变频器基本结构详解-民熔
变频器基本参数设置分析-民熔
变频器基本参数设置-民熔
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
民熔变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
参数设置
当变频器出厂时,制造商为每个参数预置一个值,称为出厂(默认)值。
一般的缺省值不能满足大多数传输系统的要求。
因此,在正确使用变频器之前,用户需要对变频器的参数进行如下设置:
(1)确认电动机的功率、电流、电压、转速和最高频率。
这些参数可以直接从变频器采用的电机铭牌控制方式中获得,即调速、转矩控制、PID或其他方式。
控制方式选择后,一般根据控制精度要求进行静态或动态辨识。
(2)设置变频器启动方式。
变频器出厂时一般设置为面板启动。
用户可根据实际情况选择启动方式。
您可以使用面板、外部终端、通信模式等。
(3)对于给定信号的选择,一般变频器的频率可以通过多种方式给出。
面板设置,外部设置,外部电压或电流设置,通信模式设置。
当然,给定的变频方法可以是这些方法的一种或几种之和。
以上参数设置正确后,逆变器基本能正常工作。
要想获得更好的控制效果,只能根据实际情况修改相关参数。
当参数设置失败时,可根据手册修改参数。
否则,可以初始化数据并恢复默认值。
然后按上述步骤复位。
对于不同品牌的变频器,参数恢复出厂值的方法也不同。
变频器的运行频率和电位器关系详解-民熔
变频器的运行频率和电位器关系-民熔
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
民熔变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
变频器的运行频率和电位器有什么关系,首先我们了解下变频器的运行频率调节方法,其中与电位器有关系的的调频方式就是模拟量调节。
模拟量控制变频器的运行频率的两种信号主要有直流电压信号和电流信号,通过控制这两个信号的大小来实现运行频率的调节,而模拟量最简单的接线方法就是电位器方式,电位器是一种调节输出电阻的器件,它和滑动变阻器的原理类似,只不过电位器是通过旋转的方式完成,一般有三个端子,一个是电源正极,一个是电源负极,一个是输出信号,通过旋转电位器可以调节输出电压。
在我们变频器中通过电位器进行运行频率调节,可以使用本地也就是变频器面板上的,直接本地调节,如果远距离控制,我们需要外接一个变频器控制,电压控制信号常采用0-10vdc,这个电源一般变频器都会自带直接接即可。
电位器输出接变频器模拟量电压控制端子,旋转电位器就能改变变频器的运行频率,那么电位器最大输出10v就对应变频器输出频率比如设置的50Hz。
电压按照这个比例去调节运行频率。
变频器单元串联式多电平的起源分析-民熔
变频器单元串联式多电平的起源-民熔变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
民熔变频器靠内部IGBT 的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
一。
单元串联多电平变换器采用多功率单元串联的方法实现高压输出。
为了获得较低的输出电压谐波、较低的Du/dt和共模电压,通常采用多相PWM。
为了抑制输入谐波,通常采用多台隔离变压器。
近年来,该技术在世界范围内发展迅速,国内许多基于该技术方案的高压变频器生产厂家相继涌现,产业化成果显著。
2。
单元串联多电平高压变频器的由来西屋电气公司于1986年5月申请了美国专利号4674024。
本发明提出了一种由独立的标准低压电源单元串联而成的高压逆变系统。
利用可控整流桥控制逆变系统中某些模块的直流电压,或对某些模块的逆变侧进行PWM控制,可以实现对输出高压的控制。
本发明提出了一种单元串联多电平变换器的基本框架。
西屋公司的发明解决了变频器需要高压输出,但装置耐压能力不足的矛盾,避免了常规装置串联时的均压问题,并建立了单元串联多电平变频器的基础。
罗宾康恩于1994年3月申请了美国专利号5625545。
本发明提出了一种输入采用多相移变压器,输出采用多电移相PWM的多级方案。
输入变压器采用三角形接法,在一定的电气角度下,变压器二次侧各不相同,达到抑制输入谐波电流的目的。
为了提高输出电压阶跃,提高等效开关频率,改善输出电压波形,采用了多电平移相PWM。
移相PWM原理。
本发明提出的单元串联多级高压变频器方案已成为目前市场上的主流单元串联多级方案。
同时,提出了机组旁路的概念。
1998年5月,Robin Kang公司提出了中点偏移功率单元旁路的方法。
变频器的控制方法解读-民熔
变频器的控制方法-民熔
变频器是工业生产中常用的执行电气,它具有良好的速度控制和简单方便的控制方式是的。
因此被广泛应用于自动化领域。
变频器主电路典型接线
一般情况下,实际过程中采用的是民熔变频器使用时。
例如,现场性能低是常见的,制动电阻不是可选的;如果励磁电机与变频器之间的距离比较近,变频器的输出电抗器就不能是可选的。
因势利导使用。
如果没有必要,你可以选择不使用。
尽管没有缺点,建筑电气系统的成本必然会增加,系统的复杂性也会增加。
数字量+模拟量输入
在恒定供水的使用情况下,外部管道压力传感器的压力信号可以连接到变频器的模拟输入端与变频器内部的PID控制功能构成闭环控制,为了达到持续供水的目的,a、一个恒压控制单元这个数字信号实现变频器。
通信总线系统有控制总线,可以对总线进行更灵活的控制意识到。
减少你的电报数量,变频器的工作模式和工作模式可以通过总线方便地实现。
输入开关量
只要控制变频器的起动、停止、反转和多相转速,就可以通过开关量输入控制发动机。
模拟输入
在需要调整发动机的使用情况下,可将模拟速度控制信号输入变频器是的控制发动机转速。
变频器的控制方法有哪些?闵荣电器专家将在一分钟内通知您变频控制IO。
从界面上可以看到它们有开关控制输入/输出、模拟控制输入等。
多样化接口为系统设计提供了不同的可能性。
变频器入门详解-民熔
变频器入门-民熔检查变频器机身侧面的型号铭牌,确认变频器型号、产品是否与定货单相符,机器是否有损坏。
一、在第一次简单接线中,必须注意:①电源及电机接线的压着端子,需要使用带有绝缘套管的端子②电源一定不能接到变频器的输出端上(U, V,W),否则将损坏变频器③接线后,零碎线头必须清除干净。
零碎线头可能造成设备异常、失灵和故障,必须始终保持变频器清沽。
④为使线路压降在2%以内,需要用适当型号的电线接线。
变颇器和电动机间的接线距离较长时,特别是低频率输出情况下,会由于主电路电缆的线路下降,而导致电动机的转矩下降。
二、变频器的面板PU操作1.、对变颇器进行操作、运行、调试和维护等,都首先需要熟悉摄作面板PU,下图所示为PU按键和指示灯的具体功能和含义。
2、按键功能说明1)、设置:编程健,一级菜单进入或退出2)、确认:确定键,逐级进入菜单画面、设定参数确认3)、向上箭头:UP递增键,数据或功能码的递增4)、向上箭头:DoWN递减键,数据或功能码的递减5)、向左箭头:左移位键,在停机显示界面和运行显示界面下,可左移循环选择显示参数;在修改参数时,可以选择参数的修改位6)、运行:运行键,在键盘操作方式下,用于运行操作7)、停止/复位:停止/复位键,运行状态时,按此键可用于停止运行操作;受功能码P7.04制复位键制约。
故障报警状态时,所有控制模式都可用该键来复位操作。
8)、正反转/点动:多功能键,用于正转、反转与点动。
3、指示灯说明1)、RUN:运行状态指示灯,灯灭时表示变频器处于停机状态;灯闪烁表示变频器处于参数自学习状态;灯亮时表示变频器处于运行状态;2)、FWD/REV:正反转指示灯,灯灭表示处于正转状态;灯亮表示处于反转状态。
3)、控制模式指示灯:灯灭表示键盘控制状态:灯闪烁表示端子控制状态;灯亮表示远程通讯控制状态。
4、单位指示灯说明1)、HZ是频率单位2)、A是电流单位3)、V是电压单位4)、RPM是转速单位。
变频器直流电如何转变成交流电解读-民熔
变频器直流电如何转变成交流电-民熔变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
民熔变频器靠内部IGBT 的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
直流->振荡电路->变压器(隔离、变压)->交流输出方波发生器以50赫兹的频率改变直流电流。
使用窦性和准窦性滤波器。
波浪的形状类似于长城的裂缝。
当方波上下波动时,方波的突变约为5V。
信号放大器将电压突变提高到12V左右,变压器将输出电压提高到220V。
如何将直流电转换成交流电?有三种可能性:1用直流电来驱动直流发动机--机械传动到发电机来输送交流电;这是最古老的方法,但仍有人使用,成本低,维护方便从。
到它仍然用于高性能转换。
2这是一种比较先进、成本较高的方法,主要用于小电厂的改造;三个。
机械式可控震源变换器的原理是在变压器的二次区域内使可以通过变压器的直流电间歇交流。
这是一种古老的方法,现在已经基本上被淘汰了。
现在日本发现了一种可以转化的有机物质交流电是指电压或电流的振幅振荡0,即有正负两种,方向会改变,但不一定是正弦的。
直流电不是恒定的,它的振幅可以改变,但不会其他。
有换句话说,它总是积极的或消极的。
晶闸管不能只用于逆变器,它只起开关作用。
必须用振荡电路控制晶闸管的通断状态,以获得方波交流电。
经过电压转换和滤波后,可以确定纯正弦变化。
UPS-UPS-UPS(无中断电源系统)使用逆变电路,即振荡器的直流驱动来产生交流振动,这种振动通常是方波收到时。
滤波电路去除了50赫兹的上振动,可以得到相对纯净的50赫兹交流电。
变频器的运行方式之正、反转运行图文解析-民熔
变频器的运行方式之正、反转运行-民熔
正、反转运行
实际生产中存在大量正常、反转运行的设备,如龙门的刨刨刨、铣床、磨床等,移动该设备的异步电动机本身就可以反转运行,对频率供应的异步电动机西改变电力供应电源的相互顺序,就可以改变电动机的方向,当变频器作为电动机电源时,有的变频器具有静、反转功能,有的变频器不具有这种功能。
正,对于具有反转功能的变频器,变频器之情、反控制信号直接移动电动机的丁、反作用。
具有正反转功能变频器正、反转的控制线路
变频器的驱动电机正站着,倒转的控制电路,直接控制变频器的定义、反控制接口,就可以实现电动机的定义、反运行控制。
正、无反转功能的变频器可以使用变频器来转换变频器的输出状态,实现发动机的定义、反转的控制,使用这种类型的变频器时,在设计控制电路的过程中,电动机不能马上转化为反转,在保证电动机停止的条件下,应将电动机转换为反转。
否则在转换过程中过大的电流会损坏变频器和电动机。
无正反转功能变频器正反转运行接线图
图中的K.ME 1和K.ME 2的接触器改变了变频器的输出状态,并改变周期电路的商号,实现发动机之情、反战的控制。
变频器的运行方式之并联运行图文分析-民熔
变频器的运行方式之并联运行-民熔并联运行变频器的并行运行分为两种情况。
也就是说,单台低频转换器的电容转换器的并行运行方式和“一拖放多”运行方式。
其中,如果单台小变频器的容量并行运行,则适用于单台变频器无法满足实际变频器的容量需求的情况。
详细介绍这两种方法。
1.变频器并联如果生产中变频器的容量大,单变频器的容量有限,可以并行运行两台以上同类型的变频器来满足大容量电动机的驱动要求。
此时,变频器的并行运行有问题。
两个变频器实现并行运行的基本要求是控制方式、输入电源和开关的频率相同,输出电压的宽度、频率和相位相等,频率的变化率严格一致。
图是两台变频器并联运行结构的示意图。
实现上述条件的方法是,在振动频率相同的条件下,根据反馈定理导入输出电压的负反馈,实现各变频器输出电压的同步。
需要注意的问题包括以下3点。
①变频器并联连接时,各电源输出电压的差变大。
主要反馈采样点的电压不是单台电源的输出电压,而是多台变频器共同作用的结果。
②多台变频器即使在稳定状态下的振幅、频率及相位相等,它们的动态调整过程也不完全相同,会产生瞬时的动态电流,动态电流值较大,需要在各变频器的输出端连接限流电阻和均流电流路。
③集成度高的变频器控制电路难以进行并行转换,需慎重应对。
2.1台变频器拖拽多个电机并联运行如图所示,一台变频器拖拽多个马达并并行运行时,不能使用变频器内的电子热保护。
对每个马达加热继电器,用热继电器的常闭接点串联控制保护单元。
此时,变频器的容量必须根据电动机的启动方式,决定多个电动机不是同时启动,而是依次启动。
首先,从低频启动马达,在该变频器已经以某个频率动作时,剩余的马达又以全压启动。
每次启动马达时变频器都会有一次电流冲击。
此时,变频器的电流可以承受马达全压启动所产生的电流冲击。
如果多个电动机的容量不同,请尽量启动容量大的电动机,然后启动容量小的电动机。
尽量避免马达依次启动的运行方式。
马达台数多的情况下,可以将马达分成几个组,按组采用同时启动方式。
一张图看懂变频器内部结构,绝对不吹牛
一张图看懂变频器内部结构,绝对不吹牛
低压变频器一般都是如下图的结构,只是有些品牌是选配的、有些是标配的。
进线端子、整流桥、储能电容、预充电回路、逆变器、电流互感器、出线端子是必配的,必配的东东也是各有各招,但是原理是基本一样的。
然后要实现变频,还需要控制电源、主控制板;一般有控制电源模块或电路,大多数控制电源取自直流母线上,这样做有个好处就是
外网掉电后--还有直流电供电--保存故障记录等参数,同时也可以完成电压检测的作用了,这样失压过压保护也有了。
当然电子元件的发热,特别是主回路的是很严重的,所以散热板、散热风扇也是必须的,所以就有散热风扇控制器--有直接取交流的,也有取直流的,直流的比较多。
既然会发热,测温元件也是有的。
变频器键盘操作控制须知-民熔
变频器键盘操作控制详解-民熔变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
民熔变频器靠内部IGBT 的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
变频器主要包括整流器(“交流电”)、滤波器、逆变器(“交流电”)、制动单元、驱动单元、检测单元、微处理单元。
因此续熔融电流转换器通过内部IGBT开启控制输出电源的电压和频率,根据发动机的实际需要提供所需电源电压,从而节省能量,调节速度,而且,随着工业自动化的发展,变频器也被广泛使用。
作为变换器的频率调整模式,还有三种变换器的操作控制模式:操作员键盘控制终端控制与控制通信操作控制模式必须根据实际需要选择和配置,并且可以根据功能切换。
操作员键盘控制操作者的键盘控制是转换器最简单的操作控制模式,用户可以通过频率转换器直接控制转换器的操作,该频率转换器操作操作操作键、停机键。
个人键盘上的点键和复位键。
操作者的键盘控制的主要特征是使用方便,同时履行警报功能,即指示用户转换器是否工作,是否有故障,或者是否存在警报,如果转换器不工作,是否连接。
如果LED代码和LCD液晶显示出故障类型,则报警(“过载”)。
根据上一节的内容,转换器的操作键盘通常可以设置在5米范围内,用户可以通过延长转换器行同样,键盘必须远程使用。
在键盘驱动下,转换器的正反转可以通过反转键切换和选择。
积极的键盘定义的正旋转方向与发动机的有效旋转方向相对(“或设备的旋转方向”)。
通过修改诸如某些转换器参数定义为“正”或“反向”的相关参数,并将某些转换器参数定义为“正”或“反对控制方向”。
对于某些生产设备,不允许反转,例如泵负荷,变频器规定了禁止反转的特定功能参数。
发动机该函数用于终端控制和通信控制。
变频器的运行方式之并联运行图文详解-民熔
变频器的运⾏⽅式之并联运⾏图⽂详解-民熔变频器的运⾏⽅式之并联运⾏-民熔并联运⾏变频器的并联运⾏可分为两种情况,即单台⼩变频器的并联运⾏⽅式和⼀机多⽤运⾏⽅式。
其中,单台⼩容量逆变器并联运⾏适合于单台逆变器不能满⾜实际逆变器容量需求的情况,“⼀驱动多”运⾏模式是指⼀台逆变器驱动多台电机的模式。
下⾯将详细介绍这两种⽅法。
⼀。
变频器并联在⽣产中变频器容量很⼤的情况下,如果单台变频器容量有限,同⼀型号的两台或多台变频器可以并联运⾏,以满⾜⼤容量电机的驱动要求。
此时,变频器存在并联运⾏问题。
两台逆变器并联运⾏的基本要求是控制⽅式、输⼊电源和开关频率相同,输出电压的幅值、频率和相位相同,频率变化率严格相同。
该图显⽰了两个逆变器的并联运⾏结构。
实现上述条件的⽅法是在晶体振荡频率相同的情况下,根据反馈定理引⼊输出电压负反馈,实现各逆变器输出电压的同步。
值得注意的问题包括以下三点。
①主要原因是反馈采样点的电压不再是单个电源的输出电压,⽽是多个逆变器共同作⽤的结果。
②即使在稳态时⼏个逆变器的幅值、频率和相位相等,其动态调节过程也不能完全相同,会产⽣瞬时动态电流。
③⾼集成度逆变电源的控制电路很难并⾏重构,应慎重对待。
2。
⼀台变频器并联驱动多台电动机如图所⽰,当⼀台变频器并联驱动多台电动机时,变频器中的电⼦热保护不能使⽤,⽽是由每台电动机的外部加热继电器与热继电器的常闭触点串联控制保护单元。
此时,变频器的容量应根据电动机的起动⽅式确定。
多台电动机不应同时启动,⽽应按顺序启动。
⾸先,⼀台电动机从低频启动。
当变频器在某⼀频率⼯作时,其它电动机应在全电压下起动。
每次启动电机,变频器都会产⽣电流冲击。
此时,应确保变频器的电流能承受电动机全电压启动所引起的电流冲击。
如果多台电机容量不同,先启动⼤容量电机,再启动⼩容量电机。
尽量避免电动机顺序起动的运⾏⽅式。
如果电动机数量较多,可将电动机分为若⼲组,每组采⽤同时起动的⽅式。
[⽰例]在污⽔处理⼯艺的处理槽中安装了六个搅拌器。
变频器内部线路秘密解析-民熔
变频器内部线路秘密-民熔
变频器是控制电气控制设备的电动机的最常用的,变频器具有精确的电压控制、柔性的控制模式和各种控制模式。
优点使用频率变换器的方法,大多数人都知道和掌握电工的同伴内部电路里的秘密也许不一定已知:我要对每个人说四件事
首先,我们所看到的绝大多数变频器都处于三个输出阶段,人们担心许多同事会认为他们应该使用三个电流传感器来检测每个电流阶段实践95%的变频器使用两个阶段的电流检测工艺(当然包括两个所使用的传感器),而在剩余的相位中,电流值由变频器使用从所检测到的两个相位的电流中的放电电路计算。
第二,在维修或拆卸变频器时,我们不需要使用总线表来检测总线电压。
LED显示灯不仅能够显示电源的规律性,而且还能够视觉地反映总线电压输出。
Cc在断电(“事实上,过滤容量电压”)之后,表明CC总线电压在灯熄灭时下降到80V以下,而且只有一分钟的时间进行跟踪。
通常,转换器内的开关电源产生多个电压等级±15 V、+24 V、+5V,其中最大的输出电压是++5V电路,因为电路电压被用来供电转换器大脑“CPU”,当电路电压波动时,转换器不能正常运行!因此,转换器的开关电源部分受到电路电压的监测。
第四,由于诸如过电压、过流速等故障,频率变换器的IGBT/IPM功率反馈装置很容易受到损坏。
这些元件通常更昂贵,基本产品的交付率也没有可靠的保证,为此,在维护一个低单相功率转换器时,通过许多维修实例,发现电磁炉的两个元件。
可以用IGBT和用于1.5-5.KW 单相转换器的内部整流桥梁代替,条件是转换器的性能也稳定可靠,而且这些元件的价格相对较低。
”。
变频器的运行方式之正、反转运行图文分析-民熔
变频器的运行方式之正、反转运行-民熔正、反转运行
有效生产大量正频,逆转设备,如龙门刨床,铣床,磨床,因此后续行动驱动这些装置的异步电动机本身可以正反操作。
电源序列的改变可以改变电源的方向。
发动机`变频器被用作发动机的电源,一些变频器具有正反功能,而另一些则没有。
对于具有正反功能的变频器,使用转换器的正反控制信号直接导致电动机的校正和反转。
具有正反转功能变频器正、反转的控制线路
变频器驱动电动机的控制电路板正向和反向运行,通过直接控制变换器的正反控制接口,可以获得电动机的正反操作控制。
对于没有正反功能的变频器,可以使用接触器切换变频器的输出序列,以获得正反频率控制。
发动机控制电路设计必须确保发动机不会从正向转动直接切换到反向转换,而是在保证发动机停机的条件下被逆向切换,否则在切换过程中的过量电流将对变频器和变频器造成损害引擎。
无正反转功能变频器正反转运行接线图
图中的KM1和KM2触点用于切换转换器的输出序列,修改主电路序列,以及提供电动机的正反向控制。
变频器接线教程解析——民熔
变频器怎么接线教程——民熔1主回路接线1)主回路的电源端子R、s和t通过接触器和空气断路器与电源相连,不考虑相序。
2)当变频器保护功能动作时,继电器常闭触点控制接触器回路,接触器回路断开接触器,切断变频器主回路电源。
3)不应通过关断变频器主电路进行操作。
它需要控制面板或控制电路端子FWD(Rev)上的run和stop键来操作。
4)逆变器输出端子(U、V、w)应通过热继电器连接至三相电机。
当旋转方向与设定方向不一致时,应更换U、V、W三相中的任何两相。
5)不要将变频器的输出端连接到电力电容器或浪涌吸收器上。
6)为了防止漏电和干扰侵入或辐射出去,为了安全和降噪,必须接地。
根据电气设备技术标准,接地电阻应小于或等于国家标准规定的值,并用较粗的短线连接到变频器专用接地端子PE 上。
当变频器与其他设备或多台变频器一起接地时,每台设备应分别接地。
不允许一台设备的接地端与另一台设备的接地端相连。
2控制电路端子1)当采用触头输入时,应采用接触可靠性高的触头。
2)Fwd cm在工厂与短路件相连。
上电后,按触摸屏上的run键向前运行,按stop键停止操作(在触摸屏操作模式下)。
3)出厂时,外部报警输入端子thr cm已与短路件连接。
使用时,应拆除短路片,并与外部设备的异常接触串联。
如果没有这种接触,不要拆下短路件。
4)模拟频率设定端子(13、12、11、C1)是与外部输入的模拟电压、电流和频率设定器(电位器)连接的端子。
在这个电路上设置触点时,应使用成对的小信号触点。
5)变频调速系统中的接触器、电磁继电器和其他类型电磁铁的线圈电感大,在接通和断开的瞬间会产生较高的感应电动势,并在电路中形成高峰值浪涌电压,影响频率的正常工作转换器。
可用于吸收电路控制。
当集电极开路输出端与控制继电器连接时,可以在励磁线圈的两端连接一个吸收浪涌的二极管,如图所示。
6)控制回路端子上的连接线应采用规格不超过0.75mm的屏蔽线或聚乙烯扭线。
变频器的运行方式之点动运行方式详解-民熔
变频器的运行方式之点动运行方式-民熔
点动运行
所谓点动操作,是指当变频器处于关机状态时,在收到点动操作命令(如操作键盘上的点动键,定义为点动多功能终端信号连接和通信命令点动)。
点动操作的参数包括点动操作频率、点动间隔时间、点动加速时间和点动减速时间。
如图所示,T1、T3为实际运行的加减速时间,T2为微动时间,T4为微动间隔时间,F1为微动运行频率。
点动间隔时间是从上一个点动命令取消到下一个点动命令有效的时间间隔。
间隔时间点动指令不能使变频器运行。
变频器在零频状态下运行,无输出。
如果一直存在微动命令,则在间隔时间之后执行微动命令。
如无特殊指示,应根据启动频率和减速停止方式启动和停止微动操作。
如图所示,逆变器正常运行时由接触器K1控制,微动运行时由接触器K2控制。
当K2闭合时,可以选择点动操作频率,通过改变电位器的电阻来确定。
应注意以下几点。
①微动时,微动时的频率设定器发出低速频率指令,而不是正常运行时的频率设定器,因为微动时的频率不能太高,否则电机会产生太大的起动冲击电流,另外,微动操作的控制电路也单独设置,启动指令分别输入到变频器信号中。
点动运行常用控制电路图
②不要在变频器负载侧再加一个接触器进行微动操作,否则容易损坏变频器。
带制动器电机微动操作,停止时使用变频器的输出停止端子Mrs或res。
更多相关资料关注工重号,“民熔电气集团”,回“变频器”获取更多行业资料。
大功率变频器散热分析-民熔
大功率变频器散热-民熔变频柜变频器为商业和工业电机提供动力和控制,必须根据其设计和应用环境进行热保护。
变频器的主要优点是灵活的控制、平稳的启动和停机性能,以及在可变负载下运行的离心风机和泵所带来的显著节能。
大多数大功率变频器及其附属电子配件都被集成到电气机柜中。
变频器不但提高了系统效率,变频器本身的效率也非常高,损失只有2% 至4%。
然而,由于大功率变频器中电能转换很大,即使效率损失较低,也会导致数千瓦到数十千瓦废热的产生,必须设法将这些热量耗散掉。
在开放式风冷机柜中,要想排出这些热量很简单。
然而,在恶劣环境中,无法使用过滤风扇冷却或通过直接的空气流来冷却,外壳的热量管理就成为设计流程的重要组成部分。
研究策略,对于在恶劣环境中高效、被动且经济地冷却中、大功率密封外壳的变频器至关重要。
1、流通或密封开放式气流柜可让环境空气流通机柜,直接有效地冷却大功率模块。
不过,这种高效的冷却,可能会导致外部污染物进入外壳,通常使用风扇过滤系统,来过滤流入机柜的空气,从而最大限度地减少这些污染物。
过滤器有助于减少灰尘和碎片,但它们需要定期维护来清洁或更换过滤器。
密封外壳不允许外部空气进入机柜,而是用机柜内的空气来冷却电子产品,并通过热交换器将热量导出到环境空气中。
密封外壳可防止污垢、灰尘、湿度、盐雾和其它空气中的腐蚀性物质进入机柜,并影响电子元件的使用寿命。
这两种系统都适用于低功耗机柜。
然而,对于许多大功率变频器机柜来说,功耗水平高于空气冷却所能达到的水平。
低功率部件一般直接通过气流进行冷却,而较高功率的部件则通过设施冷却水、蒸汽压缩系统或泵送液体系统直接或间接冷却。
在这些系统中,大功率元件( 绝缘栅极双极晶体管、集成栅极换向晶闸管、硅控制整流器),通常连接到流体冷却冷板上。
然后,流体使用蒸汽压缩系统或通过液气热交换器,将热量排放到环境空气中。
无论哪种情况,所需的环境空气热交换器都可以布置在设施内外。
这些系统的主要缺点是将流体引入机柜和冷却液管线进出机柜所带来的挑战。
变频器通讯给定解读-民熔
变频器通讯给定-民熔一、通讯给定1.基本概念民熔变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
通讯给定方式就是指上位机通过通讯口按照特定的通讯协议、特定的通讯介质进行数据传输到变频器以改变变频器设定频率的方式。
超级计算机通常是指计算机(或工控机)、SPS、DCS、人机接口等主要控制设备。
在上位机和变频器之间传输数据有两种方式:(1)连载模式E一次只传输一位二进制。
主要优点是连接很少,通常只有两三个。
缺点是传输速度慢;(二)并行操作。
可以一次传输完整的字符,传输速度快,但需要更多的连接,通常是8或16,高得多的成本,那里上位机与变频器之间的距离一般不太远,对传输速度的要求也不是很高,因此一般采用串行传输方式。
上位机与变频器之间主要有两种通讯方式:(1)异步-模式。
每个字符前面有一个起始位,表示字符已开始;数据传输后,为奇偶校验设置奇偶校验下注;最后,设置一个终止下注,表示字符结束是的异步传输的优点是很好的灵活性,实时串行数据处理简单,缺点是传输速度慢。
(2)S公司同步模式。
可以同时传输多个字符的“数据块”。
在每个数据块之前只需要同步符号“syn character 1”和“syn character 2”这个同步的优点是不需要在每个字符前后设置任何符号(开始和停止轨迹),以节省时间和提高传输速度;缺点是必须使用同步脉冲来协调,这样灵活性就很低。
上位机与变频器之间有两种传输方式:(1)全双工-模式上位机与变频器之间的数据传输和接收可以同时进行。
(2)半双工-模式。
每个设备只能做、接收或发送一件事,不能同时发送;或收到。
时间每次发送或接收都需要指示发送和接收之间的方向这个上位机与变频器之间的传输速度通常由“施工线”控制表示为:每秒发送的位数,单位为位/秒。
变频器的内部构成解析及维修步骤
变频器的内部构成解析及维修步骤现在的变频器有2—4块板构成,常见的有主电路板:整流模块、滤波电容、逆变模块驱动板:电偶驱动电路、为逆变管的通断提供门极驱动电源板:开关电源,由主电路整流部分输出的直流经开关管、变压器、滤波电容输出5V、10V、24V给CPU、风扇提供电源CPU板:控制、计算也有很多变频器以上内容合并成2—3块板电源板驱动板CPU板主电路板故障检修:一、无显示首先检查电源板,接通外界电源,查看开关管、变压器、滤波电容是否工作。
二、通电测U、V、W有无输出,有输出再带电动机,以防故障扩大。
若出现缺相时,可用示波器从输出端经驱动一级级向上查看其波形,以确定故障点的位置。
4.1 过载过载故障包括变频过载和电机过载。
其可能是加速时间太短,电网电压太低、负载过重等原因引起的。
一般可通过延长加速时间、延长制动时间、检查电网电压等。
负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。
如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。
4.2 过流可能是变频器的输出短路所引起。
这是要对线路及电机进行检查,如果断开负载变频器还是过流,说明变频器的逆变电路损坏,应修理或更换。
如拆开机器就发现严重的短路现象,整流模块和 IGBT 模块爆裂,短路造成的黑色积炭喷得到处都是,主回路两个继电器也爆开,主控板暂时没有发现问题,但驱动部分烧了好几处,另外储能大电容一部分都已发涨,电容板上的两颗大螺丝接触处全部烧焦,这就是西门子ECO变频器的通病,因为所有电量都是要经过这两颗铁螺丝,一旦铁螺丝生锈,很容易引起电容的充放电不良,这样电容发热,漏电,发涨到最后损坏重要器件就不在话下了,为了防止再次接触不良打火,在上螺丝的同时最好焊上几股粗铜线,维修触发板时不知道参数的,可以从控制板上完好的器件与损坏相同器件的对比,修复该板的电压分别为 -4.7V,-4.44V,更换损坏器件后,可以加电试验,试验步骤按主回路到控制空载,负载分别运行检查。
图文并茂带你了解变频器的内部结构
图文并茂带你了解变频器的内部结构
开放式结构变频器
这是一台开放式结构变频器,内部就是这么简单,加个外壳就是经常看到的变频器模样了.
变频器主要由整流、滤波、逆变、电源、控制、保护等几部分组成,
整流部分用的元件是整流桥,其实就是由6个二极管组成的三相整流电路。
小功率的变频器整流、逆变、制动单元是集成在一个模块上面,如下图所示。
这是变频器内部最重要也是最昂贵的部件,如果这个元件损坏了,变频器基本报废。
英飞凌整流逆变模块
大功率的变频器整流和逆变模块是分开的。
下图是整流模块。
整流桥模块
滤波电容
逆变部分是由六个IGBT 组成,像下图这样的IGBT模块,里面包含了两个IGBT管,变频器一般由三个这样的模块来组成逆变回路。
IGBT模块
IGBT模块
看完了主回路,再看看控制回路组成吧。
集控制和驱动一体的变频器电路板
当然,市场上变频器种类繁多,但是万变不离其宗,进口品牌各种控制和保护功能均比较完善,其电路也是比我们展示的电路复杂,主回路部分大同小异,区别主要在控制和保护部分。
留言处大家可以补充文章解释不对或欠缺的部分,这样下一个看到的人会学到更多,你知道的正是大家需要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器基本结构-民熔
整流电路:
整流电路的功能是把交流电源转换成直流电源。
整流电路一般都是单独的一块整流模块,但不少整流电路与逆变电路二者合一的模块如民熔变频器系列。
整流模块损坏是变频器常见故障,在静态中通过万用表电阻挡正反向的测量来判断整流模块是否损坏,当然我们还可以用耐压表来测试。
有的品牌变频器整流电路,上半桥为可控硅,下半桥为二极管。
如大功率的丹佛斯、台达等。
判断可控硅好坏的简易方法,可在控制极加
上直流电压(10V左右)看它正向能否导通。
这样基本大致能判断出可控硅的好坏。
另外,民熔变频器G9S(P9S)11kw以下的整流模块的特点为该模块集中五种功能。
整流,预充电可控硅,制动管,电源开关管,热敏电阻。
如CVM40CD120整流模块引脚及功能的名称,供同行参考。
整流:R、S、T、A(+) N-(-)
充电可控硅:A1、P1、G+n(触发)
制动管:DB、N_、G7(触发) DB1 B+是其续流二极管
电源开关管:D8、S8、G8
热敏电阻:Th1 Th2
G9S(P9S)15kw~22kw,整流模块为(VM100BB160)它的功能除整流外还有预充电可控硅。
功率在30kw以上的为整流模块单一整流功能。
功率75kw以上为多组并联整流模块。
平波电路:
平波电路在整流器、整流后的直流电压中含有电源6倍频率脉动电压,此外逆变器产生的脉动电流也使直流电压变动,为了抑制电压波动采用电感和电容吸收脉动电压(电流),一般通用变频器电源直流部分对主电路构成器件有余量,省去电感而采用简单电容滤波平波电路。
对滤波电容进行容量与耐压的测试,我们还可以观察电容上的安全阀是否爆开。
有没有漏液现象来判断的它的好坏。
控制电路:
现代变频调速基本系用16位、32位单片机或DSP为控制核心,从而实现全数字化控制。
变频器是输出电压频率可调的调速装置。
提供控制信号的回路称为主控制电路,控制电路由以下电路构成:频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”。
运算电路的控制信号进放大的“驱动电路”以及逆变器和电动机的“保护电路”,但实际使用变频器时,其维护工作也比较复杂。
这里就变频器控制电路故障报警产生原因提供以下一些处理方法。
常用变频器在使用中,是否能满足传动系统要求,变频器参数设置尤为重要。
设置不正确会导致变频器报警而不能正常工作。