3.3幂函数 (2)
1.数学:3.3《幂函数》教案(新人教B版必修1)
幂函数教学设计一、教学目标1.知识与技能 理解、掌握幂函数的图象与性质,并进一步掌握研究函数的一般方法。
2.过程与方法 渗透分类讨论、数形结合的思想及类比、联想的学习方法,提高归纳与概括的能力。
3.情感态度价值观 培养积极思考,通过自主探索获取新知的学习习惯和科学严谨的学习态度;体会从特殊到一般的思维过程. 二、教学重、难点本节课的重点内容是幂函数在第一象限的图象与性质及研究幂函数的一般方法。
相对于指数函数与对数函数来说,幂函数的情况比较复杂,对幂函数图象的共性的归纳是本节课的难点。
学情分析及教学内容分析 三、学情分析 1.知识储备方面学习幂函数之前,学生在初中已经掌握了一次函数,二次函数,正比例函数,反比例函数几类基本初等函数,并且在高中阶段独立探究过指数函数与对数函数的图象与性质,基本掌握了研究函数的一般方法与过程.由于幂函数的情况比较复杂,学生在对图象共性的归纳与概括方面可能遇到困难. 2. 思维水平方面所授课班级是理科实验9班,学生有较高的数学素养和较强的数学思维能力,对数学充满探索精神,对课堂教学有较高需求. 四. 教学内容分析1.幂函数在教材中的地位幂函数是新课标教材新增的内容,位于必修1第三章基本初等函数(Ⅰ)的第三节.在过渡性教材中,曾将幂函数这一内容删掉了,新课标又把幂函数重新编入教材,而相比起人教版的旧教材,幂函数的地位和难度都有所下降,新教材将幂函数的位置放到了指数函数与对数函数之后,并且将幂函数研究的对象限定为五个具体函数,通过研究它们来了解幂函数的性质. 2.幂函数的作用新教材将幂函数重新加入,主要考虑到幂函数在以下几方面的作用: 1.是幂函数在实际中的应用.2.学生在初中已经学习了x y =、2x y =、1-=x y 三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.3.幂函数是基本初等函数(Ⅰ)研究的最后一个函数,在指数函数和对数函数之后,幂函数的学习与探究过程可体现类比的学习方法,渗透分类讨论数形结合的数学思想,培养归纳、概括的能力,并使学生进一步体会并掌握研究基本初等函数的一般思路与方法.组织探究二、幂函数的定义自然地,给出幂函数定义(板书,学生打开课本)一般地,形如:αxy=)(Ra∈的函数称为幂函数,其中α为常数.(由上面的式子可以看出幂函数和幂联系紧密,由于根式推广时,我们仅推广到有理数的情况,所以仅研究有理数)。
3.3 幂函数(课件)高一数学(人教A版2019必修第一册)
【变式】幂函数 y=xm,y=xn,y=xp,y=xq 的图象如图,则将 m、n、p、
n<q<m<p
q 的大小关系用“<”连接起来结果是________.
[解析] 过原点的指数α>0,不过原点的α<0,
∴n<0,
当x>1时,在直线y=x上方的α>1,下方的α<1,
∴p>1,0<m<1,0<q<1;
即幂函数 = 是增函数.
【变式】求下列幂函数的定义域,并指出其奇偶性.
(1)y=x
2
.(2)y=x3
-2
.
1
[解析] (1)y=x-2=x2,定义域是{x|x≠0},是偶函数.
2
(2)y=x3
3
= x2,定义域是 R,是偶函数.
题型五:幂函数性质的综合应用
例5.已知函数() =
(2)幂函数的图象都不过第二、四象限. ( × )
(3)当幂指数取1,3, 时,幂函数 = 是增函数.( √ )
(4)若幂函数 = 的图象关于原点对称,则 = 在定义域内随的增大
而增大.( ×)
4.若四个幂函数图象 = , = , = , = 在同一坐标系中的图象如图所示,
1
2 +
( ∈ ∗ ).
(1)试确定该函数的定义域,并指明该函数在定义域上的单调性;
解:(1)∵2 + = ( + 1), ∈ ∗ ,
∴与 + 1中有一个必为偶数,
∴该函数的定义域为[0, +∞),
由幂函数的性质知,该函数在定义域上单调递增.
例5.已知函数() =
新教材人教A版数学必修第一册第3章 3.3 幂函数
层
)作
业
疑
难
返 首 页
13
课
情
堂
景
小
导 学
(4)当幂指数 α=-1 时,幂函数 y=xα 在定义域上是减函数.
结 提
探
新 知
素
( )养
课
合
[答案] (1)× (2)√ (3)√ (4)×
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
14
课
情
堂
景
小
导 学
2.下列函数中不是幂函数的是( )
结 提
探
新
A.y= x
B.y=x3
1.幂函数的图象过点(2, 2),则该幂函数的解析式是(
)
堂 小
导
学
探
A.y=x-1
课
合 以是“0”或“1”.
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
35
课
情
堂
景
小
导
结
学
提
探
新 知
课堂
小结
提素
养
素 养
课
合
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
36
情
1.理解 1 个概念——幂函数的概念
课 堂
景
小
导
判断一个函数是否为幂函数,其关键是判断其是否符合 y=xα(α 结
学
提
探 新
为常数)的形式.
3.3幂函数(共43张PPT)
解决幂函数图象问题应把握的原则 (1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大, 幂函数图象越靠近 x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂 函数图象越远离 x 轴(简记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在第一象限内 的图象(类似于 y=x-1 或 y=x12或 y=x3)来判断.
()
解析:选 D.由题意设 f(x)=xn, 因为函数 f(x)的图象经过点(3, 3), 所以 3=3n,解得 n=12, 即 f(x)= x, 所以 f(x)既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数,故选 D.
4.函数 y=x-3 在区间[-4,-2]上的最小值是_____________. 解析:因为函数 y=x-3=x13在(-∞,0)上单调递减, 所以当 x=-2 时,ymin=(-2)-3=(-12)3=-18. 答案:-18
B.-3 D.3
()
【解析】 (1)②⑦中自变量 x 在指数的位置,③中系数不是 1,④中解析式 为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,所以 m2+2m-2=1, m>0, 所以 m=1.
【答案】 (1)B (2)A
所以( 2)-32>( 3)-32.
6
6
6
6
(3)因为 y=x5为 R 上的偶函数,所以(-0.31)5=0.315.又函数 y=x5为[0,
+∞)上的增函数,且 0.31<0.35,
6
6
6
6
所以 0.315<0.355,即(-0.31)5<0.355.
3.3幂函数
h(x) = x3
1
1
q(x) = x 2
显O 示轨1迹
x
显示轨迹
显示轨迹
显示轨迹
r(x) = x 1பைடு நூலகம்
R
R
奇偶性 奇函数
单调性
增函数
偶函数
在(-∞,0]上单调 递减,在[0,+∞)上 单调递增
奇函数 增函数
1
y x y x
2
y
1
O1
x
y x1 y x1 y
1
O1
x
[0,+∞)
(-∞,0)∪(0,+∞)
h(x) = x3 h(x) = x3
11
1
图象
q(x) = x 2 q(x) = x 2
显示轨迹 隐藏轨迹
O显示1轨迹
x
显示轨迹 显示轨迹
显示轨迹 显示轨迹
隐藏轨迹
定义域
R
y x2 y x2 y
1
O1
x
R
值域
R
[0,+∞)
◇[还原坐标系] ◇[改刻度字体]
y x 3 ◇[操作控制台] y x3
f(x) y= x g(x) = x2
第三章 函数概念与性质 3.3 幂函数
问题引入:函数的生活实例
问题1:如果张红以1元/kg的价格购买了某种蔬菜w千克,那么她需要付的
钱数p = w 。 y x 这里p是w的函数
问题2:如果正方形的边长为a,那么正方形的面积是S = a², 这y =里xS²是a的函数
问题3:如果正方体的边长为b,那么正方体的体积是V = b,³ 这y=里xV³是b的函数
01 x
(3) 在第一象限内,当α>0时是增函数,当α < 0时是减函数;
第3章3.3幂函数
❖
1
(5)如果某人t s内骑车行进了1km,那么他骑车的平均速度v= km/s .
t
s= a2 ;
3
这些函数的解
析式有什么共
同特征?
都是形如
y=xα 的函数
S
讲授新课
一、幂函数的概念
1.幂函数的定义
一般地,函数 y=xα叫做幂函数,其中x为自变量,α
为常数.
2.幂函数的解析式的特征:
①xα的系数为1,
以 f(x)=x3.因为 f(x)=x3 在 R 上为增函数,所以由 f(a-3)>f(1-a),得 a-3>1-a,解
得 a>2.所以满足不等式 f(a-3)>f(1-a)的实数 a 的取值范围是(2,+∞).
变式1: 已知幂函数f()= 的图象过点P(2,8),
证明:f()在(0,+∞)上的单调递减。
典例讲解
例2: 利用单调性判断下列各值的大小.
(1)5.20.8 与 5.30.8
(2)0.2- 0.3 与 0.3-0.3
解:(1)y= x0.8在(0,+∞)上是增函数,
∵5.2<5.3
∴ 5.20.8 <5.30.8
关于这五个幂函数的图象,其中 = , = , = − ,
我们在初中已经画过了。
1
2
思考:如何画出 = 3 , = ,的图象?
讲授新课
1. 五种常见幂函数的图象
y=x3
y=x2
y=x
4
1
3
y= x 2
2
1
(1,1)
(-1,1)
-6
-4
-2
-1
(-1,-1)
第三章3.3幂函数PPT课件(人教版)
1.幂函数的概念 一般地,函数 y=xα 叫做幂函数,其中x是自变量,α是常数. 2.幂函数的图象和性质
拓展:对于幂函数y=xα(α为实数)有以下结论: (1)当α>0时,y=xα在(0,+∞)上单调递增;(2)当α<0时,y=xα在(0,+∞)上单 调递减;(3)幂函数在第一象限内指数的变化规律:在直线x=1的右侧,图象从 上到下,相应的幂指数由大变小.
已知 n 取±2,±12四个值,则相应于 C1,C2,C3,C4 的 n 依次为(
)
A.-2,-12,12,2
B.2,12,-12,-2
C.-12,-2,2,12
D.2,12,-2,-12
解析 根据幂函数 y=xn 的性质,在第一象限内的图象当 n>0 时,n 越大,y=xn
递增速度越快,故 C1 的 n=2,C2 的 n=12;当 n<0 时,|n|越大,曲线越陡峭,所
奇偶性 _奇___
_偶___
_奇___ __非__奇__非__偶__
__奇__
x∈[0,+∞), 单调性 _增___ __增__
x∈(-∞,0], __减__
_增___
__增__
x∈(0,+∞),_减___ x∈(-∞,0),_减___
公共点
都经过点(__1_,__1_)___
教材拓展补遗
[微判断] 1.函数y=-x2是幂函数.( × )
【训练1】 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)的值等于________. 解析 设f(x)=xα,因为f(4)=16,∴4α=16,解得α=2,∴f(-4)=(-4)2=16. 答案 16
题型二 幂函数的图象及其应用 关键取决于α>0,α<0
新课标人教B版复习导航 3.3幂函数
3. 3 幂函数励志名言提出一个问题往往比解决一个问题更重要,因为解决问题也许仅是一个数学上或实验上的技能而已。
而提出新的问题、新的可能性,从新的角度去看旧的问题,却需要有创造性的想象力,而且标志着科学的真正进步。
——爱因斯坦 目标导航通过实例,了解幂函数的概念,结合函数2132,1,,,x y xy x y x y x y =====的图象,了解它们的情况,探索并了解幂函数的有关性质。
要点聚焦1.幂函数的概念,形如αx y =的函数,其中α为非0有理数.结合函数32,,x y x y x y ===xy 1=,21x y =的图象,了解它们的情况,探索并了解幂函数的有关性质.2.当0>α时,幂函数在第一象限的图象随着α的增大,变化速度越快.函数在),0(∞+ 递增.在区间)1,0( ,10<<α时,图象在x y =上方;1>α时,图象在x y =下方;并且沿时针方向,α减小;在区间),1(∞+ 情况正好相反. 3.当0<α时,幂函数的图象实质上是双曲线,随着α的减小,变化速度越快.函数),0(∞+ 递减.4.幂函数恒过点)1,1( ,注意结合第2、第3进行大小比较. 3.3幂函数(1)经典题例例1 比较下列各组数的大小,并说明理由221213.0,3.0,3.1分析:∵21213.0,3.1的指数相等,∴考察幂函数21x y =在(0,+∞)的单调性, ∵2213.0,3.0的底数相等,∴考察指数函数x y 3.0=的单调性.解:考察幂函数21x y =,由课本例题可知,21x y =在(0,+∞)为增函数。
∵1.3>0.3 ,∴21213.03.1>.再考察指数函数xy 3.0=在R 为减函数,∵,221<∴2213.03.0>,故得221213.03.03.1>>。
点评:1.观察指数相同,考察幂函数的单调性;底相同,考察指数函数的单调性。
3.3 幂函数
3.3 幂函数学习目标1.能够通过给出的具体实例,得出幂函数的概念.2.能够结合五个具体的幂函数y =x ,y =1x ,y =x 2,y =x ,y =x 3的图象,通过归纳,抽象概括出五个幂函数的基本性质.知识点一 幂函数的概念 1.幂函数的定义一般地,函数□1y =x 叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的特征(1)x α的系数为□21; (2)x α的□3底数是自变量; (3)x α的指数为□4常数. 只有满足这三个条件特征,才是幂函数,对于形如y =(2x )α,y =2x 5,y =x α+6等函数都不是幂函数.[微练1] 思考辨析(正确的打“√”,错误的打“×”) (1)函数f (x )=2x 2是幂函数.(×) (2)函数f (x )=2x 是幂函数.(×) (3)函数f (x )=(x +1)3不是幂函数.(√)[微练2] 若幂函数y =f (x )的图象经过点(2,2),则f (x )=________. 解析:设f (x )=x α,由题意得2=2α,∴α=12. 即f (x )=x 12. 答案:x 12知识点二 常见幂函数的图象与性质 1.五种常见幂函数的图象2.五类幂函数的性质幂函数y=x y=x2y=x3y=x12y=x-1定义域□5R□6R□7R □8[0,+∞)□9(-∞,0)∪(0,+∞)值域□10R□11[0,+∞)□12R □13[0,+∞){y|y∈R且y≠0}奇偶性□14奇函数□15偶函数□16奇函数□17非奇非偶□18奇函数单调性□19增函数x∈[0,+∞),单调递增;x∈(-∞,0),单调递减□20增函数□21增函数x∈(0,+∞)单调递减;x∈(-∞,0),单调递减公共点都经过点□22(1,1)幂函数的图象不经过第四象限.[微练3]函数f(x)=-x3的图象是()解析:B f(x)=-x3与f(x)=x3关于x轴对称.故选B.[微练4]函数y=x-3在区间[-4,-3]上的最小值为________.解析:因为函数y=x-3=1x3在(-∞,0)上单调递减,所以当x=-3时,y min =(-3)-3=1(-3)3=-127. 答案:-127题型一 幂函数的概念1.在函数y =1x 2,y =2+x 2,y =x 2+x ,y =1中,幂函数的个数为( ) A .0 B .1 C .2D .3解析:B y =1x 2=x -2,y =x -2是幂函数,其余都不是幂函数.2.若函数y =(m 2+2m -2)x m 为幂函数且在第一象限为增函数,则m 的值为( )A .1B .-3C .-1D .3解析:A 因为函数y =(m 2+2m -2)x m 为幂函数且在第一象限为增函数,所以⎩⎨⎧m 2+2m -2=1,m >0, 所以m =1.3.已知幂函数f (x )的图象过点(4,12),且f (x )=8,则x =( ) A .2 2 B .64 C .24D .164解析:D 设f (x )=x α,将点(4,12)代入得12=4α,所以α=-12,所以f (x )=x -12.令x -12=8,得x =8-2=164.判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式.题型二幂函数的图象及应用(1)幂函数y=x2,y=x-1,y=x 13,y=x-12在第一象限内的图象依次是图中的曲线()A.C1,C2,C3,C4B.C1,C4,C3,C2C.C3,C2,C1,C4D.C1,C4,C2,C3(2)点(2,2)与点(-2,-12)分别在幂函数f(x),g(x)的图象上,问当x为何值时,有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).(1)[解析]由于在第一象限内直线x=1的右侧,幂函数y=xα的图象从上到下相应的指数α由大变小,即“指大图高”,故幂函数y=x2在第一象限内的图象为C1,y=x-1在第一象限内的图象为C4,y=x 13在第一象限内的图象为C2,y=x-12在第一象限内的图象为C3. [答案] D(2)[解]设f(x)=xα,g(x)=xβ.∵(2)α=2,(-2)β=-12,∴α=2,β=-1,∴f(x)=x2,g(x)=x-1.分别作出它们的图象,如图所示.由图象知,①当x∈(-∞,0)∪(1,+∞)时,f(x)>g(x);②当x=1时,f(x)=g(x);③当x∈(0,1)时,f(x)<g(x).解决幂函数图象问题应把握的原则(1)依据图象高低判断幂指数的大小,相关结论为:①在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x-1或y =x 12或y =x 3)来判断.1.已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b解析:A 由幂函数的图象特征知,c <0,a >0,b >0.由幂函数的性质知,当x >1时,幂指数大的幂函数的函数值就大,则a >b .综上可知c <b <a .题型三 幂函数性质及应用 角度1 比较幂的大小(链接教材P 91练习T 2)利用幂函数的性质,比较下列各组数的大小; (1)1.554,1,1.754;(2)(-0.75)-2,0.76-2; (3)(23)23与(34)23.[解] (1)1=154,幂函数y =x 54在(0,+∞)上是增函数,故1<1.554<1.754. (2)(-0.75)-2=0.75-2,幂函数y =x -2在(0,+∞)上是减函数,故(-0.75)-2=0.75-2>0.76-2.(3)∵函数y =x 23在(0,+∞)是增函数,且34>23,∴(34)23>(23)23.比较幂值大小的方法(1)若指数相同,则利用幂函数的单调性比较大小.(2)若指数不同,可采用中介值法或估值法,如先与0比较大小,若都大于0,再与1比较,直到比较出所有数的大小,若中介值法不行则要采用估值法,判断各数的范围,进而比较出各数的大小.角度2 解不等式若(3-2m )12>(m +1)12,求实数m 的取值范围.[解] 因为y =x 12在定义域[0,+∞)上是增函数,所以⎩⎨⎧3-2m ≥0,m +1≥0,3-2m >m +1,解得-1≤m <23.故实数m 的取值范围为[-1,23).利用幂函数解不等式的两个步骤利用幂函数解不等式,实质是已知函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;另外解不等式(组)求参数范围时,注意分类讨论思想的应用.2.(多选题)已知α∈{-1,1,2,3},则使函数y =x α的值域为R ,且为奇函数的α的值为( )A .-1B .1C .2D .3答案:BD3.(-0.31)65与0.3565的大小关系为________.解析:因为y =x 65为R 上的偶函数,所以(-0.31)65=0.3165.又函数y =x 65为[0,+∞)上的增函数,且0.31<0.35,所以0.3165<0.3565,即(-0.31)65<0.3565.答案:(-0.31)65<0.35654.若幂函数f(x)过点(2,8),则满足不等式f(a-3)>f(1-a)的实数a的取值范围是________.解析:设幂函数为f(x)=xα,因为其图象过点(2,8),所以2α=8,解得α=3,所以f(x)=x3.因为f(x)=x3在R上为增函数,所以由f(a-3)>f(1-a),得a-3>1-a,解得a>2.所以满足不等式f(a-3)>f(1-a)的实数a的取值范围是(2,+∞).答案:(2,+∞)拓展提升幂函数图象的特征当α=1时,y=x的图象是一条直线;当α=0时,y=x0=1(x≠0)的图象是一条不包含点(0,1)的直线;当α为其他值时,相应幂函数的图象如下表.α=pqα<00<α<1α>1p,q都是奇数p为偶数,q为奇数p为奇数,q为偶数课时规范训练A基础巩固练1.幂函数y=f(x)的图象经过点(3,3),则f(x)()A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .既不是奇函数,也不是偶函数,且在(0,+∞)上是增函数 解析:D 由题意设f (x )=x n , 因为函数f (x )的图象经过点(3,3), 所以3=3n,解得n =12,即f (x )=x ,所以f (x )既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数.故选D .2.已知当x ∈(1,+∞)时,函数y =x α的图象恒在直线y =x 的下方,则α的取值范围是( )A .0<α<1B .α<0C .α<1D .α>1解析:C 由幂函数的图象特征知α<1.3.若f (x )=x -12,则函数f (4x -3)的定义域为( ) A .R B .(-∞,34) C .[34,+∞)D .(34,+∞)解析:D ∵f (x )=x -12的定义域为(0,+∞), ∴4x -3>0,∴x >34,故选D .4.已知a =1.212,b =0.9-12,c = 1.1,则( ) A .c <b <a B .c <a <b C .b <a <cD .a <c <b解析:A b =0.9-12=(910)-12=(109)12,c = 1.1=1.112,因为f (x )=x 12在[0,+∞)上单调递增且1.2>109>1.1,所以1.212>(109)12>1.112,即a >b >c .5.(多选题)已知幂函数f (x )=x n ,n ∈{-2,-1,1,3}的图象关于y 轴对称,则下列说法正确的是()A.f(-2)>f(1)B.f(-2)<f(1)C.f(-2)=f(-1)D.若|a|>|b|>0,则f(a)<f(b)解析:BD幂函数f(x)=x n,n∈{-2,-1,1,3}的图象关于y轴对称,则n=-2,则f(x)=1x2,f(-x)=f(x),且f(x)在(0,+∞)上单调递减,于是有f(-2)=f(2)<f(1)=f(-1),则A错误,B正确,C错误;若|a|>|b|>0,则f(|a|)<f(|b|),即f(a)<f(b)成立,故D正确.故选BD.6.(多选题)给出下列四个说法:①当n=0时,y=x n的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④若幂函数y=x n的图象在第一象限为减函数,则n<0.其中正确说法的序号是()A.①B.②C.③D.④解析:CD①显然错误;②中如y=x-12的图象不过点(0,0).根据幂函数的图象可知③,④正确.7.幂函数y=x 23的定义域为________;其奇偶性是________.解析:y=x 23=(x2)13,∴定义域为R;偶函数.答案:(-∞,+∞)偶函数8.已知幂函数f(x)=x m2-2m-3(m∈Z)的图象关于y轴对称,并且f(x)在第一象限内是单调递减函数,则m=________.解析:因为幂函数f(x)=x m2-2m-3(m∈Z)的图象关于y轴对称,所以函数f(x)是偶函数,所以m2-2m-3为偶数,所以m2-2m为奇数.又因为f(x)在第一象限内是单调递减函数,故m2-2m-3<0,又m∈Z所以m=1.答案:19.比较下列各组数的大小:(1)3-72和3.2-72;(2)(-23)23和(-π6)23;(3)4.125和3.8-43.解:(1)函数y=x-72在(0,+∞)上为减函数,又3<3.2,所以3-72>3.2-7 2.(2)(-23)23=(23)23,(-π6)23=(π6)23,函数y=x 23在(0,+∞)上单调递增,而23>π6,所以(-23)23>(-π6)23.(3)4.125>125=1,0<3.8-43<1-43=1,所以4.125>3.8-43.B能力进阶练10.函数f(x)=x a+b,不论a为何值,f(x)的图象均过点(m,0),则实数b的值为()A.-1 B.1C.2 D.3解析:A∵幂函数y=xα过定点(1,1),∴f(x)=xα+b过定点(1,1+b),由题意1+b=0,∴b=-1.11.(多选题)已知实数a,b满足等式a 12=b13,则下列关系式中可能成立的是()A.0<b<a<1 B.0<a<b<1 C.1<a<b D.1<b<a解析:AC画出y=x 12与y=x13的图象(如图),设a12=b13=m,作直线y=m.由图象知,若m =0或1,则a =b ;若0<m <1,则0<b <a <1;若m >1,则1<a <b .故其中可能成立的是AC .12.(多选题)下列不等式在a <b <0的条件下能成立的是( ) A .a -1>b -1B .a 13<b 13C .b 2<a 2D .a -23>b -23解析:ABC 分别构造函数y =x -1,y =x 13,y =x 2,y =x -23,其中函数y =x -1,y =x 2在(-∞,0)上为减函数,而y =x 13,y =x -23为(-∞,0)上的增函数,故D 不成立,其他都成立.13.已知2.4α>2.5α,则α的取值范围是________. 解析:因为0<2.4<2.5,而2.4α>2.5α, 所以y =x α在(0,+∞)上为减函数,故α<0. 答案:(-∞,0)14.已知幂函数f (x )=x 9-3m (m ∈N *)的图象关于原点对称,且在R 上单调递增. (1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解:(1)由题可知,函数f (x )在R 上单调递增,所以9-3m >0,解得m <3. 又m ∈N *,所以m =1,2.又函数图象关于原点对称,所以9-3m 为奇数,故m =2.所以f (x )=x 3. (2)因为f (a +1)+f (3a -4)<0, 所以f (a +1)<-f (3a -4).因为f (x )为奇函数,所以f (a +1)<f (4-3a ). 又函数在R 上单调递增,所以a +1<4-3a . 所以a <34.所以a 的取值范围是(-∞,34).C 探索创新练15.(多选题)已知幂函数f (x )=x m n(m ,n ∈N *,m ,n 互质),下列关于f (x )的结论正确的是( )A .m ,n 是奇数时,f (x )是奇函数B .m 是偶数,n 是奇数时,f (x )是偶函数C .m 是奇数,n 是偶数时,f (x )是偶函数D .0<mn <1时,f (x )在(0,+∞)上是减函数解析:AB f (x )=x m n=nx m ,当m ,n 是奇数时,f (x )是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数时,f (x )是偶函数,故B 中的结论正确;当m 是奇数,n 是偶数时,f (x )在x <0时无意义,故C 中的结论错误;当0<mn <1时,f (x )在(0,+∞)上是增函数,故D 中的结论错误.故选AB .。
幂函数教学设计
3.3 幂函数教学设计一、单元内容和内容解析 1. 内容幂函数的定义,五个常见幂函数的图象与性质. 2. 内容解析幂函数是学生进入高中后学习的第一类具体的基本初等函数,在此之前学生已经学习了正比例函数,反比例函数,一次函数,二次函数,因此幂函数的学习是在学生已有的函数学习经验上展开的,主要是在归纳五个具体幂函数共性基础上的数学抽象.“幂函数”的内容安排在“函数的概念与性质”一章的第3节,是在学习完函数的概念以及函数的基本性质后,选取一类简单的基本初等函数进行研究,使学生明确一类具体函数的研究内容(定义、表示一图象与性质一应用),并体会如何在函数的概念及基本性质的指导下展开研究.因此幂函数的学习既是对前面所学内容的巩固,也为后面指数函数、对数函数的学习打下基础.基于以上分析,确定本节课的教学重点:幂函数的概念、图象与性质. 二、单元目标和目标解析 1. 目标(1)通过具体实例,了解幂函数的定义,会画五个幂函数的图象,理解它们的性质;(2)通过对幂函数的研究,体会研究一类函数的基本内容与方法. 2. 目标解析(1)能从自变量、函数值及函数解析式的结构等角度归纳共性,抽象出幂函数的一般形式;会利用 幂函数的定义识别给出的函数是否为幂函数;会画出五个具体幂函数的草图,结合图象研究它们的定义域、值域、单调性、奇偶性等性质;能利用幂函数的性质解决一些简单的问题,如比较大小等.(2)结合对幂函数的研究,体会从定义、表示一图象与性质一应用的研究具体函数的方法. 三、单元教学问题诊断分析学生在初中已经学习过一些具体的幂函数,但缺乏对研究一类函数的内容和方法的认识,教学时应联系初中学习函数的经验,以及前面学习过的一般函数的概念和性质,让学生尝试构建本节课的学习思路,从而体会研究一类函数的内容、思路和方法.画出3y x =和y =.教学时先引导学生观察函数解析式的特点,得出3y x =是奇函数,y =的定义域为[0,)+∞等;然后让他们思考如何取点,并利用描点法作图,分析五个函数图象的共性和差异性而得出性质.同时,还要加强信息技术的应用.在归纳性质时,学生对从哪些方面进行归纳会存在困惑,教师要引导学生思考研究函数的一般方法及 所要研究的内容,结合前面函数性质的研究,为这里性质的归纳作好铺垫.基于以上分析,确定本节课的教学难点:观察五个幂函数的解析式的共性,抽象幂函数概念;观察函 数图象的内容和方法. 四、教学支持条件分析利用信息技术,可以将五个具体幂函数的图象画在同一个坐标系中,以利于观察、归纳出函数的性质. 五、教学过程设计 (一)、复习回顾问题1:前面我们学习了函数的概念,单调性,奇偶性,这是我们研究函数的一般路径。
2020-2021高中数学人教版第一册学案:3.3 幂函数含解析
2020-2021学年高中数学新教材人教A版必修第一册学案:3.3 幂函数含解析3。
3 幂函数【素养目标】1.通过具体实例,理解幂的概念.(数学抽象)2.会画简单幂函数的图象,并能根据图象得出这些函数的性质.(直观想象)3.理解常见幂函数的基本性质.(逻辑推理)【学法解读】以五种常见的幂函数为载体,学生应自己动手在同一个平面直角坐标系下画出这五种幂函数的图象,通过观察比较研究其图象和性质,进而研究一般幂函数的图象和性质.必备知识·探新知基础知识知识点1幂函数的概念函数__y=xα__叫做幂函数,其中x是自变量,α是常数.思考1:幂函数的解析式有什么特征?提示:①系数为1;②底数x为自变量;③幂指数为常数.知识点2幂函数的图象及性质(1)五个幂函数的图象:(2)幂函数的性质:幂函数y=x y=x2y=x3y=x错误!y=x-1定义域R R R[0,+∞)(-∞,0)∪(0,+∞)值域R[0,+∞)R [0,+∞){y|y∈R且y≠0}奇偶性奇偶奇非奇非偶奇单调性__增__x∈(0,+∞)增;x∈(-∞,0) 减__增____增__x∈(0,+∞)减;x∈(-∞,0)减公共点都经过点(1,1)α同特征?提示:图象都是从左向右逐渐上升.基础自测1.下列函数为幂函数的是(D)A.y=2x4B.y=2x3-1C.y=错误!D.y=x2[解析]y=2x4中,x4的系数为2,故A不是幂函数;y=2x3-1不是xα的形式,故B不是幂函数;y=错误!=2x-1,x-1的系数为2,故C不是幂函数,故只有D是幂函数.2.(2019·安徽太和中学高一期中测试)已知幂函数f(x)的图象过点(2,22),则f(4)的值为(B)A.4 B.8C.2错误!D.错误![解析]设f(x)=xα,∴2错误!=2α,∴α=错误!。
∴f(x)=x错误!.∴f(4)=4错误!=(22)错误!=23=8.3.若f(x)=mxα+(2n-4)是幂函数,则m+n等于(C)A.1 B.2C.3 D.4[解析]由题意,得错误!,∴错误!∴m+n=3。
人教A版(2019)高中数学必修1第三章3.3幂函数 课件(共20张PPT)
1
0.5
0.125
0
0
知识点二 五个幂函数的图象
定义域
值域
奇偶性
单调性
R
R
奇
增
知识点二 五个幂函数的图象
在同一平面直角坐标系内画出以上五个函数图象.
- 9 -
知识点三 一般幂函数的性质
在第一象限内,函数图象的变化趋势与指数有什么关系?
- 10 -
知识点三 一般幂函数的性质
不管指数是多少,图象都经过哪个定点?
知识点三 一般幂函数的性质
- 14 -
百“炼”成钢,熟能生巧
幂函数性质的应用
比较幂值大小关键是看指数相同还是底数相同,若指数相同利用幂函数的单调性;若底数相同,利用“指大图高”判断;若底数,指数都不相同,构造中间量。
规律总结
- 15 -
课堂练习
-1
-16 -
- 17 -
了解幂函数的概念会画常见幂函数的图象结合图像了解幂函数图象的变化情况和简单性质会用幂函数的单调性比较两个底数不同而指数相同课老师:
时间:2024年9月15日
- -
幂函数
01/
幂函数的概念
目录
02/ 幂函数的图象与性质
03/ 综合应用
-0 -
情景导入
写出下列y关于x的函数关系式:(1)购买每千克1元的蔬菜x千克,需要支付的钱数y;(2)正方形的边长为x,正方形的面积y;(3)正方体的边长为x,正方体的体积y;(4)正方形的面积为x,正方形的边长y;(5)某人x s内骑车进行了1 km,她骑车的平均速度y;
- 5 -
知识点二 五个幂函数的图象
函数
定义域
R
R
值域
人教A版高中数学必修第一册3.3幂函数【课件】
α
∴f(2)=,∴2 =,解得 α=-2,
∴f(x)=x-2.
f(x)的图象如图所示.
f(x)的定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递
增区间为(-∞,0).
反思感悟
1.幂函数的图象一定出现在第一象限内,一定不会出现在第四
象限内,图象最多只能同时出现在两个象限内,至于是否在第
(2)y= 的图象位于第一象限,因为函数为增函数,所以函数图
象是上升的,函数 y= -1 的图象可看作由 y= 的图象向下平
移 1 个单位长度得到(如选项 A 中的图象所示),将 y= -1 的图
象关于 x 轴对称后即为选项 B 中的图象.
答案:(1)B (2)B
探究二 幂函数的性质及其应用
对称,且在区间(0,+∞)内单调递减,求满足(2a-1) <(3-a) 的实
数 a 的取值范围.
解:∵函数 f(x)在区间(0,+∞)内单调递减,∴3m-9<0,解得 m<3.
又 m∈N*,∴m=1,2.
又函数图象关于 y 轴对称,∴3m-9 为偶数,故 m=1,Leabharlann -
-
-
∴有(2a-1) <(3-a) .∵y= 在区间(-∞,0),(0,+∞)内均单调递减,
【例2】 比较下列各组数的大小:
(1)1.13,1.23;
(2)4.8-3,4.9-3;
(3) -
-
, -
-
.
解:(1)设f(x)=x3,因为f(x)在区间(0,+∞)内单调递增,
高中数学必修一课件 3.3 幂 函 数
2,
则 k+α=
()
A.12
B.1
C.32
D.2
解析:∵幂函数 f(x)=kxα(k∈R ,α∈R )的图象过点12,
2,
∴k=1,f 12=12α= 2,即 α=-12,∴k+α=12. 答案:A
3.若 y=ax a2+12 是幂函数,则该函数的值域是________. 解析:由已知 y=ax a2+12 是幂函数,得 a=1,所以
A.y=x+2
B.y=x2
C.y= x
D.y=x3
解析:设幂函数的解析式为 y=xα,当 x=2 时,y=4,
故 2α=4,即 α=2.
答案:B
知识点二 五个幂函数的图象与性质 (一)教材梳理填空
解析式 y=x
y=x2 y=x3
1
y=x 2
图象
y=1x
定义域 _R__
_R__
__R_ _[0_,___+__∞__) {_x_|_x_≠__0_}
[精准训练]
1.下列不等式在 a<b<0 的条件下不能成立的是 ( )
A.a-1>b-1
1
1
B.a 3 <b 3
C.b2<a2
-2
-2
D.a 3 >b 3
解析:分别构造函数
y=x-1,y=x
1 3
,y=x2,y=x -
2 3
,其
中函数 y=x-1,y=x2 在(-∞,0)上为减函数,故 A、C
成立.而
2.已知函数 f(x)=(a2-a-1)xa-1 2为幂函数,则 a=(
)
A.-1 或 2
B.-2 或 1
C.-1
D.1
解析:因为 f(x)=(a2-a-1)xa-1 2为幂函数,所以 a2-a -1=1,所以 a=2 或-1.又 a-2≠0,所以 a=-1. 答案:C
3.3幂函数(共2课时)课件(人教版)
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。
幂
底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念
目
2 幂函数的图象与性质
录
3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
A.-1<n<0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1,m>1
03 题型2- 幂函数的图象与性质
例4 如图所示,C1,C2,C3为幂函数y=xα在第一象限内的图象,
则解析式中的指数α依次可以取( C )
03 题型2- 幂函数的图象与性质
C
Hale Waihona Puke 03 题型2- 幂函数的图象与性质
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练
目
录
3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
03 题型3- 利用幂函数的性质比较大小
答案:>,<,>,<,<,<.
03 题型4-幂函数性质求参问题
例8 若(a+2)-0.5<(8-2a)-0.5,求实数a的取值范围?
03 题型4-幂函数性质求参问题
3.3.幂函数
1.幂函数的概念 函数y=xα叫做幂函数,其中x是自变量,α是常数.
【思考】 幂函数的解析式有什么特征? 提示:①系数为1;②底数x为自变量;③幂指数为常数.
2.幂函数的图象及性质 (1)五个幂函数的图象:
(2)幂函数的性质
幂函 数
y=x
定义 域
R
值域 R
奇偶 性
奇
y=x2 R
[0,+∞) 偶
2
【习练·破】
1.若幂函数f(x)=(m2-3m-3)xm在(0,+∞)上单调递增,
则实数m= ( A )
A.4
B.-1
C.2
D.-1或4
2.已知幂函数f(x)=xa(a为常数)的图象经过点(2, 2 ), 则f(9)=____3____.
类型二 幂函数的图象及应用
【典例】1.如图的曲线是幂函数y=xn在第一象限内的
3.如果幂函数f(x)=xα的图象经过点 (3, 1),则α=( A )
9
A.-2
B.2
C. 1
D. 1
2
2
类型一 幂函数的概念
【典例】1.已知幂函数f(x)=xa的图象过点(1 , 1) ,则式
42
子4a的值为 ( B )
A.1
B.2
C. 1
2
1
D. 4
2.已知函数f(x)=(3-m)x2m-5是幂函数,则f (1) =___2_____.
y=x3 y=
y=x-1
1
R
x2
[0,+∞)
(-∞,0)∪ (0,+∞)
R
[0,+∞)
{y|y∈R 且y≠0}
奇
非奇非 偶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[0,+∞)
偶
R [0,+∞)
奇
非奇 非偶
{y|y≠0}
奇
单调性 增 x∈[0,+∞)时增 增 x∈(-∞,0]时减
定点
(1,1) (0,0)
(1,1) (1,1) (0,0) (0,0)
增
x∈[0,+∞)时减
x∈(-∞,0]时减
(1,1)
(1,1)
(0,0)
8
g(x) = x3 f(x) = x2
x
yx
1
y x2 y x2
y x1
y x3
3 2 1 0 1 2 3
3 2 1 0 1 2 3
0 1 1.41 1.72
94 1 0 1 4 9
1 3
1 2
1
11
2
1 3
27 8 1 0 1 8 27
3
2.5
g(x) = x3
f(x) = x2
t(x) = x
α>1 0<α<1
α<0
1
2
3
4
5
例2 比较下列两个代数式值的大小
(1)(a 1)1.5, a1.5
(2)(2
a
2
)
2 3
,
2
2 3
解:(1)考察幂函数y x1.5, 在区间0,+上是单调增函数
(a 1)1.5 a1.5
(2)考察幂函数y
2
x3
,
在区间0,+上是单调减函数
(2
a
2
)
2 3
2
23
作业:110页习题3-3A 组1,2,4 B组1,2
思考题:
在幂函数y x中,如果 是正偶数
这一类函数图象有那些特点?如果
为正奇数呢?
函数
y=x 性质
y=x2 y=x3 y=x1/2
y=x-1
定义域 R
R
R [0,+∞) {x|x≠0}
值域 R
奇偶性 奇
6
r(x) = x
4
1
s(x) = x 2
2 5
h(x) = x 1
5
10
15
2
4
6
(-2,4)
4
y=x3 (2,4)
y=x2
3
y=x
1
y=x 2
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
4 3.5
3 2.5
2 1.5
1 0.5
2
1
0.5
1
α>1 0<α<1
并且在区间0,+ 上是增函数;
3如果 0,则幂函数在区间0,+上
是减函数,在第一象限内,当x从右边趋 向于原点时,图象在y轴右方无限地逼近 y轴,当x趋于+时,图象在x轴上方无限 地逼近x轴
(-2,4)
4
y=x3 (2,4)
y=x2
3
y=x
1
y=x 2
2
(4,2)
1
(-1,1)
3
2.5
g(x) = x3
f(x) = x2
t(x) = x
2
1
1.5
s(x) = x 2
1
h(x) = x 1
0.5
3
2
1
0.5
1
1.5
2
1
2
3
4
变式训练1
3
讨论函数y x2 的定义域、奇偶性,作出它
的图象.并根据图象说明函数的增减性
4.5 4
3.5 3
2.5 2
1.5 1
0.5
1 0.5
α<0
1
2
3
4
5
6
x
yx
1
y x2
y x2
y x1 y x3
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
0 1 1.41 1.73
9410149
1 3
1 2
1
1
11
23
27 8 1 0 1 8 27
1所有的幂函数在0,+ 都有定义, 并且图象都通过点1,1; 2 如果 0,幂函数的图象通过原点,
2
1
1.5
s(x) = x 2
1
h(x) = x 1
0.5
3
2
1
0.5
1
1.5
2
1
2
3
4
3
2.5
g(x) = x3
f(x) = x2
2
r(x) = x
1
1.5
s(x) = x 2
1
h(x) = x 1
0.5
3
2
1
0.5
1
1.5
1
2
3
4
2
例1讨论函数 y x3 的定义域、奇偶 性,作出它的图象.并根据图象说 明函数的增减性
(1,1)
y=x-1
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
幂 函数
y
1 2
x
1
y x2
y 3x
y x3
练习:
指出下列函数中哪些是幂函数:(3)
(1) y 2x3
2
(3) y 4x
作出下列函数的图象:
1
y x y x2 y x3 y x 2 y x1