武汉市2018届高三二月调考文科数学答案

合集下载

武汉市2018届高三二月调考数学试卷分析

武汉市2018届高三二月调考数学试卷分析

• 文第4理第5,16,18题涉及立体几何知识,具体 包括三视图,空间线面关系,空间几何体的体积, 点到平面的距离的计算;函数最值求解,文第 10,15,17题理第7,16,17题涉及三角函数,具体内 容包括解三角形,三角函数图象与性质,三角恒等 变形;文第7,12,16,21理,6,15,20,22题涉及解析几 何,具体内容包括直线与圆,平面向量,圆锥曲线 等;文第13,19题理8,13,19题涉及概率统计随机 变量分布列,二项式定理。具体内容包括古典概率 ,互斥事件的概率加法公式(对立事件概率公式) ,样本的数字特征等;第22,23题分别是关于坐标 系与参数方程以及不等式选讲的选做题。
文科第16题如果选取圆C上的两个特殊点 (0,0),(-8,0)就可以很快地求出B点 坐标,体现了特殊与一般的数学思想。 理科第15题考查了直线与圆的位置关系,切 割线定理, 柯西不等式的应用, 整合思想, 数形结合思想,化归与转化思想, 综合分析 能力,数据处理能力,应用创新意识;第19题 体现了统计与概率的数学思想;文科第20题理 科第11,12,21题体现了分类与整合的数学思 想,函数与方程的思想,可通过先分离变量, 用导数工具研究函数的最值解决问题。
• 2.注重数学思想方法的考查 • 经过高三第一轮的总复习,如何有效地将不同 数学能力的学生区分开,就要看学生运用数学 知识解决数学问题的能力了。在考试过程中就 要看学生运用基本的数学思想,恰当地选择解 题方法,解题方法选择表现出学生思维水平。 • 文科第12题,理科第9,10题先将向量问题坐 标化,就可以看出问题本质上是向量的模与不 等式应用或函数的最小值问题,体现了数形结 合的数学思想;转化与化归的数学思想;
武汉市2018届高中毕业生二月调研考试
数学试卷分析

湖北省武汉市2018届高三五月调考数学试卷(文科)Word版含解析

湖北省武汉市2018届高三五月调考数学试卷(文科)Word版含解析

湖北省武汉市2017届高三五月调考试卷(文科数学)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知,则复数z 的虚部为( )A .B .C .D .2.设集合A={x|x <2},B={y|y=2x ﹣1},则A ∩B=( ) A .[﹣1,2) B .(0,2)C .(﹣∞,2)D .(﹣1,2)3.设{a n }是公比负数的等比数列,a 1=2,a 3﹣4=a 2,则a 3=( ) A .2B .﹣2C .8D .﹣84.若实数x ,y 满足约束条件,则z=x ﹣2y 的最大值是( )A .2B .1C .0D .﹣45.下面四个条件中,使a >b 成立的必要而不充分条件是( ) A .a ﹣1>b B .a+1>b C .|a|>|b|D .a 3>b 36.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A .2B .3C .4D .57.定义在R 上的函数f (x )=2|x ﹣m |﹣1为偶函数,记a=f (log 0.53),b=f (log 25),c=f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <b D .c <b <a8.若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3﹣3,则S 9=( )A .25B .27C .50D .549.已知函数f (x )=sin (2017x )+cos (2017x )的最大值为A ,若存在实数x 1,x 2使得对任意实数x 总有f (x 1)≤f (x )≤f (x 2)成立,则A|x 1﹣x 2|的最小值为( )A .B .C .D .10.已知点P 在曲线y=上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,) B .C .D .11.如图是某个几何体的三视图,则该几何体的体积是( )A .B .2C .3D .412.已知椭圆内有一点M (2,1),过M 的两条直线l 1,l 2分别与椭圆E 交于A ,C 和B ,D 两点,且满足(其中λ>0,且λ≠1),若λ变化时,AB 的斜率总为,则椭圆E 的离心率为( )A .B .C .D .二、填空题:本大题共4小题,每小题5分,共20分.13.若直线2x+y+m=0过圆x 2+y 2﹣2x+4y=0的圆心,则m 的值为 .14.某路公交车在6:30,7:00,7:30准时发车,小明同学在6:50至7:30之间到达该站乘车,且到达该站的时刻是随机的,则他等车时间不超过10分钟的概率为 .15.棱长均相等的四面体ABCD 的外接球半径为1,则该四面体ABCD 的棱长为 .16.已知平面向量满足与的夹角为60°,记,则|的取值范围为 .三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)在△ABC中,角A,B,C的对边分别为,且满足.(1)求角A的大小;(2)若D为BC上一点,且,求a.18.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.(1)求证:AE∥平面PCD;(2)求四棱锥P﹣ABCD的体积.19.(12分)据某市地产数据研究显示,2016年该市新建住宅销售均价走势如下图所示,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月开始采用宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究院发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程;(2)若政府不调控,依此相关关系预测帝12月份该市新建住宅销售均价.参考数据: x i =25, y i =5.36,(x i ﹣)(y i ﹣)=0.64;回归方程=x+中斜率和截距的最小二乘估计公式分别为:=, =﹣.20.(12分)已知抛物线x 2=2py (p >0)的焦点为F ,直线x=4与x 轴的交点为P ,与抛物线的交点为Q ,且.(1)求抛物线的方程;(2)如图所示,过F 的直线l 与抛物线相交于A ,D 两点,与圆x 2+(y ﹣1)2=1相交于B ,C 两点(A ,B 两点相邻),过A ,D 两点分别作我校的切线,两条切线相交于点M ,求△ABM 与△CDM 的面积之积的最小值.21.(12分)已知函数f (x )=alnx+﹣ax (a 为常数)有两个不同的极值点.(1)求实数a 的取值范围;(2)记f (x )的两个不同的极值点分别为x 1,x 2,若不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立,求实数λ的取值范围.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)已知曲线C1的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.( I)求曲线C2的直角坐标系方程;( II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.[选修4-5:不等式选讲]23.设函数f(x)=|x+|+|x﹣2m|(m>0).(Ⅰ)求证:f(x)≥8恒成立;(Ⅱ)求使得不等式f(1)>10成立的实数m的取值范围.湖北省武汉市2017届高三五月调考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知,则复数z的虚部为()A. B.C.D.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解: ==+i,则复数z的虚部为.故选:B.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.2.设集合A={x|x<2},B={y|y=2x﹣1},则A∩B=()A.[﹣1,2)B.(0,2)C.(﹣∞,2)D.(﹣1,2)【考点】1E:交集及其运算.【分析】求函数的值域得集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|x<2}=(﹣∞,2)B={y|y=2x﹣1}={y|y>﹣1}=(﹣1,+∞)则A∩B=(﹣1,2).故选:D.【点评】本题考查了集合的定义与运算问题,是基础题.3.设{an }是公比负数的等比数列,a1=2,a3﹣4=a2,则a3=()A.2 B.﹣2 C.8 D.﹣8【考点】88:等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an }的公比为q<0,∵a1=2,a3﹣4=a2,∴2q2﹣4=2q,解得q=﹣1.则a3=2×(﹣1)2=2.故选:A.【点评】本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于基础题.4.若实数x,y满足约束条件,则z=x﹣2y的最大值是()A.2 B.1 C.0 D.﹣4【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件,作出可行域如图,化目标函数z=x﹣2y为直线方程的斜截式y=x﹣.由图可知,当直线y=x﹣过点A时,直线在y轴上的截距最小,z最大,为z=1﹣2×0=1.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.下面四个条件中,使a>b成立的必要而不充分条件是()A.a﹣1>b B.a+1>b C.|a|>|b| D.a3>b3【考点】2L:必要条件、充分条件与充要条件的判断.【分析】a>b,可得a+1>b,反之不一定成立.例如取a=,b=1.即可判断出关系.【解答】解:∵a>b,∴a+1>b,反之不一定成立.例如取a=,b=1.∴使a>b成立的必要而不充分条件是a+1>b.故选:B.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.2 B.3 C.4 D.5【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.7.定义在R 上的函数f (x )=2|x ﹣m |﹣1为偶函数,记a=f (log 0.53),b=f (log 25),c=f (2m ),则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a 【考点】3L :函数奇偶性的性质.【分析】由f (x )为偶函数便可得出f (x )=2|x|﹣1,从而可求出a ,b ,c 的值,进而得出a ,b ,c 的大小关系.【解答】解:f (x )为偶函数; ∴m=0;∴f (x )=2|x|﹣1;∴a=f (log 0.53)=,,c=f (0)=20﹣1=0;∴c <a <b . 故选C .【点评】考查偶函数的定义,对数的换底公式,指数式与对数式的运算.8.若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3﹣3,则S 9=( ) A .25 B .27 C .50 D .54 【考点】8E :数列的求和.【分析】通过等差数列的通项公式结合a 1=2a 3﹣3可知a 1=3﹣4d ,代入求和公式化简即得结论.【解答】解:记数列{a n }的公差为d ,则由a 1=2a 3﹣3可知a 1=3﹣4d ,又S 9=9a 1+d=9(a 1+4d )=27,故选:B .【点评】本题考查数列的前n 项和公式,考查运算求解能力,注意解题方法的积累,属于基础题.9.已知函数f (x )=sin (2017x )+cos (2017x )的最大值为A ,若存在实数x 1,x 2使得对任意实数x 总有f (x 1)≤f (x )≤f (x 2)成立,则A|x 1﹣x 2|的最小值为( )A .B .C .D .【考点】GL :三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】利用诱导公式化简函数f (x )=sin (2017x )+cos (2017x ),求出A ,存在实数x 1,x 2使得对任意实数x 总有f (x 1)≤f (x )≤f (x 2)成立,可知实数x 1,x 2使得函数取得最大值和最小.可得|x 1﹣x 2|.即可求解.【解答】解:由题意,函数f (x )=sin (2017x )+cos (2017x )=2sin (2017x+),∵函数f (x )最大值为A , ∴A=2.函数的周期T=.存在实数x 1,x 2使得对任意实数x 总有f (x 1)≤f (x )≤f (x 2)成立, 可知实数x 1,x 2使得函数取得最大值和最小.∴|x 1﹣x 2|.当|x 1﹣x 2|=时,可得A|x 1﹣x 2|的最小值为.故选B .【点评】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.10.已知点P 在曲线y=上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,) B .C .D .【考点】62:导数的几何意义.【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y′===,∵,∴e x +e ﹣x +2≥4, ∴y′∈[﹣1,0) 即tan α∈[﹣1,0),∵0≤α<π∴≤α<π故选:D.【点评】本题考查导数的几何意义及直线的斜率等于倾斜角的正切值.11.如图是某个几何体的三视图,则该几何体的体积是()A.B.2 C.3 D.4【考点】L!:由三视图求面积、体积.【分析】作出棱锥的直观图,根据三视图数据代入计算即可.【解答】解:几何体为四棱锥,作出直观图如图所示:其中侧面 PAB⊥底面ABCD,底面ABCD是直角梯形,PA=PB,由三视图可知,AB∥CD,AB=BC=2,CD=1,侧面PAB中P到AB的距离为h=,∴几何体的体积V===.故选A.【点评】本题考查了棱锥的三视图与体积计算,属于中档题.12.已知椭圆内有一点M(2,1),过M的两条直线l1,l2分别与椭圆E交于A,C和B,D两点,且满足(其中λ>0,且λ≠1),若λ变化时,AB的斜率总为,则椭圆E的离心率为()A.B.C. D.【考点】K4:椭圆的简单性质.【分析】由向量数量积的坐标运算及点差法作差求得=﹣×,代入即可求得a 和b的关系,即可求得椭圆的离心率.【解答】解:设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),由=λ,即(2﹣x1,1﹣y1)=λ(x3﹣2,y3﹣1),则,同理可得:,∴,则2[(y1+y2)+λ(y3+y4)]=1[(x1+x2)+λ(x3+x4)],将点A,B的坐标代入椭圆方程作差可得: =﹣×,即﹣=﹣×,则a2(y1+y2)=2b2(x1+x2),同理可得:a2(y3+y4)=2b2(x3+x4),两式相加得:a2[(y1+y2)+(y3+y4)]=2b2[(x1+x2)+(x3+x4)],∴2[(y1+y2)+λ(y3+y4)]=1[(x1+x2)+λ(x3+x4)],∴=则=,则椭圆的离心率e===,故选D.【点评】本题考查椭圆的离心率的求法.考查向量坐标运算,考查计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.若直线2x+y+m=0过圆x2+y2﹣2x+4y=0的圆心,则m的值为0 .【考点】J9:直线与圆的位置关系.【分析】求出圆x2+y2﹣2x+4y=0的圆心为C(1,﹣2),再把圆心C(1,﹣2)代入直线2x+y+m=0,能求出结果.【解答】解:圆x2+y2﹣2x+4y=0的圆心为C(1,﹣2),∵直线2x+y+m=0过圆x2+y2﹣2x+4y=0的圆心,∴圆心C(1,﹣2)在直线2x+y+m=0上,∴2×1﹣2+m=0,解得m=0.故答案为:0.【点评】本题考查实数值的求法,考查圆、直线方程等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.14.某路公交车在6:30,7:00,7:30准时发车,小明同学在6:50至7:30之间到达该站乘车,且到达该站的时刻是随机的,则他等车时间不超过10分钟的概率为.【考点】CF:几何概型.【分析】本题属于几何概型,只要求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案【解答】解:小明在6:50至7:30之间到达发车站乘坐班车,总时长为40分钟,设小明到达时间为y,当y在6:50至7:00,或7:20至7:30时,小明等车时间不超过10分钟的时长为20分钟,由几何概型的公式得到故P=;故答案为:.【点评】本题考查的知识点是几何概型,明确时间段,利用几何概型公式解答,属于基础题15.棱长均相等的四面体ABCD的外接球半径为1,则该四面体ABCD的棱长为.【考点】LR:球内接多面体.【分析】将正四面体补成一个正方体,正四面体的外接球的直径为正方体的对角线长,即可得出结论.【解答】解:将正四面体补成一个正方体,则正方体的棱长为a,正方体的对角线长为a,∵正四面体的外接球的直径为正方体的对角线长,∴正四面体的外接球的半径为a.,∴a=,则正四面体的棱长为=,故答案为:【点评】本题考查球的内接多面体等基础知识,考查运算求解能力,考查逻辑思维能力,属于基础题.16.已知平面向量满足与的夹角为60°,记,则|的取值范围为[,+∞).【考点】9R:平面向量数量积的运算.【分析】由共线原理可知三向量的终点共线,作出图形,求出最短距离即可得出答案.【解答】解:设=, =, =,则OA=1,∠OAB=120°,∵,∴A,B,C三点共线,O到直线AB的距离d=OA•sin60°=,∴OC≥,故答案为:[,+∞).【点评】本题考查了平面向量的基本定理,属于中档题.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)(2017•武汉模拟)在△ABC中,角A,B,C的对边分别为,且满足.(1)求角A的大小;(2)若D为BC上一点,且,求a.【考点】HT:三角形中的几何计算.【分析】(1)由题意根据正弦定理求得∴(2sinC﹣sinB)cosA=sinAcosB,由A=π﹣(B+C),根据诱导公式及两角和正弦公式,即可求得A的值;(2)过D作DE∥AB于E,则△ADE中,ED=AC=1,∠DEA=,由余弦定理可知△ABC为直角三角形,a=BC=3.【解答】解:(1)由,则(2c﹣b)cosA=acosB,由正弦定理可知: ===2R,则a=2RsinA,b=2RsinB,c=2RsinC,∴(2sinC﹣sinB)cosA=sinAcosB,整理得:2sinCcosA﹣sinBcosA=sinAcosB,由A=π﹣(B+C),则sinA=sin[π﹣(B+C)]=sin(B+C),即2sinCcosA=sin(A+B)=sinC,由sinC≠0,则cosC=,即A=,∴角A的大小;(2)过D作DE∥AB于E,则△ADE中,ED=AC=1,∠DEA=,由余弦定理可知AD2=AE2+ED2﹣2AE•EDcos,又AC=3,A=,则△ABC为直角三角形,∴a=BC=3,∴a的值为3.【点评】本题考查正弦定理的即余弦定理的应用,考查两角和的正弦公式,考查计算能力,属于基础题.18.(12分)(2017•武汉模拟)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.(1)求证:AE∥平面PCD;(2)求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)证明四边形AECD是平行四边形得出AE∥CD,从而有AE∥平面PCD;(2)连结DE,BD,设AE∩BD=O,由三线合一证明OP⊥BD,根据勾股定理逆定理证明OP⊥OA,=.故而OP⊥平面ABCD,于是VP﹣ABCD【解答】(1)证明:∵∠ABC=∠BAD=90°,∴AD∥BC,∵BC=2AD,E是BC的中点,∴AD=CE,∴四边形ADCE是平行四边形,∴AE∥CD,又AE ⊄平面PCD ,CD ⊂平面PCD , ∴AE ∥平面PCD .(2)解:连结DE ,BD ,设AE ∩BD=O , 则四边形ABED 是正方形, ∴O 为BD 的中点,∵△PAB 与△PAD 都是边长为2的等边三角形,∴BD=2,OB=,OA=,PA=PB=2,∴OP ⊥OB ,OP=,∴OP 2+OA 2=PA 2,即OP ⊥OA ,又OA ⊂平面ABCD ,BD ⊂平面ABCD ,OA ∩BD=O , ∴OP ⊥平面ABCD .∴V P ﹣ABCD ===2.【点评】本题考查了线面平行的判定,线面垂直的判定,棱锥的体积计算,属于中档题.19.(12分)(2017•武汉模拟)据某市地产数据研究显示,2016年该市新建住宅销售均价走势如下图所示,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月开始采用宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究院发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程;(2)若政府不调控,依此相关关系预测帝12月份该市新建住宅销售均价.参考数据: xi=25, yi=5.36,(xi﹣)(yi﹣)=0.64;回归方程=x+中斜率和截距的最小二乘估计公式分别为:=, =﹣.【考点】BK:线性回归方程.【分析】(1)由题意,计算、,求出回归系数、,即可写出回归方程;(2)利用(1)中回归方程,计算x=12时的值即可.【解答】解:(1)由题意,得出下表;计算=×xi=5, =×yi=1.072,(xi﹣)(yi﹣)=0.64,∴===0.064,=﹣=1.072﹣0.064×5=0.752,∴从3月到6月,y关于x的回归方程为=0.064x+0.752;(2)利用(1)中回归方程,计算x=12时, =0.064×12+0.752=1.52;即可预测第12月份该市新建住宅销售均价为1.52万元/平方米.【点评】本题考查了回归直线方程的求法与应用问题,正确计算是解题的关键.20.(12分)(2017•武汉模拟)已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且.(1)求抛物线的方程;(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y﹣1)2=1相交于B,C 两点(A,B两点相邻),过A,D两点分别作我校的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.【考点】KN:直线与抛物线的位置关系.【分析】(1)求得P和Q点坐标,求得丨QF丨,由题意可知, +=×即可求得p的值,求得椭圆方程;(2)设直线方程,代入抛物线方程,由韦达定理x1x2=﹣4,求导,根据导数的几何意义,求得切线方程,联立求得M点坐标,根据点到直线距离公式,求得M到l的距离,利用三角形的面积公式,即可求得△ABM与△CDM的面积之积的最小值.【解答】解:(1)由题意可知P(4,0),Q(4,),丨QF丨=+,由,则+=×,解得:p=2,∴抛物线x2=4y;(2)设l:y=kx+1,A(x1,y1),B(x2,y2),联立,整理得:x2﹣4kx﹣4=0,则x1x2=﹣4,由y=x2,求导y′=,直线MA:y﹣=(x﹣x1),即y=x﹣,同理求得MD:y=x﹣,,解得:,则M (2k ,﹣1),∴M 到l 的距离d==2,∴△ABM 与△CDM 的面积之积S △ABM •S △CDM =丨AB 丨丨CD 丨•d 2,=(丨AF 丨﹣1)(丨DF 丨﹣1)•d 2,=y 1y 2d 2=•×d 2,=1+k 2≥1,当且仅当k=0时取等号,当k=0时,△ABM 与△CDM 的面积之积的最小值1.【点评】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,导数的几何意义,点到直线的距离公式,考查计算能力,属于中档题.21.(12分)(2017•武汉模拟)已知函数f (x )=alnx+﹣ax (a 为常数)有两个不同的极值点.(1)求实数a 的取值范围;(2)记f (x )的两个不同的极值点分别为x 1,x 2,若不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立,求实数λ的取值范围.【考点】6D :利用导数研究函数的极值;6B :利用导数研究函数的单调性.【分析】(1)求出函数的导数,由f′(x )=0有两个不同的正根,即x 2﹣ax+a=0两个不同的正根,即可求实数a 的取值范围;(2)利用韦达定理,构造函数,确定函数的单调性,求出其范围,即可求λ的范围即可.【解答】解:(1)f′(x )=,(x >0),f (x )有2个不同的极值点,即方程x 2﹣ax+a=0有2个不相等的正根,故,解得:a >4;(2)由(1)得x 1+x 2=a ,x 1x 2=a ,a >4,∴f (x 1)+f (x 2)=alnx 1+﹣ax 1+alnx 2+﹣ax 2=aln (x 1x 2)+﹣x 1x 2﹣a (x 1+x 2)=a (lna ﹣﹣1),不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立,即λ>=lna ﹣﹣1恒成立,记h (a )=lna ﹣﹣1,(a >4),则h′(a )=﹣<0,则h (a )在(4,+∞)递减,故h (a )<h (4)=ln4﹣3,即λ≥ln4﹣3.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,考查转化思想,是一道中档题.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)(2017•武汉模拟)已知曲线C 1的参数方程为(t 为参数),以原点O为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为. ( I )求曲线C 2的直角坐标系方程;( II )设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值.【考点】Q4:简单曲线的极坐标方程;QH :参数方程化成普通方程.【分析】(Ⅰ)把变形,得到ρ=ρcos θ+2,结合x=ρcos θ,y=ρsin θ得答案;(Ⅱ)由(t 为参数),消去t 得到曲线C 1的直角坐标方程为2x+y+4=0,由M 1是曲线C 1上的点,M 2是曲线C 2上的点,把|M 1M 2|的最小值转化为M 2到直线2x+y+4=0的距离的最小值.设M 2(r 2﹣1,2r ),然后由点到直线的距离公式结合配方法求解.【解答】解:(I )由可得ρ=x ﹣2,∴ρ2=(x ﹣2)2,即y 2=4(x ﹣1);(Ⅱ)曲线C 1的参数方程为(t 为参数),消去t 得:2x+y+4=0.∴曲线C 1的直角坐标方程为2x+y+4=0.∵M 1是曲线C 1上的点,M 2是曲线C 2上的点,∴|M 1M 2|的最小值等于M 2到直线2x+y+4=0的距离的最小值.设M 2(r 2﹣1,2r ),M 2到直线2x+y+4=0的距离为d ,则d==≥.∴|M 1M 2|的最小值为. 【点评】本题考查了简单曲线的极坐标方程,考查了参数方程化普通方程,考查了点到直线的距离公式的应用,是基础的计算题.[选修4-5:不等式选讲]23.(2017•武汉模拟)设函数f (x )=|x+|+|x ﹣2m|(m >0).(Ⅰ)求证:f (x )≥8恒成立;(Ⅱ)求使得不等式f (1)>10成立的实数m 的取值范围.【考点】R5:绝对值不等式的解法;3R :函数恒成立问题.【分析】(Ⅰ)利用绝对值三角不等式、基本不等式证得f (x )≥8恒成立.(Ⅱ)当m >时,不等式即+2m >10,即m 2﹣5m+4>0,求得m 的范围.当0<m ≤时,f(1)=1++(1﹣2m )=2+﹣2m 关于变量m 单调递减,求得f (1)的最小值为17,可得不等式f (1)>10恒成立.综合可得m 的范围.【解答】(Ⅰ)证明:函数f (x )=|x+|+|x ﹣2m|(m >0),∴f (x )=|x+|+|x ﹣2m|≥|x+﹣(x ﹣2m )|=|+2m|=+2m ≥2=8,当且仅当m=2时,取等号,故f (x )≥8恒成立.(Ⅱ)f (1)=|1+|+|1﹣2m|,当m >时,f (1)=1+﹣(1﹣2m ),不等式即+2m >10,化简为m 2﹣5m+4>0,求得m <1,或m >4,故此时m 的范围为(,1)∪(4,+∞).当0<m ≤时,f (1)=1++(1﹣2m )=2+﹣2m 关于变量m 单调递减,故当m=时,f (1)取得最小值为17,故不等式f (1)>10恒成立.综上可得,m 的范围为(0,1)∪(4,+∞).【点评】本题主要考查绝对值三角不等式、基本不等式的应用,绝对值不等式的解法,注意分类讨论,属于中档题.。

湖北省武汉市2018届高三二月调研测试理数试题及答案解析

湖北省武汉市2018届高三二月调研测试理数试题及答案解析

武汉市2018届高中毕业生二月调研测试理科数学2018.2.27 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数满足,则()A. B. C. D.【答案】B【解析】由题意可得:.本题选择B选项.2. 已知集合,,则()A. B.C. D.【答案】A【解析】求解二次不等式可得:,求解对数不等式可得:,结合交集的定义有:.本题选择A选项.3. 在等差数列中,前项和满足,则()A. 7B. 9C. 14D. 18【答案】B【解析】,所以,选B.4. 根据如下程序框图,运行相应程序,则输出的值为()A. 3B. 4C. 5D. 6【答案】B【解析】结合流程图可知该流程图运行过程如下:首先初始化数据:,,不满足,执行:;,不满足,执行:;,不满足,执行:;,满足,输出.本题选择B选项.5. 某几何体的三视图如下图所示,则该几何体的体积为()A. B. C. D.【答案】D【解析】如图所示,在长宽高分别为的长方体中,题中三视图对应的几何体为图中的四棱锥,棱锥的底面积为,高为,其体积为.本题选择D选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.6. 已知不过原点的直线交抛物线于,两点,若,的斜率分别为,,则的斜率为()A. 3B. 2C. -2D. -3【答案】D【解析】由题意可知,直线的方程为:,与抛物线方程联立可得:,则直线的方程为:,即与抛物线方程联立可得:,则直线的斜率为:.本题选择D选项.7. 已知函数的最大值为2,且满足,则()A. B. C. 或 D. 或【答案】C【解析】函数满足,则函数关于直线对称,由函数的解析式可得:,分类讨论:若,则,由函数的对称性可得:,令可得:;若,则,由函数的对称性可得:,令可得:;综上可得:或 .本题选择C选项.8. 将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为()A. B. C. D.【答案】C【解析】将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有种放法,甲盒中恰好有3个小球有种放法,结合古典概型计算公式可得题中问题的概率值为.本题选择C选项.9. 已知平面向量,,满足,,,,则的最大值为()A. -1B. -2C.D.【答案】D【解析】不妨设,则:,则,故,即:,则,当且仅当时等号成立,综上可得:的最大值为.本题选择D选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.10. 已知实数,满足约束条件,若不等式恒成立,则实数的最大值为()A. B. C. D.【答案】A【解析】绘制不等式组表示的平面区域如图所示,考查目标函数,由目标函数的几何意义可知,目标函数在点处取得最大值,在点或点处取得最小值,即.题中的不等式即:,则:恒成立,原问题转化为求解函数的最小值,整理函数的解析式有:,令,则,令,则在区间上单调递减,在区间上单调递增,且,据此可得,当时,函数取得最大值,则此时函数取得最小值,最小值为:.综上可得,实数的最大值为.本题选择A选项.11. 已知函数,若在恒成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】当时,恒成立,;当时,即:,令,则,令,则:,则函数在区间上单调递减,,据此可得函数,故函数在区间上单调递增,的最大值为:,综上可得,实数的取值范围为.本题选择C选项.点睛:利用导数研究函数的单调性的关键在于准确判定导数的符号.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.一个函数在其定义域内最值是唯一的,可以在区间的端点取得.12. 已知直线与曲线相交,交点依次为,,,且,则直线的方程为()A. B. C. D.【答案】B【解析】由函数的解析式可得:,导函数的对称轴为原函数的对称中心横坐标,则原函数对称中心纵坐标为:,则对称中心为,由可知直线经过点,联立方程组:可得:或,据此可得直线过点:,则直线方程为:.本题选择B选项.二、填空题:本大题共4小题,每小题5分,共20分.13. 在的展开式中,的系数为__________.【答案】21【解析】由题意可知的通项公式为:,结合多项式的性质可得:的系数为:.14. 已知是等比数列的前项和,,,成等差数列,,则__________.【答案】2【解析】因为成等差数列,所以公比,又,整理得到,所以,故,解得,故,填.15. 过圆:外一点作两条互相垂直的直线和分别交圆于、和、点,则四边形面积的最大值为__________.【答案】【解析】如图所示,,取的中点分别为,则:,四边形为矩形,则,结合柯西不等式有:,其中,,据此可得:,综上可得:四边形面积的最大值为.点睛:1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.圆的弦长的常用求法(1)几何法:求圆的半径为r,弦心距为d,弦长为l,则;(2)代数方法:运用根与系数的关系及弦长公式:.16. 已知正四面体中,,,分别在棱,,上,若,且,,则四面体的体积为__________.【答案】【解析】令,,由题意可得:,解得:,棱长为的正四棱锥体积为,则所求三棱锥的体积为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 在中,角,,的对边分别为,,,且满足.(1)求角;(2)若,,求边的长.【答案】(1);(2).【解析】试题分析:(1)由题意结合正弦定理有,则,...............................(2)由余弦定理可得:,据此可得关于实数c的方程,解方程可得.试题解析:(1)由及正弦定理可知:,而,.(2)由余弦定理可得:,,,,.18. 如图,在四棱锥中,,底面为平行四边形,,,,.(1)求的长;(2)求二面角的余弦值.【答案】(1);(2).【解析】试题分析:(1)过作于垂足,则.过点在平面内作交于,建立以为坐标交点.为轴,为轴,为轴的空间直角坐标系.据此可得,,由两点之间距离公式可得,则之长为.(2)由题意结合(1)的结论可得平面的法向量.平面的法向量.则二面角的余弦值为.试题解析:(1)过作于垂足,..过点在平面内作交于,建立以为坐标交点.为轴,为轴,为轴的空间直角坐标系.,,,,,,,,,,,所求之长为.(2)设平面的法向量,而,,由及可知:,取,则,,.设平面的法向量,,,由得,可取.设二面角的平面角为..二面角的余弦值为.19. 从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:(1)根据频数分布表,求该产品尺寸落在的概率;(2)求这50件产品尺寸的样本平均数.(同一组中的数据用该组区间的中点值作代表);(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值,近似为样本方差,经计算得.利用该正态分布,求. 附:(1)若随机变量服从正态分布,则,;(2).【答案】(1)0.16;(2)22.7;(3)0.1587.【解析】试题分析:(1)由题意可得产品尺寸落在内的概率.(2)由平均数公式可得样本平均数为.(3)由题意可得,.则,.试题解析:(1)根据频数分布表可知,产品尺寸落在内的概率.(2)样本平均数.(3)依题意.而,,则....20. 已知、为椭圆:的左、右顶点,,且离心率为.(1)求椭圆的方程;(2)若点为直线上任意一点,,交椭圆于,两点,求四边形面积的最大值.【答案】(1);(2).【解析】试题分析:(1)依题意,结合离心率公式,则.椭圆方程为:.(2)设,(),则直线方程:,直线方程.设,,联立直线方程与椭圆方程有,.,,则.利用换元法,设,则,面积函数,结合对勾函数的性质可得.试题解析:(1)依题意,则,又,.椭圆方程为:.(2)设,(不妨设),则直线方程:,直线方程.设,,由得,则,则,于是.由,得,则,则,于是,.设,则,,在递减,故.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知函数,其中为常数.(1)当时,讨论的单调性;(2)当时,求的最大值.【答案】(1)答案见解析;(2).【解析】试题分析:(1)由函数的解析式可得,.分类讨论:①时:或时,单增.时,单减.②时,在上单增.③时,在,上单增.在上单减.(2)由于,则在上最大值等价于在上最大值,记为.则.由(1)的结论可得在上单减.,则在上单增.的最大值为.试题解析:(1)对求导数得到:,.①时,即时,或时,,单增.时,,单减.②时,即时,.在上单增.③时,即时,或时,,在,上单增.时,.在上单减.(2),在上最大值等价于在上最大值,记为..由(1)可知时,在上单减,,,从而在上单减.,在上单增.,的最大值为.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.(二)选考题:共10分.请考生在22,23两题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22. 在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),直线与曲线交于,两点.(1)求的值;(2)若为曲线的左焦点,求的值.【答案】(1);(2)44.【解析】试题分析:(1)把曲线和直线的参数方程化为普通方程,再联立曲线与直线的方程,消元后利用韦达定理和弦长公式计算.(2)设,,则,利用韦达定理可以得到.解析:(1)由(为参数),消去参数得:.由消去参数得:.将代入中得:.设,,则..值为.(2).23. 已知函数,,.(1)若,求不等式的解集;(2)若对任意,不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)利用零点分类讨论分三种情况讨论即可.(2)问题等价于,利用绝对值不等式可以得到,从而也就是. 解析:(1)在时,..①在时,恒成立..②在时,,即,即或.综合可知:.③在时,,则或,综合可知:.由①②③可知:.(2)因为,当且仅当与同号,故,要使,故只需.故.从而.综合可知:.点睛:关注绝对值不等式的应用.。

湖北省武汉市2019届高中毕业生二月调研测试文科数学(解析版)

湖北省武汉市2019届高中毕业生二月调研测试文科数学(解析版)

2018-2019学年湖北省武汉市高三(下)2月调研数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知复数z满足(3+4i)z=7+i,则z=()A. B. C. D.2.已知集合A={x|x2-4|x|≤0},B={x|x>0},则A∩B=()A. B. C. D.3.已知等差数列{a n}的前n项和为S n,若a1=12,S5=90,则等差数列{a n}公差d=()A. 2B.C. 3D. 44.执行如图所示的程序框图,则输出s的值为()A. 5B. 12C. 27D. 585.设向量=(1,-2),=(0,1),向量λ+与向量+3垂直,则实数λ=()A. B. 1 C. D.6.已知α是第一象限角,sinα=,则tan=()A. B. C. D. 7.已知函数f(x)=2sin(ωx+)在区间(0,)上单调递增,则ω的最大值为()A. B. 1 C. 2 D. 48.在平面直角坐标系中,O为坐标原点,A(8,0),以OA为直径的圆与直线y=2x在第一象限的交点为B,则直线AB的方程为()A. B. C. D.9.函数f(x)=x2-ln x的最小值为()A. B. C. D.10.在△ABC中,角A,B,C对边分别为a,b,c.已知a=b,A-B=,则角C=()A. B. C. D.11.下列说法中正确的是()A. 事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大B. 事件A,B同时发生的概率一定比事件A,B恰有一个发生的概率小C. 互斥事件一定是对立事件,对立事件不一定是互斥事件D. 互斥事件不一定是对立事件,对立事件一定是互斥事件12.在棱长为1的正方体ABCD-A1B1C1D1中,点A关于平面BDC1对称点为M,则M到平面A1B1C1D1的距离为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.函数f(x)=ln(x-x2)的定义域为______.14.已知双曲线=1(b>0)的渐近线方程为±y=0,则b=______.15.已知x,y满足约束条件,则z=2x+y的最大值为______.16.如图,一边长为30cm的正方形铁皮,先将阴影部分裁下,然后用余下的四个全等等腰三角形加工成一个正四棱锥形容器,要使这个容器的容积最大,则等腰三角形的底边长为______(cm).三、解答题(本大题共7小题,共82.0分)17.已知{a n}为正项等比数列,a1+a2=6,a3=8.(1)求数列{a n}的通项公式a n;(2)若b n=,且{b n}前n项和为T n,求T n.18.如图,已知四边形ABCD为梯形,AB∥CD,∠DAB=90°,BDD1B1为矩形,平面BDD1B1⊥平面ABCD,又AB=AD=BB1=1,CD=2.(1)证明:CB1⊥AD1;(2)求B1到平面ACD1的距离.19.一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(2)①建立月总成本y与月产量x之间的回归方程;②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:=14.45,=27.31=0.850,=1.042,=1.222.②参考公式:相关系数:r=.回归方程=x+中斜率和截距的最小二乘估计公式分别为:=,=-20.已知椭圆Γ:+=1(a>b>0)的长轴长为4,离心率为.(1)求椭圆Γ的标准方程;(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.21.已知函数f(x)=e x+1-a ln ax+a(a>0).(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若关于x的不等式f(x)>0恒成立,求实数a的取值范围.。

(完整)2018全国卷2文科数学考试及答案,推荐文档

(完整)2018全国卷2文科数学考试及答案,推荐文档

2018 全国卷2 文科数学考试及答案————————————————————————————————作者:————————————————————————————————日期:f (x)=e x - e-xx2y =±2 x2y =±3 x2绝密★启用前2018 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学@科网1.i(2 + 3i)=A.3- 2i B.3 + 2i C.-3 - 2i D.-3 + 2i 2.已知集合A={1,3,5,7},B={2,3,4,5}A, 则B=A.{3}B.{5}C.{3, 5}D.{1,2, 3, 4, 5, 7}3.函数的图像大致为4.已知向量 a ,b 满足| a | = 1 ,a ⋅b =-1 ,则a ⋅ (2a -b) =A.4 B.3 C.2 D.05.从2 名男同学和3 名女同学中任选2 人参加社区服务,则选中的2 人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.36.双曲线A.的离心率为B.3 ,则其渐近线方程为C.D.7.在△ABC 中,cosC=5,BC =1 ,AC = 5 ,则2 5AB =y =± 3xy =± 2xx2 - y2 = 1 (a >0, b >0)a2 b243π 2 π 4 π 25 23 22 PF 1 ⊥ PF 2 AE 29 30 4 2 ⎨ ⎩N = 0, T = 0i = 1 S = N - T A. B . C . D . 8.为计算 S = 1 - 1 + 1 - 1 + + 1 - 1 2 3 4 99 100,设计了如图的程序框图,则在空白框中应填入开始是否i < 100输出S 结束A. i = i + 1C .i = i + 3 B. i = i + 2D .i = i + 49. 在正方体 ABCD - A 1B 1C 1D 1 中, E 为棱CC 1 的中点,则异面直线 与所成角的正切值为A.B .C .D .10. 若 f (x ) = cos x - sin x 在[0, a ] 是减函数,则 a 的最大值是A.B .C .D .π11. 已知 F 1 , F 2 是椭圆 C 的两个焦点, P 是 C 上的一点,若 , 且∠PF 2 F 1 = 60︒ ,则 C 的离心率为A .1 - 3B .2C .3 - 1D . 212. 已知 f (x ) 是定义域为(-∞, +∞) 的奇函数,满足.若 f (1) = 2 ,则f (1) + f (2) + f (3)A .-50 B .0 C .2 D .50二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018高三数学文第二次联考试卷黄冈中学等八校附答案

2018高三数学文第二次联考试卷黄冈中学等八校附答案

I鄂南高中I 华师一附中黄冈中学I I黄石
二中荆州中学I孝感高中]襄阳四中丨襄阳五中201|8届高三第二次联考文科数学试题一命题学校:孝感高中丨命题人:周丨I浩I 1颜运I 审题人:|陈文科I I审题学校:襄阳四中I匸审定人:张丨婷I王启冲丨丨丨丨1
本试卷一共]4页,|23题](含选考题)。

全卷|满分一150 分。

考试用时120分钟。

★祝考试顺利★注意事
项:1 • 答题前,先将自己的姓名、准考证号
填写在试卷和答题卡上,并将准考证号条形码
粘贴在答题卡上的指定位置。

2 .选择题的作
答:每小题选出答案后,用2B铅笔把答题卡上
对应题目的答案标号涂黑。

写在试卷、草稿纸
和答题卡上的非答题区域均无效。

3 . 非选择
题的作答:用黑色签字笔直接答在答题卡上对
应的答题区域内。

写在试卷、草稿纸和答题卡
上的非答题区域均无效。

4 . 选考题的作答:
先把所选题目的题号在答题卡上指定的位置用
2B铅笔涂黑。

答案写在答题卡上对应的答题区
域内,写在试卷、草稿纸和答题卡上的非答题。

武汉市2018届高中毕业生二月调研测试-文科试卷及答案

武汉市2018届高中毕业生二月调研测试-文科试卷及答案

武汉市2018届高中毕业生二月调研测试文科数学2018.2.27一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,若复数z 满足2zi i =+,则z z ⋅=( ) A .-5 B .5 C .5i D .5i -2.已知集合{}2|10A x x =-<,{}21|2x B y y -==,则A B ⋂=( )A .11,2⎛⎤- ⎥⎝⎦ B .()1,-+∞ C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎫ ⎪⎝⎭3.在等差数列{}n a 中,前n 项和n S 满足7245S S -=,则5a =( ) A .7 B .9 C .14 D .184.某四棱锥的三视图如图所示,等腰直角三角形,侧视图和俯视图均为两个边长为1的正方形,则该四棱锥的高为( )A .2B . D 5.执行如图所示的程序框图,则输出n 的值为( )A .3B .4 C.5 D .66.已知x ,y 满足约束条件1210y x x y x y ≤⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为( )A .2B .-3 C.32D .1 7.已知不过坐标原点O 的直线交抛物线22y px =于A ,B 两点,若直线OA ,AB 的斜率分别为2和6,则直线OB 的斜率为( )A .3B .2C .-2D .-38.给出下列两个命题:1p :x R ∃∈,3sin 4cos x x +=2p :若2lg 2lg 0a b +=,则2a b +≥,那么下列命题为真命题的是( )A .12p p ∧B .()12p p ∨⌝ C.12p p ∨ D .()12p p ⌝∧9.若函数()()212x x f x a R a+=∈-是奇函数,则使()4f x >成立的x 的取值范围为( )A .25,log 3⎛⎫-∞ ⎪⎝⎭ B .25log ,03⎛⎫- ⎪⎝⎭ C.250,log 3⎛⎫ ⎪⎝⎭ D .25log ,3⎛⎫+∞ ⎪⎝⎭10.在ABC ∆中,1AB =,2BC =,则角C 的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,42ππ⎛⎫⎪⎝⎭ C.,62ππ⎡⎫⎪⎢⎣⎭ D .,62ππ⎛⎫ ⎪⎝⎭11.如果函数()()()()2128122f x m x n x m =-+-+>在区间[]2,1--上单调递减,那么mn 的最大值为( )A .16B .18 C.25 D .30 12.已知()0,1A,)B,O 为坐标原点,动点P 满足2OP =,则OA OB OP ++的最小值为( )A .2-B .2 C.7+ D .7-二、填空题:本大题共4小题,每小题5分,共20分.13.甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是 . 14.已知n S 是等比数列{}n a 的前n 项和,3S ,9S ,6S 成等差数列,254a a +=,则8a = . 15.函数()322sin cos f x x x =+在02x π≤≤上的最小值为 .16.已知点()2,0A -,P 为圆C :()22416x y ++=上任一点,若点B 满足2PA PB =,则点B 的坐标为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知函数()()()()sin 220f x x x ϕϕϕπ=++<<在0,4π⎡⎤⎢⎥⎣⎦上单调递减,且满足()2f x f x π⎛⎫=- ⎪⎝⎭.(1)求ϕ的值;(2)将()y f x =的图象向左平移3π个单位后得到()y g x =的图象,求()g x 的解析式. 18.如图,在三棱锥P ABC -中,PAC ABC ⊥平面平面,60PAC BAC ∠=∠=,4AC =,3AP =,2AB =.(1)求三棱锥P ABC -的体积; (2)求点到平面的距离.19.从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:cm )落在各个小组的频数分布如下表:(1)根据频数分布表,求该产品尺寸落在[)27.530.5,的概率;(2)求这50件产品尺寸的样本平均数x .(同一组中的数据用该组区间的中点值作代表); (3)根据产品的频数分布,求出产品尺寸中位数的估计值. 20.(1)证明不等式:()11ln 10x x x x-≤≤->; (2)若关于x 的不等式()221ln 0a x x x -+≥在01x <≤上恒成立,求实数a 的取值范围.20.已知A 、B 为椭圆T :()222210x y a b a b+=>>的左、右顶点,4AB =,且离心率为2.(1)求椭圆T 的方程;(2)若点()()000,0P x y y ≠为直线4x =上任意一点,PA ,PB 交椭圆T 于C ,D 两点,试问直线CD 是否恒过定点,若过定点,求出该定点;若不过定点,请说明理由.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为4cos 2sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为2x t y t ⎧=⎪⎨=-⎪⎩(t 为参数),直线l 与曲线C 交于A ,B 两点. (1)求AB 的值;(2)若F 为曲线C 的左焦点,求FA FB ⋅的值. 23.[选修4-5:不等式选讲]已知函数()22f x x =+,()1g x x a x =---,a R ∈.(1)若4a =,求不等式()()f x g x >的解集;(2)若对任意12x x R ∈、,不等式()()12f x g x ≥恒成立,求实数a 的取值范围.武汉市2018届高中毕业生二月调研测试文科数学参考答案及评分细则一、选择题二、填空题13.56 14. 2 15. 262716. ()4,0 三、解答题17.解:(1)()()()sin 22f x x x ϕϕ=++2sin 23x πϕ⎛⎫=++ ⎪⎝⎭.()2f x f x π⎛⎫=- ⎪⎝⎭,则()y f x =图象关于4x π=对称,∴在4x π=时,()232x k k z ππϕπ++=+∈,3k πϕπ∴+=,而0ϕπ<<,23πϕ∴=或3πϕ=-, 在23πϕ=时,()2sin 2f x x =-在0,4π⎡⎤⎢⎥⎣⎦上单减,符合题意. 23πϕ∴=可取. 在3πϕ=-时,()2sin 2f x x =在0,4π⎡⎤⎢⎥⎣⎦上单增,不合题意,舍去. 因此,23πϕ=. (2)由(1)可知()2sin 2f x x =-, 将()2sin 2f x x =-向左平移3π个单位得到()g x , ()22sin 22sin 22sin 2333g x x x x πππ⎛⎫⎛⎫⎛⎫∴=-+=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.解:(1)过P 作PH AC ⊥交AC 于一点H ,PAC ABC ⊥平面平面,PH ABC ∴⊥平面.在PAC ∆中,60PAC ∠=,3PA =,则322PH =⋅=,32AH =. ABC ∆面积11sin 6024sin 602322S AB AC =⋅⋅⋅=⋅⋅⋅=.∴四面体P ABC -体积113332ABCV SPH =⋅⋅=⋅=. (2)在ABC ∆中,连接BH .则2223222BH ⎛⎫=+- ⎪⎝⎭,3132cos6024⋅⋅=.222213104PB PH HB =+=+=⎝⎭,PB ∴=在PAB ∆中,3PA =,2AB =,PB =2232101cos 2324PAB +-∴∠==⨯⨯,sin PAB ∠=1232PABS∴=⋅⋅=设C 点到平面PAB 距离为h ,由等体积法可知.11333PABABC S h S PH ⋅=⋅⋅=.133h ∴=.从而h =.C ∴点到平面PAB 距离为5. 19.解:(1)根据频数分布表可知,产品尺寸落在[)27.5,33.5内的概率530.1650P +==. (2)样本平均数0.06140.16170.18200.24230.20260.10290.063222.7x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.(3)38920++=.∴中位数在区间[)21.5,24.5上,∴中位数为()5521.524.521.521.522.75124+-⨯=+=.20.解:(1)令()()ln 1f x x x =--,求导数得到()11f x x=-. ()()1x f x x--∴=,在01x <<时,()0f x >;在1x >时,()0f x <. ()()10f x f ∴≤=.从而ln 1x x ≤-.对于ln 1x x ≤-,将x 换成1x ,则11ln 1x x≤-. 1ln 1x x∴≥-. 综合①②可知不等式11ln 1x x x-≤≤-得证. (2)11ln 1x x x -≤≤-,则()22211ln 1x x x x x x ⎛⎫-≤≤- ⎪⎝⎭. ()()()()2222221111ln 11a x x a x x x a x x x x ⎛⎫-+-≤-+≤-+- ⎪⎝⎭.∴要使()221ln 0a x x x -+≥恒成立.只需()221110a xxx ⎛⎫-+-≥ ⎪⎝⎭在()0,1上恒成立. 1xa x ∴≥+在01x <≤上恒成立. 12a ∴≥.若12a <,由()1120f a =->知,存在()00,1x ∈使得()0,1x x ∈时()0f x >恒成立, 此时,()0,1x x ∈时()()10f x f <=,与题意矛盾. 综上:12a ≥.21.解:(1)依题意24AB a ==,则2a =,又e =c =∴椭圆方程为:22142x y +=. (2)设()4,P t ,(不妨设0t >),则直线PA 方程:()26t y x =+,直线PB 方程()22ty x =-.设()11,C x y ,()22,D x y ,由()2226142t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩得()22221844720t x t x t +++-=,则212472218t x t --⋅=+, 则21236218t x t -=+,于是()112122618t t y x t =+=+. 由()2222142t y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得()222224480t x t x t +-+-=,则2224822t x t -⋅=+, 则222242t x t -=+,于是()2224222t t y x t -=-=+, 22236212,1818t t C t t ⎛⎫- ⎪++⎝⎭,222244,22t t D t t ⎛⎫-- ⎪++⎝⎭, 22222221244182362246182CDt tt t t k t t t t t +++==----++. ∴直线CD 方程为:22224424262t t t y x t t t ⎛⎫-+=- ⎪+-+⎝⎭. 令0y =得222246241242t t t x t t t --=⨯+=++, 故直线CD 过点()1,0.22.解:(1)由4cos 2sin x y θθ=⎧⎨=⎩(θ为参数),消去参数θ得:221164x y +=.由2x t y t ⎧=⎪⎨=-⎪⎩消去参数t得:2y x =-将2y x =-22416x y +=中得:21716110x -+⨯=.设()11,A x y ,()22,B x y,则121217161117x x x x ⎧+=⎪⎪⎨⨯⎪=⎪⎩.12401717AB x =-==. AB ∴值为4017.(2)()()1122FA FB x y x y ⋅=+⋅+((121222x x x x =+++--))1212121212412x x x x x x x x ⎡⎤=++++-++⎣⎦)1212560x x x x =-++11165604417⨯=-+=. 23.解:(1)在4a =时,2241x x x +>---.()3,44125,143,1x g x x x x x x -≥⎧⎪=---=-+<<⎨⎪≤⎩.①在4x ≥时,223x +>-恒成立.4x ∴≥.②在14x <<时,2225x x +>-+,即2230x x +->,即1x >或3x <-. 综合可知:14x <<.③在1x ≤时,223x +>,则1x >或1x <-,综合可知:1x <-. 由①②③可知:{}|11x x x <->或.(2)在1a ≥时,()1,12,11,1a x a g x a x x a a x -≥⎧⎪=+-<<⎨⎪-≤⎩,()g x 取大值为1a -.要使()()12f x g x ≥,故只需21a ≥-.则3a ≤.13a ∴≤≤.在1a ≤时,()1,121,11,a x g x x a a x a x a -+≥⎧⎪=--<<⎨⎪-≤⎩,()g x 最大值为1a -.要使()()12f x g x ≥,故只需2121x a +≥-.1a ∴≥-.从而11a -≤≤.综合可知:13a -≤≤.。

2018届高三湖北省2月七校联考文数答案20180207定印稿

2018届高三湖北省2月七校联考文数答案20180207定印稿

荆、荆、襄、宜四地七校考试联盟2018届高三2月联考文科数学参考答案一、选择题 CBCAD AADDBBD二、填空题 13.4515. 6 16.{}04a a a ≤>或 三、解答题17.(1)()6sin(2)6f x x π=+………………4分()f x 在0,6π⎛⎫ ⎪⎝⎭上↑,,64ππ⎛⎫⎪⎝⎭上↓max min ()6,()3f x f x ∴== ………………6分△ADC 中,sin sin 2AD ACc ADC =∠ △BDC 中sin sin 2BD BCC BDC =∠ sin sin ,6,3ADC BDC AC BC ∠=∠==2AD BD = ………………8分△BCD中,217,2c BD =-△ACD中,2446822C C AD =-=-cos 22C ∴=2C π= ………………12分18(1)F 为VC 的中点 ………………1分 取CD 的中点为H ,连BH HF 、 ABCD 为正方形,E 为AB 的中点 BE ∴平行且等于DH ,BH DE ∴平行 又FH VD 平行∴平面BHF VDE 平行平面BF ∴平行平面VDE ………………6分(2)F 为VC 的中点,ABCD 14BDE S S = 正方形18E BDF F BDE V ABCD V V V ---∴==V ABCD - 为正四棱锥V ∴在平面ABCD 的射影为AC 的中点OVA AO VO ==∴=2123v ABCD V -∴=⋅=E BDF V -∴= ………………12分 19. (1)21c x y C e =适宜 ………………2分(2)由21c x y C e =得21ln ln y C x C =+ ………………3分 令21ln ,,ln y k C C βα===由图表中的数据可知3513ˆˆ,14044βα===-………………6分 13ˆ44kx ∴=- y ∴关于x 的回归方程为34440.47x x y e e -==………………8分(3)28x =时,由回归方程得ˆ0.471096.63515.4y=⨯=,ˆ0.08515.4 2.81048.432z =⨯-+= 即鸡舍的温度为28℃时,鸡的时段产量的预报值为515.4,投入成本的预报值为48.432。

2018届高三第二次质量检测文科数学答案

2018届高三第二次质量检测文科数学答案

2018届高三第二次质量检测卷文科数学参考答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合要求.第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.3; 14. [3,)+∞; 15.1(,1)2; 16.2π3+ 三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知三个集合:{}22log (58)1A x x x =∈-+=R ,{}22821R x x B x +-=∈=,{}22190R C x x ax a =∈-+->.(I )求A B ;(II )已知,A C B C ≠∅=∅,求实数a 的取值范围.解:(Ⅰ){}{}25822,3R A x x x =∈-+==, ………………………........................2分 {}{}22802,4R B x x x =∈+-==-, ……………………….....................4分{}2,3,4.A B ∴=- ……………………....................…5分(Ⅱ),A C B C ≠∅=∅,2,4,3.C C C ∴∉-∉∈ …………………….................…6分{}22190,R C x x ax a =∈-+->22222222190,(4)4190,33190.a a a a a a ⎧-+-≤⎪∴-++-≤⎨⎪-+->⎩…………………….................…10分即35,222 5.a a a a -≤≤⎧⎪--≤≤-⎨⎪<->⎩或解得3 2.a -≤<-……………………….................11分 所以实数a 的取值范围是[3,2).--.................................................................................12分 18. (本小题满分12分)已知函数()()sin f x a x b ωθ=+-()x ∈R 的部分图象如图所示,其中,a b 分别是ABC ∆的角,A B 所对的边, ππ0,[,]22ωθ>∈-.(I )求,,,a b ωθ的值;(II )若cos ()+12CC f =,求ABC ∆的面积S .解:(Ⅰ)0,0a ω>>及图象特征知: ①()f x 的最小正周期2π3ππ2[()]π,88ω=--=2.ω=……………………….......................................................................................................2分②当()sin 1x ωθ+=-时,min ()1f x a b =--=; 当()sin 1x ωθ+=时,max ()1f x a b =-=.解得 1.a b ==………………………..................................................................................4分③ππ()))1188f θ-=-+-=,得ππ2π,42k θ-+=-π2π,4k θ=-.k ∈Z由ππ[,]22θ∈-得π.4θ=- 所以π2,, 1.4a b ωθ==-==…………………….....................................................…6分(II )由π()214f x x ⎛⎫=-- ⎪⎝⎭及cos ()+12C C f =得,πsin c s os o 4c C C C C ⎛⎫-=- ⎪⎝⎭=,即C C sin 21cos = ……………….............…..........................................................................8分又22sin cos 1C C +=,得552sin ,54sin 2±==C C …………………………...........…10分由0πC <<得,sin C =1sin 2S ab C ==……………………...........……12分 19.(本小题满分12分)中国移动通信公司早前推出“全球通”移动电话资费“个性化套餐”,具体方案如下:(I )写出“套餐”中方案1的月话费y (元)与月通话量t (分钟)(月通话量是指一个月内每次通话用时之和)的函数关系式;(II )学生甲选用方案1,学生乙选用方案2,某月甲乙两人的电话资费相同,通话量也相同,求该月学生甲的电话资费;(III )某用户的月通话量平均为320分钟,则在表中所列出的七种方案中,选择哪种方案更合算,说明理由.解: (Ⅰ) 30, 048,300.6(48) , 48.t y t t ≤≤⎧=⎨+⨯->⎩, ……………………..............……3分即:30, 048,0.6 1.2 , 48.t y t t ≤≤⎧=⎨->⎩………………………...........…4分(Ⅱ)设该月甲乙两人的电话资费均为a 元,通话量均为b 分钟.当048b ≤≤时, 甲乙两人的电话资费分别为30元, 98元,不相等;…….........5分 当170b >时, 甲乙两人的电话资费分别为1300.6(48)y b =+-(元),2980.6(170)y b =+-元, 21 5.20y y -=-<,21y y <; ……………......…6分当48170b <≤时, 甲乙两人的电话资费分别为300.6(48)a b =+-(元),98a =(元), 解得484.3b =所以该月学生甲的电话资费98元. …………….................................…8分(Ⅲ)月通话量平均为320分钟,方案1的月话费为:30+0.6×(320-48)=193.2(元); ……………….........9分方案2的月话费为:98+0.6×(320-170)=188(元); ……………..........…10分 方案3的月话费为168元. 其它方案的月话费至少为268元. …………….........…11分 经比较, 选择方案3更合算. ……………........…12分 20.(本小题满分12分)已知函数32()f x ax x b =++的图象在点1x =处的切线方程为13y =,其中实数,a b 为常数.(I )求,a b 的值;(II )设命题p 为“对任意1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x =”,问命题p 是否为真命题?证明你的结论.解: (I )32(),f x ax x b =++ 2()32.f x ax x '∴=+……………......................…1分(1)1,(1)32,f a b f a '=++=+∴函数()f x 的图象在点1x =处的切线方程为(1)(32)(1)y a b a x -++=+-, 即(32)21y a x b a =++-- ………………4分该切线方程为13y =, ∴1320,21,3a b a +=--=…………....................……5分 即2,0.3a b =-= ………….....................……6分(II )命题p 为真命题. ……………................…7分证明如下: 322(),3f x x x =-+ 2()222(1).f x x x x x '=-+=-- 当1x >时, ()0f x '<,()f x 在区间(1,)+∞单调递减,集合{}1()1,(,(1))(,).3R A f x x x f =>∈=-∞=-∞ ……………..................…9分当2x >时, ()f x 的取值范围是4(,(2))(,).3f -∞=-∞-集合132,(,0).()4R B x x f x ⎧⎫=>∈=-⎨⎬⎩⎭…………….................…11分从而.B A ⊆所以对任意1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得211(),()f x f x =即12()() 1.f x f x = ……………..................…12分21.(本小题满分12分) 已知函数1()ln ,1xf x a x x-=++其中实数a 为常数且0a >. (I )求函数()f x 的单调区间;(II )若函数()f x 既有极大值,又有极小值,求实数a 的取值范围及所有极值之和; (III )在(II )的条件下,记12,x x 分别为函数()f x 的极大值点和极小值点,求证:1212()()()22x x f x f x f ++<. 解:(Ⅰ) 函数2()ln 11f x a x x=+-+的定义域为∞(0,+),22222(1)()(1)(1)a ax a x af x x x x x +-+'=-=++, …………...........……1分 设222()2(1)4(1)44(12).g x ax a x a a a a =+-+∆=--=-,① 当12a ≥时, 0∆≤,()0,g x ≥()0f x '≥,函数()f x 在∞(0,+)内单调递增; …………..........……2分② 当102a <<时, 0∆>,方程()0g x =有两个不等实根:12x x ==,且1201.x x <<< 1()0()00,f x g x x x '>⇔>⇔<<或2.x x >12()0()0.f x g x x x x '<⇔<⇔<< .............................................3分综上所述,当12a ≥时, ()f x 的单调递增区间为∞(0,+),无单调递减区间;当102a <<时,()f x 的单调递增区间为1a a -(0,, 1a a -+∞(),单调递减区间.............................................................4分(II )由(I )的解答过程可知,当12a ≥时,函数()f x 没有极值. ......................................5分 当102a <<时,函数()f x 有极大值1()f x 与极小值2()f x ,121212(1), 1.x x x x a+=-=12()()f x f x ∴+=121211*********(1)(ln )(ln )ln()0.11(1)(1)x x x x a x a x a x x x x x x ---+++=+=++++ .....................................7分故实数a 的取值范围为1(0,)2,所有极值之和为0. ……………................8分 (III )由(II )知102a <<,且1211()(1)ln(1)212x x f f a a a a+=-=-+-, 12()()02f x f x +=.…………9分原不等式等价于证明当102a <<时,1ln(1)210a a a-+-<,即11ln(1)2a a-<-. ………………......................................10分设函数()ln 1h x x x =-+,则(1)0,h =当1x >时,1()10h x x'=-<. 函数()h x 在区间[1,)+∞单调递减,由102a <<知111a ->,1(1)(1)0h h a -<= ……………….....................................11分 . 即11ln(1)2a a-<-. 从而原不等式得证. ………………....................................12分22.[选修4−4:坐标系与参数方程] (本小题满分10分)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为122(2x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数);曲线1C的极坐标方程为2cos ρθθ=+;曲线2C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数) (Ⅰ)求直线l 的直角坐标方程、曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)若直线l 与曲线1C 曲线2C 在第一象限的交点分别为,M N ,求,M N 之间的距离。

湖北省武汉市2018届高中数学毕业生2月调研测试试题 理(扫描版)

湖北省武汉市2018届高中数学毕业生2月调研测试试题 理(扫描版)
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新教育资料
中小学最新教育资料 中小学最新

2018年高考全国2卷文科数学word版官方答案(2)(2021年整理)

2018年高考全国2卷文科数学word版官方答案(2)(2021年整理)

2018年高考全国2卷文科数学word版官方答案(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考全国2卷文科数学word版官方答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考全国2卷文科数学word版官方答案(2)(word版可编辑修改)的全部内容。

绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页.考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos2C 1BC =,5AC =,则AB =A.BCD.8.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+9.在长方体1111ABCD A B C D -中,E为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为ABCD10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PFF ∠=︒,则C 的离心率为A.1-B.2CD 1 12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档