江苏省宝应县高中2017-2018学年度高三数学月考试卷试卷(含答案) - 副本
2018年最新 江苏省宝应县中学第二学期高三数学测试试卷 精品
江苏省宝应县中学2018—2018学年度第二学期高三年数学试卷一、选择题(本大题共12小题,每小题5分,共60分,每小题给出的4个选项中,只有1项是符合题目要求的.) 1.给出两个命题:x x p =|:|的充要条件是x 为正实数;q :存在反函数的函数一定是单调 函数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .﹁p 且qD .﹁p 或q2.设集合},2|||{},,0|{2R x x x N R x x x x M ∈<=∈<-=,则 ( )A .M N M =B .M N M =C .φ=N M C R )(D .R N N C R = )(3.设双曲线)0,0(12222>>=-b a by a x 的实轴长、虚轴长、焦距成等比数列,则双曲线的离心率为 ( )A .25B .215+ C .2 D .34.设c b a c b a ,,,23,14sin 15sin 14cos 15cos ),14sin 14(cos 22则=︒︒-︒︒=︒+︒=的大 小关系为( )A .b c a <<B .a c b <<C .c b a <<D .c a b <<5.设有四个命题:①底面是矩形的平行六面体是长方体 ②棱长都相等的直四棱柱是正方体 ③侧棱垂直于底面两条边的平行六面体是直平行六面体 ④对角线相等的平行六面体是 直平行六面体,其中真命题的个数是 ( )A .1B .2C .3D .4 6.数列}{n a 中,n n n n n na n a a a a ∞→--≥+==lim ),2(31,1111则为( )A .0B .1C .31 D .不存在7.已知)(x f 是定义在R 上的奇函数,且当0<x 时,)41(,2)(1-=-fx f x则的值为( )A .21-B .21C .-2D .2 8.若1log 12a <,则实数a 的取值范围是A .102a <<或1a >B .1a >C .102a << D .2a >9.设抛物线)0(22>=p px y 的准线为l ,将圆922=+y x 按向量)1,2(=平移后恰与l 相切,则p 的值为( )A .21 B .2 C .41 D .410.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为2x y =,值域为}4,1{的“同族函数”共有 ( )A .9个B .8个C .5个D .4个11.球面上有三点,其中任意两点的球面距离都等于球的大圆周长的61,经过这三点的小圆 的周长为4π,则这个球的表面积为( )A .64πB .48πC .24πD .12π12.要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表:今需A 、B 、C 三种规格的成品各15、18、27块,所需两种规格的钢板的张数分别为m 、 n (m 、n 为整数),则m +n 的最小值为 ( ) A .10 B .11 C .12 D .13第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中的横线上.) 13. 已知向量a 和b 的夹角为60°, 且| a |=2, | b |=5, 则a ·b = ;(2a -b )·a = . .14.已知:b a b a 与,2||,2||==的夹角为4π,要使与-λ垂直,则=λ . 15.已知nx )21(-的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第 项.16.在钝角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且3,30,1=︒==c A a ,则 △ABC 的面积为 .三、解答题(本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)一个口袋中装有大小相同的2个白球和3个黑球. (1)从中摸出两个球,求两球颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.18.(本小题满分12分)已知函数.2cos )24(sin sin 4)(2x xx x f ++=π(1)设0>ω为常数,若)(x f y ω=在区间]32,2[ππ-上是增函数,求ω的取值范围. (2)设集合B A m x f x B x x A ⊆<-=≤≤=若},2|)(||{},326|{ππ,求实数m 的取值 范围.19.(本小题满分12分)如图,在棱长为a的正方体ABCD—A1B1C1D1中。
宝应县高级中学2018-2019学年高二上学期第一次月考试卷数学
宝应县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱2. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .483. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 24. 设为虚数单位,则( )A .B .C .D .5. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥6. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A . B .C .D .7. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.159. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L 2h 相当于将圆锥体积公式中的π近似取为( )A .B .C .D .10.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 11.如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A .B .1C .D .12.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>二、填空题13.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .14.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.15.不等式的解集为R ,则实数m 的范围是.16.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.①函数f (x )的极大值点为0,4; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .17.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xx e x f e (其 中为自然对数的底数)的解集为 .18.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .三、解答题19.斜率为2的直线l 经过抛物线的y 2=8x 的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长.20.本小题满分12分 已知数列{}n a 中,123,5a a ==,其前n 项和n S 满足)3(22112≥+=+---n S S S n n n n .Ⅰ求数列{}n a 的通项公式n a ; Ⅱ 若22256log ()1n n b a =-N*n ∈,设数列{}n b 的前n 的和为n S ,当n 为何值时,n S 有最大值,并求最大值.21.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8 (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .22.已知函数f (x )=x 3+x .(1)判断函数f (x )的奇偶性,并证明你的结论; (2)求证:f (x )是R 上的增函数;(3)若f (m+1)+f (2m ﹣3)<0,求m 的取值范围.(参考公式:a 3﹣b 3=(a ﹣b )(a 2+ab+b 2))23.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .24.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm 之间的概率;(Ⅲ)从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率.宝应县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.2.【答案】C【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则,由双曲线的性质知,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.3.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.4.【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C5.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.6.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键7.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.8.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.9.【答案】B【解析】解:设圆锥底面圆的半径为r ,高为h ,则L=2πr ,∴=(2πr )2h ,∴π=.故选:B .10.【答案】A 【解析】试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为{}4,2.考点:复合函数求值. 11.【答案】D【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D .12.【答案】A 【解析】考点:棱锥的结构特征.二、填空题13.【答案】 4 .【解析】解:∵f ′(x )=3cosx+4sinx , ∴f ′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.14.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
宝应县一中2018-2019学年高三上学期11月月考数学试卷含答案
16.椭圆
的两焦点为 F1,F2,一直线过 F1 交椭圆于 P、Q,则△PQF2 的周长为 .
17.函数 y=f(x)的图象在点 M(1,f(1))处的切线方程是 y=3x﹣2,则 f(1)+f′(1)= .
18.等差数列{an} 中,| a3 || a9 | ,公差 d 0 ,则使前项和 Sn 取得最大值的自然数是________.
第 3 页,共 6 页
22.(文科)(本小题满分 12 分) 我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年 100 位居民每人的月均用水量(单位:吨),
将数据按照0, 0.5,0.5,1,L ,4, 4.5 分成 9 组,制成了如图所示的频率分布直方图.
(1)求直方图中的值; (2)设该市有 30 万居民,估计全市居民中月均用量不低于 3 吨的人数,并说明理由; (3)若该市政府希望使 85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
:l∥α,m⊥l,m⊂β,则 β⊥α,则下列命题为真命题的是( )
A.p 或 q
B.p 且 q
C.¬p 或 q
D.p 且¬q
10.在△ABC 中,已知 D 是 AB 边上一点,若 =2 , =
,则 λ=( )
A.
B.
C.﹣
D.﹣
11.设函数 f x 1 x 1 ,g x ln ax2 3x 1 ,若对任意 x1 [0 , ) ,都存在 x2 R ,使得
第 4 页,共 6 页
23.设
江苏省扬州市宝应中学2017-2018学年高三上学期第一次月考数学试卷 Word版含解析
2017-2018学年江苏省扬州市宝应中学高三(上)第一次月考数学试卷一、填空题:(本大题共14小题,每小题5分,共70分.)1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a= .2.若(其中表示复数z的共轭复数),则复数z的模为.3.运行如图语句,则输出的结果T= .4.已知向量=(1,2),=(﹣3,2),则(+)•= .5.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行则实数a= .6.若“∃x∈R,使得ax2+ax+1≤0”为假,则实数a的取值范围为.7.若m∈(0,3),则直线(m+2)x+(3﹣m)y﹣3=0与x轴、y轴围成的三角形的面积小于的概率为.8.要得到函数y=cos2x的图象,需将函数y=sin(2x+)的图象向左至少平移个单位.9.直线2x﹣y+3=0与椭圆=1(a>b>0)的一个焦点和一个顶点的连线垂直,则该椭圆的离心率为.10.已知函数y=x2+(a∈R)在x=1处的切线与直线2x﹣y+1=0平行,且此切线也是圆x2+y2+mx ﹣(3m+1)y=0的切线,则m= .11.已知函数f(x)=x3+x2+(2a﹣1)x+a2﹣a+1若函数f(x)在(1,3]上存在唯一的极值点.则实数a的取值范围为.12.若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= .13.已知函数f(x)=﹣x2+(m﹣2)x+2﹣m,且y=|f(x)|在[﹣1,0]上为单调减函数,则实数m的取值范围为.14.已知椭圆C1:=1(a>b>0)和圆C2:x2+y2=r2都过点P(﹣1,0),且椭圆C1的离心率为,过点P作斜率为k1,k2的直线分别交椭圆C1,圆C2于点A,B,C,D(如图),k1=λk2,若直线BC恒过定点Q(1,0),则λ= .二、解答题:(本大题共6小题,共90分.)15.如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cosα=﹣.(1)求cos∠CAD;(2)求BC边上高的值.16.已知圆C的一般方程为:x2+y2﹣2x+2y﹣2=0(1)过点P(3,4)作圆C的切线,求切线方程;(2)直线l在x,y轴上的截距相等,且l与圆C交于A,B两点,弦长|AB|=,求直线l的方程.17.设p:函数的定义域为R,q:不等式,对一切正实数x恒成立,如果“p或q”为真,“p且q”为假,求实数a的取值范围.18.为丰富农村业余文化生活,决定在A,B,N三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD的两个顶点A,B和以边AB的中心M为圆心,以MC长为半径的圆弧的中心N处,且AB=8km,BC=4km.经协商,文化服务中心拟建在与A,B 等距离的O处,并建造三条道路AO,BO,NO与各村通达.若道路建设成本AO,BO段为每公里a万元,NO段为每公里a万元,建设总费用为w万元.(1)若三条道路建设的费用相同,求该文化中心离N村的距离;(2)若建设总费用最少,求该文化中心离N村的距离.19.已知A(﹣2,0),B(2,0),点C、D依次满足.(1)求点D的轨迹;(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为,且直线l与点D的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PA,PB都相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.20.已知函数f(x)=x3﹣x﹣.(I)求函数y=f(x)的零点的个数;(Ⅱ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)﹣g(s)>e+2﹣.2014-2015学年江苏省扬州市宝应中学高三(上)第一次月考数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分.)1.已知集合A={1,4},B={0,1,a},A∪B={0, 1,4},则a= 4 .考点:并集及其运算.专题:集合.分析:由已知中集合A={1,4},B={0,1,a},A∪B={0,1,4},可得:a∈A,再由集合元素的互异性,可得答案.解答:解:∵集合A={1,4},B={0,1,a},A∪B={0,1,4},∴a∈A,即a=1,或a=4,由集合元素的互异性可得:a=1不满足条件,故a=4,故答案为:4点评:本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.2.若(其中表示复数z的共轭复数),则复数z的模为 3 .考点:复数求模.专题:计算题.分析:先设z=a+bi,则=a﹣bi,由可得a2+b2,从而可求复数z的模解答:解:设z=a+bi,则=a﹣bi∵∴(a+bi)(a﹣bi)=a2﹣b2i2=a2+b2=9∴|z|==3故答案为:3点评:本题主要考查了复数基本概念;复数的模,共轭复数及复数的基本运算,属于基本试题3.运行如图语句,则输出的结果T= 625 .考点:伪代码.专题:计算题;图表型.分析:本题所给的是一个循环结构的算法语句,由图可以看出,此是一个求等差数列和的算法语句,由公式计算出T的值,即可得到答案.解答:解:T=1,I=3,第1次循环,T=1+3,I=5<50,符合循环条件,第2次循环,T=1+3+5,I=7<50,符合循环条件,…,第23次循环,T=1+3+…+47,I=49<50,符合循环条件,第24次循环,T=1+3+…+49,I=51>50,不符合循环条件,输出T,∴T=1+3+…+49==625,∴输出的结果T=625.故答案为:625.点评:本题考查了伪代码,即循环结构的算法语句,解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.4.已知向量=(1,2),=(﹣3,2),则(+)•= 14 .考点:平面向量数量积的运算;平面向量的坐标运算.专题:平面向量及应用.分析:由向量的坐标运算可得+=(﹣2,4),由数量积的坐标运算可得.解答:解:∵=(1,2),=(﹣3,2),∴+=(1,2)+(﹣3,2)=(﹣2,4),∴(+)•=﹣2×(﹣3)+4×2=14故答案为:14点评:本题考查平面向量的数量积的坐标运算,属基础题.5.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行则实数a= ﹣1 .考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行关系可得a的方程,解方程验证可得.解答:解:∵直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行,∴a(a﹣1)﹣2×1=0,解得a=﹣1或a=2,经验证当a=2时,直线重合,a=﹣1符合题意,故答案为:﹣1点评:本题考查直线的一般式方程和直线的平行关系,属基础题.6.若“∃x∈R,使得ax2+ax+1≤0”为假,则实数a的取值范围为[0,4).考点:特称.专题:函数的性质及应用;简易逻辑.分析:“∃x∈R,使得ax2+ax+1≤0”为假,即ax2+ax+1>0恒成立,分当a=0时和当a≠0时两种情况分别讨论满足条件的a的取值,最后综合讨论结果,可得答案.解答:解:∵“∃x∈R,使得ax2+ax+1≤0”为假,∴ax2+ax+1>0恒成立,当a=0时,1>0恒成立,满足条件,当a≠0时,若ax2+ax+1>0恒成立,则,解得:a∈(0,4),综上所述:a∈[0,4),故答案为:[0,4)点评:本题考查的知识点是特称,恒成立问题,其中正确理解“∃x∈R,使得ax2+ax+1≤0”为假的含义是ax2+ax+1>0恒成立,是解答的关键.7.若m∈(0,3),则直线(m+2)x+(3﹣m)y﹣3=0与x轴、y轴围成的三角形的面积小于的概率为.考点:几何概型.专题:概率与统计.分析:由题意,分别令x,y=0可得截距,进而可得××<,解不等式可得m的范围,由几何概型求出相等长的比值即可.解答:解:∵m∈(0,3),∴m+2>0,3﹣m>0令x=0,可解得y=,令y=0,可解得x=,故可得三角形的面积为S=××,由题意可得××<,即m2﹣m﹣2<0,解得﹣1<m<2,结合m∈(0,3)可得m∈(0,2),故m总的基本事件为长为3的线段,满足题意的基本事件为长为2的线段,故可得所求概率为:故答案为:点评:本题考查几何概型的求解决,涉及直线的方程和一元二次不等式的解集,属中档题.8.要得到函数y=cos2x的图象,需将函数y=sin(2x+)的图象向左至少平移个单位.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:y=cos2x=sin(2x+),﹣=,把将函数y=sin(2x+)的图象向左至少平移个单位,可得函数ysin[2(x+)+]=sin(2x+)=cos2x的图象,故答案为:.点评:本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.直线2x﹣y+3=0与椭圆=1(a>b>0)的一个焦点和一个顶点的连线垂直,则该椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意得:K AB=﹣=﹣,从而b=,由a2=b2+c2得:的比值,进而求出e=的值.解答:解:画出草图,如图示:,由题意得:k AB=﹣=﹣,∴b=,由a2=b2+c2得:=,∴e==,故答案为:.点评:本题考查了椭圆的简单性质,考查直线的斜率问题,是一道基础题.10.已知函数y=x2+(a∈R)在x=1处的切线与直线2x﹣y+1=0平行,且此切线也是圆x2+y2+mx﹣(3m+1)y=0的切线,则m= .考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;直线与圆.分析:求出函数的导数,求得切线的斜率,由两直线平行的条件可得a,求得切点,求出切线方程,求出圆的圆心和半径,应用直线与圆相切则d=r,由点到直线的距离公式,列出方程,解出m即可.解答:解:∵函数y=x2+(a∈R)在x=1处的切线与直线2x﹣y+1=0平行,∴f′(1)=2,由于f′(x)=2x﹣,即f′(1)=2﹣a=2,解得a=0,函数y=x2,则切点为(1,1),切线方程为:y﹣1=2(x﹣1),即2x﹣y﹣1=0,由于圆x2+y2+mx﹣(3m+1)y=0的圆心为(﹣,),半径为,由直线与圆相切得,=,化简,解得m=.故答案为:.点评:本题考查导数的应用:求切线方程,考查直线与圆相切的条件,考查运算能力,属于中档题.11.已知函数f(x)=x3+x2+(2a﹣1)x+a2﹣a+1若函数f(x)在(1,3]上存在唯一的极值点.则实数a的取值范围为[﹣7,﹣1).考点:利用导数研究函数的极值.专题:计算题;导数的综合应用.分析:求出函数的导数,由已知条件结合零点存在定理,可得f′(1)•f′(3)<0或f′(3)=0,解出不等式求并集即可.解答:解:∵f(x)=x3+x2+(2a﹣1)x+a2﹣a+1,∴f′(x)=x2+2x+2a﹣1,∵函数f(x)在(1,3]上存在唯一的极值点,∴f′(1)•f′(3)<0或f′(3)=0,∴(1+2+2a﹣1)(9+6+2a﹣1)<0或9+6+2a﹣1=0,即有(a+1)(a+7)<0或a=﹣7解得﹣7≤a<﹣1.故答案为:[﹣7,﹣1).点评:本题考查导数的运用:求函数的极值,考查函数的零点存在定理,注意导数为0与函数的极值的关系,属于易错题,也是中档题.12.若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= 32 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据“f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A”求出A点坐标,设B(x1,y1),C(x2,y2),由正弦函数的对称性可知B,C 两点关于A对称即x1+x2=8,y1+y2=0,代入向量的数量积的坐标表示即可求解解答:解:由f(x)=2sin(x+)=0,可得x+=kπ,∴x=6k﹣2,k∈Z∵2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0∴(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故答案为:32.点评:本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.13.已知函数f(x)=﹣x2+(m﹣2)x+2﹣m,且y=|f(x)|在[﹣1,0]上为单调减函数,则实数m的取值范围为m≤0或m≥2 .考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:通过讨论判别式△的范围,得到不等式组,解出即可.解答:解:判别式△=m2﹣8m+12=(m﹣2)(m﹣6),①当△≤0时,即2≤m≤6时,函数f(x)≤0恒成立,∴|f(x)|=﹣f(x)=x2﹣(m﹣2)x+m﹣2,对称轴方程为:x=,∴当≥0即m≥2时符合题意(如图1),此时2≤m≤6;②当△>0时,即m<2或m>6时,方程f(x)=0的两个实根为x=,不妨设x1<x2,由题意及图象得x1≥0 或,即m﹣2≥(如图2)或(如图3)解得m≥2或m≤0,此时m≤0或m>6,综上得m的取值范围是:m≤0或m≥2;故答案为:m≤0或m≥2.点评:本题考查了函数的单调性问题,考查了数形结合思想,分类讨论思想,是一道中档题.14.已知椭圆C1:=1(a>b>0)和圆C2:x2+y2=r2都过点P(﹣1,0),且椭圆C1的离心率为,过点P作斜率为k1,k2的直线分别交椭圆C1,圆C2于点A,B,C,D(如图),k1=λk2,若直线BC恒过定点Q(1,0),则λ= 2 .考点:直线与圆锥曲线的关系.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:根据k1=λk2,应该找到k1,k2的关系式,再结合直线分别与直线相交,交点为A,B,C,D,用k把相应的点的坐标表示出来(将直线代入椭圆的方程消去关于x的一元二次方程,借助于韦达定理将A,B,C,D表示出来),再想办法把Q点坐标表示出来,再利用B,C,Q 三点共线构造出关于k1,k2的方程,化简即可.解答:解:设A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D),由得:,∵x P=﹣1,∴,则点A的坐标为:由得:,∵x P=﹣1,∴,则点B的坐标为:同理可得:,根据B、C、Q三点共线,,结合Q(1,0)所以=λ()化简得λ=2故答案为:2.点评:本题的计算量较大,关键是如何找到k1,k2间的关系表示出来,最终得到λ的值.二、解答题:(本大题共6小题,共90分.)15.如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cosα=﹣.(1)求cos∠CAD;(2)求BC边上高的值.考点:解三角形的实际应用.专题:应用题;解三角形.分析:(1)由二倍角公式cos2α=2cos2α﹣1,可求cosα,根据∠CAD=α﹣45°,即可求cos∠CAD;(2)由(1)得,sin∠CAD=sin(α﹣45°)sinαcos45°﹣sin45°cosα=,再由正弦定理,可求AD,从而可由h=ADsin∠ADB求解.解答:解:(1)∵cos2α=2cos2α﹣1,∴cos2α=,∵α∈(0°,45°),∴cosα=,∴,∵∠CAD=α﹣45°,∴=.(2)由(1)得,sin∠CAD=sin(α﹣45°)=sinαcos45°﹣sin45°cosα=,在△ACD中,由正弦定理得:,∴AD===5,∴高h=ADsin∠ADB==4.点评:本题主要考查了同角平方关系、和差角公式及正弦定理在求解三角形中的应用,解题的关键是熟练应用基本公式.16.已知圆C的一般方程为:x2+y2﹣2x+2y﹣2=0(1)过点P(3,4)作圆C的切线,求切线方程;(2)直线l在x,y轴上的截距相等,且l与圆C交于A,B两点,弦长|AB|=,求直线l的方程.考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)把圆C的一般方程化成标准方程,分当斜率k不存在时和当斜率k存在时两种情况,分别根据圆心到直线的距离等于半径,求出圆的方程,综合可得结论.(2)由题意可得,弦心距d=1,再分直线经过原点和直线不经过原点两种情况,利用点到直线的距离公式求得截距a的值,可得直线l的方程.解答:解:(1)圆C的一般方程为:x2+y2﹣2x+2y﹣2=0化成标准方程为:(x﹣1)2+(y+1)2=4.当斜率k不存在时,圆的切线的方程为x=3.当斜率k存在时,设切线的方程为:y﹣4=k(x﹣3),化成一般式为kx﹣y+4﹣3k=0,圆心(1,﹣1)到直线kx﹣y+4﹣3k=0的距离为d==r=2,解得,.所以直线l的方程为:21x﹣20y+17=0.综上得:直线l的方程为:x=3或21x﹣20y+17=0.(2)当直线过原点时,设直线的方程为:y=kx,化成一般式为:kx﹣y=0.∵弦长|AB|=,所以圆心(1,﹣1)到kx﹣y=0的距离d=1,则,解得k=0,所以直线方程为:y=0(舍去).当直线不过原点时,设直线的方程为:,化成一般式为:x+y﹣a=0,所以,,解得:,所以直线l方程为:.综上得:直线l的方程为:.点评:本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,体现了转化、分类讨论的数学思想,属于基础题.17.设p:函数的定义域为R,q:不等式,对一切正实数x恒成立,如果“p或q”为真,“p且q”为假,求实数a的取值范围.考点:的真假判断与应用.专题:综合题.分析:由已知中p:函数的定义域为R,q:不等式,对一切正实数x恒成立,我们可以求出p与q为真或假时,实数a的取值范围,又由“p或q”为真,“p且q”为假,构造关于a的不等式组,解不等式组即可得到实数a的取值范围.解答:解:p为真⇔在R上恒成立.当a=0时,x<0,解集不为R∴a≠0∴得a>2∴P真⇔a>2(4分)=对一切正实数x均成立∵x>0∴∴∴∴q真⇔a≥1(8分)∵p,q一真一假∴或(10分)∴a∈[1,2](12分)点评:本题考查的知识点是的真假判断与应用,其中根据已知条件,求出p与q为真或假时,实数a的取值范围,是解答本题的关键.18.为丰富农村业余文化生活,决定在A,B,N三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD的两个顶点A,B和以边AB的中心M为圆心,以MC长为半径的圆弧的中心N处,且AB=8km,BC=4km.经协商,文化服务中心拟建在与A,B 等距离的O处,并建造三条道路AO,BO,NO与各村通达.若道路建设成本AO,BO段为每公里a万元,NO段为每公里a万元,建设总费用为w万元.(1)若三条道路建设的费用相同,求该文化中心离N村的距离;(2)若建设总费用最少,求该文化中心离N村的距离.考点:函数模型的选择与应用.专题:应用题;函数思想;函数的性质及应用.分析:(1)设∠AOB=θ,三条道路建设的费用相同,则,利用三角变换求解.(2)总费用,即,求导判断极值点,令,再转换为三角变换求值解决.解答:解:(1)不妨设∠AOB=θ,依题意得,且,由,若三条道路建设的费用相同,则所以,所以.由二倍角的正切公式得,即,答:该文化中心离N村的距离为.(2)总费用即,令当,所以当有最小值,这时,答:该文化中心离N村的距离为.点评:本题综合考查了函数的性质在实际问题中的应用,转换为三角函数最值求解.19.已知A(﹣2,0),B(2,0),点C、D依次满足.(1)求点D的轨迹;(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为,且直线l与点D的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PA,PB都相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.考点:直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.专题:综合题;圆锥曲线中的最值与范围问题.分析:(1)设C(x0,y0),D(x,y),由可得C、D两点坐标关系①,由||=2可得②,由①②消掉x0,y0即得所求轨迹方程,进而得其轨迹;(2)设直线l的方程为y=k(x+2)椭圆的方程,由l与圆相切可得k2值,联立直线方程与椭圆方程消掉y并代入k2值,可用a表示出由中点坐标公式及MN的中点到y轴的距离为可得a的方程,解出即可;(3)假设存在椭圆上的一点P(x0,y0),使得直线PA,PB与以Q为圆心的圆相切,易知点Q到直线PA,PB的距离相等,根据点到直线的距离公式可得一方程,再由点P在椭圆上得一方程联立可解得点P,进而得到圆的半径;解答:解:(1)设.=(x+2,y),则,.所以,点D的轨迹是以原点为圆心,1为半径的圆.(2)设直线l的方程为y=k(x+2).①椭圆的方程;②由l与圆相切得:.将①代入②得:(a2k2+a2﹣4)x2+4a2k2x+4a2k2﹣a4+4a2=0,又,可得,有,∴,解得a2=8.∴.(3)假设存在椭圆上的一点P(x0,y0),使得直线PA,PB与以Q为圆心的圆相切,则Q到直线PA,PB的距离相等,A(﹣2,0),B(2,0),PA:(x0+2)y﹣y0x﹣2y0,PB:(x0﹣2)y﹣y0x+2y0=0,==d2,化简整理得:,∵点P在椭圆上,∴,解得:x0=2或x0=8(舍)x 0=2时,,r=1,∴椭圆上存在点P,其坐标为(2,)或(2,﹣),使得直线PA,PB与以Q为圆心的圆(x﹣1)2+y2=1相切.点评:本题考查直线方程、圆的方程、椭圆方程及其位置关系,考查学生分析解决问题的能力,综合性强,能力要求较高.20.已知函数f(x)=x3﹣x﹣.(I)求函数y=f(x)的零点的个数;(Ⅱ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)﹣g(s)>e+2﹣.考点:导数在最大值、最小值问题中的应用.专题:综合题;导数的综合应用.分析:(Ⅰ)易知x=0是y=f(x)的零点,从而x>0时,f(x)=x(x2﹣1﹣),设φ(x)=,利用导数及零点判定定理可求函数零点个数;(Ⅱ)化简得g(x)=lnx+,其定义域是(0,1)∪(1,+∞),求导得g'(x)=,令h(x)=x2﹣(2+a)x+1,则问题转化为h(x)=0有两个不同的根x1,x2,从而△=(2+a)2﹣4>0,且一根在(0,)内,不妨设0<x1<,再由x1x2=1,得0<x1<<e<x2,根据零点判定定理可知只需h()<0,由此可求a的范围;(Ⅲ)由(Ⅱ)可求y=g(x)在(1,+∞)内的最小值为g(x2),y=g(x)在(0,1)内的最大值为g(x1),由(Ⅱ)同时可知x1+x2=2+a,x1x2=1,,x2∈(e,+∞),故g(t)﹣g(s)≥g(x2)﹣g(x1)=lnx2+﹣==(x2>e),令k(x)=lnx2+x﹣=2lnx+x﹣,利用导数可判断k(x)在(e,+∞)内单调递增,从而有k(x)>k(e),整理可得结论;解答:解:(Ⅰ)∵f(0)=0,∴x=0是y=f(x)的一个零点,当x>0时,f(x)=x(x2﹣1﹣),设φ(x)=,φ'(x)=2x+>0,∴φ(x)在(0,+∞)上单调递增.又φ(1)=﹣1<0,φ(2)=3﹣>0,故φ(x)在(1,2)内有唯一零点,因此y=f(x)在(0,+∞)内有且仅有2个零点;(Ⅱ)g(x)=+lnx=+lnx=lnx+,其定义域是(0,1)∪(1,+∞),则g'(x)===,设h(x)=x2﹣(2+a)x+1,要使函数y=g(x)在(0,)内有极值,则h(x)=0有两个不同的根x1,x2,∴△=(2+a)2﹣4>0,得a>0或a<﹣4,且一根在(0,)内,不妨设0<x1<,又x1x2=1,∴0<x1<<e<x2,由于h(0)=1,则只需h()<0,即+1<0,解得a>e+﹣2;(Ⅲ)由(Ⅱ)可知,当x∈(1,x2)时,g'(x)<0,g(x)递减,x∈(x2,+∞)时,g'(x)>0,g(x)递增,故y=g(x)在(1,+∞)内的最小值为g(x2),即t∈(1,+∞)时,g(t)≥g(x2),又当x∈(0,x1)时,g'(x)>0,g(x)单调递增,x∈(x1,1)时,g'(x)<0,g(x)单调递减,故y=g(x)在(0,1)内的最大值为g(x1),即对任意s∈(0,1),g(s)≤g(x1),由(Ⅱ)可知x1+x2=2+a,x1x2=1,,x2∈(e,+∞),因此,g(t)﹣g(s)≥g(x2)﹣g(x1)=lnx2+﹣==(x2>e),设k(x)=lnx2+x﹣=2lnx+x﹣,k'(x)=+1+>0,∴k(x)在(e,+∞)内单调递增,故k(x)>k(e)=2+e﹣,即g(t)﹣g(s)>e+2﹣.点评:本题考查利用导数研究函数的零点、极值、最值,考查转化思想,考查学生综合运用数学知识分析解决问题的能力,综合性强,能力要求比较高.。
江苏省扬州市2017-2018学年度第一学期期末调研测试高三数学试题 及答案解析
2017—2018学年度第一学期期末检测试题高三数学第一部分一、填空题(本大题共14个小题,每小题5分,共70分.请将答案填写在答题卷相应的位置上)1.若集合{|13}A x x=<<,{0,1,2,3}B=,则A B=.2.若复数(2)(13)a i i-+(i是虚数单位)是纯虚数,则实数a的值为.3.若数据31,37,33,a,35的平均数是34,则这组数据的标准差是.4.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg的人数为.5.运行下边的流程图,输出的结果是.6.从2名男生2名女生中任选两人,则恰有一男一女的概率为.7.若圆锥的侧面展开图的面积为3π且圆心角为23π的扇形,则此圆锥的体积为 .8.若实数x ,y 满足433412x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22x y +的取值范围是 .9.已知各项都是正数的等比数列{}n a 的前n 项和为n S ,若44a ,3a ,56a 成等差数列,且2323a a =,则3S = .10.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的渐近线与圆22650x y y +-+=没有交点,则双曲线离心率的取值范围是 .11.已知函数14()sin 2xx f x x x -=-+,则关于x 的不等式2(1)(57)0f x f x -+-<的解集为 .12.已知正ABC ∆的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足1AP AQ ⋅=,则CQ 的最大值为 .13.已知函数12log (1)1,[1,]()21,(,]x x k f x x x k a -+-∈-⎧⎪=⎨⎪--∈⎩,若存在实数k 使得该函数的值域为[2,0]-,则实数a 的取值范围是 .14.已知正实数x ,y 满足22541x xy y +-=,则22128x xy y +-的最小值为 .二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,AC 的中点.(1)证明:11//B C 平面1A DE ;(2)若平面1A DE ⊥平面11ABB A ,证明:AB DE ⊥. 16.已知在ABC ∆中,6AB =,5BC =,且ABC ∆的面积为9. (1)求AC ;(2)当ABC ∆为锐角三角形时,求cos(2)6A π+的值.17.如图,射线OA 和OB 均为笔直的公路,扇形OPQ 区域(含边界)是一蔬菜种植园,其中P 、Q 分别在射线OA 和OB 上.经测量得,扇形OPQ 的圆心角(即POQ ∠)为23π、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN ,分别与射线OA 、OB 交于M 、N 两点,并要求MN 与扇形弧PQ相切于点S .设POS α∠=(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路MN 的长度表示为α的函数,并写出α的取值范围; (2)试确定α的值,使得公路MN 的长度最小,并求出其最小值.18.已知椭圆1E :22221(0)x y a b a b+=>>,若椭圆2E :22221(0,1)x y a b m ma mb+=>>>,则称椭圆2E 与椭圆1E “相似”.(1)求经过点,且与椭圆1E :2212x y += “相似”的椭圆2E 的方程;(2)若4m =,椭圆1E的离心率为2,P 在椭圆2E 上,过P 的直线l 交椭圆1E 于A ,B 两点,且AP AB λ=.①若B 的坐标为(0,2),且2λ=,求直线l 的方程;②若直线OP ,OA 的斜率之积为12-,求实数λ的值.19.已知函数()x f x e =,()g x ax b =+,,a b R ∈.(1)若(1)0g -=,且函数()g x 的图象是函数()f x 图象的一条切线,求实数a 的值;(2)若不等式2()f x x m >+对任意(0,)x ∈+∞恒成立,求实数m 的取值范围; (3)若对任意实数a ,函数()()()F x f x g x =-在(0,)+∞上总有零点,求实数b 的取值范围.20.已知各项都是正数的数列{}n a 的前n 项和为n S ,且22n n n S a a =+,数列{}n b 满足112b =,12n n n nbb b a +=+. (1)求数列{}n a 、{}n b 的通项公式; (2)设数列{}nc 满足2n n nb c S +=,求和12n c c c ++⋅⋅⋅+; (3)是否存在正整数p ,q ,()r p q r <<,使得p b ,q b ,r b 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,说明理由.第二部分(加试部分)21. B .选修4-2:矩阵与变换已知x ,y R ∈,若点(1,1)M 在矩阵23x y ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下得到点(3,5)N ,求矩阵A 的逆矩阵1A -.21. C .选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程是:2x m y ⎧=⎪⎪⎨⎪=⎪⎩(t 是参数,m 是常数).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为6cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于P 、Q 两点,且2PQ =,求实数m 的值. 22.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生中至少有1名被分配到甲学校实习的概率;(2)设X ,Y 分别表示分配到甲、乙两所中学的大学生人数,记X Y ξ=-,求随机变量ξ的分布列和数学期望.23.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,n S 是所有n 位二进制数构成的集合,对于n a ,n n b S ∈,(,)n n M a b 表示n a 和n b 对应位置上数字不同的位置个数.例如当3100a =,3101b =时33(,)1M a b =,当3100a =,3111b =时33(,)2M a b =.(1)令510000a =,求所有满足55b S ∈,且55(,)2M a b =的5b 的个数; (2)给定(2)n a n ≥,对于集合n S 中的所有n b ,求(,)n n M a b 的和.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案第一部分一、填空题 1.{}2 2.6-3. 24. 2405.946.23 7. 38.144[,25]25 9.1327 10.3(1,)211.(2,3) 12.12 13. 1(,2]214. 73二、解答题15证明:⑴在直三棱柱111ABC A B C -中,四边形11B BCC 是平行四边形,所以11//B C BC ,在ABC ∆中,,D E 分别为,AB AC 的中点,故//BC DE ,所以11//B C DE , 又11B C ⊄平面1A DE ,DE ⊂平面1A DE , 所以11//B C 平面1A DE .⑵在平面11ABB A 内,过A 作1AF A D ⊥于F ,因为平面1A DE ⊥平面11A ABB ,平面1A DE 平面111A ABB A D=,AF ⊂平面11A ABB ,所以AF ⊥平面1A DE ,又DE ⊂平面1A DE ,所以AF DE ⊥,在直三棱柱111ABC A B C -中,1A A ⊥平面ABC ,DE ⊂平面ABC ,所以1A A DE ⊥, 因为1AF A A A= ,AF ⊂平面11A ABB ,1A A ⊂平面11A ABB ,所以DE ⊥平面11A ABB ,因为AB ⊂平面11A ABB ,所以DE AB ⊥.注:作1AF A D ⊥时要交代在平面内作或要交代垂足点,否则扣1分16 解:⑴因为S △ABC =1sin 92AB BC B =创,又AB=6,BC=5,所以3sin 5B =,又B (0,)π∈,所以4cos 5B ==±,当cosB=45时,AC == 当cosB=45-时,AC ===所以AC =注:少一解的扣3分⑵ 由ABC ∆为锐角三角形得B 为锐角,所以AB=6,,BC=5, 所以cosA ==又(0,)A π∈,所以sinA ==, 所以12sin 2213A ==,225cos 213A =-=-,所以cos(2)cos 2cos sin 2sin 666A A A p p p +=-.17. 解:⑴因为MN 与扇形弧PQ 相切于点S ,所以OS ⊥MN. 在RT OSM 中,因为OS=1,∠MOS=α,所以SM=tan α, 在RT OSN 中,∠NOS=23πα-,所以SN=2tan()3πα-,所以2tan tan()3MN παα=+-=,其中62ππα<<.⑵ 因为62ππα<<,所以10α->,令10t α=->,则tan 1)t α=+,所以42)MN t t=++,由基本不等式得2)MN ≥=, 当且仅当4t t=即2t =时取“=”.此时tan α=62ππα<<,故3πα=.答:⑴2tan tan()3MN παα=+-=,其中62ππα<<.⑵当3πα=时,MN 长度的最小值为.注:第⑵问中最小值对但定义域不对的扣2分.18解:⑴设椭圆2E 的方程为2212x y m m +=,代入点得2m =, 所以椭圆2E 的方程为22142x y +=.⑵因为椭圆1E 的离心率为2,故222a b =,所以椭圆2221:22E x y b +=, 又椭圆2E 与椭圆1E “相似”,且4m =,所以椭圆2221:28E x y b +=, 设112200(,),(,),(,)A x y B x y P x y ,①方法一:由题意得2b =,所以椭圆221:28E x y +=,将直线:2l y kx =+, 代入椭圆221:28E x y +=得22(12)80k x kx ++=,解得1228,012kx x k -==+,故212224,212k y y k -==+, 所以222824(,)1212k k A k k--++, 又2AP AB = ,即B 为AP 中点,所以2228212(,)1212k k P k k+++, 代入椭圆222:232E x y +=得222228212()2()321212k k k k ++=++,即4220430k k +-=,即22(103)(21)0k k -+=,所以10k =±,所以直线l 的方程为2y x =+. 方法二:由题意得2b =,所以椭圆221:28E x y +=,222:232E x y +=, 设(,),(0,2)A x y B ,则(,4)P x y --,代入椭圆得2222282(4)32x y x y ⎧+=⎪⎨+-=⎪⎩,解得12y =,故x =所以k =所以直线l 的方程为2y x =+.②方法一: 由题意得22222222200112228,22,22x y b x y b x y b +=+=+=,010112y y x x ⋅=-,即010120x x y y +=, AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩, 所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=. 方法二:不妨设点P 在第一象限,设直线:(0)O P y k x k =>,代入椭圆2222:28E x y b +=,解得0x =0y =,直线,O P O A的斜率之积为12-,则直线1:2O Ay x k=-,代入椭圆2221:22E x y b+=,解得1x =1y =,AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩,所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以2222282(((1)22b b b λλλ+-++-⋅=,即222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=.19解:(1)由(1)0g -=知,()g x 的图象直线过点(1,0)-,设切点坐标为00(,)T x y ,由'()x f x e =得切线方程是000()x x y e e x x -=-, 此直线过点(1,0)-,故000(1)x x e e x -=--,解得00x =,所以'(0)1a f ==.(2)由题意得2,(0,)x m e x x <-∈+∞恒成立, 令2(),(0,)x m x e x x =-∈+∞,则'()2x m x e x =-,再令()'()xn x m x e x ==-,则'()2xn x e =-,故当(0,ln 2)x ∈时,'()0n x <,()n x 单调递减;当(ln 2,)x ∈+∞时,'()0n x >,()n x 单调递增,从而()n x 在(0,)+∞上有最小值(ln 2)22ln 20n =->, 所以()m x 在(0,)+∞上单调递增, 所以(0)m m ≤,即1m ≤. 注:漏掉等号的扣2分.(3)若0a <,()()()x F x f x g x e ax b =-=--在(0,)+∞上单调递增, 故()()()F x f x g x =-在(0,)+∞上总有零点的必要条件是(0)0F <,即1b >, 以下证明当1b >时,()()()F x f x g x =-在(0,)+∞上总有零点. ①若0a <,由于(0)10F b =-<,()()0b baa b b F e a b e a a---=---=>,且()F x 在(0,)+∞上连续,故()F x 在(0,)ba-上必有零点; ②若0a ≥,(0)10F b =-<,由(2)知221x e x x >+>在(0,)x ∈+∞上恒成立, 取0x a b=+,则0()()a b F x F a b e a a b b +=+=-+-22()(1)0a b a ab b ab b b >+---=+->,由于(0)10F b =-<,()0F a b +>,且()F x 在(0,)+∞上连续, 故()F x 在(0,)a b +上必有零点, 综上得:实数b 的取值范围是(1,)+∞.20. 解:(1)22n n n S a a =+①,21112n n n S a a +++=+②,②-①得:221112n n n n n a a a a a +++=-+-,即11()(1)0n n n n a a a a +++--=, 因为{}n a 是正数数列,所以110n n a a +--=,即11n n a a +-=, 所以{}n a 是等差数列,其中公差为1, 在22n n n S a a =+中,令1n =,得11a =, 所以n a n =, 由12nn n nb b b a +=+得1112n n b b n n +=⋅+, 所以数列{}n b n 是等比数列,其中首项为12,公比为12,所以1(),22n n n n b nb n ==即. 注:也可累乘求{}n b 的通项. (2)2212()2n n n n b n c S n n +++==+,裂项得1112(1)2n n n c n n +=-⋅+, 所以121112(1)2n n c c c n ++++=-+ , (3)假设存在正整数,,()p q r p q r <<,使得,,p q r b b b 成等差数列,则2p r q b b b +=,即2222p r q p r q+=, 因为11111222n n n n n n n nb b ++++--=-=,所以数列{}n b 从第二项起单调递减, 当1p =时,12222r q r q+=,若2q =,则122r r =,此时无解; 若3q =,则124r r =,因为{}n b 从第二项起递减,故4r =,所以1,3,4p q r ===符合要求, 若4q ≥,则1142q b b b b ≥≥,即12q b b ≥,不符合要求,此时无解; 当2p ≥时,一定有1q p -=,否则若2q p -≥,则2442221p p qP b b p b b p p+≥==≥++,即2p q b b ≥,矛盾, 所以1q p -=,此时122r pr =,令1r p m -=+,则12m r +=,所以121m p m +=--,12m q m +=-,综上得:存在1,3,4p q r ===或121m p m +=--,12m q m +=-,12m r +=满足要求.第二部分(加试部分)答案21.A .解:因为1315⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A ,即213315x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2335x y +=⎧⎨+=⎩,解得12x y =⎧⎨=⎩, 所以2132⎡⎤=⎢⎥⎣⎦A , 法1:设1a b c d -⎡⎤=⎢⎥⎣⎦A ,则121103201a b c d -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA ,即2132020321a c a c b d b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩, 解得2132a b c d =⎧⎪=-⎪⎨=-⎪⎪=⎩,所以12132--⎡⎤=⎢⎥-⎣⎦A . 法2:因为1db a b ad bc ad bc c d c a ad bcad bc --⎡⎤⎢⎥⎡⎤--=⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥--⎣⎦,且21det()2213132==⨯-⨯=A , 所以1121213232---⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦A . 注:法2中没有交待逆矩阵公式而直接写结果的扣2分.B .解:(1)因为直线l 的参数方程是: 2x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数), 所以直线l 的普通方程为0x y m --=.因为曲线C 的极坐标方程为6cos ρθ=,故26cos ρρθ= ,所以226x y x += 所以曲线C 的直角坐标方程是22(3)9x y -+=.(2)设圆心到直线l 的距离为d,则d ==又d ==所以34m -=,即 1m =-或7m =.22.解:⑴记 “6名大学生中至少有1名被分配到甲学校实习” 为事件A ,则6163()=1264P A =-. 答:6名大学生中至少有1名被分配到甲学校实习的概率为6364. ⑵ξ所有可能取值是0,2,4,6,记“6名学生中恰有i 名被分到甲学校实习”为事件i A (01,6i = ,,),则3363365(0)()216C C P P A ξ====,2442646224246615(2)()()()2232C C C C P P A A P A P A ξ==+=+=+=,155165611515663(4)()()()2216C C C C P P A A P A P A ξ==+=+=+=,066066660606661(6)()()()2232C C C C P P A A P A P A ξ==+=+=+=,所以随机变量ξ的概率分布为:所以随机变量ξ的数学期望()024+6163216328E ξ=⨯+⨯+⨯⨯=.答:随机变量ξ的数学期望15()8E ξ=. 23.解(1)因为55(,)2M a b =,所以5b 为5位数且与5a 有2项不同,又因为首项为1,故5a 与5b 在后四项中有两项不同,所以5b 的个数为246C =.(2)当(,)n n M a b =0时,n b 的个数为01n C -; 当(,)n n M a b =1时,n b 的个数为11n C -, 当(,)n n M a b =2时,n b 的个数为21n C -,………当(,)n 1n n M a b =-时,n b 的个数为11n n C --,设(,)n n M a b 的和为S , 则01211111012(1)n n n n n S C C C n C -----=++++- , 倒序得12101111(1)210n n n n n S n C C C C -----=-++++ ,倒序相加得01111112(1)[](1)2n n n n n S n C C C n -----=-++=-⋅ ,即2(1)2n S n -=-⋅, 所以(,)n n M a b 的和为2(1)2n n --⋅.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案2018.2第一部分1.2.3.4.5.6.7.8.9. 10.11.12.13.14.15证明:⑴在直三棱柱中,四边形是平行四边形,所以,.………2分在中,分别为的中点,故,所以, (4)分又平面,平面,所以平面.………7分⑵在平面内,过作于,因为平面平面,平面平面,平面,所以平面,.………11分又平面,所以,在直三棱柱中,平面,平面,所以,因为,平面,平面,所以平面,因为平面,所以。
江苏省宝应中学2018届高三上学期第一次月考数学试题Word版含答案
江苏省宝应中学17-18学年第一学期高三年级月考测试(数学)一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.(){},|25A x y y x ==+, (){},|12B x y y x ==-,则A B ⋂=__________.2.设复数,若,则实数a=_________.3.设函数()()3,05{ 5,5x x f x f x x ≤<=-≥,那么()13f =____________.4.若实数x ,y 满足约束条件22220y xx y x y ≤-⎧⎪-≤⎨⎪-+≥⎩,则2z x y =﹣的最小值为_ _. 5.已知方程210x x =-的根()1x k k k ∈+∈,,Z ,则k =________. 6.设△的内角 , ,所对的边长分别为,若,则 的值为____.7.设D 为ABC ∆所在平面内一点, 1433AD AB AC =-+ ,若()BC DC R λλ=∈ ,则λ=__________.8.若一个圆的圆心是抛物线24x y =的焦点,且该圆与直线3y x =+相切,则该圆的标准方程是____________.9.若3sin ,,522ππαα⎛⎫=∈- ⎪⎝⎭,则5cos 4πα⎛⎫+= ⎪⎝⎭__________. 10.以双曲线的两焦点为直径作圆,且该圆在轴上方交双曲线于,两点;再以线段为直径作圆,且该圆恰好经过双曲线的两个顶点,则双曲线的离心率为__________.11.如图,等腰梯形ABCD 的底边长分别为8和6,高为7,圆E 为等腰梯形ABCD 的外接圆,对于平面内两点(),0P a -, (),0Q a (0a >),若圆E 上存在点M ,使得•0MP MQ = ,则正实数a 的取值范围是__________.12.在平面直角坐标系中,分别过点,的直线,满足:,且,被圆:截得的弦长相等,则直线的斜率的取值集合为_________.13.设x , y 为实数,若2241x y xy ++=,则2x y +的最大值__________.14.已知函数()222f x ax x =++,若对任意(),0x R f f x ⎡⎤∈≥⎣⎦恒成立,则实数a 取值范围是___.二、解答题 (本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文 字说明、证明过程或演算步骤.)15.已知命题p :方程有两个不相等的实数根;命题q :124m +<.(1)若p 为真命题,求实数m 的取值范围;(2)若p ∨q 为真命题,p ∧q 为假命题,求实数m 的取值范围.16.已知向量()()sin ,cos ,6sin cos ,7sin 2cos u x x v x x x x ==+- ,设函数()f x u v =∙ .(Ⅰ)求函数()f x 的最大值及此时x 的取值集合;(Ⅱ)在ABC ∆中,角,,A B C 所对的边长分别为,,a b c ,已知()0,6BA AC f A ⋅<= ,且ABC ∆的面积为3, b =ABC ∆的外接圆半径R 的大小.17.已知圆22:4480C x y x y +---=,直线l 过定点()0,1P , O 为坐标原点.(1)若圆C 截直线l 的弦长为l 的方程;(2)若直线l 的斜率为k ,直线l 与圆C 的两个交点为,A B ,且•8OA OB >- ,求斜率k 的取值范围.18.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为(升). (1)求关于的函数关系式;(2)若,求当下潜速度取什么值时,总用氧量最少.19.椭圆()的上下左右四个顶点分别为,,,,轴正半轴上的某点满足,.(1)求椭圆的标准方程以及点的坐标;(2)过点作倾斜角为锐角的直线交椭圆于点,过点作直线交椭圆于点,,且,是否存在这样的直线,使得,,的面积相等?若存在,请求出直线的斜率;若不存在,请说明理由.20.已知函数()sin ln sin g x x x θθ=--在[)1,+∞单调递增,其中()0,θπ∈.(1)求θ的值;(2)若()()221x f x g x x -=+,当[]1,2x ∈时,试比较()f x 与()1'2f x +的大小关系(其中()'f x 是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时, ()11xe x kg x --≥+恒成立,求k 的取值范围.江苏省宝应中学17-18学年第一学期高三年级月考测试(数学理科附加题)21.已知矩阵A=0110⎡⎤⎢⎥⎣⎦ ,B=1002⎡⎤⎢⎥⎣⎦. 1)求AB;2)若曲线C 1; 22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.22.平面直角坐标系xOy 中,倾斜角为α的直线l 过点()2,4M --,以原点O 为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin2cos ρθθ=.(1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程;(2)若直线l 与C 交于A 、B 两点,且40MA MB ⋅=,求倾斜角α的值.23.如图,在多面体中,四边形是正方形,在等腰梯形中,,,,平面平面.(1)证明:;(2)求二面角的余弦值.24.甲、乙两人想参加《中国诗词大会》比赛,筹办方要从10首诗词中分别抽出3首让甲、乙背诵,规定至少背出其中2首才算合格;在这10首诗词中,甲只能背出其中的7首,乙只能背出其中的8首(1)求抽到甲能背诵的诗词的数量 的分布列及数学期望;(2)求甲、乙两人中至少且有一人能合格的概率.江苏省宝应中学17-18学年第一学期高三年级月考测试数学参考答案及评分标准1.(){}-1,3;2.;3.27;4.4-;5.2;6.4;7.-3;8.()2212x y +-=;9.-;10.;11.[]2,8;12.;314.a ≥15.解:(1)若为真命题,则应有,解得; ----5分(2)若为真命题,则有,即, ----7分因为为真命题,为假命题, 则,应一真一假。
宝应县高级中学2018-2019学年上学期高三数学10月月考试题
宝应县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .2. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. “”是“”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=5. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D . 6. 某几何体的三视图如图所示,该几何体的体积是( )A .B .C .D .7. 已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,-∞B .(,-∞C .(0,D .)+∞8. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)9. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种 10.在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .11.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .112.+(a ﹣4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠4二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .14.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.15.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.16.设α为锐角,若sin (α﹣)=,则cos2α= .三、解答题(本大共6小题,共70分。
江苏省宝应中学2018届高三上学期开学考试数学试题1(PDF版,无答案)
f (2) =
★ .
7.已知 cos α = −
π 4 π ,且 α ∈ ( , π ) ,则 tan( − α ) = 2 5 4
★ .
8.△ABC 中,三内角 A,B,C 的对边分别为 a、b、c,且
c−b 2c − a
=
sin A ,则角 sin B + sin C
B=
★ .
x + y ≥ 1 y+2 9.若变量 x,y 满足约束条件 x − y ≥ −1 ,则 z = 的最大值为 x +1 3 x − y ≤ 3
f (a ) = f (b) = f (c) = 0 .则实数 m 的取值范围是
14.已知正数 x,y 满足 2 xy =
★ . ★ .
2x − y ,那么 y 的最大值为 2x + 3y
201708 高三数学试题
第 1 页,共 4 页
二、解答题:本大题共 6 小题,共计 90 分。请在答题卡指定区域内作答。解答时应写出文 字说明、证明过程或演算步骤。 15.(本题满分 14 分)
201708 高三数学试题
第 3 页,共 4 页
(本题满分 16 分) 19. 设 a 为实数,函数 f ( x) = (2 − x) | x − a | − a, x ∈ R. (1)求证: f ( x) 不是 R 上的奇函数; (2)若 f ( x) 是 R 上的单调函数,求实数 a 的值; (3)若函数 f ( x) 在区间 [ −2,2] 上恰有 3 个不同的零点,求实数 a 的取值范围.
→ →
★ .
★
.
★
条件. ★ .
4.已知向量 a = ( m,1) 与向量 b = ( 4, m) 共线且方向相同,则 m 的值为 5.设函数 f ( x= ) ka 为 ★ .
2018年最新 江苏宝应安宜高级中学高三数学月考试卷 精品
江苏宝应安宜高级中学高三数学月考试卷第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、曲线12++=x x y 的对称点坐标为 ( )A 、(-1,1)B 、(-1,-1)C 、(1,1)D 、(1,-1) 2、若θθθπθ2cos ,31cos sin ),,0(则=+∈的值为 ( )A 、915-B 、915 C 、917 D 、917-3、若a<-1,不等式x 2-(a1+a )x +1<0的解集为 ( ) A 、{ x |a <x <a 1} B 、{ x |a 1<x < a } C 、{ x |x >a 1或x <a } D 、{ x |x <a1或 x >a }4、函数f (x )=1212-++-x x x 的图象关于 ( )A 、原点对称B 、y 轴对称C 、x 轴对称D 、直线y =x 对称 5、函数y =4sin (x +6π)sin (3π-x )的图象是将函数y =2sin 2x 的图象( ) A 、向左平移3π B 、向右平移3πC 、向左平移6πD 、向右平移6π6、若过球面上A 、B 、C 三点的截面与球心的距离恰为球半径的一半,且AB=BC=CA=2,则球体积为 ( )A 、π8132B 、π2768 C 、π34D 、π812567、数列1,31,31,31,51,51,51,51,51,71……的前100项之和为 ( ) A 、10 B 、19191 C 、11 D 、212098、函数y =log 21(x 2-ax +3a )在[2,+∞]上是减函数,则a 的取值范围是( )A 、(-∞,4) B 、(-4,4) C 、(-∞,-4)∪[2,+∞] D 、[-4,4]9、椭圆192522=+y x 的焦点为F 1和F 2,点P 在椭圆上,若线段PF 1的中点在y 轴上,那么|PF 1| :|PF 2|的值为( )A 、916 B 、941 C 、925 D 、1625 10、已知A 、B 、C 、D 是坐标平面上不共线的四点,则和共线是⋅=⋅=0的什么条件 ( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件11、函数)(x f 对一切实数x 都满足0)(),1()1(=-=+x f x f x f 且有3个实根,则这3个实根之和为 ( ) A 、6 B 、9 C 、4 D 、312、设函数f (x )在R 上为奇函数,且满足f (x +2)=-f (x ).当0≤x ≤1时, f (x )=x ,则方程13 f (x )= x 的根有 ( ) A 、7个 B 、13个 C 、14个 D 、26个第II 卷(非选择题共90分)二、填空题:本大题4小题,每小题4分,共16分.把答案填在题中横线上.13、n xx )23(-展开式中第9项为常数,则n 的值为 .14、已知曲线12+=x y 则在曲线上 点处的切线与直线32+-=x y 垂直. 15、对函数f (x )=xxx cos cos 3cos -有下列四个结论中正确的为 .⑴值域为[0,4] ⑵最大值为0 ⑶最小值为-4 ⑷f (x )>-4恒成立16、设数列{n a },{n b }分别为正项等比数列,T n ,R n 分别为数列{lg n a }与{lg n b } 的前n 项和,且12+=n nR T n n ,则log 5b 5a 的数值为 .江苏宝应安宜高级中学高三数学月考试卷答题纸13. ; 14. ; 15. ; 16. .三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.)17、(本小题满分12分)设),2||,0,0)(sin()(πϕωϕω≤>>+=A x A x f 最高点M (2,2),由最高点运动班级学到相邻的最低点N 时,曲线与x 轴交于K (6,0). (I )求A 、ω、ϕ的值;(II )求满足1)(=x f 的所有x 值的集合.18、(本小题满分12分)计算:︒+︒︒+︒+︒40cos 170sin )10tan 31(50sin 40cos19、(本小题满分12分)如图,正三棱柱ABC —A 1B 1C 1,BC=BB 1=1,D 为BC 上一点,且满足AD ⊥C 1D.(I )求证:截面ADC 1⊥侧面BC 1; (II )求二面角C —AC 1—D 的正弦值; (III )求直线A 1B 与截面ADC 1距离.20、(本小题满分12分)设函数∈-+=a ax x x f (3)(R ),若使),1()(+∞在x f 上为增函数,求a 的取值范围.在等比数列{n a }中,6a -4a =24,5a 3a =64 ⑴求数列{n a }的前8项之和. ⑵试比较数列{na 21}的前n 项和与32的大小.21、(本小题满分12分)设)2,0(πα∈,函数)(x f 的定义域为]1,0[,且,0)0(=f 1)1(=f ,当y x ≥时,)()sin 1(sin )()2(y f x f yx f αα-+=+, 求:(1) )21(f 及)41(f 的值;(2)函数()sin(2)g x x α=-的单调递增区间;(3) N n ∈时,12n n a =,求)(n a f ,并猜测∈x ]1,0[时,)(x f 的表达式.22、(本小题满分14分)如图:P (-3,0),点A 在y 轴上,点Q 在x 轴的正半轴上,且AQ AQ AP 在,0=⋅的延长线上取一点M ,使||QM =2||AQ .(I )当A 点在y 轴上移动时,求动点M 的轨迹C 的方程; (II )已知j ki j i R k +-==∈以经过)0,1().0,1(),1,0(,为方向向量的直线l 与轨迹C 交于E 、F 两点,又点D (1,0),若∠EDF 为钝角时,求k 的取值范围.参考答案一、选择题ADABC DABBB DB 二、填空题13、12 14、(4,5) 15、 ⑵⑷ 16、919三、计算题17、解(I )由题知:⎪⎪⎩⎪⎪⎨⎧==⎪⎩⎪⎨⎧=+=+=48,226,2πϕπωπϕωπϕω解方程组有A …………………6分 (另法):由题意A=216,4264=∴=-=T T……………………………………………………2分 82ππω==T 又,……………………………………………………………… 4分.2||),4sin(22)2,2(),8sin(2)(πϕϕπϕπ≤+=+= 又M x x f.4πϕ=∴…………………………………………………………………………6分(II )由1)48sin(2=+ππx22)48sin(=+∴x x π……………………………………………………………8分ππππππππ432484248+=++=+∴k x k x 或………………………………10分Zkkxkx∈+==∴,41616或……………………………………………………12分18、解:原式()sin6010cos402sin50cos10︒-︒⎛⎫︒+︒ ⎪︒==2==19、解:(I)由题知:1111111BCADCADCADBCADADDCADCCABCADABCCC面面平面底面底面⊥⇒⎭⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊂⊥……4分(II)⇒⎪⎭⎪⎬⎫=⊥⊥⊥⇒⎭⎬⎫DCBCADCBCADCEFFDCCFCACCEAACCEACCA11111111111)(,面又面面知面由连结于作过为正方形面点于与连结故∠CEF为二面角C—AC1—D的平面角…………………………………………6分在Rt△C1CD中,求出5102255sin,55==∠=CEFCF故………………8分(III)EDCAEBCDABCBCAD⇒⎭⎬⎫⇒⎭⎬⎫∆⊥中点为中点为为正三角形又知由1;,)(∥A1BBA1⇒∥面AC1D,设B到面ADC1距离为d…………………10分5531311111=⇒⋅=⋅⇒=∆∆--dCCSdSVVABDADCABDCADCB………………12分注:其他证法相应给分20、解:⑴53464,8,a a a=∴=±当48a=-时,不合题意。
宝应县第三中学2018-2019学年高三上学期11月月考数学试卷含答案
宝应县第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列函数在其定义域内既是奇函数又是增函数的是( ) A .B .C .D .2. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 3. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V( )1111]A .41 B .31 C .21D .不是定值,随点M 的变化而变化4. 圆222(2)x y r -+=(0r >)与双曲线2213yx -=的渐近线相切,则r 的值为( ) AB .2 CD.【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.5. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 6. 由直线与曲线所围成的封闭图形的面积为( )A B1C D7. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C.2 D.18.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()A.1 B.2 C.3 D.49.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.10.已知向量=(1,n),=(﹣1,n﹣2),若与共线.则n等于()A.1 B.C.2 D.411.已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为()A.相离 B.相切 C.相交 D.不能确定12.是z的共轭复数,若z+=2,(z﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i二、填空题13.在区间[﹣2,3]上任取一个数a,则函数f(x)=x3﹣ax2+(a+2)x有极值的概率为.14.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进行那么安排这5项工程的不同排法种数是.(用数字作答)15.已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则△MNF 的重心到准线距离为.16.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为.17.若执行如图3所示的框图,输入,则输出的数等于。
宝应县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
宝应县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 已知U=R ,函数y=ln (1﹣x )的定义域为M ,集合N={x|x 2﹣x <0}.则下列结论正确的是( ) A .M ∩N=N B .M ∩(∁U N )=∅ C .M ∪N=U D .M ⊆(∁U N )3. 直线在平面外是指( ) A .直线与平面没有公共点 B .直线与平面相交 C .直线与平面平行D .直线与平面最多只有一个公共点4. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=5. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35 B. =0.7x+1C . =0.7x+2.05D . =0.7x+0.456. 有下列关于三角函数的命题 P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;P 2:函数y=sin (x ﹣)与函数y=cosx 的图象相同;P 3:∃x 0∈R ,2cosx 0=3;P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( ) A .P 1,P 4B .P 2,P 4C .P 2,P 3D .P 1,P 27. 下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x x x = D 、44550x x -=8. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.y=x+2 B.y=C.y=3x D.y=3x39.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()A.6B.9C.12D.1810.下列各组表示同一函数的是()A.y=与y=()2B.y=lgx2与y=2lgxC.y=1+与y=1+D.y=x2﹣1(x∈R)与y=x2﹣1(x∈N)11.若a>0,b>0,a+b=1,则y=+的最小值是()A.2 B.3 C.4 D.512.下列哪组中的两个函数是相等函数()A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 二、填空题13.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=()﹣x是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.14.已知数列}{n a 的各项均为正数,n S 为其前n 项和,且对任意∈n N *,均有n a 、n S 、2n a 成等差数列,则=n a .15.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .16.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .17.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.18在这段时间内,该车每100千米平均耗油量为 升.三、解答题19.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.20.已知直角梯形ABCD 中,AB ∥CD ,,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.21.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。
江苏省宝应县高中2018届高三12月月考数学试题
江苏省宝应县高中2017-2018学年度高三数学月考试卷班级_________ 姓名_______________ 学号______________ 成绩______________ 一、填空题1、已知集合A = {0,1,2,7},B ={y y = 7x,xw A},则A" B = _______________ .i 一一2、已知复数z = —( i为虚数单位),复数的共轭复数为z,则z・z= •旋+i3、一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为_________________ •4、阅读下列程序,输出的结果S的值为________________ •(第4题團)5、某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________________ •JI JI 3T6、已知函数f (x) = 2cos(x ■ §), x • [一3,孑],则函数f(x)的值域是 _________________7、已知函数y =ln(x-4)的定义域为A,集合B={xx〉a},若x^A是x运B的充分不必要条件,则实数a的取值范围为 ________________ •2x - y < 0x-3y +5 > 0&已知实数x y满足< ,则z = 2x + y的最大值为________________ •' x > 0y > 09、若一圆锥的底面半径为3,体积为12二,则该圆锥的侧面积为__________________ •3110、__________________________________________________________________ 在△ ABC 中,若tanA tanB =1,则sin(C ) = ____________________________________311、已知棱长为1的正方体ABCD -A1B1C1D1中,M是棱C®的中点,则三棱锥A -ABM的体积为_________________a1 412、已知正实数a,b满足…b =7,则応厂b的最小值为--------------------------a x 1 x 113、已知函数f(x)=J ' J '函数g(x) = 2—f(x),若函数y=f(x) — g(x)[(x—a) , x>1,恰有4个不同的零点,则实数a的取值范围为__________________ .14、在平面直角坐标系xOy 中,圆0 : x2• y2 = r2(r • 0)与圆M : (x - 2)2■ (y - 2 3)2T T=4相交于代B两点,若对于直线AB上任意一点P,均有PO PM 0成立,则r的取值范围为 .二、解答题15、(本小题满分14分:6分+8分)如图,在四棱柱 ABCD -A 1B 1C 1D 1 中,AB // CD , AB , _ BC ,且 AA,= AB .(1)求证: AB / 平面 D 1CCC 1 ;(2)求证: AB 1 _平面 ABC .16、(本小题满分14分:6分+8分)在厶ABC 中,已知角 代B,C 所对的边分别为a,b,c ,且tan B=2 , tan C=3. (1)求角A 的大小;(2)若c =3,求边b 的长.(第15题图)17、(本小题满分14分:6分+8分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA_平面ABCD , M 是AD中点,N是PC中点.18、(本小题满分16分:6分+10分)将2张边长均为1分米的正方形纸片分别按甲、乙两种方式剪裁并废弃阴影部分.(1)在图甲的方式下,剩余部分恰能完全覆盖某圆锥的表面,求该圆锥的母线长及底面半径;(2)在图乙的方式下,剩余部分恰能完全覆盖一个长方体的表面,求长方体体积的最大值.甲心+J(1)求证:MN //平面PAB;(2)若平面PMC _平面PAD,求证:D(第17题图)19、(本小题满分16分:6分+10分)2 2xOy中,已知椭圆笃•爲“(a . b ■ 0)的焦距为2,过a b如图,在平面直角坐标系A, B两点.当直线I与x轴垂直时,AB长为4-33右焦点F的直线I交椭圆于(1)求椭圆的标准方程;使得OP = 0A • 0B,求直线I的斜率.20、(本小题满分16分:4分+6分+6分)1 2 已知函数f(x) ax2 -2x 2 lnx, a R .2(1)当a = -3时,求函数f (x)的单调增区间;(2)当a> 1时,对于任意X i,X2 €(0,1],且X i式X2都有为—x2 f (为)一f (x2),求实数a的取值范围;(3)若函数f(x)的图象始终在直线y - _3x • 2的下方,求实数a的取值范围.江苏省宝应县高中2017-2018学年度高三数学月考试卷参考答案一、填空题1 11、9,7;;2、;3、8;4、22 ;5、;6、[一1,2] ;7、(-::,4) ;& 4; 9、154 410、1;11、丄;12、25; 13、(2,3] ; 14、(2、、5,6).2 6 16二、解答题15、 (1)证明:在四棱柱ABCD -A1B1C1D1中,AB//CD ,又因为AB二平面UDCC,,CD二平面D.DCC,,所以AB//平面DQCC, . 6分(2)证明:在四棱柱ABCD—ABGD中,四边形 A ABB!为平行四边形,又AA=AB ,故四边形AABB1为菱形.从而AB丄AB . .................................................. 9分又AB _ BC,而ABC BC =B , AB, BC 二平面ABC ,所以AB _平面ABC . ..................................................................... 14分16、解:(1)因为tanB =2 , tanC =3 , A B C =n,所以tanA 二tan[ n-(BC)]二一tan(B C)tan B tanC乙卫1,…4分5 10c 2”5. 3 ■:<—2—由正弦定理,得 b =CsinB一 ------- 5—. .................................................... 14分si nC 3/1010117、证明:(1 )取PB 中点E,连EA , EN , PBC 中,EN // BC 且EN BC ,2又AM =1A D , AD // BC , AD =B C得EN //AM,四边形ENMA是平行四边形,2 1 -ta n Bta nC 1-^3又A (0, n,所以A二n. ............................................................................ 6分4(2)因为tan B 2,且sin2B cos2B =1 ,cosB又B (0, n,所以sin B =乙5,同理可得,sin C =工^0 . ............ 10分得MN//AE , MN 二平面PAB , AE 平面PAB , . MN // 平面PAB(2)在平面PAD内过点A作直线PM的垂线,垂足为H ,:平面PMC _ 平面PAD,平面PMC D 平面PAD = PM , AH _ PM , AH 二平面PAD .AH _ 平面PMC , CM 平面PMC , . AH _ CM ,所以,当X W •严时,V max 3 .2 63619、解:(1)由题意可知c =1, 当I 与x 轴垂直时,AB == 4-3 a 3因为 a 2 =b 2 c 2,所以 a = 3, b 2 = 2T PA_平面 ABCD , CM 二平面 ABCD , PA_ CM ,:PAD A H =A , PA 、AH 平面 PAD , CM _ 平面 PAD , 7 AD 平面 PAD , . CM _ AD .18、解:(1)设圆锥的母线长及底面半径分别为I , r ,1丄 2n 二2 n , 则4 _ _ I r .2 r = 2 ,r _5 2-2 23,解得23]_ 20^2 _8 L . _ 23 .甲(2)设被完全覆盖的长方体底面边长为x ,宽为y ,高为z ,则!x +z =1,2y 2z =1,[z =1 -X, 解得1i y =x1/ 2则长方体的体积:y~x zy~xzV = xyz = x x _ 壬 1 - x - -x 3 3 x 2 - 1 x , 2 :: x :: 1. 10分所以 V (x)»3x 2 3x-首.令 V (x)=0得,3或3(舍去).2 2 6 2 6x (丄」+五)V2,2 62 6V(x) +—V(x)/极大值12分14分答:(1)圆锥的母线长及底面半径分别为5 2_2分米,20 2 -8分米2323(2)长方体体积的最大值为栄立方分米.16分...... 3分2 2故椭圆的标准方程是:—1 1 .……6分3 2z 2:x (0,1], - (0,1b a(x —丄)2 -丄 1》1 --> 0 ,a a aa得到f '(x) > 0,即f(x)在(0,1]上单调递增.对于任意X 1,X 2 • (0,1],不放设X 1 :::X 2,则有f(X 1)::: f(X 2),且X 2・X 1代入不等式| 捲一x 2 | ::| f (xj- f (x 2) | 二 f (x 2) - f (X ] ) X 2 -X ] = f (x 2) -X 2 f(xj -X ],亠、, 1 2引入新函数:h(x)二 f (x) -x = f (x) ax -3x 2 In x , ...................................... 分2'1 ax2 -3x 1 'h(x)=ax-3 ,所以问题转化为 h(x)—0,x ・ (0,1]上恒成立XX=ax 2_3x 1_0 = a-^^u a - (^^)max ................................................. 分X X3x _1令l(x) 2 ,通过求导或配方都可以:x⑵ 设直线I 的斜率为k ,则直线I 的方程:y =k(x 「1),设点A(x 1 ,y 1), B(x 2, y 2) , P(x 3,y 3).+x _y1,由3 2y -k (x -1),Q Q Q Q可得(3k 2)x —6k x 3k —6=0.则 X 1 »3^,住駅.(* E 贰0A K ,则;二;22 2 2 2 2 2代入椭圆方程有(x i x 2)(y i y 2)/,又土上“,竺上“,化简得32 3 23 22 2 22 2将(* )代入得 3k 2 _6 严 2 冰 3k 2 ^0 , k 2 =2,即 k = . 2 .3k +2 故直线I 的斜率为_• 2 .120、解:(1 )当 a =-3时,f(x)=-3x-2*x16分1令f (x) • 0,解出:0 ::: x ,所以3(x)的单调增区间为0,- i I 3丿4 •分(2)当 a > 1 时,f '(x)ax 2 -2x 1xa(x_1)2 _丄 1a a x2 - 3x 2 'I (x) 3 ,当0 x ,l (x) 0 ;x33-x ::1,l'(x) ::0,2 2 9 —9.............. ,l(X)max =H ) ,所以a A分10 所以当X3 34 41(3)由题可得丄ax2 - 2x 2 l n x ::: -3x 2在x • (0, •::)上恒成立1即—ax2x In x ::: 0在x • (0, •::)上恒成立整理可得_!a. x ln x在x・(0, •::)上恒成立 ................. 分2 xx I nx ,、1_x_2l nx令h(x) 2 h(x) 3 ............................ 分2所以h'x i=0得x =1 .................... 分141所以匚"1,即a<-2 ........................... W分。
宝应县第二中学2018-2019学年高三上学期11月月考数学试卷含答案
宝应县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .B .C .D .105120302. 如果a >b ,那么下列不等式中正确的是( )A .B .|a|>|b|C .a 2>b 2D .a 3>b 33. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .4. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为()A .()11-,B .()()11-∞-+∞U ,,C .()1-∞-,D .()1+∞,5. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°6. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .7. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( )A .{x|﹣1<x <1}B .{x|﹣2<x <1}C .{x|﹣2<x <2}D .{x|0<x <1}8. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a 9. 某几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .16163π-32163π-1683π-3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知命题且是单调增函数;命题,.:()(0xp f x a a =>1)a ≠5:(,)44q x ππ∀∈sin cos x x >则下列命题为真命题的是( )A .B .C.D .p q ∧p q ∨⌝p q ⌝∧⌝p q⌝∧11.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:P t 小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了消除0e ktP P -=0P k 10%27.1%的污染物,则需要( )小时.A. B. C. D. 8101518【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.12.O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为()A .1B .C .D .2二、填空题13.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .14.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .15.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB 最小则直线的方程是 .16.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为 17.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.18.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是 .三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.21.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.22.23.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.24.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.宝应县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D 【解析】试题分析:分段间隔为,故选D.50301500=考点:系统抽样2. 【答案】D【解析】解:若a >0>b ,则,故A 错误;若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误;若a >0>b 且a ,b 互为相反数,则a 2>b 2,故C 错误;函数y=x 3在R 上为增函数,若a >b ,则a 3>b 3,故D 正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题. 3. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A . 4. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞U ,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式.5. 【答案】B 【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.6. 【答案】D【解析】解:将sin α+cos α=①两边平方得:(sin α+cos α)2=1+2sin αcos α=,即2sin αcos α=﹣<0,∵0<α<π,∴<α<π,∴sin α﹣cos α>0,∴(sin α﹣cos α)2=1﹣2sin αcos α=,即sin α﹣cos α=②,联立①②解得:sin α=,cos α=﹣,则tan α=﹣.故选:D . 7. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D . 8. 【答案】C【解析】解:根据指数函数和对数函数的性质,知log 0.2<0,0<0.2<1,,即0<a <1,b <0,c >1,∴b <a <c .故选:C .【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键. 9. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为,故选D .21132244428233V =π⨯⨯-⨯⨯⨯=π-10.【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.11.【答案】15【解析】12.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1),又P 为C 上一点,|PF|=4,可得y P =3,代入抛物线方程得:|x P |=2,∴S △POF =|0F|•|x P |=.故选:C . 二、填空题13.【答案】 .【解析】解:∵asinA=bsinB+(c ﹣b )sinC ,∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2=bc ,∴由余弦定理可得b 2=a 2+c 2﹣2accosB ,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S △ABC =bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题. 14.【答案】 .【解析】解:∵△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a 2=b 2+c 2﹣2bccosA ,可得:9=4+c 2﹣2c ,即c 2﹣2c ﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题. 15.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y -+=考点:直线与圆的位置关系的应用.16.【答案】 5 【解析】解:由z=x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,﹣1).代入目标函数z=x﹣3y,得z=2﹣3×(﹣1)=2+3=5,故答案为:5.17.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.18.【答案】 ③ .【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③三、解答题19.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…20.【答案】【解析】解:(1)设等比数列{a n}的公比为q,∵数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),a1=2,∴,,,∴b1=1,=2q>0,=2q2,又b3=3+b2.∴23=2q2,解得q=2.∴a n=2n.∴=a1•a2•a3…a n=2×22×…×2n=,∴.(2)c n===﹣=,∴数列{c n}的前n项和为S n=﹣+…+=﹣2=﹣2+=﹣﹣1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD⊥AC,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,显然x1≠x0,从而=,∵AE⊥AC,∴k AE•k AC=﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.22.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可.(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可.【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:X0123P即E(X)=0×=.【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力23.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.24.【答案】【解析】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,∴在点P(m,n)切线的斜率k=m,∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,又点P(m,n)是抛物线上一点,∴m2=2n,∴切线方程是mx﹣2n=y﹣n,即mx=y+n …(Ⅱ)直线MF与直线l位置关系是垂直.由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,∴切线l的斜率k=m,点M(,0),又点F(0,),此时,k MF====…∴k•k MF=m×()=﹣1,∴直线MF⊥直线l …【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.。
宝应县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
宝应县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4B .6C .8D .102. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D.3. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A. B. C.D.4. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .13B .23C .1D .2 5. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( )A .16π B .12π C .8π D .4π 6. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .2+B .1+C.D.8. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .20B .25C .22.5D .22.759. 椭圆=1的离心率为( ) A .B .C .D .10.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种11.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个12.已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A. B.C.D.二、填空题13.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .14.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .16.已知,0()1,0x e x f x x ì³ï=í<ïî,则不等式2(2)()f x f x ->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 17.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 三、解答题19.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.20.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.21.已知函数y=x+有如下性质:如果常数t >0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f (x )=x+,x ∈[1,3],利用上述性质,求函数f (x )的单调区间和值域;(2)已知函数g (x )=和函数h (x )=﹣x ﹣2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得h (x 2)=g (x 1)成立,求实数a 的值.22.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cos θ+sin θ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系. (Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x+y 的最大值,并求出此时点P 的直角坐标.23.已知函数f (x )=在(,f())处的切线方程为8x ﹣9y+t=0(m ∈N ,t ∈R )(1)求m 和t 的值;(2)若关于x 的不等式f (x )≤ax+在[,+∞)恒成立,求实数a 的取值范围.24.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克千克时获利的平均值.宝应县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.2. 【答案】B【解析】解:f (x )=2x ,则f'(x )=2xln2, 故选:B .【点评】本题考查了导数运算法则,属于基础题.3. 【答案】 B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x 值为∴=,其中k ∈Z取k=1,得φ=因此,f (x )的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.4. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 5. 【答案】D 【解析】考点:几何概型.6.【答案】A【解析】解:∵复数z满足(1+i)z=2i,∴z===1+i,它在复平面内对应点的坐标为(1,1),故选A.7.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.8.【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.9.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.10.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.11.【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.12.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=coscos α﹣sinsin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.二、填空题13.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值14.【答案】 .【解析】解:由题意,函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,∴a 取1时,b 可取2,3,4,5,6;a 取2时,b 可取4,5,6;a 取3时,b 可取6,共9种 ∵(a ,b )的取值共36种情况∴所求概率为=.故答案为:.15.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系16.【答案】(-【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,解得01x ?,综上所述,不等式2(2)()f x f x ->的解集为(.17.【答案】 .【解析】解:∵sin α+cos α=,<α<,∴sin 2α+2sin αcos α+cos 2α=, ∴2sin αcos α=﹣1=,且sin α>cos α, ∴sin α﹣cos α===.故答案为:.18.【答案】2【解析】三、解答题19.【答案】【解析】解:(1)由m+>0,(x ﹣1)(mx ﹣1)>0,∵m >0,∴(x ﹣1)(x ﹣)>0,若>1,即0<m <1时,x ∈(﹣∞,1)∪(,+∞); 若=1,即m=1时,x ∈(﹣∞,1)∪(1,+∞); 若<1,即m >1时,x ∈(﹣∞,)∪(1,+∞).(2)若函数f (x )在(4,+∞)上单调递增,则函数g (x )=m+在(4,+∞)上单调递增且恒正.所以, 解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.20.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3)426. 【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =22222b a ab a b+-=+,再进行化简,即可求解()()44a b --的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b a b∆==+-=+-=-+-+,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()11448244666224ADP b S a a b a b a b ∆==+-=+-=-+-+≥=,∴当4a b ==+, 面积最小, 最小值为6. 考点:直线与圆的综合问题. 【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446ADP S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题.21.【答案】【解析】解:(1)由已知可以知道,函数f (x )在x ∈[1,2]上单调递减,在x ∈[2,3]上单调递增,f (x )min =f (2)=2+2=4,又f (1)=1+4=5,f (3)=3+=; f (1)>f (3)所以f (x )max =f (1)=5所以f (x )在x ∈[1,3]的值域为[4,5].(2)y=g (x )==2x+1+﹣8设μ=2x+1,x ∈[0,1],1≤μ≤3,则y=﹣8, 由已知性质得,当1≤u ≤2,即0≤x ≤时,g (x )单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.22.【答案】【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…所以所求的圆C的参数方程为(θ为参数).…(Ⅱ)由(Ⅰ)可得,…当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…23.【答案】【解析】解:(1)函数f(x)的导数为f′(x)=,由题意可得,f()=,f′()=,即=,且=,由m∈N,则m=1,t=8;(2)设h(x)=ax+﹣,x≥.h()=﹣≥0,即a≥,h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①若≤x≤,设g(x)=a﹣,g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,则g (x )≥0,即h ′(x )≥0在[,]上恒成立.②由①②可得,a ≥时,h ′(x )>0,h (x )在[,+∞)上递增,h (x )≥h ()=≥0,则当a ≥时,不等式f (x )≤ax+在[,+∞)恒成立;当a <时,h ()<0,不合题意.综上可得a ≥.【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.24.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数.(Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元; 若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元;若当天的销售量为[70,100),则超市获利754300⨯=元, (10分)∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)。
江苏省宝应中学17-18学年第一学期高三年级月考测试 (数学)-高三月考数学试卷答案及评分标准
江苏省宝应中学17-18学年第一学期高三年级月考测试数学参考答案及评分标准1.(){}-1,3;2.−32;3.27;4.4-;5.2;6.4;7.-3;8.()2212x y +-=;9.10-;10.√2;11.[]2,8;12.{−57,73};314.14a ≥ 15.解:(1)若p 为真命题,则应有△=8−4m >0,解得m <2; ----5分(2)若q 为真命题,则有m +1<2,即m <1, ----7分因为p ∨q 为真命题,p ∧q 为假命题, 则p ,q 应一真一假。
---9分 ①当p 真q 假时,有{m <2m ≥1 ,得1≤m <2; ----11分②当p 假q 真时,有{m ≥2m <1,无解, ----13分综上,m 的取值范围是[1,2). ----14分16.解:(Ⅰ)由题意()f x u v=⋅ ()()22sin 6sin cos cos 7sin 2cos 6sin cos 8sin cos x x x x x x x x x x=++-=-+4sin24cos22224x x x π⎛⎫=-+=-+ ⎪⎝⎭.---3分令()2242x k k Z πππ-=+∈,得()38x k k Z ππ=+∈,∴()max 2f x =,此时x 的集合为3|,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. ----6分(Ⅱ)由(Ⅰ)可得()2264f A A π⎛⎫=-+= ⎪⎝⎭,∴sin 242A π⎛⎫-= ⎪⎝⎭, ∵0BA AC ⋅<u u u v u u u v ,∴()cos 0cos 002BA AC A A A ππ-⇒⇒<<u u u v u u u v ,∴32244444A A πππππ-<-<⇒-=, ∴4A π=. ----9分∵11sin 3222ABC S bc A ∆==⨯=,∴2c =.由余弦定理得2222cos 1842210a b c bc A ++-=+-⨯=a ⇒= ----12分由正弦定理得2sin a R R A ===⇒= ∴()f x的外接圆半径R =分17.解:(1) Q 圆C 的标准方程为()()222216x y -+-=圆心为()2,2C ,半径4r =由弦长为2d ==1o 当斜率不存在时,直线为0,x =符合题意; ---- 2分 2o 当斜率存在时,设直线为()10y k x -=-即10kx y -+=则2d == 化简得34k =-∴直线方程为3440x y +-= ----7分故直线l 方程为0x =或3440x y +-= ----8分 (2) 设直线为()10y k x -=-即1y kx =+, ()()1122,,,A x y B x y ,则联立方程224480{ 1x x y y y kx -+--==+得()()22124110k x k x +-+-=1212222411,11k x x x x k k +-∴+==++,且()()22424410k k ∆=+++>恒成立()()1212121211OA OB x x y y x x kx kx ∴⋅=+=+++u u u v u u u v()()21212222211248410111811k x x k x x k k k k k k =+++++-+-=-++=>-++22841088k k k ∴-+->-- 即42k > 12k ∴> -----15分18.解:(1)由题意,下潜用时60v(单位时间),用氧量为[(v10)3+1]×60v=3v 250+60v(升),水底作业时的用氧量为10×0.9=9(升), 返回水面用时60v2=120v(单位时间),用氧量为120v×1.5=180v(升),∴总用氧量y =3v 250+240v+9(v >0). ----------6分(2)y′=6v 50−240v 2=3(v 3−2000)25v 2,令y′=0得v =10√23,在0<v <10√23时,y′<0,函数单调递减,在v >10√23时,y′>0,函数单调递增,------10分∴当c <10√23时,函数在(c ,10√23)上递减,在(10√23,15)上递增,∴此时,v =10√23时总用氧量最少, -----------12分 当c ≥10√23时,y 在[c ,15]上递增,∴此时v =c 时,总用氧量最少. ------------14分 答:当c <10√23时,v =10√23时总用氧量最少;当c ≥10√23时,v =c 时,总用氧量最少. ------15分 19.解:(1)设点P 的坐标为(x 0,0)(x 0>0),易知2a =2+4,a =3,x 0=4−a =1,b =√22−x 02=√3.因此椭圆标准方程为x 29+y 23=1,P 点坐标为(1,0). ----------5分(2)设直线的斜率为k (k >0),Q (x 0,y 0),M (x 1,y 1),N (x 2,y 2), 则l 1:y =k (x +3),l 2:y =k (x −1)ΔMNA 、ΔMND 的面积相等,则点A ,D 到直线l 2的距离相等.所以√3−k|√k 2+1=√k 2+1k =√3或k =−√33(舍). ---8分当k =√3时,直线l 2的方程可化为:x =√3+1,代入椭圆方程并整理得:5y 2+√3y −12=0,所以{y 1+y 2=−√35,y 1y 2=−125所以|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=9√35;所以ΔMND 的面积为12|PD |⋅|y 1−y 2|=12×2×9√35=9√35. ---12分当k =√3时,直线l 1的方程可化为:x =√33,代入椭圆方程并整理得:5y 2−3√3y =0,解之得y 0=3√35或y 0=0(舍)所以ΔCDQ 的面积为12×6×3√35=9√35. ------15分所以S ΔCDQ =S ΔMND ,满足题意. -------16分 20.解:(1)∵()g x 在[)1,+∞单调递增, ∴()1'sin g x x θ=- 0≥在[)1,+∞上恒成立,即1sin xθ≥([)1,x ∈+∞)恒成立, ∵当1x ≥时,11x≤, ∴sin 1θ≥,又()0,θπ∈,∴0sin 1θ<≤, ∴sin 1θ=,∴2πθ=.-------4分(2)由(1)可知()ln 1g x x x =--,∴()()222121ln 1x f x g x x x x x x -=+=-+--,∴()23122'1f x x x x =--+, ∴()()23312'ln 2f x f x x x x x x -=-++--,令()ln h x x x =-, ()233122H x x x x=+-- ,∴()1'10h x x=-≥, ()24326'x x H x x --+=,∴()h x 在[]1,2上单调递增,∴()()11h x h >=,-----6分 令()2326x x x ϕ=--+,则()x ϕ在[]1,2单调递减,∵()11ϕ=, ()210ϕ=-,∴()01,2x ∃∈,使得()H x 在()01,x 单调递增,在()0,2x 单调递减, ∵()10H =, ()122H =-, ∴()()122H x H ≥=-, ----8分 ∴()()()()()()min min 1'2f x f x h x H x h x H x -=+≥+=,又两个函数的最小值不同时取得, ∴()()1'2f x f x ->,即()()1'2f x f x >+. -----9分 (3)∵()11xe x kg x --≥+恒成立,即()()ln 1110xe k x k x ++-+-≥恒成立, 令()()()ln 111xF x e k x k x =++-+-,则()()'11x kF x e k x =+-++, 由(1)得()()1g x g ≥,即ln 10x x --≥(1x ≥),∴()1ln 11x x +≥++(0x ≥), 即()ln 1x x ≥+(0x ≥),∴1x e x ≥+, ----10分 ∴()()()'111kF x x k x ≥++-++, 当1k =时,∵0x ≥,∴()()()1'1112011k F x x k x x x ≥++-+≥++-≥++, ∴()F x 单调递减,∴()()00F x F ≥=,符合题意;----12分 当()0,1k ∈时, ()()111ky x k x =++-++在[)0,+∞上单调递增, ∴()()()()'111101kF x x k k k x ≥++-+≥+-+=+, ∴()F x 单调递增,∴()()00F x F ≥=符合题意, ----14分当1k >时, ()()2''1x kF x e x =-+,∴()''F x 在[)0,+∞上单调递增, 又()''010F k =-<,且x →+∞, ()''0F x >, ∴()''F x 在()0,+∞存在唯一零点0t ,()'F x 在()00,t 单调递减,在()0,t +∞单调递增,∴当()00,x t ∈时, ()()''00F x F <=,∴()F x 在()00,t 单调递减,∴()()00F x F <=,不合题意. 综上, 1k ≤. ------------16分附加卷答案21.解:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=0210⎡⎤⎢⎥⎣⎦. ----5分 (2)设()00,Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002{ y x x y ==,所以00{ 2x yx y ==.因为()00,Q x y 在曲线1C 上,所以2200188x y +=, 从而22188x y +=,即228x y +=. 因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C : 228x y +=.---------10分22.解:(1)直线l 的参数方程为2{4x tcos y tsin αα=-+=-+ (t 为参数),曲线C 的直角坐标方程: 22y x =. --------5分(2)把直线的参数方程代入22y x =,得()22sin 2cos 8sin 200t t ααα-++=,1222cos 8sin sin t t ααα++=, 12220sin t t α=, 根据直线参数的几何意义, 1222040sin MA MB t t α===, 得4πα=或34πα=. 又因为()222cos 8sin 80sin 0ααα∆=+->,所以4πα=. ---------10分23. (1)证明:如图,取BC 的中点G ,连接DG,AG ,因为AD =GC ,AD ∥GC ,所以四边形ADCG 为平行四边形,又AD =CD ,所以四边形ADCG 为菱形,从而AC ⊥DG . 同理可证AB ∥DG ,因此AC ⊥AB .由于四边形ADFE 为正方形,且平面ADFE ⊥平面ABCD ,平面ADFE ∩平面ABCD =AD , 故EA ⊥平面ADCB ,从而EA ⊥AC ,又EA ∩AB =A ,故AC ⊥平面ABE ,即AC ⊥BE . ------4分 (2)解:由(1)知可建立如图所示的空间直角坐标系A −xyz . 则A (0,0,0),B (1,0,0),C(0,√3,0),E (0,0,1),F (−12,√32,1). 故BE ⃑⃑⃑⃑⃑ =(−1,0,1),BC ⃑⃑⃑⃑⃑ =(−1,√3,0),设m ⃑⃑ =(x 1,y 1,z 1)为平面EFCB 的一个法向量,故{m ⃑⃑ ⋅BE ⃑⃑⃑⃑⃑ =0m ⃑⃑ ⋅BC⃑⃑⃑⃑⃑ =0 ,即{−x 1+z 1=0−x 1+√3y 1=0 ,故可取m ⃑⃑ =(3,√3,3).又AF⃑⃑⃑⃑⃑ =(−12,√32,1),AC⃑⃑⃑⃑⃑ =(0,√3,0),设n ⃑ =(x 2,y 2,z 2)为平面AFC 的一个法向量,故{n ⃑ ⋅AF ⃑⃑⃑⃑⃑ =0n ⃑ ⋅AC ⃑⃑⃑⃑⃑ =0 ,即{−12x 2+√32y 2+z 2=0√3y 2=0 ,故可取n ⃑ =(2,0,1). 故cos <m ⃑⃑ ,n ⃑ >=m⃑⃑⃑ ⋅n ⃑ |m ⃑⃑⃑ ||n ⃑ |=3√10535. 易知二面角A −FC −B 为锐角,则二面角A −FC −B 的余弦值为3√10535.-------10分24.解:(1)依题意,甲答对试题数ξ的可能取值为0,1,23,其概率分别如下: ()3331010=120C P C ξ==()12733102171==12040C C P C ξ==()217331063212==12040C C P C ξ==()373103573==12024C P C ξ==ξ的概率分布如下:--------4分甲答对试题数ξ的数学期望()121633525221012312012012012012010E ξ=⨯+⨯+⨯+⨯==-----6分(2)设甲、乙两人考试合格的事件分别为,A B ,则()2137373106335984912012060C C C P A C ++==== ()21382831056561121412012015C C C P B C ++==== 因为事件,A B 相互独立,故甲、乙两人考试均不合格的概率为()()()495611116060900P A B P A P B ⎛⎫⎛⎫⋅=⋅=--= ⎪⎪⎝⎭⎝⎭ -----------8分所以甲、乙两人至少有一人考试合格的概率为()()1188911=900900P A B P A B ⋅=-⋅=- 答:甲、乙两人至少有一人考试合格的概率为889900. ----------10分。
宝应县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
宝应县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .2. 设集合,集合,若 ,则的取值范围3|01x A x x -⎧⎫=<⎨⎬+⎩⎭(){}2|220B x x a x a =+++>A B ⊆()A .B .C.D .1a ≥12a ≤≤a 2≥12a ≤<3. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为()A .4320B .﹣4320C .20D .﹣204. 已知向量,且,则sin2θ+cos 2θ的值为( )A .1B .2C .D .35. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .136. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]7. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .18. 已知变量满足约束条件,则的取值范围是( ),x y 20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩y x A . B .C .D .9[,6]59(,[6,)5-∞+∞U (,3][6,)-∞+∞U [3,6]9. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=10.若则的值为( )⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x)1(f A .8B .C .2D .8121班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .12.等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非二、填空题13.(x ﹣)6的展开式的常数项是 (应用数字作答). 14.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .15.已知两个单位向量满足:,向量与的夹角为,则.,a b r r 12a b ∙=-r r 2a b -r r cos θ=16.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .17.将曲线向右平移个单位后得到曲线,若与关于轴对称,则1:C 2sin(04y x πωω=+>6π2C 1C 2C x ω的最小值为_________.18.1785与840的最大约数为 .三、解答题19.(本小题满分12分)椭圆C :+=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,Bx 2a 2y 2b 2是C 的长轴上的两个顶点,已知|PF |=1,k PA ·k PB =-.12(1)求椭圆C 的方程;(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.20.在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD ﹣A 1C 1D 1,且这个几何体的体积为10.(Ⅰ)求棱AA 1的长;(Ⅱ)若A 1C 1的中点为O 1,求异面直线BO 1与A 1D 1所成角的余弦值.21.(本小题满分12分)已知向量满足:,,.,a b r r ||1a =r ||6b =r ()2a b a ∙-=r r r(1)求向量与的夹角;(2)求.|2|a b -r r22.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.23.(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变C 2sin cos 10ρθρθ+=1cos :sin x C y θθ=⎧⎨=⎩α换后得到曲线.32x xy y'=⎧⎨'=⎩2C (1)求曲线的参数方程;2C (2)若点的在曲线上运动,试求出到曲线的距离的最小值.M 2C M C 24.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.宝应县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C2.【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 3.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..4.【答案】A【解析】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos 2θ===1,故选A .【点评】本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于中档题. 5. 【答案】D【解析】解:∵S n 为等比数列{a n }的前n 项和,=4,∴S 4,S 8﹣S 4,S 12﹣S 8也成等比数列,且S 8=4S 4,∴(S 8﹣S 4)2=S 4×(S 12﹣S 8),即9S 42=S 4×(S 12﹣4S 4),解得=13.故选:D .【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题. 6. 【答案】D【解析】解:x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,所以(x+y )(+)=10+≥10=16,当且仅当时等号成立,所以2m ﹣1≤16,解得m;故m 的取值范围是(﹣];故选D . 7. 【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos (45°﹣15°)=cos30°=.故选:C .【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题. 8. 【答案】A 【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,ABC y x (,)x y 59(,22A,,,所以.故选A .(1,6)B 992552OAk ==661OB k ==965y x ≤≤考点:简单的线性规划的非线性应用.9. 【答案】C 【解析】解:A.在定义域内没有单调性,∴该选项错误; B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C .y=﹣x|x|的定义域为R ,且﹣(﹣x )|﹣x|=x|x|=﹣(﹣x|x|);∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R 上为减函数,∴该选项正确; D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R 上不是减函数,∴该选项错误.故选:C .【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性. 10.【答案】B 【解析】试题分析:,故选B 。
宝应县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
宝应县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.求值:=( )A .tan 38° B. C. D.﹣2. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1B .3C .5D .93. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.4. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( ) A .1B .2C .3D.5. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163 D .2036. 设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( )A .3B .4C .5D .67. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.58. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .589. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .﹣1B .0C .1D .﹣1或110.设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( )A .{1,2}B .{﹣1,4}C .{﹣1,2}D .{2,4}11.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④12.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案二、填空题13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 . 14.抛物线C 1:y 2=2px (p >0)与双曲线C 2:交于A ,B 两点,C 1与C 2的两条渐近线分别交于异于原点的两点C ,D ,且AB ,CD 分别过C 2,C 1的焦点,则= .15.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x )<0恒成立,则x 的取值范围为_____.3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥16.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.17.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 . 18.已知(1+x+x 2)(x )n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .三、解答题19.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a 的钢条2根,长度为b 的钢条1根;第二种方式可截成长度为a 的钢条1根,长度为b 的钢条3根.现长度为a 的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?20.平面直角坐标系xOy 中,圆C 1的参数方程为(φ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=4sin θ. (1)写出圆C 1的普通方程及圆C 2的直角坐标方程;(2)圆C 1与圆C 2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.21.已知椭圆C:=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.22.已知椭圆C :22221x y a b+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别交直线:4x =于M 、N 两点,求证:FM FN ⊥.23.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,(1)求证:直线BC 1∥平面D 1AC ; (2)求直线BC 1到平面D 1AC 的距离.24.已知角α的终边在直线y=x 上,求sin α,cos α,tan α的值.宝应县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C【解析】解: =tan (49°+11°)=tan60°=,故选:C .【点评】本题主要考查两角和的正切公式的应用,属于基础题.2. 【答案】C【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个. 故选C .3. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .4. 【答案】D【解析】解:∵复数z 满足zi=1﹣i ,(i 为虚数单位),∴z==﹣i ﹣1,∴|z|==.故选:D .【点评】本题考查了复数的化简与运算问题,是基础题目.5. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.6. 【答案】B【解析】解:∵S n 为等比数列{a n }的前n 项和,3S 3=a 4﹣2,3S 2=a 3﹣2, 两式相减得 3a 3=a 4﹣a 3, a 4=4a 3, ∴公比q=4. 故选:B .7. 【答案】A【解析】解:∵60.5>60=1, 0<0.56<0.50=1, log 0.56<log 0.51=0. ∴log 0.56<0.56<60.5. 故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.8. 【答案】B 【解析】9. 【答案】A【解析】解:∵(m 2﹣1)+(m+1)i 为实数, ∴m+1=0,解得m=﹣1, 故选A .10.【答案】A【解析】解:集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B={1,2}. 故选:A .【点评】本题考查交集的运算法则的应用,是基础题.11.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.12.【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
宝应县二中2018-2019学年高三上学期11月月考数学试卷含答案
宝应县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( ) A.B.C.D.2. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定3. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为45 4. 设集合A={x|x 2+x ﹣6≤0},集合B为函数的定义域,则A ∩B=( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]5. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )6. 方程()2111x y -=-+ )A .一个圆B . 两个半圆C .两个圆D .半圆 7.把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣)B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x8. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]9. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5 C .9 D .2710.空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 12.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)二、填空题13.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.14.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)15.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______. 16.设椭圆E:+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .17.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________. 三、解答题19.本小题满分10分选修41-:几何证明选讲如图,ABC ∆是⊙O 的内接三角形,PA 是⊙O 的切线,切点为A ,PB 交AC 于点E ,交⊙O 于点D ,PE PA =,︒=∠45ABC ,1=PD ,8=DB .Ⅰ求ABP ∆的面积; Ⅱ求弦AC 的长.20.设函数f (x )=lnx ﹣ax 2﹣bx .(1)当a=2,b=1时,求函数f (x )的单调区间;(2)令F (x )=f (x )+ax 2+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求实数a 的取值范围;(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2]内有唯一实数解,求实数m 的取值范围.21.设f (x )=ax 2﹣(a+1)x+1 (1)解关于x 的不等式f (x )>0;(2)若对任意的a ∈[﹣1,1],不等式f (x )>0恒成立,求x 的取值范围.22.已知椭圆C :22221x y a b+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别交直线:4x =于M 、N 两点,求证:FM FN ⊥.23.设极坐标与直角坐标系xOy 有相同的长度单位,原点O 为极点,x 轴坐标轴为极轴,曲线C 1的极坐标方程为ρ2cos2θ+3=0,曲线C 2的参数方程为(t 是参数,m 是常数).(Ⅰ)求C 1的直角坐标方程和C 2的普通方程;(Ⅱ)若C 1与C 2有两个不同的公共点,求m 的取值范围.24.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)宝应县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:从1,2,3,4中任取两个数,有(1,2),(1,3), (1,4),(2,3),(2,4),(3,4)共6种情况, 其中一个数是另一个数两倍的为(1,2),(2,4)共2个,故所求概率为P== 故选:C【点评】本题考查列举法计算基本事件数及事件发生的概率,属基础题.2. 【答案】B【解析】解:∵f (1988)=asin (1988π+α)+bcos (1998π+β)+4=asin α+bcos β+4=3,∴asin α+bcos β=﹣1,故f (2008)=asin (2008π+α)+bcos (2008π+β)+4=asin α+bcos β+4=﹣1+4=3,故选:B .【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.3. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.4. 【答案】D【解析】解:A={x|x 2+x ﹣6≤0}={x|﹣3≤x ≤2}=[﹣3,2],要使函数y=有意义,则x ﹣1>0,即x >1,∴函数的定义域B=(1,+∞), 则A ∩B=(1,2],故选:D .【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y 以及利用不等式的解法求出集合A 是解决本题的关键,比较基础5. 【答案】C 【解析】试题分析:由题意得,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时, ()112(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符合,故选C.考点:分段函数的解析式与图象. 6. 【答案】A 【解析】试题分析:由方程1x -=,两边平方得221x -=,即22(1)(1)1x y -++=,所以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 7. 【答案】D【解析】解:把函数y=sin (2x ﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣]=sin (2x ﹣π)=﹣sin2x .故选D . 【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x 加与减,上下平移,y 的另一侧加与减.8. 【答案】D【解析】解:依题意,不等式化为,解得﹣1<x ≤2, 故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.9. 【答案】C【解析】解:令log 2(x 2+1)=0,得x=0, 令log 2(x 2+1)=1,得x 2+1=2,x=±1, 令log2(x 2+1)=2,得x 2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.10.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.11.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.12.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g ′(x )=,∵当x >0时总有xf ′(x )﹣f (x )<0成立, 即当x >0时,g ′(x )<0,∴当x >0时,函数g (x )为减函数,又∵g (﹣x )====g (x ),∴函数g (x )为定义域上的偶函数, ∴x <0时,函数g (x )是增函数,又∵g (﹣2)==0=g (2),∴x >0时,由f (x )>0,得:g (x )<g (2),解得:0<x <2, x <0时,由f (x )>0,得:g (x )>g (﹣2),解得:x <﹣2, ∴f (x )>0成立的x 的取值范围是:(﹣∞,﹣2)∪(0,2). 故选:A .二、填空题13.【答案】 0.9【解析】解:由题意, =0.9,故答案为:0.914.【答案】 充分不必要【解析】解:∵复数z=(a ﹣2i )(1+i )=a+2+(a ﹣2)i , ∴在复平面内对应的点M 的坐标是(a+2,a ﹣2), 若点在第四象限则a+2>0,a ﹣2<0, ∴﹣2<a <2,∴“a=1”是“点M 在第四象限”的充分不必要条件, 故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.15.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈,(1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
宝应县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
宝应县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A.B.C.D.2. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2 B. C. D .133. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A. B. C. D.4. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦(C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤-⎥⎝⎦5. 设p 、q 是两个命题,若()p q ⌝∨是真命题,那么( )A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题 6. 设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .27. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( )A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)8. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4B .1[8C .31[,)162D .3[,3)89. 已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .A B B = C .()R A B ≠∅ð D .()R A B R =ð10.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种11.如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D . 12.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥C .D .二、填空题13.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .14.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .15.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 . 16.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.17.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .18.(文科)与直线10x -=垂直的直线的倾斜角为___________.三、解答题19.已知斜率为2的直线l 被圆x 2+y 2+14y+24=0所截得的弦长为,求直线l 的方程.20.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.22.已知数列{a n }的前n 项和为S n ,且S n =a n ﹣,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y+2=0上.(1)求数列{a n },{b n }的通项a n 和b n ; (2)设c n =a n •b n ,求数列{c n }的前n 项和T n .23.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各 10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同. (1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.24.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.宝应县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:因为x1<x2<x3<x4<x5<﹣1,题目中数据共有六个,排序后为x1<x3<x5<1<﹣x4<﹣x2,故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是(x5+1).故选:C.【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.2.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.3.【答案】C【解析】考点:三视图.4.【答案】C【解析】[]11,,0,1,0,22A B A B⎛⎫⎡⎫=-∞==⎪⎪⎢⎝⎭⎣⎭,(],1U=-∞,故选C.5.【答案】D6.【答案】B【解析】解:∵f (x )=,∴f (﹣2)=1+log 24=1+2=3,=5,∴f (﹣2)+f (log 210)=3+5=8. 故选:B .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.7. 【答案】A【解析】解:由已知点A (0,1),B (3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A .【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.8. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得x =12111,422x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.9. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 10.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案. 由分类计数原理,可得不同的分配方案共有18+18=36种, 故选A .【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.11.【答案】C 【解析】考点:平面图形的直观图. 12.【答案】D【解析】解:由图可知,,但不共线,故,故选D .【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.二、填空题13.【答案】 .【解析】解:∵数列{a n }为等差数列,且a 3=,∴a 1+a 2+a 6=3a 1+6d=3(a 1+2d )=3a 3=3×=,∴cos (a 1+a 2+a 6)=cos =.故答案是:.14.【答案】 .【解析】解:复数z==﹣i (1+i )=1﹣i ,复数z=(i 虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.15.【答案】.【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a 和b ,基本事件的总个数是6×6=36,即(a ,b )的情况有36种, 事件“a+b 为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6), (3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个, “在a+b 为偶数的条件下,|a ﹣b|>2”包含基本事件: (1,5),(2,6),(5,1),(6,2)共4个, 故在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.16.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 17.【答案】[,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M , ∴2a ﹣1≤1 且4a ≥2,解得 2≥a≥,故实数a 的取值范围是[,1], 故答案为[,1].18.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.三、解答题19.【答案】【解析】解:将圆的方程写成标准形式,得x 2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l 被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l 的距离为.…因为直线l 的斜率为2,所以可设所求直线l 的方程为y=2x+b ,即2x ﹣y+b=0.所以圆心到直线l 的距离为,…因此,解得b=﹣2,或b=﹣12.… 所以,所求直线l 的方程为y=2x ﹣2,或y=2x ﹣12.即2x ﹣y ﹣2=0,或2x ﹣y ﹣12=0.… 【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.20.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知 ,点在椭圆上,,解得.所求椭圆方程为 (Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;21.【答案】【解析】22.【答案】【解析】解:(1)∵S n=a n﹣,∴当n≥2时,a n=S n﹣S n﹣1=a n﹣﹣,即a n=3a n﹣1,.∵a1=S1=﹣,∴a1=3.∴数列{a n}是等比数列,∴a n=3n.∵点P(b n,b n+1)在直线x﹣y+2=0上,∴b n+1﹣b n=2,即数列{b n }是等差数列,又b 1=1,∴b n =2n ﹣1.(2)∵c n =a n •b n =(2n ﹣1)•3n,∵T n =1×3+3×32+5×33+…+(2n ﹣3)3n ﹣1+(2n ﹣1)3n, ∴3T n =1×32+3×33+5×34+…+(2n ﹣3)3n +(2n ﹣1)3n+1, 两式相减得:﹣2T n =3+2×(32+33+34+…+3n )﹣(2n ﹣1)3n+1,=﹣6﹣2(n ﹣1)3n+1, ∴T n =3+(n ﹣1)3n+1.23.【答案】(1) 7a =;(2) 310P =. 【解析】试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况. 所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率310P =.1 考点:平均数;古典概型.【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好.24.【答案】(1)()21sin cos S θθ=+,其中02πθ<<.(2)6πθ=时,max 2S =【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,()1cos sin BC θθ=++最后根据梯形面积公式得()2AD BC ABS +⋅=()21sin cos θθ=+,交代定义域02πθ<<.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6πθ=,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2AD BC ABS +⋅=()21sin cos θθ=+,其中02πθ<<.考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x )>0或f′(x )<0求单调区间;第二步:解f′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省宝应县高中2017-2018学年度高三数学月考试卷 班级 姓名 学号 成绩
一、填空题
1、已知集合{}0,1,2,7A =,{}7,B y y x x A ==∈,则A
B = . 2
、已知复数z = (i 为虚数单位),复数的共轭复数为z ,则z z ⋅= . 3、一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率 为0.1,则第6组的频数为 .
4、阅读下列程序,输出的结果S 的值为 .
(第4题图) (第11题图)
5、某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们 在同一个食堂用餐的概率为 .
6、已知函数()2cos(),[,]323
f x x x π
ππ=+∈-,则函数()f x 的值域是 . 7、已知函数ln(4)y x =-的定义域为A ,集合{}
B x x a =>,若x A ∈是x B ∈的充分 不必要条件,则实数a 的取值范围为 . 8、已知实数,x y 满足2035000
x y x y x y -⎧⎪-+⎪⎨⎪⎪⎩≤≥≥≥,则2z x y =+的最大值为 . 9、若一圆锥的底面半径为3,体积为12π,则该圆锥的侧面积为 .
10、在ABC △中,若tan tan 1A B =,则sin()3C π
+= .
11、已知棱长为1的正方体1111ABCD A BC D -中,
M 是棱1CC 的中点,则三棱锥
1A ABM -的体积为 .
12、已知正实数,a b 满足47a b +=,则
1412a b +++的最小值为 . 13、已知函数21,
1,()(),1,
a x x f x x a x ⎧-+=⎨->⎩≤函数()2()g x f x =-,若函数()()y f x g x =- 恰有4个不同的零点,则实数a 的取值范围为 .
14、在平面直角坐标系xOy 中,圆222:(0)O x y r r +=>
与圆22:(2)(M x y -+- 4=相交于,A B 两点,若对于直线AB 上任意一点P ,均有0PO PM ⋅>成立,则r 的取 值范围为 .
二、解答题
15、(本小题满分14分:6分+8分)
如图,在四棱柱1111ABCD A BC D -中,AB CD ∥,1AB BC ⊥,且1AA AB =.
(1)求证:AB ∥平面11D CCC ;
(2)求证:1AB ⊥平面1A BC .
(第15题图)
16、(本小题满分14分:6分+8分)
在ABC △中,已知角,,A B C 所对的边分别为,,a b c ,且tan 2B =,tan 3C =.
(1)求角A 的大小;
(2)若3c =,求边b 的长.
A 1
B 1
C 1 C
D A B D 1。