 沿DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果8AC ,1tan 2A ,则:CF DF【解析】作EM ∥CD ,8AC ,1tan 2A,4BC ,AB AD DBED ,5AE BE ,3EC ,∴::5:8ME DC AE AC ,∵DC∴ME,∴MD ,∴811DF DB ME MB ,∴DF ,FC , ∴:6:5CF DF十二. 静安区18. 一张直角三角形纸片ABC ,90C,24AB ,2tan 3B ,将它折叠,使直角顶 点C 与斜边AB 的中点重合,那么折痕的长为【解析】已知AB 中点为D ,联结CD 交折痕EF 于点O ,∴CD AD BD ,∴BDCB CDF DEF ,∴△DEF ∽△ODF ∽△CBA ,∵24AB ,∴12CD , 6OD ,∵32EO OD OD OF ,∴9EO ,4OF ,即折痕13EF十三. 杨浦区18. 如图,△ABC 中,5AB AC ,6BC ,BD AC 于点D ,将△BCD 绕点B 逆 时针旋转,旋转角的大小与CBA 相等,如果点C 、D 旋转后分别落在点E 、F 的位置, 那么EFD 的正切值是【解析】作DG FB ,∴EFD FDG ,由题易知,3cos cos 5C GBD , 设5BD m ,则5BF m ,3BG m ,4GD m ,2GF m ,∴tan 0.5FDG十四. 青浦区18. 如图,将△ABC 绕点A 顺时针旋转,使点C 落 在边AB 上的点E 处,点B 落在点D 处,联结BD , 若DAC DBA ,那么BDAB【解析】作ABD 的角平分线BF ,∴34 , 由题可得,12 ,AB AD ,∴1221DBA ADB DAC ,∴123436,∴△ABD ∽△BFD ,∴1BD FD AD BD AD AB BD BD BD,解得12BD AB十五. 嘉定区18. 在Rt △ABC 中,D 是斜边AB 的中点,点M 、N 分别在边AC 、BC 上,将△CMN 沿直线MN 翻折,使得点C 的对应点E 落在射线CD 上,如果B ,那么AME 的度数为(用含 的代数式表示)【解析】由题可知90A B,1290,∵AD BD ,∴2A , ∴1B ,13B ,∴1802AME。

上海市浦东新区2017年中考数学一模试题含答案解析

上海市浦东新区2017年中考数学一模试题含答案解析

2017年上海市浦东新区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.2.如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC 的是()A.B.C.D.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=156.如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1二.填空题(本大题共12题,每题4分,共48分)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= .9.已知||=2,||=4,且和反向,用向量表示向量= .10.如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m= .11.如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是.13.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= .14.二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1y2(填“>”、“=”或“<”)15.如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 米.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:2cos230°﹣sin30°+.20.如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=, =,求向量;(用向量、表示)21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE 延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC?CF.24.已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.2017年上海市浦东新区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.【考点】二次函数的定义.【分析】根据二次函数的定义形如y=ax2+bx+c (a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;故选:A.【点评】本题考查二次函数的定义,形如y=ax2+bx+c (a≠0)是二次函数.2.如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.【考点】*平面向量.【分析】利用一元一次方程的求解方法,求解此题即可求得答案.【解答】解:∵ +=(﹣),∴2(+)=3(﹣),∴2+2=3﹣2,∴2=﹣2,解得: =﹣.故选D.【点评】此题考查了平面向量的知识.此题难度不大,注意掌握一元一次方程的求解方法是解此题的关键.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出sinA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=,∴AB==,故选A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC 的是()A.B.C.D.【考点】平行线分线段成比例;平行线的判定;相似三角形的判定与性质.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4, =,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=15【考点】三角形的重心.【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到AG=AD=6,CG=CE=8,EG=CE=4,根据勾股定理求出AC、AE,判断即可.【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC==10,A正确;AE==2,∴AB=2AE=4,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确;BF=15,D正确,故选:B.【点评】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.6.如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1【考点】二次函数图象与几何变换.【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【解答】解:抛物线A:y=x2﹣1的顶点坐标是(0,﹣1),抛物线C:y=x2﹣2x+2=(x﹣1)2+1的顶点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移2个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=(x﹣1)2﹣1=x2﹣2x.故选:C.【点评】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【考点】比例线段.【分析】根据线段的比例中项的定义列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.【点评】本题考查了比例线段,熟记线段比例中项的求解方法是解题的关键,要注意线段的比例中8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= ﹣1 .【考点】黄金分割.【分析】根据黄金分割的概念和黄金比值是计算即可.【解答】解:∵点P是线段AB上的黄金分割点,PB>PA,∴PB=AB,解得,AB=+1,∴PA=AB﹣PB=+1﹣2=﹣1,故答案为:﹣1.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.9.已知||=2,||=4,且和反向,用向量表示向量= ﹣2.【考点】*平面向量.【分析】根据向量b向量的模是a向量模的2倍,且和反向,即可得出答案.【解答】解:||=2,||=4,且和反向,故可得: =﹣2.故答案为:﹣2.【点评】本题考查了平面向量的知识,关键是得出向量b向量的模是a向量模的2倍.10.如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m= 2 .【考点】二次函数图象上点的坐标特征.【分析】根据图象上的点满足函数解析式,可得答案.【解答】解:由抛物线y=mx2+(m﹣3)x﹣m+2经过原点,得﹣m+2=0.解得m=2,故答案为:2.【点评】本题考查了二次函数图象上点的坐标特征,把原点代入函数解析式是解题关键.11.如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是a>3 .【考点】二次函数的最值.【分析】由于原点是抛物线y=(a+3)x2的最低点,这要求抛物线必须开口向上,由此可以确定a【解答】解:∵原点是抛物线y=(a﹣3)x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.【点评】本题主要考查二次函数的最值的知识点,解答此题要掌握二次函数图象的特点,本题比较基础.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是y=﹣x2+4(0<x<2).【考点】函数关系式.【分析】根据剩下部分的面积=大正方形的面积﹣小正方形的面积得出y与x的函数关系式即可.【解答】解:设剩下部分的面积为y,则:y=﹣x2+4(0<x<2),故答案为:y=﹣x2+4(0<x<2).【点评】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积﹣小正方形的面积得出是解题关键.13.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= 3 .【考点】二次函数图象上点的坐标特征.【分析】首先求出抛物线的对称轴方程,进而求出x的值.【解答】解:∵抛物线的解析式为y=ax2﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A(﹣1,7)、B(x,7),∴=1,∴x=3,故答案为3.【点评】本题主要考查了二次函数图象上点的坐标特征,解题的关键是求出抛物线的对称轴,此题难度不大.14.二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1<y2(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】把两点的横坐标代入函数解析式分别求出函数值即可得解.【解答】解:当x=3时,y1=(3﹣1)2=4,当x=时,y2=(﹣1)2=,y1<y2,故答案为<.【点评】本题考查了二次函数图象上点的坐标特征,根据函数图象上的点满足函数解析式求出相应的函数值是解题的关键.15.如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 4 米.【考点】相似三角形的应用.【分析】由CD⊥BE、AB⊥BE知CD∥AB,从而得△CDE∽△ABE,由相似三角形的性质有=,将相关数据代入计算可得.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴=,即=,解得:AB=4,故答案为:4.【点评】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= 4 .【考点】梯形中位线定理.【分析】根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG是△ABD的中位线,即可求得EG 的长,则FG即可求得.【解答】解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.【点评】本题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是1:4 .【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=()2=()2=1:4,故答案为:1:4.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .【考点】旋转的性质.【分析】根据直角三角形的性质得到BC=AB,根据旋转的性质和平行线的判定得到AB∥B′C′,根据平行线分线段成比例定理计算即可.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=AB,B′C′=BC,∠C′=∠C=90°,∴∠BAC′=90°,∴AB∥B′C′,∴===,∴=,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.【点评】本题考查的是旋转变换的性质,掌握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:2cos230°﹣sin30°+.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×()2﹣+=1++.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=, =,求向量;(用向量、表示)【考点】相似三角形的判定与性质;平行四边形的性质;*平面向量.【分析】(1)根据平行四边形的性质得出AB=5、AB∥EC,证△FEC∽△FAB得==;(2)由△FEC∽△FAB得=,从而知FC=BC,EC=AB,再由平行四边形性质及向量可得==, ==,最后根据向量的运算得出答案.【解答】解:(1)∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△FAB,∴==;(2)∵△FEC∽△FAB,∴=,∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴==,∴==, ==,则=+=.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质及向量的运算,熟练掌握相似三角形的判定与性质是解题的关键.21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)作AE⊥BC,根据△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得,结合∠C=∠C,可证得△ADC∽△BAC;(2)由△ADC∽△BAC得,求出AD的长,根据AE⊥BC得DE=CD=1,由勾股定理求得AE 的长,最后根据正弦函数的定义可得.【解答】解:(1)如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,则=,,∴,∵∠C=∠C,∴△ADC∽△BAC;(2)∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE==,∴sinB==.【点评】本题主要考查相似三角形的判定与性质及勾股定理、等腰三角形的性质、三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)计算最大高度为:0.15×10=1.5(米),由表格查对应的坡度为:1:20;(2)作梯形的高BE、CF,由坡度计算AE和DF的长,相加可得AD的长.【解答】解:(1)∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;(2)如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵=,∴=,∴AE=DF=30,∴AD=AE+EF+DF=60+2=62,答:斜坡底部点A与台阶底部点D的水平距离AD为62米.【点评】本题考查了坡度坡角问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,利用三角函数的定义列等式即可.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE 延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC?CF.【考点】相似三角形的判定与性质;等腰三角形的性质.【分析】(1)由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得=2,即AB=2FC,根据AB=AC即可得证;(2)由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD2=AC?CF.【解答】证明:(1)∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,又∵AB=AC,∴AC=2CF;(2)如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴,即CD2=AC?CF.【点评】本题主要考查相似三角形的判定与性质,熟练掌握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.24.已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,即可解决问题.(2)首先证明∠ADB=90°,求出BD、AD的长即可解决问题.(3)由△PDB∽△ADP,推出PD2=BD?AD=3=6,由此即可解决问题.【解答】解:(1)∵顶点为A(2,﹣1)的抛物线经过点B(0,3),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,∴S△ABD=?BD?AD=3.(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD?AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).【点评】本题考查二次函数与x轴的交点、待定系数法.三角形的面积、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用相似三角形的性质解决问题,属于中考常考题型.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.【考点】相似形综合题.【分析】(1)首先证明△ABE∽△ADF,推出=,推出=,因为∠BAD=∠EAF,即可证明△AEF∽△ABD.(2)如图连接AG.由△AEF∽△ABD,推出∠ABG=∠AEG,推出A、B、E、G四点共圆,推出∠ABE+∠AGE=180°,由∠ABE=90°,推出∠AGE=90°,推出∠AGM=∠MDF,推出∠AMG=∠FMD,推出∠MAG=∠EFC,推出y=tan∠MAG=tan∠EFC=,由△ABE∽△ADF,得=,得DF=x,由此即可解决问题.(3)分两种情形①如图2中,当点E在线段CB上时,②如图3中,当点E在CB的延长线上时,分别列出方程求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,∴∠BAD=∠EAF,∴∠BAE=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE∽△ADF,∴=,∴=,∵∠BAD=∠EAF,∴△AEF∽△ABD.(2)解:如图连接AG.∵△AEF∽△ABD,∴∠ABG=∠AEG,∴A、B、E、G四点共圆,∴∠ABE+∠AGE=180°,∵∠ABE=90°,∴∠AGE=90°,∴∠AGM=∠MDF,∴∠AMG=∠FMD,∴∠MAG=∠EFC,∴y=tan∠MAG=tan∠EFC=,∵△ABE∽△ADF,∴=,∴DF=x,∴y=,即y=(0≤x≤4).(3)解:①如图2中,当点E在线段CB上时,∵△AGM∽ADF,∴tan∠MAG==,∴=,解得x=.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴=,∴=,解得x=1,∴BE的长为或1.【点评】本题考查相似形综合题、相似三角形的判定和性质、锐角三角函数、四点共圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.。

上海浦东新区中考数学一模试卷

上海浦东新区中考数学一模试卷

上海浦东新区中考数学一模试卷It was last revised on January 2, 20212017年上海市浦东新区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.(4分)在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.2.(4分)如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.3.(4分)已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα4.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.B.C.D.5.(4分)如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=156.(4分)如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1二.填空题(本大题共12题,每题4分,共48分)7.(4分)已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8.(4分)已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA=.9.(4分)已知||=2,||=4,且和反向,用向量表示向量=.10.(4分)如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m=.11.(4分)如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是.12.(4分)在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是.13.(4分)如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=.14.(4分)二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1 y2(填“>”、“=”或“<”)15.(4分)如图,已知小鱼同学的身高(CD)是米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=米.16.(4分)如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG=.17.(4分)如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC 边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.(4分)如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么=.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.(10分)计算:2cos230°﹣sin30°+.20.(10分)如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=,=,求向量;(用向量、表示)21.(10分)如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.22.(10分)如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为米,宽为米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:201:161:12最大高度(米)(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.23.(12分)如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC?CF.24.(12分)已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25.(14分)如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F 是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.2017年上海市浦东新区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.(4分)(2017?浦东新区一模)在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.【分析】根据二次函数的定义形如y=ax2+bx+c (a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;故选:A.【点评】本题考查二次函数的定义,形如y=ax2+bx+c (a≠0)是二次函数.2.(4分)(2017?浦东新区一模)如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.【分析】利用一元一次方程的求解方法,求解此题即可求得答案.【解答】解:∵+=(﹣),∴2(+)=3(﹣),∴2+2=3﹣2,∴2=﹣2,解得:=﹣.故选D.【点评】此题考查了平面向量的知识.此题难度不大,注意掌握一元一次方程的求解方法是解此题的关键.3.(4分)(2017?浦东新区一模)已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα【分析】根据锐角三角函数的定义得出sinA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=,∴AB==,故选A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.4.(4分)(2017?浦东新区一模)在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.B.C.D.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.5.(4分)(2017?浦东新区一模)如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=15【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到AG=AD=6,CG=CE=8,EG=CE=4,根据勾股定理求出AC、AE,判断即可.【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC==10,A正确;AE==2,∴AB=2AE=4,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确;BF=15,D正确,故选:B.【点评】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.6.(4分)(2017?浦东新区一模)如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【解答】解:抛物线A:y=x2﹣1的顶点坐标是(0,﹣1),抛物线C:y=x2﹣2x+2=(x﹣1)2+1的顶点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移2个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=(x﹣1)2﹣1=x2﹣2x.故选:C.【点评】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.二.填空题(本大题共12题,每题4分,共48分)7.(4分)(2017?浦东新区一模)已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【分析】根据线段的比例中项的定义列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.【点评】本题考查了比例线段,熟记线段比例中项的求解方法是解题的关键,要注意线段的比例中项是正数.8.(4分)(2017?浦东新区一模)已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA=﹣1.【分析】根据黄金分割的概念和黄金比值是计算即可.【解答】解:∵点P是线段AB上的黄金分割点,PB>PA,∴PB=AB,解得,AB=+1,∴PA=AB﹣PB=+1﹣2=﹣1,故答案为:﹣1.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC (AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.9.(4分)(2017?浦东新区一模)已知||=2,||=4,且和反向,用向量表示向量=﹣2.【分析】根据向量b向量的模是a向量模的2倍,且和反向,即可得出答案.【解答】解:||=2,||=4,且和反向,故可得:=﹣2.故答案为:﹣2.【点评】本题考查了平面向量的知识,关键是得出向量b向量的模是a向量模的2倍.10.(4分)(2017?浦东新区一模)如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m=2.【分析】根据图象上的点满足函数解析式,可得答案.【解答】解:由抛物线y=mx2+(m﹣3)x﹣m+2经过原点,得﹣m+2=0.解得m=2,故答案为:2.【点评】本题考查了二次函数图象上点的坐标特征,把原点代入函数解析式是解题关键.11.(4分)(2017?浦东新区一模)如果抛物线y=(a﹣3)x2﹣2有最低点,那么a 的取值范围是a>3.【分析】由于原点是抛物线y=(a+3)x2的最低点,这要求抛物线必须开口向上,由此可以确定a的范围.【解答】解:∵原点是抛物线y=(a﹣3)x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.【点评】本题主要考查二次函数的最值的知识点,解答此题要掌握二次函数图象的特点,本题比较基础.12.(4分)(2017?浦东新区一模)在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是y=﹣x2+4(0<x<2).【分析】根据剩下部分的面积=大正方形的面积﹣小正方形的面积得出y与x的函数关系式即可.【解答】解:设剩下部分的面积为y,则:y=﹣x2+4(0<x<2),故答案为:y=﹣x2+4(0<x<2).【点评】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积﹣小正方形的面积得出是解题关键.13.(4分)(2017?浦东新区一模)如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=3.【分析】首先求出抛物线的对称轴方程,进而求出x的值.【解答】解:∵抛物线的解析式为y=ax2﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A(﹣1,7)、B(x,7),∴=1,∴x=3,故答案为3.【点评】本题主要考查了二次函数图象上点的坐标特征,解题的关键是求出抛物线的对称轴,此题难度不大.14.(4分)(2017?浦东新区一模)二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1<y2(填“>”、“=”或“<”)【分析】把两点的横坐标代入函数解析式分别求出函数值即可得解.【解答】解:当x=3时,y1=(3﹣1)2=4,当x=时,y2=(﹣1)2=,y1<y2,故答案为<.【点评】本题考查了二次函数图象上点的坐标特征,根据函数图象上的点满足函数解析式求出相应的函数值是解题的关键.15.(4分)(2017?浦东新区一模)如图,已知小鱼同学的身高(CD)是米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=4米.【分析】由CD⊥BE、AB⊥BE知CD∥AB,从而得△CDE∽△ABE,由相似三角形的性质有=,将相关数据代入计算可得.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴=,即=,解得:AB=4,故答案为:4.【点评】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.16.(4分)(2017?浦东新区一模)如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG=4.【分析】根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG是△ABD的中位线,即可求得EG的长,则FG即可求得.【解答】解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.【点评】本题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.17.(4分)(2017?浦东新区一模)如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC 的面积比是1:4.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=()2=()2=1:4,故答案为:1:4.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.18.(4分)(2017?浦东新区一模)如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么=.【分析】根据直角三角形的性质得到BC=AB,根据旋转的性质和平行线的判定得到AB∥B′C′,根据平行线分线段成比例定理计算即可.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=AB,B′C′=BC,∠C′=∠C=90°,∴∠BAC′=90°,∴AB∥B′C′,∴===,∴=,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.【点评】本题考查的是旋转变换的性质,掌握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.(10分)(2017?浦东新区一模)计算:2cos230°﹣sin30°+.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×()2﹣+=1++.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.(10分)(2017?浦东新区一模)如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=,=,求向量;(用向量、表示)【分析】(1)根据平行四边形的性质得出AB=5、AB∥EC,证△FEC∽△FAB得==;(2)由△FEC∽△FAB得=,从而知FC=BC,EC=AB,再由平行四边形性质及向量可得==,==,最后根据向量的运算得出答案.【解答】解:(1)∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△FAB,∴==;(2)∵△FEC∽△FAB,∴=,∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴==,∴==,==,则=+=.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质及向量的运算,熟练掌握相似三角形的判定与性质是解题的关键.21.(10分)(2017?浦东新区一模)如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.【分析】(1)作AE⊥BC,根据△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得,结合∠C=∠C,可证得△ADC∽△BAC;(2)由△ADC∽△BAC得,求出AD的长,根据AE⊥BC得DE=CD=1,由勾股定理求得AE的长,最后根据正弦函数的定义可得.【解答】解:(1)如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,则=,,∴,∵∠C=∠C,∴△ADC∽△BAC;(2)∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE==,∴sinB==.【点评】本题主要考查相似三角形的判定与性质及勾股定理、等腰三角形的性质、三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.22.(10分)(2017?浦东新区一模)如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为米,宽为米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:201:161:12最大高度(米)(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.【分析】(1)计算最大高度为:×10=(米),由表格查对应的坡度为:1:20;(2)作梯形的高BE、CF,由坡度计算AE和DF的长,相加可得AD的长.【解答】解:(1)∵第一层有十级台阶,每级台阶的高为米,∴最大高度为×10=(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;(2)如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=,EF=BC=2,∵=,∴=,∴AE=DF=30,∴AD=AE+EF+DF=60+2=62,答:斜坡底部点A与台阶底部点D的水平距离AD为62米.【点评】本题考查了坡度坡角问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,利用三角函数的定义列等式即可.23.(12分)(2017?浦东新区一模)如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC?CF.【分析】(1)由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得=2,即AB=2FC,根据AB=AC即可得证;(2)由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD2=AC?CF.【解答】证明:(1)∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,又∵AB=AC,∴AC=2CF;(2)如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴,即CD2=AC?CF.【点评】本题主要考查相似三角形的判定与性质,熟练掌握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.24.(12分)(2017?浦东新区一模)已知顶点为A(2,﹣1)的抛物线经过点B (0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.【分析】(1)设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,即可解决问题.(2)首先证明∠ADB=90°,求出BD、AD的长即可解决问题.(3)由△PDB∽△ADP,推出PD2=BD?AD=3=6,由此即可解决问题.【解答】解:(1)∵顶点为A(2,﹣1)的抛物线经过点B(0,3),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,∴S=BDAD=3.△ABD(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD?AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).【点评】本题考查二次函数与x轴的交点、待定系数法.三角形的面积、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用相似三角形的性质解决问题,属于中考常考题型.25.(14分)(2017?浦东新区一模)如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.【分析】(1)首先证明△ABE∽△ADF,推出=,推出=,因为∠BAD=∠EAF,即可证明△AEF∽△ABD.(2)如图连接AG.由△AEF∽△ABD,推出∠ABG=∠AEG,推出A、B、E、G四点共圆,推出∠ABE+∠AGE=180°,由∠ABE=90°,推出∠AGE=90°,推出∠AGM=∠MDF,推出∠AMG=∠FMD,推出∠MAG=∠EFC,推出y=tan∠MAG=tan∠EFC=,由△ABE∽△ADF,得=,得DF=x,由此即可解决问题.(3)分两种情形①如图2中,当点E在线段CB上时,②如图3中,当点E在CB的延长线上时,分别列出方程求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,∴∠BAD=∠EAF,∴∠BAE=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE∽△ADF,∴=,∴=,∵∠BAD=∠EAF,∴△AEF∽△ABD.(2)解:如图连接AG.∵△AEF∽△ABD,∴∠ABG=∠AEG,∴A、B、E、G四点共圆,∴∠ABE+∠AGE=180°,∵∠ABE=90°,∴∠AGE=90°,∴∠AGM=∠MDF,∴∠AMG=∠FMD,∴∠MAG=∠EFC,∴y=tan∠MAG=tan∠EFC=,∵△ABE∽△ADF,∴=,∴DF=x,∴y=,即y=(0≤x≤4).(3)解:①如图2中,当点E在线段CB上时,∵△AGM∽ADF,∴tan∠MAG==,∴=,解得x=.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴=,∴=,解得x=1,∴BE的长为或1.【点评】本题考查相似形综合题、相似三角形的判定和性质、锐角三角函数、四点共圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.菁优网2017年3月14日。

浦东初三数学试卷(2018.1)

浦东初三数学试卷(2018.1)

浦东新区2017学年第一学期初三教学质量检测数 学 试 卷(完卷时间:100分钟,满分:150分)2018.1考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸...规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸...的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值 (A )扩大为原来的两倍; (B )缩小为原来的21; (C )不变; (D )不能确定. 2.下列函数中,二次函数是(A )54+-=x y ; (B ))32(-=x x y ; (C )22)4(x x y -+=;(D )21xy =. 3.已知在Rt △ABC 中,∠C =90°,AB =7,BC =5,那么下列式子中正确的是(A )75sin =A ; (B )75cos =A ; (C )75tan =A ; (D )75cot =A . 4.已知非零向量a ,b ,c ,下列条件中,不能判定向量a与向量b 平行的是(A )c a //,c b //; (B=;(C )c a =,c b 2=; (D )0=+b a .5.如果二次函数2y ax bx c =++的图像全部在x 轴的下方,那么下列判断中正确的是 (A )0<a ,0<b ; (B )0>a ,0<b ; (C )0<a ,0>c ;(D )0<a ,0<c .6.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上,且DE ∥BC ,要使得EF ∥CD ,还需添加一个条件,这个条件可以是(A )EFADCD AB =; (B )AE ADAC AB =; (C )AF ADAD AB=;(D )AF AD AD DB=.BA F E CD(第6题图)二、填空题:(本大题共12题,每题4分,满分48分) 7.已知23=y x ,则yx y x +-的值是 ▲ . 8.已知线段MN 的长是4cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是 ▲ cm . 9.已知△ABC ∽△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是23,BE 、B 1E 1分别是它 们对应边上的中线,且BE =6,则B 1E 1= ▲ . 10.计算:132()2a ab +-= ▲ . 11.计算:3tan30sin45︒+︒= ▲ .12.抛物线432-=x y 的最低点坐标是 ▲ .13.将抛物线22x y =向下平移3个单位,所得的抛物线的表达式是 ▲ .14.如图,已知直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,且l 1∥l 2∥l 3,AB =4,AC =6,DF =9,则DE = ▲ .15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是 ▲ (不写定义域).16.如图,湖心岛上有一凉亭B ,在凉亭B 的正东湖边有一棵大树A ,在湖边的C 处测得B在北偏西45°方向上,测得A 在北偏东30°方向上,又测得A 、C 之间的距离为100米,则A 、B 之间的距离是 ▲ 米(结果保留根号形式).17.已知点(-1,m )、(2,n )在二次函数122--=ax ax y 的图像上,如果m >n ,那么a ▲ 0(用“>”或“<”连接).18.如图,已知在Rt △ABC 中,∠ACB =90°,54cos =B ,BC=8,点D 在边BC 上,将 △ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、DE ,当∠BDE =∠AEC 时,则BE 的长是 ▲ .(第15题图)A DEB CFl 1 l 2 l 3l 4(第14题图)l 5 (第16题图)CBA45° 30° CBA(第18题图)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)将抛物线542+-=x x y 向左平移4个单位,求平移后抛物线的表达式、顶点坐标 和对称轴. 20.(本题满分10分,每小题5分)如图,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE ∥BC , 且DE 经过△ABC 的重心,设BC a =. (1)=DE ▲ (用向量a 表示);(2)设AB b =,在图中求作12b a +. (不要求写作法,但要指出所作图中表示结论的向量.) 21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,已知G 、H 分别是□ABCD 对边AD 、BC 上的点,直线GH分别交BA 和DC 的延长线于点E 、F . (1)当81=∆CDGHCFH S S 四边形时,求DGCH 的值; (2)联结BD 交EF 于点M ,求证:MG ME MF MH ⋅=⋅.22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,为测量学校旗杆AB 的高度,小明从旗杆正前方3米处的点C 出发,沿坡度为3:1=i 的斜坡CD 前进32米到达点D ,在点D 处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A 、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D 的铅垂高度(结果保留根号); (2)求旗杆AB 的高度(精确到0.1).(参考数据:sin37°≈0.60,cos37°≈0.80,t an37°≈0.75,73.13≈.) 23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC上, 联结BD 交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅.(第20题图)ABCD E(第22题图)A (第23题图)DEFB C(第21题图)ABHF CG D24.(本题满分12分,每小题4分)已知抛物线y =ax 2+bx +5与x 轴交于点A (1,0)和点B (5,0),顶点为M .点C 在x 轴的负半轴上,且AC =AB ,点D 的坐标为(0,3),直线l 经过点C 、D . (1)求抛物线的表达式;(2)点P 是直线l 在第三象限上的点,联结AP ,且线段CP 是线段CA 、CB 的比例中项,求tan ∠CP A 的值;(3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E ,使得∠AEM =∠AMB .若存在,求出点E25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△ABC 中,∠ACB=90°,BC =2,AC =4,点D 在射线BC 上,以点D 为圆心,BD 为半径画弧交边AB 于点E ,过点E 作EF ⊥AB 交边AC 于点F ,射线ED 交射线AC 于点G .(1)求证:△EFG ∽△AEG ;(2)设FG =x ,△EFG 的面积为y ,求y 关于x 的函数解析式并写出定义域; (3)联结DF ,当△EFD 是等腰三角形时,请直接..写出FG 的长度.(第24题图) (第25题备用图) ABC(第25题备用图)ABC。

上海市浦东新区2017-2018学年八年级数学上学期第一次阶段考试试题 沪教版五四制

上海市浦东新区2017-2018学年八年级数学上学期第一次阶段考试试题 沪教版五四制

2017学年度第一学期八年级数学综合素养测试完卷时间:100分钟;满分:100分班级姓名成绩.一.填空题(每小题2分,共36分)1.计算:×= .2.化简:﹣= .3.化简:= .4.化简的结果是.5.计算:= .6.﹣的有理化因式可以是.7.化简:(2+)(2﹣)= .8.化简= .9.若=2﹣x,则x的取值范围是.10.已知实数a在数轴上的位置如图,则化简|1﹣a|+的结果为.11.如果最简二次根式与是同类二次根式,则a=12.不等式﹣x>的解集是13化简:a= .14.当x=2+时,代数式x2﹣4x+4的值是.15.方程3x2=4x的根是.16.方程x2﹣5x﹣6=0的解是.17.已知一个关于y的一元二次方程,它的常数项是﹣6,且有一个根为2,请你写出一个符合上述条件的方程:.18.已知关于x的方程x2﹣2x+3m=0有两个实数根,则m的取值范围是.二.选择题(每小题2分,共12分)19.二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<120.下列式子为最简二次根式的是()A.B.C.D.21.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1 B.2 C.3 D.422.若x=1是方程ax2+bx+c=0的解,则()A.a+b+c=1 B.a﹣b+c=0 C.a+b+c=0 D.a﹣b﹣c=023.下列方程中,没有实数根的是()A.3x+2=0 B.2x+3y=5 C.x2+x﹣1=0 D.x2+x+1=024.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为()A.8 B.10或8 C.10 D.6或12或10三.简答题每小题6分,共36分25+2﹣x+2.26.计算:.27化简+28.解方程:(x﹣5)2=16.29.解方程:x2+6x+3=0.30.解方程:y(y﹣4)=﹣1﹣2y.四、解答题(每小题8分,共16分)31.已知m=,n=,求m2﹣mn+n2的值.32.已知关于x的一元二次方程(m﹣1)x2﹣(2m﹣1)x+m+1=0(m为常数)有两个实数根,求m 的取值范围.2017学年度第一学期初二年级数学综合素养测试评分一.填空题(每小题2分,共36分)1 6 2. 3,x x 4 ,a a 306 5. -1- 6,a +b 7, 1 8, π-3: 9, x 2≤10, 1-2a 11, a=1 12 , x 621- 13, -a - 14, 2015 ,15, 0,34 16, 6,-1 17,略 18, m 31≤二.选择题(每小题2分,共12分) 19 , A 20, A 21, B 22, A 23, D 24, C三.简答题每小题6分,共36分25, 解;原式=3x +32x -x +x 2 (4分)=38x +x 2 (2分)26解;原式=22(3+216)-313 (3分) =3+321_313 (2分)=3+361(1分)27解;原式=x +3y +x +y (4分)=2x +4y (2分)28 解 x-5=4 x-5=-4(3分) x =9 x=1(2分) 原方程的根是x =9 x=1(1分)29解 a=1 b=6 c=3(1分) △ =24(1分) x=2246±- (2分) X=-3+6 x=-3-6(1分) 原方程的根是X=-3+6 x=-3-6 (1分)30解 整理得: y 2 -2y+1=0 (2分) (y ﹣1)2 =0 (1分)Y1=y2=1(2分) 原方程的根是 Y1=y2=1 (1分)31解 m=5-2 n=-5-2 (4分)原式=(5-2)2 -(5-2)(-5-2)+ (5+2)2=19(4分)32 △=(2m-1)2 -4(m-1)(m+1) (2分)=-4m+5(2分)由 关于x 的一元二次方程(m ﹣1)x 2﹣(2m ﹣1)x+m+1=0(m 为常数)有两个实数根得 △≥0 得:m ≤45(2分) 当:m ≤45且m ≠1关于x 的一元二次方程(m ﹣1)x 2﹣(2m ﹣1)x+m+1=0(m 为常数)有两个实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步 4.已知非零向量 a , b , c ,下列条件中,不能判定向量 a 与向量 b 平行的是() ; (B ) ; (D )浦东新区 2017 学年第一学期初三教学质量检测数 学 试 卷(完卷时间:100 分钟,满分:150 分)2018.1考生注意:...本试卷上答题一律无效....骤.一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置 上】1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角 A 的余切值( )(A )扩大为原来的两倍;(B )缩小为原来的(C )不变;(D )不能确定.2.下列函数中,二次函数是()1 2;(A ) y = -4 x + 5 ; (B ) y = x (2 x - 3) ;(C ) y = ( x + 4) 2 - x 2 ;(D ) y =1x 2.3.已知在 Rt △ABC 中, ∠C = 90︒ , AB = 7 , BC = 5 ,那么下列式子中正确的是()5555 (A ) sin A = ;(B ) cos A =;(C ) tan A = ;(D ) cot A =.7 7 77(A ) a / /c , b / /c ; (B ) a = 3 b ;(C ) a = c , b = 2c ;(D ) a + b = 0 .5.如果二次函数 y = ax 2 + bx + c 的图像全部在 x 轴的下方,那么下列判断中正确的是()(A ) a < 0 , b < 0 ;(C ) a < 0 , c > 0 ; (B ) a > 0 , b < 0 ;(D ) a < 0 , c < 0 .6.如图,已知点 D 、 F 在 △ABC 的边 AB 上,点 E 在边 AC 上,且 DE ∥BC ,要使得 EF ∥CD ,还需添加一个条件,这个条件可以是( )A (A ) EF AD AE AD = =CD AB AC AB;F(C ) AF AD AF AD = =AD AB AD DB. D EC二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)x 3 x - y7.已知= ,则 的值是.y 2 x + yB(第 6 题图)8.已知线段 MN 的长是 4cm ,点 P 是线段 MN 的黄金分割点,则较长线段 MP 的长是cm .⎛ 1 ⎫10.计算: 3a + 2 a - b ⎪ =. ⎝2 ⎭ 11.计算: 3tan 30︒ + sin 45︒ =.C 则 0 C9.已知 △ABC ∽△ A B C , △ABC 的周长与 △A B C 的周长的比值是 1 1 1 1 1 1 3 2, BE 、 B E 分别是它们对应边1 1上的中线,且 BE = 6 ,则 B E =. 1 1l 5l 4DAB ECF12.抛物线 y = 3x 2 - 4 的最低点坐标是.(第 14 题图)l 1l 2l 313.将抛物线 y = 2x 2 向下平移 3 个单位,所得的抛物线的表达式是.14.如图,已知直线 l 、 l 、 l 分别交直线 l 于点 A 、 B 、 C ,交直线 l 于点 D 、 E 、 F ,且 l ∥l ∥l ,12345123AB = 4 , AC = 6 , DF = 9 ,则 DE =.15.如图,用长为 10 米的篱笆,一面靠墙(墙的长度超过 10 米),围成一个矩形花圃,设矩形垂直于墙的一边长为 x 米,花圃面积为 S 平方米,则 S 关于 x 的函数解析式是(不写定义域).16.如图,湖心岛上有一凉亭 B ,在凉亭 B 的正东湖边有一棵大树 A ,在湖边的C 处测得 B 在北偏西 45°方向上,测得 A 在北偏东 30°方向上,又测得 A 、 之间的距离为 100 米, A 、B 之间的距离是 米(结果保留根号形式).17.已知点 (-1,m )、(2, n )在二次函数 y = ax 2 - 2ax - 1 的图像上,如果 m > n ,那么 a(用“>”或“<”连接).18.如图,已知在 Rt △ABC 中, ∠ACB = 90︒ , cos B = 4 5, BC = 8 ,点 D 在边 BC 上,将 △ABC 沿着过点 D 的一条直线翻折,使点 B 落在 AB 边上的点 E 处,联结 CE 、 DE ,当 ∠BDE = ∠AEC 时, 则 BE 的长是 .BAC45°30°A(第 15 题图)(第 16 题图)(第 18 题图)三、解答题:(本大题共 7 题,满分 78 分) 19.(本题满分 10 分)将抛物线 y = x 2 - 4 x + 5 向左平移 4 个单位,求平移后抛物线的表达式、顶点坐标和对称轴.B)20.(本题满分 10 分,每小题 5 分)如图,已知 △ABC 中,点 D 、 E 分别在边 AB 和 AC 上, DE ∥BC ,且 DE DE 经过 △ABC 的重心, 设 BC = a . A(1) DE =(用向量 a 表示);1(2)设 AB = b ,在图中求作 b + a .2DE (不要求写作法,但要指出所作图中表示结论的向量. BC(第 20 题图)21.(本题满分 10 分,其中第(1)小题 4 分,第(2)小题 6 分)如图,已知 G 、H 分别是□ABCD 对边 AD 、BC 上的点,直线 GH 分别交 BA 和 DC 的延长线于点 E 、F.(1)当 S∆CFH S 四边形CDGH1 CH= 时,求 的值;8 DG FC H B(2)联结 BD 交 EF 于点 M ,求证: MG ⋅ ME = MF ⋅ MH .DGAE(第 21 题图)22.(本题满分 10 分,其中第(1)小题 4 分,第(2)小题 6 分)如图,为测量学校旗杆 AB 的高度,小明从旗杆正前方 3 米处的点 C 出发,沿坡度为i = 1: 3 的斜坡CD 前进 2 3 米到达点 D ,在点 D 处放置测角仪,测得旗杆顶部 A 的仰角为 37°,量得测角仪 D E 的高为1.5 米. A 、 B 、 C 、 D 、 E 在同一平面内,且旗杆和测角仪都与地面垂直. (1)求点 D 的铅垂高度(结果保留根号);(2)求旗杆 AB 的高度(精确到 0.1).(参考数据:sin 37︒ ≈ 0.60 , cos37 ︒ ≈ 0.80 , tan 37︒ ≈ 0.75 , 3 ≈ 1.73 .)A37° EDB C(第 22 题图)0 0 323.(本题满分 12 分,其中第(1)小题 6 分,第(2)小题 6 分)如图,已知,在锐角 △ABC 中, CE ⊥ AB 于点 E ,点 D 在边 AC 上,联结 BD 交 CE 于点 F ,且 EF ⋅ FC = FB ⋅ DF .(1)求证: BD ⊥AC ;(2)联结 AF ,求证: AF ⋅ BE = BC ⋅ EF .AEDFBC(第 23 题图)24.(本题满分 12 分,每小题 4 分)已知抛物线 y = ax 2 + b x + 5 与 x 轴交于点 A (1,) 和点 B (5,) ,顶点为 M .点 C 在 x 轴的负半轴上,且AC = AB ,点 D 的坐标为 (0,) ,直线 l 经过点 C 、 D .(1)求抛物线的表达式;(2)点 P 是直线 l 在第三象限上的点,联结 AP ,且线段 CP 是线段 CA 、CB 的比例中项,求 tan ∠CPA 的 值;(3)在(2)的条件下,联结 AM 、 BM ,在直线 PM 上是否存在点 E ,使得 ∠AEM = ∠AMB .若存在,求出点 E 的坐标;若不存在,请说明理由.y54 3 2 1–5 –4 –3 –2 –1 O–1 1 2 3 4 5 x–2 –3–4 –5(第 24 题图)(3)联结 DF ,当 △EFD 是等腰三角形时,请直接写出 FG 的长度.25.(本题满分 14 分,其中第(1)小题 4 分,第(2)小题 5 分,第(3)小题 5 分)如图,已知在△ABC 中, ∠ACB = 90︒ , BC = 2 , AC = 4 ,点 D 在射线 BC 上,以点 D 为圆心, B D 为半径画弧交边 AB 于点 E ,过点 E 作 EF ⊥AB 交边 AC 于点 F ,射线 ED 交射线 AC 于点 G . (1)求证: △EFG ∽△ A EG ;(2)设 FG = x , △EFG 的面积为 y ,求 y 关于 x 的函数解析式并写出定义域;..AA AEFBDC(第 25 题图) GB C(第 25 题备用图)B C(第 25 题备用图)。

相关文档
最新文档