九年级数学下册 2.4.1 二次函数的应用课时教案 (新版)北师大版
九年级数学下册2.4.1二次函数应用教案2新版北师大版20170802220
课题:二次函数的应用教课目的:1.经历研究长方形和窗户透光最大面积问题的过程,进一步获取利用数学方法解决实际问题的经验,并进一步感觉数学模型思想和数学知识的应用价值.2.能够剖析和表示不一样背景下实质问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实质问题中的最大(小)值问题.3.能够对解决问题的根本策略进行反省,形成个人解决问题的风格.进一步领会数学与人类社会的亲密联系.教课要点与难点:要点:经历研究矩形和窗户透光最大面积问题的过程,进一步获取利用数学方法解决实质问题的经验,并进一步感觉数学模型思想和数学的应用价值.难点:能够剖析和表示不一样背景下实质问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实质问题.课前准备:导教案,多媒体课件.教课过程:一、创建情境,导入新课活动内容:〔利用导教案〕研究活动:以小组为单位,用长1米的绳索看哪个小组围成的图形最围成不一样的图形,多,并估量出所围成的这些图形中,哪个图形的面积最大?图形面积办理方式:学生先把答案写在导教案上,而后小组内沟通,班级内比较的到就地合款相等时面积最大.设计企图:增添学生的着手能力和小组合作研究能力,同时也为了复习图形的面积公式,会用估量的方法比较这些图形的面积大小,研究此中的规律,为本节课学习最大面积问题做好铺垫.二、研究学习,感悟新知活动内容:〔多媒体展现〕问题一:研究两边在直角三角形直角边上内接矩形的最大面积如图,在一个直角三角形的内部作一个长方形EABCD ,此中AB 和AD 分别在两直角边上.〔1〕设长方形的一边AB =x m ,那么AD 边的30mDC长度如何表示?〔2〕设长方形的面积为2AB y m ,当x 取何值时,40my 的值最大?最大值是多少?解:〔1〕∵BC ∥AD ,∴△EBC ∽△EAF .∴EBBC . EAAF又AB =x ,BE =40-x ,∴40xBC .∴BC =3(40-x ). 4030 4∴ AD =BC =3(40-x )=30-3x . ( 4 42〕y =AB ·AD =x (30-3x )=-3x 2+30x4 432=- 〔x -40x +400-400〕32=- 〔x -40x +400〕+300 =-3〔x -20〕2+300.4当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是2300m .办理方式:学生议论沟通,在导教案上达成后,学生之间相互展现结果议论增补 合时评论,并在多媒体上展现正确结果 .F教师设计企图:从矩形的面积公式下手,利用相像三角形的性质表示出此外一条边,才能列出函数表达式,这一过程先由学生独立思虑后,分组合作研究、沟通,帮助个别存在困难的同学解决.本题的思路也是解决矩形最大面积问题最常用的方法.问题二:研究一边在直角三角形斜边上内接矩形的最大面积〔多媒体展现〕如图,在一个直角三角形的内部作一个矩形ABCD ,此中BC 在斜边上,A,D 在直角边上.假如设矩形的一边AD xm ,那么AB 边的长度如何表示?当x 取何值时,矩形面积y的值最大?最大值是多少?E解:设矩形的一边ADxm ,CN30m DBMFGA40m由GADGFD ,得ADGM ,EFGN即xGM ,5024 ∴GM12x .252412x . ∴ABMNGNGM25S 矩形ABCDADABx(24 12x)12x 2 24x .2525当xb24 25时,y 有最大值,最大值为y最大值24 22a12300122()4()2525办理方式:在有了前面解答问题的经验以后,让学生自主研究,追求变量与不变量之间的关系,模仿第一种状况,再一次体验解决此类问题的步骤和方法,本环节相当于对问题 1的牢固练习,学生在仔细听讲的前提下达成应当没有问题,提示学生计算要仔细.设计企图:在上一道题的根基上,利用相像三角形的性质表示出矩形的另一条边长,列出二次函数表达式,但本题上了难度,难度在于利用的是相像三角形对应高的比等于相像比这一性质,并且还要用到等积法求直角三角形斜边上的高.充足发挥学生的主动研究能力,并由个别程度较好的学生解说,最后再板书进行反省总结.三、例题分析,新知应用活动内容:〔多媒体出比如题〕某建筑物的窗户以下列图,它的上半部是半圆,下半部是矩形,制造窗框的资料总长 (图中全部黑线的长度和)为15m .当x 等于多少时,窗户经过的光芒最多 (结果精准到 0.01m)?此时,窗户的面积是多少?解:∵7 +4 y +π x=15,x∴y =157x x .4设窗户的面积是2(m),那么SS =12+ xy2 πx2=1πx 2+2x ·157xx24=1πx 2+x(157xx)22=-3.5x 2+7.5x215=-3.5(x - x )=-3.5(x -15)2+1575. 14392∴当x =15≈1.07时, 141575S 最大=≈4.02.2即当x ≈1.07m 时,S 最大≈4.02m ,此时,窗户经过的光芒最多.答案:2x时,.mS 最大m办理方式:本题含有两个图形的面积计算, 主假如想进一步提高学生剖析问题和解决问题的能力,牢固训练列二次函数表达式和求最值的方法. 让学生理解经过窗户光芒多少与窗户面积大小相关.本题办理起来比较繁琐,教师要赐予学生实时的指导和帮助, 同时也告诉学生数学根本运算也是培育大家做事谨慎、有耐心的一个很好的门路.设计企图:在学生已有的研究“面积最大值〞经验获取的领会中,让学生连续沿着这条研究路线走下去,既能牢固前面的研究方法,又能让学生再次感觉“数学根源于生活〞.方法提炼:我们已经做了许多用二次函数知识解决实质问题的例子, 此刻大家可否依据前面的例子作一下总结,解决此类问题的根本思路是什么呢?与伙伴进行沟通.〔学生议论,教师多媒体展现〕 理解问题;剖析问题中的变量和常量以及它们之间的关系; 用数学的方式表示它们之间的关系; 做函数求解;查验结果的合理性,拓展等.设计企图:一鼓作气,实时进行小结,总结做题的方法及思路,抓住这类题目的实质, 抵达贯通融会的目的和成效. 四、拓展提高 ,学致使用一养鸡专业户方案用 116m 长的篱笆笆靠墙围成一个长方形鸡舍,如何设计才能使围成的长方形鸡舍的面积最大?最大为多少?2解:设AB 长为x m ,那么BC 长为(116-2x )m ,长方形面积为 S m .依据题意得 S =x (116-2x ) =-2x 2+116x=-2(x 2-58x +292-292)=-2(x-29)2+1682.当x=29时,S有最大值1682,这时116-2x=58.即设计成长为58m,宽为29m的长方形时,能使围成的长方形鸡舍的面积最大,最大面2积为1682m.办理方式:学生经过思虑并沟通议论,研究出需要利用本节课学的知识解决题目,教师利用多媒体展现答案.活动的设计意在经过问题的变式促进学生灵巧运用知识,在解决实质问题中,重视知识的展开,有利于后续学习兴趣的培育.设计企图:让同学们经过刚才的学习和体验后进行练习,深入浅出地对题目进行剖析和理解并解决问题,固然其实不要求他们在此后都用这样的方法解题,但对于培育他们形成优异的心理素质和培育他们剖析问题、解决问题的能力是很有帮助的.五、回想反省,提炼升华师:同学们,经过这节课的学习,你有哪些收获?那些迷惑?有何感想?学会了哪些方法?先想想,再分享给大家.1〕经过本节课掌握了利用相像三角形的性质表示矩形的另一边,是列矩形面积函数关系式的要点.2〕图形最大面积问题,实质上是二次函数的最值问题.3〕解决此类问题,第一要理解问题,剖析问题中的变量和常量,以及它们之间的关系是难点,用数学的方式表示它们间的关系是要点,化归为二次函数运用公式求解是易错点,要做对做全需要我们必定根本功扎实,养成优异的数学修养!办理方式:学生畅聊自己的收获,教师增补.设计企图:讲堂总结是知识积淀的过程,使学生对本节课所学进行梳理,养成反省与总结的习惯,进一步培育学生总结概括的能力与合作互帮的意识.六、达标检测,反响提高师:经过本节课的学习,同学们的收获真多!收获的质量如何呢?请达成导教案中的达标检测题.〔同时多媒体出示〕如图,△ABC是一等腰三角形铁板余料,此中AB=AC=20cm,BC=24cm假定.在△ABC上截出一矩形部件DEFG,使EF在BC上,点D、G分别在边AB、AC上.A问矩形DEFG的最大面积是多少?D GCB E F C如图,△ABC中,∠B=90°,AB=6cm,BC=12cm点.P从点A开始,沿AB边向点B以每秒1cm的速度挪动;点Q从点B开始,沿着BC边向QA P B点C 以每秒2cm 的速度挪动.假如P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?参照答案1.过A 作AM ⊥BC 于M,交DG 于N,那么AM=202122=16cm.设DE=x cm,S 矩形=y cm 2,那么由△ADG ∽△ABC,故AN DG 16xDG 3 AM,即,故DG=(16-x ).BC16242∴y =DG ·DE=3(16-x )x =-223(x-16x)=- 3(x-8)+96,22 2进而当x =8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.2.设第t 秒时,△PBQ 的面积为y cm 2.那么∵AP=t cm,∴PB=(6-t )cm;又BQ=2t.∴y =1PB ·BQ=1(6-t )·2t =(6-t )t =-t 2+6t =-(t -3)2+9,22当t =3时,y 有最大值9.2故第3秒钟时△PBQ 的面积最大,最大值是 9cm.办理方式:学生做完后,教师出示答案,指导学生校正,并统计学生答题状况.学生依据答案进行纠错.设计企图:学致使用,当堂检测实时获知学生对所学知识掌握状况,并最大限度地调换全体学生学习数学的踊跃性,使每个学生都能有所利润、有所提高,明确哪些学生需要在课后增强指导,抵达全面提高的目的.七、部署作业,讲堂延长必做题:课本47页,习题第1、2、3题. 选做题:课本48页,习题第4题.结束语:师:同学们,本节课的学习你们给我留下了深刻的印象, 同时也给了我太多的感人与惊 喜,感谢你们!就让我把这份感人与欣喜埋在心底“一世一世〞, 相信你们的明日会更美好!祝福同学们:象雄鹰同样飞的更高,飞的更远!〔多媒体播放歌曲“飞的更高〞结束本课〕学习不是一时半刻的事情,需要平常累积,需要平常的好学苦练。
北师大版九年级数学下册:2.4《二次函数的应用》说课稿
北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。
教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。
三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。
2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。
3.提高学生的数学思维能力,培养学生的数学素养。
四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。
2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。
五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。
2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。
3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。
六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。
2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。
3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。
4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。
5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。
九年级数学下册 2.4.1 二次函数的应用教案1 (新版)北师大版
课题:2.4.1二次函数的应用教学目标:1.经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.3. 积极参加数学活动,发展解决问题的能力,体会数学的应用价值,从而增强数学学习信心,体验成功的乐趣.教学重点与难点:重点:分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.难点:利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.教学过程:一、创设情境,引出问题如图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.(1)设长方形的一边AB=x m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?处理方式:以问题串的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正.(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得EB BCEA AF=即404030x BC-=.所以AD=BC=34(40-x).(2)要求面积y的最大值,即求函数y=AB·AD=x·34(40-x)的最大值,就转化为数学问题了.要求学生讨论写出步骤.(1)∵BC∥AD,∴△EBC ∽△EAF .∴EB BCEA AF=. 又AB =x ,BE =40-x , ∴404030x BC-=.∴BC =34(40-x ). ∴AD =BC =34(40-x )=30-34x . (2)y =AB ·AD =x (30-34x )=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.设计意图:通过师生分析交流,让学生经历用含x 的代数式表示矩形的另一边,变三个变量为两个变量,为建立二次函数模型做好铺垫,也让学生体会数形结合时表示线段的重要意义.此问是解决整个实际问题的关键之处,也是难点所在,让学生在充分交流的基础上,回忆起运用三角形相似解决问题. 二、尝试成功,探究创新活动内容:如果我们将这个问题再进行变式:如图,在一个直角三角形的内部作一个矩形ABCD ,其中点A 和点D 分别在两直角边上,BC 在斜边上.(1)设矩形的一边BC =x m ,那么AB 边的长度如何表示? (2)设矩形的面积为y m 2,当x 取何值,y 的最大值是多少?处理方式:以问题串的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正设计意图:有了前面两题作基础,这个问题可以留给学生课下自己解决,作为练习.解决问题的基本思路一样,只是用到了对应高之比等于相似比,这是此题的难点,本题既加深了旧知的复习应用,又在比较中总结表示线段的多种方法,让学生体会到类比解题,又在同中找异.三、例题讲解,学以致用40m30mD NOABCM窗户是一幢建筑最重要的标志之一,我们每个人的家里都有窗户,我们小时候还经常爬在窗户前数星星,下面我们来看一个和窗户有关的问题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?处理方式:x 为半圆的半径,也是矩形的较长边,因此x 与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy +2πx 2最大,而由于4y +4x +3x +πx =7x +4y +πx =15,所以y =1574x x π--.面积S =12πx 2+2xy=12πx 2+2x ·1574x x π--=12πx 2+(157)2x x x π--=-3.5x 2+7.5x ,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.解:∵7x +4y +πx =15, ∴y =1574x xπ--.设窗户的面积是S (m 2),则S =12πx 2+2xy=12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x =-3.5(x 2-157x ) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02.B AD C GE F H即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多.设计意图:把数学问题变式到实际生活问题,让学生运用数学知识到日常生活中,体会用数学的过程,由矩形面积变式到复合型面积,拓展了思维,以不变应万变,通过本题的训练让学生进一步体会利用二次函数解决最大面积问题的方法、过程.四、巩固提升 展示自我 活动内容:1. 用6米长的木料做成“目”字形的框架,设框架的宽为x 米,框架的面积为S 平方米,当x = 米时,S 最大?S 最大 = 平方米.2.如图,矩形ABCD 中,AB = 3,BC = 1,点E 、F 、G 、H 分别在AB 、BC 、CD 、DA 上,设EB = BF = GD = DH = x ,则四边形EFGH 的最大面积为 .3.如图,△ABC 中,BC = 4 cm ,AC = 23cm ,∠C = 60°.在BC 边上有一动点P ,过P 作PD ∥AB 交AC 于点D ,问:点P 在何处时,△APD 的面积最大?最大面积是多少?处理方式:学先让学生思考,完成练习后,再用课件展示图例,并统计学生答题情况.学生根据答案进行纠错.设计意图:通过这三道题目对学生的掌握情况进行反馈,发现学生在解决这类问题是存在的不足之处,如果学生感觉到困难,可以进行小组讨论或者教师加以引导点拨.五、总结概括,整理知识本节课我们学习了用二次函数知识解决最大面积问题,增强了应用意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学模型思想和数学的应用价值.1.请你总结一下解决这类问题的基本思路及要注意的问题. 2.本节课,你最深的感受是什么?3.在这节课学习过程中,你还有什么疑问没有解决?处理方式:由学生进行课堂小结,要给学生充足的时间进行思考,得出结论后,再进行集体交流和课件展示.设计意图:通过复习,让学生学会把知识系统化,加深对知识的理解和掌握,同时,培养学生有条理的进行思考,以形成完整知识结构,培养归纳概括能力和语言表达能力.评价自己的学习表现,有利于学生看到自己的优点和不足,以及今后改正的方向,同时也有助于BA P DC学习习惯的培养.六、达标测试,反馈纠正A 组:1.如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B ,C 重合).连接DE ,作EF ⊥DE ,EF 与线段BA 交于点F ,设CE=x ,BF=y . (1)求y 关于x 的函数关系式.(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若 要使△DEF 为等腰三角形,m 的值应为多少?B 组:2如图,阴平中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.处理方式:学生在学案上做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:分层设练,使学生知识、技能螺旋式的上升,也是一种思维与能力的训练. 七、布置作业,落实目标 课本习题P 47第2题 板书设计:12y m第1题第2题。
北师大版数学九年级下册2.4《二次函数应用》教案2
北师大版数学九年级下册2.4《二次函数应用》教案2一. 教材分析北师大版数学九年级下册2.4《二次函数应用》是学生在学习了二次函数的图象与性质的基础上进行的一节应用性较强的课程。
本节课主要让学生学会如何运用二次函数解决实际问题,进一步巩固二次函数的知识。
教材通过生活中的实例,引导学生运用二次函数的知识解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图象与性质有一定的了解。
但是,学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题。
因此,在本节课中,教师需要引导学生将实际问题与二次函数知识相结合,提高学生的数学应用能力。
三. 教学目标1.让学生掌握二次函数在实际问题中的应用方法。
2.培养学生将实际问题转化为数学问题的能力。
3.提高学生的数学应用意识,培养学生的数学素养。
四. 教学重难点1.重点:二次函数在实际问题中的应用方法。
2.难点:如何将实际问题转化为二次函数问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生感受二次函数在实际问题中的应用。
2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:学生分组讨论,共同解决问题,提高学生的团队协作能力。
六. 教学准备1.准备相关的生活实例,用于引导学生思考。
2.准备多媒体教学设备,用于展示实例和讲解。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抛物线形篮球架的高度与投篮命中率的关系,引导学生思考如何运用二次函数知识解决实际问题。
2.呈现(10分钟)教师给出几个实际问题,如汽车油耗与行驶距离的关系,让学生尝试将实际问题转化为二次函数问题。
学生在小组内讨论,共同解决问题。
3.操练(15分钟)教师给出一些实际问题,让学生独立解决。
学生通过解决问题,进一步巩固二次函数在实际问题中的应用方法。
4.巩固(5分钟)教师针对学生解决问题的过程进行讲评,指出不足之处,并给出正确的解决方法。
北师大版九年级数学下册:第二章2.4.1《二次函数的应用》精品说课稿
北师大版九年级数学下册:第二章 2.4.1《二次函数的应用》精品说课稿一. 教材分析北师大版九年级数学下册第二章《二次函数的应用》是学生在学习了二次函数的图象与性质的基础上进行的一节实践活动课。
本节课通过实例让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材中给出了两个实例:制作轴对称图案和确定顶点式二次函数的图象,教师可以在此基础上进行拓展,让学生更好地理解二次函数的应用。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象与性质有了初步的了解。
但学生在应用二次函数解决实际问题时,往往因为不能将实际问题与数学知识很好地结合起来而遇到困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,培养学生运用二次函数解决实际问题的能力。
三. 说教学目标1.让学生了解二次函数在实际生活中的应用,培养学生的应用意识。
2.使学生掌握利用二次函数解决实际问题的方法,提高学生的数学素养。
3.培养学生合作学习、交流分享的习惯,增强学生的团队意识。
四. 说教学重难点1.教学重点:让学生了解二次函数在实际生活中的应用,培养学生运用二次函数解决实际问题的能力。
2.教学难点:如何将实际问题转化为数学问题,如何利用二次函数解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二次函数在实际生活中的应用。
2.利用多媒体课件展示实例,直观地展示二次函数的图象与性质。
3.学生进行小组讨论,培养学生合作学习的能力。
4.教师进行适时点拨,帮助学生突破思维瓶颈。
六. 说教学过程1.导入新课:通过展示生活中的实例,引发学生对二次函数应用的思考,激发学生的学习兴趣。
2.探究新知:让学生自主探究教材中的实例,理解二次函数在实际生活中的应用。
3.小组讨论:让学生分组讨论,分享各自的想法,培养学生的合作意识。
4.教师讲解:针对学生的讨论,教师进行讲解,引导学生正确运用二次函数解决实际问题。
北师大版数学九年级下册2.4《二次函数应用》说课稿1
北师大版数学九年级下册2.4《二次函数应用》说课稿1一. 教材分析北师大版数学九年级下册2.4《二次函数应用》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行授课的。
本节课的主要内容是让学生学会如何运用二次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
教材通过引入实际问题,引导学生运用二次函数的知识进行解答,培养学生的数学应用意识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念和性质有了初步的了解。
但是,学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,运用二次函数进行解答。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数在实际问题中的应用方法,提高学生运用二次函数解决实际问题的能力。
2.过程与方法目标:通过解决实际问题,培养学生将实际问题转化为数学问题,运用二次函数进行解答的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 说教学重难点1.教学重点:让学生掌握二次函数在实际问题中的应用方法。
2.教学难点:如何引导学生将实际问题转化为数学问题,运用二次函数进行解答。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题,学会运用二次函数进行解答。
2.教学手段:利用多媒体课件,展示实际问题,引导学生进行思考和解答。
六. 说教学过程1.导入新课:通过展示一个实际问题,引发学生的思考,引出本节课的主题。
2.讲解新课:引导学生将实际问题转化为数学问题,运用二次函数进行解答。
在此过程中,教师要注意讲解二次函数在实际问题中的应用方法。
3.巩固新课:通过一些练习题,让学生巩固所学知识,提高运用二次函数解决实际问题的能力。
4.课堂小结:对本节课的内容进行总结,让学生明确二次函数在实际问题中的应用方法。
最新北师大版九年级数学下册2.4二次函数的应用公开课优质教案(1)
二次函数地应用(1)教学目标:1、经历数学建模地基本过程。
2、会运用二次函数求实际问题中地最大值或最小值。
3、体会二次函数是一类最优化问题地重要数学模型,感受数学地应用价值。
教学重点和难点:重点:二次函数在最优化问题中地应用。
难点:例1是从现实问题中建立二次函数模型,学生较难理解。
教学设计:一、创设情境、提出问题出示引例(将作业题第3题作为引例)给你长8m地铝合金条,设问:①你能用它制成一矩形窗框吗?②怎样设计,窗框地透光面积最大?2③如何验证?二、观察分析,研究问题演示动画,引导学生观察、思考、发现:当矩形地一边变化时,另一边和面积也随之改变。
深入探究如设矩形地一边长为x 米,则另一边长为(4-x)米,再设面积为ym 2,则它们地函数关系式为x x y 42ox x 4040x 并当x =2时(属于40x 范围)即当设计为正方形时,面积最大=4(m 2)引导学生总结,确定问题地解决方法:在一些涉及到变量地最大值或最小值地应用问题中,可以考虑利用二次函数最值方面地性质去解决。
步骤:第一步设自变量;第二步建立函数地解析式;第三步确定自变量地取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量地取值范围内)。
三、例练应用,解决问题在上面地矩形中加上一条与宽平行地线段,出示图形设问:用长为8m地铝合金条制成如图形状地矩形窗框,问窗框地宽和高各是多少米时,窗户地透光面积最大?最大面积是多少?引导学生分析,板书解题过程。
变式(即课本例1):现在用长为8米地铝合金条制成如图所示地窗框(把矩形地窗框改为上部分是由4个全等扇形组成地半圆,下部分是矩形),那么如何设计使窗框地透光面积最大?(结果精确到0.01米)练习:课本作业题第4题四、知识整理,形成系统这节课学习了用什么知识解决哪类问题?解决问题地一般步骤是什么?应注意哪些问题?学到了哪些思考问题地方法?五、布置作业:作业本4。
北师大版九年级数学下册:第二章 2.4.1《二次函数的应用》精品教学设计
北师大版九年级数学下册:第二章 2.4.1《二次函数的应用》精品教学设计一. 教材分析北师大版九年级数学下册第二章《二次函数的应用》是学生在学习了二次函数的图象与性质之后,进一步运用二次函数解决实际问题的课程。
本节内容通过现实生活中的实例,让学生了解二次函数在实际问题中的应用,培养学生的数学应用能力。
教材内容主要包括:二次函数在实际问题中的运用,二次函数的综合应用等。
二. 学情分析九年级的学生已经学习了二次函数的图象与性质,对二次函数有一定的理解。
但学生在解决实际问题时,往往难以将数学知识与实际问题相结合。
因此,在教学过程中,需要教师引导学生将二次函数知识运用到实际问题中,提高学生的数学应用能力。
三. 教学目标1.知识与技能:使学生能够理解二次函数在实际问题中的运用,提高学生的数学应用能力。
2.过程与方法:通过解决实际问题,培养学生将数学知识运用到实际中的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养。
四. 教学重难点1.重点:二次函数在实际问题中的运用。
2.难点:如何将二次函数知识灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过现实生活中的实例,引导学生理解二次函数在实际问题中的应用。
2.案例教学法:分析典型实例,让学生学会如何将二次函数知识运用到实际问题中。
3.小组合作学习:培养学生团队合作精神,提高学生的数学应用能力。
六. 教学准备1.教学课件:制作课件,展示二次函数在实际问题中的运用。
2.实例材料:收集一些实际问题,作为教学案例。
3.练习题:准备一些练习题,巩固学生对二次函数应用的理解。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如:抛物线形的跳板、抛物线形的桥梁等,引导学生思考:这些实际问题与二次函数有什么关系?2.呈现(10分钟)呈现一个实际问题:小明家有一个抛物线形的菜园,菜园的顶点在原点,开口向上,对称轴为y轴。
已知菜园的面积为40平方米,问:菜园的最大宽度是多少?引导学生分析问题,明确需要运用二次函数的知识来解决。
北师大版九年级数学下册:2.4《二次函数的应用》教案
北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。
这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。
但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。
四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。
如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。
请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。
例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。
3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。
例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。
4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。
北师大版九年级数学下册:2.4《二次函数的应用》说课稿1
北师大版九年级数学下册:2.4《二次函数的应用》说课稿1一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用。
教材通过具体案例,让学生了解二次函数在解决实际问题中的重要性,培养学生的数学应用意识。
内容主要包括:二次函数图像与实际问题相结合,利用二次函数解决最值问题,以及利用二次函数解决生活中的其他问题。
二. 学情分析九年级的学生已经学习了二次函数的基本概念、图像和性质,对二次函数有了初步的认识。
但学生在解决实际问题中的应用能力还有待提高。
因此,在教学过程中,教师要注重引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能:使学生掌握二次函数在实际问题中的应用,学会利用二次函数解决最值问题和生活中的其他问题。
2.过程与方法:通过案例分析,培养学生将数学知识应用于实际问题的能力,提高学生的数学素养。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。
四. 说教学重难点1.教学重点:二次函数在实际问题中的应用,如何利用二次函数解决最值问题和生活中的其他问题。
2.教学难点:如何引导学生将二次函数与实际问题相结合,提高学生的数学应用能力。
五. 说教学方法与手段1.教学方法:采用案例分析法、问题驱动法、合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、教学道具等辅助教学,提高课堂教学效果。
六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对二次函数应用的兴趣。
2.案例分析:选取几个典型的实际问题,引导学生运用二次函数进行分析,探讨解决方法。
3.方法提炼:总结二次函数在实际问题中的应用规律,引导学生学会解决类似问题。
4.实践环节:让学生分组讨论,选取自己感兴趣的实际问题,运用二次函数进行解决。
5.成果展示:各小组汇报自己的研究成果,其他小组进行评价、交流。
6.总结提升:对本节课的内容进行总结,强调二次函数在实际问题中的应用价值。
北师大版九年级数学下册:2.4《二次函数的应用——何时利润最大》教案
北师大版九年级数学下册:2.4《二次函数的应用——何时利润最大》教案一. 教材分析《二次函数的应用——何时利润最大》这一节内容,主要让学生了解二次函数在实际生活中的应用,学会利用二次函数解决实际问题。
通过本节课的学习,学生能够掌握二次函数在利润最大化问题中的应用,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题中,求解利润最大值,可能对学生来说较为复杂。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,利用已学的二次函数知识进行求解。
三. 教学目标1.让学生了解二次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.培养学生运用二次函数解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:二次函数在实际问题中的应用,求解利润最大值。
2.难点:将实际问题转化为数学问题,利用二次函数求解利润最大值。
五. 教学方法1.情境教学法:通过生活实例,引导学生感受二次函数在实际问题中的应用。
2.启发式教学法:引导学生主动思考,分析问题,解决问题。
3.小组合作学习:让学生在小组内讨论、交流,共同解决问题。
六. 教学准备1.教学课件:制作课件,展示二次函数在实际问题中的应用。
2.练习题:准备一些相关的练习题,让学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)利用生活实例,如一家企业的利润与销售量之间的关系,引出二次函数在实际问题中的应用。
让学生感受数学与生活的紧密联系。
2.呈现(10分钟)呈现一个具体的利润最大化问题,如一家企业的利润与生产成本、销售价格之间的关系。
引导学生将实际问题转化为数学问题,列出二次函数的表达式。
3.操练(10分钟)让学生在小组内讨论、交流,共同解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些类似的练习题,巩固所学知识。
北师大版九年级数学下册:2.4《二次函数的应用》教学设计
北师大版九年级数学下册:2.4《二次函数的应用》教学设计一. 教材分析《二次函数的应用》是北师大版九年级数学下册第2.4节的内容。
这部分内容主要介绍了二次函数在实际生活中的应用,通过具体实例使学生了解二次函数在实际问题中的重要性。
教材内容安排合理,由浅入深,环环相扣,有利于学生掌握二次函数的应用方法。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但将二次函数应用于实际问题中,解决实际问题,对学生来说还是一个新的领域。
因此,在教学过程中,要注重引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握二次函数在实际问题中的应用方法,能够将二次函数知识应用于解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极向上的学习态度。
四. 教学重难点1.重点:二次函数在实际问题中的应用方法。
2.难点:如何将实际问题转化为二次函数模型,并求解。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置实际问题,引导学生主动探究,合作解决问题,提高学生运用二次函数解决实际问题的能力。
六. 教学准备1.准备相关的实际问题,如生产成本问题、最大利润问题等。
2.准备多媒体教学设备,如投影仪、计算机等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如抛物线形的物体运动、生产成本问题等,引导学生思考这些问题与二次函数的关系。
2.呈现(10分钟)呈现一个具体的实际问题,如最大利润问题,引导学生将其转化为二次函数模型。
讲解如何根据实际问题设定二次函数的参数,并求解。
3.操练(10分钟)学生分组讨论,每组选取一个实际问题,尝试将其转化为二次函数模型,并求解。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)选取几组学生的解题结果,进行讲解和分析,总结解决实际问题的方法和技巧。
北师大版九年级数学下册:2.4《二次函数的应用》教学设计1
北师大版九年级数学下册:2.4《二次函数的应用》教学设计1一. 教材分析《二次函数的应用》是北师大版九年级数学下册第2章“函数、方程与不等式”的第4节内容。
本节课的主要内容是让学生掌握二次函数在实际生活中的应用,学会用二次函数解决实际问题。
教材通过丰富的例题和练习题,帮助学生理解和掌握二次函数的应用。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题。
因此,在教学过程中,教师需要引导学生将实际问题与二次函数联系起来,提高学生的数学应用能力。
三. 教学目标1.知识与技能:使学生掌握二次函数在实际生活中的应用,学会用二次函数解决实际问题。
2.过程与方法:通过解决实际问题,培养学生将现实问题转化为数学问题的能力,提高学生的数学建模能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何将实际问题转化为二次函数问题,以及如何利用二次函数解决实际问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数的应用。
同时,运用讨论法、案例分析法等教学方法,提高学生的参与度和积极性。
六. 教学准备1.教材:《北师大版九年级数学下册》。
2.教学课件:根据教学内容制作的课件。
3.练习题:针对本节课内容设计的练习题。
4.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线形的跳板,引导学生思考如何用数学模型来描述这个问题。
让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(15分钟)呈现教材中的例题,讲解二次函数在实际生活中的应用。
通过例题,让学生了解如何将实际问题转化为二次函数问题,以及如何利用二次函数解决实际问题。
2024北师大版数学九年级下册2.4.1《二次函数的应用》教案1
2024北师大版数学九年级下册2.4.1《二次函数的应用》教案1一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章第4节的内容,本节课主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过生活中的实例,引导学生认识二次函数的图像和性质,进而解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图像和性质,能够熟练地求解二次方程。
但将二次函数应用于实际问题中,解决生活中的问题,对学生来说还较为陌生。
因此,在教学过程中,教师需要通过生动的实例,引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。
三. 教学目标1.让学生了解二次函数在实际生活中的应用,培养学生的数学应用意识。
2.引导学生运用二次函数的知识解决实际问题,提高学生的数学素养。
3.通过对实际问题的探讨,培养学生合作交流、解决问题的能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何将实际问题转化为二次函数模型,并运用二次函数的知识解决。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生了解二次函数的应用。
2.问题驱动法:提出实际问题,激发学生探究兴趣,引导学生主动解决问题。
3.合作交流法:鼓励学生分组讨论,共同探讨问题的解决方法。
六. 教学准备1.准备相关的实际问题,如购物、面积、高度等问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备教案和教学课件。
七. 教学过程1.导入(5分钟)利用生活中的实例,如购物时发现商品打折,引导学生思考如何利用二次函数解决实际问题。
2.呈现(10分钟)呈现一系列实际问题,如购物、面积、高度等问题,让学生尝试运用二次函数的知识解决。
3.操练(10分钟)学生分组讨论,共同探讨问题的解决方法。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对每组问题,选取代表性的解法进行讲解,巩固学生对二次函数应用的理解。
2024北师大版数学九年级下册2.4.1《二次函数的应用》教学设计1
2024北师大版数学九年级下册2.4.1《二次函数的应用》教学设计1一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2.4.1节的内容,本节课主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过生活实例引入二次函数的应用,让学生感受数学与生活的紧密联系,提高学习兴趣。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但在实际应用二次函数解决生活中的问题时,部分学生可能会感到困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.理解二次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.掌握二次函数解决实际问题的方法,提高运用数学知识解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的动手操作能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何将实际问题转化为二次函数模型,并求解。
五. 教学方法1.情境教学法:通过生活实例引入二次函数的应用,激发学生的学习兴趣。
2.合作学习法:分组讨论,引导学生主动探究二次函数解决实际问题的方法。
3.动手操作法:让学生亲自动手操作,加深对二次函数应用的理解。
六. 教学准备1.教师准备相关的生活实例,用于引入二次函数的应用。
2.准备练习题,用于巩固所学知识。
3.准备教学课件,辅助讲解和展示。
七. 教学过程1.导入(5分钟)教师通过展示生活实例,如抛物线形拱桥的跨度、篮球投篮的最佳角度等,引导学生思考这些实际问题是否可以转化为二次函数模型。
让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)教师讲解二次函数在实际生活中的应用,如抛物线形拱桥的跨度公式、篮球投篮的最佳角度等。
引导学生理解这些实际问题是如何转化为二次函数模型的,并掌握求解方法。
3.操练(10分钟)学生分组讨论,选取一个实际问题,尝试将其转化为二次函数模型,并求解。
九年级数学下册2.4.1二次函数的应用课时教案新版北师大版
2.4.1二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排 1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x++π=由 157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. (五)随堂检测1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-+⎣⎦所以该金属框围成的面积30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 60402m ,10221032210210m .=--⨯-=此时矩形的一边长为另一边长为)2S 3002002m .=-最大3.解; (1)设矩形广场四角的小正方形的边长为x 米,根据题意 得:4x 2+(100-2x )(80-2x )=5 200, 整理得x 2-45x +350=0,解得x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意, 所以,要使铺设白色地面砖的面积为5 200平方米, 则矩形广场四角的小正方形的边长为35米或者10米. (2)设铺设矩形广场地面的总费用为y 元, 广场四角的小正方形的边长为x 米,则y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y =80x 2-3 600x +240 000,配方得 y =80(x -22.5)2+199 500,当x =22.5时,y 的值最小,最小值为199 500, 所以当矩形广场四角的小正方形的边长为22.5米时, 铺设矩形广场地面的总费用最少,最少费用为199 500元. 4. ⑴在矩形ABCD 中,∠B=∠C=90°, ∴在Rt △BFE 中, ∠1+∠BFE=90°, 又∵EF ⊥DE , ∴∠1+∠2=90°, ∴∠2=∠BFE , ∴Rt △BFE ∽Rt △CED , ∴BF BE CE CD =, ∴8y xx m-= 即28x x y m-=⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题:“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. 七、作业布置 课本P47练习 练习册相关练习 八、教学反思中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.把不等式组2010xx-⎧⎨+<⎩的解集表示在数轴上,正确的是()A.B.C.D.【答案】B【解析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.2.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A 213B313C.23D13【答案】B【解析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F , ∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°, ∴∠ABF =∠EAD , 在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ), ∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1, ∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF 中,222313BE =+=, ∴3313cos 1313BF EBF BE ∠===. 故选B . 【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 3.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④【答案】B【解析】由条件设,AB=2x ,就可以表示出CP=3x ,BP=3x ,用三角函数值可以求出∠EBC的度数和∠CEP 的度数,则∠CEP=∠BEP ,运用勾股定理及三角函数值就可以求出就可以求出BF 、EF 的值,从而可以求出结论.【详解】解:设,AB=2x ∵四边形ABCD 是矩形∴AD=BC ,CD=AB ,∠D=∠C=∠ABC=90°.DC ∥AB∴,CD=2x ∵CP :BP=1:2∴,x∵E 为DC 的中点, ∴CE=12CD=x ,∴tan ∠CEP=PC EC tan ∠EBC=EC BC ∴∠CEP=30°,∠EBC=30° ∴∠CEB=60° ∴∠PEB=30° ∴∠CEP=∠PEB∴EP 平分∠CEB ,故①正确; ∵DC ∥AB , ∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°, ∴△EBP ∽△EFB , ∴BE BP EF BF∴BE·BF=EF·BP ∵∠F=∠BEF , ∴BE=BF∴2BF =PB·EF ,故②正确∵∠F=30°, ∴PF=2PB=433x , 过点E 作EG ⊥AF 于G ,∴∠EGF=90°, ∴3∴PF·43x·32 2AD 2=2×3)2=6x 2, ∴PF·EF≠2AD 2,故③错误. 在Rt △ECP 中, ∵∠CEP=30°, ∴EP=2PC=233x ∵tan ∠PAB=PB AB 3∴∠PAB=30° ∴∠APB=60° ∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得, 3,3∴4AO·PO=4×3x·33x=4x 2 又EF·3x·232∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.4.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差【答案】D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.'''由△ABC绕点P旋转得到,则点P的坐标为()5.如图,在平面直角坐标系xOy中,△A B CA.(0,1)B.(1,-1)C.(0,-1)D.(1,0)【答案】B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心. 故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.6.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.32【答案】B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,33,根据题意得:AD=BC=x,AE=DE=AB=3x,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=13263xAMAE x==;故选B.【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.7.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【答案】B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定8.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数【答案】D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.9.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道【答案】C【解析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.10.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13【答案】A【解析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.二、填空题(本题包括8个小题)11.分解因式:x2﹣1=____.【答案】(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.12.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.【答案】20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【详解】设黄球的个数为x个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,∴x50=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.13.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.【答案】18 1【解析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1.故答案为:18;1.【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键.14.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是_________.【答案】136°.【解析】由圆周角定理得,∠A=12∠BOD=44°,由圆内接四边形的性质得,∠BCD=180°-∠A=136°【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.15.写出一个大于3且小于4的无理数:___________.10π,等,答案不唯一.【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和1610,11,12,,15都是无理数.16.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.【答案】65°或25°【解析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB , ∵AD ∥BC , ∴∠EAD=∠AEB , ∴∠BAD=∠AEB , ∵∠ABC =50°, ∴∠AEB=12•(180°-50°)=65°. (2)∵AE 平分∠BAD ,∴∠EAD=∠EAB=12DAB ∠ , ∵AD ∥BC , ∴∠AEB=∠DAE=12DAB ∠,∠DAB=∠ABC, ∵∠ABC =50°, ∴∠AEB=12×50°=25°. 故答案为:65°或25°. 【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 17.关于x 的一元二次方程x 2-2x +m -1=0有两个相等的实数根,则m 的值为_________ 【答案】2.【解析】试题分析:已知方程x 2-2x 1m +-=0有两个相等的实数根,可得:△=4-4(m -1)=-4m +8=0,所以,m =2.考点:一元二次方程根的判别式.18.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).【答案】1.2【解析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题(本题包括8个小题)19.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得1523255x yx y-=⎧⎨+=⎩,解得6045xy=⎧⎨=⎩,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得()()504020878032005m mm m⎧+-≤⎪⎨>-⎪⎩,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.20.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.【答案】(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+1;,(1)在一次函数y1=﹣x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4考点:1、一次函数,1、反比例函数,3、三角形的面积21.如图,在Rt ΔABC 中,C 90∠=,AD 平分BAC ∠,交BC 于点D ,点O在AB 上,O 经过A,D 两点,交AB 于点E ,交AC 于点F . 求证:BC 是O 的切线;若O 的半径是2cm ,F 是弧AD 的中点,求阴影部分的面积(结果保留π和根号).【答案】(1)证明见解析;(2)22(23)3cm π 【解析】(1)连接OD ,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD ,即可证明OD//AC ,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧AF =弧DF =弧DE ,即可证明∠BOD=60°,在Rt ΔBOD 中,利用∠BOD 的正切值可求出BD 的长,利用S 阴影=S △BOD -S 扇形DOE 即可得答案.【详解】(1)连接OD∵AD 平分BAC ∠,∴BAD CAD ∠∠=,∵OA OD = ,∴BAD ADO ∠∠=,∴ADO CAD ∠∠=,∴OD//AC ,∴ODB C 90∠∠==,∴OD BC ⊥又OD 是O 的半径,∴BC 是O 的切线(2)由题意得OD 2cm =∵F 是弧AD 的中点∴弧AF =弧DF∵BAD CAD ∠∠=∴弧DE =弧DF∴弧AF =弧DF =弧DE ∴1BOD 180603∠=⨯= 在Rt ΔBOD 中 ∵BD tan BOD OD ∠=∴BD OD tan BOD 2tan6023cm ∠=⋅==2ΔBOD DOE 2S S S 23πcm 3阴影扇形⎛⎫=-=- ⎪⎝⎭.【点睛】本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.22.如图,在平面直角坐标系中,反比例函数(0)k y x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数k y x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积【答案】(1)18y x=,N(3,6);(2)y =-x +2,S △OMN =3. 【解析】(1)求出点M 坐标,利用待定系数法即可求得反比例函数的解析式,把N 点的纵坐标代入解析式即可求得横坐标;(2)根据M 点的坐标与反比例函数的解析式,求得N 点的坐标,利用待定系数法求得直线MN 的解析式,根据△OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN 即可得到答案.【详解】解:(1)∵点M 是AB 边的中点,∴M(6,3).∵反比例函数y =k x 经过点M ,∴3=6k .∴k =1. ∴反比例函数的解析式为y =18x . 当y =6时,x =3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN 的解析式为y =ax +b ,则6226a b a b +=⎧⎨+=⎩, 解得18a b =-⎧⎨=⎩, ∴直线MN 的解析式为y =-x +2.∴S △OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN =36-6-6-2=3.【点睛】本题考查了反比例函数的系数k 的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M 、N 点的坐标是解题的关键.23.如图,在平面直角坐标系中,点O 为坐标原点,已知△ABC 三个定点坐标分别为A (﹣4,1),B (﹣3,3),C (﹣1,2).画出△ABC 关于x 轴对称的△A 1B 1C 1,点A ,B ,C 的对称点分别是点A 1、B 1、C 1,直接写出点A 1,B 1,C 1的坐标:A 1( , ),B 1( , ),C 1( ,);画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.【答案】(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.【解析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【详解】(1)如图所示,△A1B1C1即为所求.A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC1C2的面积是122×1=1.故答案为:1.【点睛】本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.24.某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.【答案】(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.25.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?【答案】20千米【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE 中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.26.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.【答案】(1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.【解析】(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.【详解】解:(1)△APD≌△CPD.理由:∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(两组角相等则两三角形相似).(3)猜想:PC2=PE•PF.理由:∵△APE∽△FPA,∴AP PEFP PA即PA2=PE•PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE•PF.【点睛】本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.【答案】C【解析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,9【答案】C【解析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数。
九年级数学下册 2.4.2 二次函数的应用课时教案 (新版)北师大版
2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为 : 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润,最大利润是 元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2(武汉·中考)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围.(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50- 10x ; (2)w=(180+x-20)y=(180+x-20)(50-10x )=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数 性质知x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3(青海·中考)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程得:(5+x)(200-10x)=1 500,解得:x1=10, x2=5.因为要顾客得到实惠,5<10所以 x=5.答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润”问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.(株洲·中考)某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.(德州·中考)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m.由柱子顶端A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m 处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.(青岛·中考)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤ 5 000 3 50010025010-+= 即100<x ≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2;当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤>2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000;当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3. 【解析】建立如图所示的坐标系,根据题意得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25.当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000 当352b x a=-= 时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:21070010 000 2 000.x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000.设成本为P(元),由题意,得:P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P随x的增大而减小.∴当x = 32时,P最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润”问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润七、作业布置课本P49练习练习册相关练习八、教学反思。
二次函数的应用 (教学设计)九年级数学下册(北师大版)
2.4.1二次函数的应用教学设计小兰家屋后有一块直角三角形的荒地(如图).爷爷想要挖一个矩形鱼塘养鱼.小兰帮助爷爷设计了方案:在直角三角形内部作了一个矩形ABCD,AB、AD分别在两直角边上.(1)如果设矩形的一边AB = x m,用含x的代数式表示AD.(2)设矩形面积为y㎡,当AB为多少时,鱼塘面积最大,最大面积是多少?例1 某建筑物的窗户如图所示,它的上半部是半圆,下半部分是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)? 此时,窗户的面积是多少? (结果精确到0.01m 2)1.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( ) A .32 m 2B .36 m 2C .48 m 2D .64 m 22.用长为8 m 的铝合金条制成如图所示的“日”字形矩形窗框,使窗户的透光面积最大,最大的透光面积为( )A .256 m 2B . 83m 2 C .2 cm 2 D .4 cm 23.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=_________m时,矩形土地ABCD的面积最大.4.如图,小滕要用总长为40 m的铁栅栏及一面墙(墙足够长)围成一个矩形自行车停车场ABCD,并要在AB和BC边上各留一个2 m宽的小门(不用铁栅栏),则他能围成的矩形自行车停车场ABCD的最大面积为_________ m2.5.手工课上,小明准备做一个形状是菱形的风筝(如图),这个菱形的两条对角线的长度之和恰好为60 cm,菱形的面积S(cm2)随其中一条对角线AC的长x(cm)的变化而变化.(1)请直接写出S与x之间的函数关系式;(2)当x为多少时,菱形风筝的面积S最大?最大值是多少?6.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有-条船以5km/h的速度向此桥径直驶来,当船距离此桥35km时.桥下水位正好在AB处.之后水位每小时上涨0.25m.当水位达到CD处时.将禁止船只通行,如果该船的速度不变,那么它能否安全通过此桥?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4.1二次函数的应用
一、教学目标
1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.
2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.
二、课时安排 1课时 三、教学重点
掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点
运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课
引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作
如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?
(2)设矩形的面积为ym 2
,当x 取何值时,y 的值最大?最大值是多少?
解:()3
1AD bm,b x 30.4
==-
+设易得 ()2
332(30)3044
y xb x x x x
==-+=-+
()2
320300.4
x =-
-+ 2
4:20,300.24b ac b x y a a
-=-===最大值或用公式当时
活动2:探究归纳
先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.
(三)重难点精讲
例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
解:4715.y x x
++π=由 157.4
x x y --π=得
2215722()242
x x x x S xy x π--ππ=+=+
窗户面积
271522
x x =-+ 2715225().214
56
x =--+
2b 154ac b 225x 1.07,s 4.02.
2a 144a 56
-=-=≈==≈最大值当时
即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2
. (四)归纳小结
“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.
2.分析问题中的变量和常量,以及它们之间的关系.
3.用数量的关系式表示出它们之间的关系.
4.根据二次函数的最值问题求出最大值、最小值.
5.检验结果的合理性.
(五)随堂检测
1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.
2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.
3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.
(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?
(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?
4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若12
y m
=,要使△DEF 为等腰三角形,m 的值应为多少?
5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .
(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.
【答案】 1.12.5
2.
根据题意可得:等腰三角形的直角边为m 矩形的一边长是2xm,
其邻边长为
(
(204x
102x,
2
-+=-
(
1
21022
S x x ⎡⎤=∙-+⎣⎦所以该金属框围成的面积
30,.
x ==-当金属框围成的图形面积最大
)(
(
()2x 60m ,
10210310m .
=--⨯-=此时矩形的一边长为另一边长为
)
2
S300m.
=-
最大
3.解; (1)设矩形广场四角的小正方形的边长为x米,根据题意得:4x2+(100-2x)(80-2x)=5 200,
整理得x2-45x+350=0,
解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,
所以,要使铺设白色地面砖的面积为5 200平方米,
则矩形广场四角的小正方形的边长为35米或者10米.
(2)设铺设矩形广场地面的总费用为y元,
广场四角的小正方形的边长为x米,则
y=30[4x2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x2-3 600x+240 000,配方得
y=80(x-22.5)2+199 500,
当x=22.5时,y的值最小,最小值为199 500,
所以当矩形广场四角的小正方形的边长为22.5米时,
铺设矩形广场地面的总费用最少,最少费用为199 500元.
4. ⑴在矩形ABCD中,∠B=∠C=90°,
∴在Rt△BFE中,∠1+∠BFE=90°,
又∵EF⊥DE,∴∠1+∠2=90°,
∴∠2=∠BFE,
∴Rt△BFE∽Rt△CED,
∴BF BE
CE CD
=, ∴
8
y x
x m
-
=
即
2
8x x y
m
-=
⑵当m=8时,28,8x x y -=
化成顶点式: ()2
1428y x =--+ (3)由12
y m =,及2
8x x y m -=得关于x 的方程:
28120x x -+=,得1226x x ==,
∵△DEF 中∠FED 是直角,
∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,
∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2
+40x .
x 的取值范围是0< x <20.
(2)当y=210时,由(1)可得,-2x 2
+40x=210. 即x 2
-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<
∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计
2.4.1二次函数的应用
探究: 例题:
“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.
2.分析问题中的变量和常量,以及它们之间的关系.
3.用数量的关系式表示出它们之间的关系.
4.根据二次函数的最值问题求出最大值、最小值.
5.检验结果的合理性. 七、作业布置 课本P47练习
练习册相关练习八、教学反思。