高等数学 同济2版活页习题 第十章

合集下载

高等数学下册第十章习题答案

高等数学下册第十章习题答案

第十章曲线积分与曲面积分习题详解习题10—11 计算下列对弧长的曲线积分: (1)L I xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧;解: L AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是24cos I ππθ-=⎰24cos (1d ππθθ-==⎰.(2)(1)Lx y ds ++⎰ ,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解: L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Lx y ds ++⎰(1)OAx y ds =++⎰(1)ABx y ds +++⎰ (1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是ds dx ==,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA, 而:AB 1y x =-,01x ≤≤,于是ds ==. 故10(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知:BO 0x =(01y ≤≤),0ds =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. xyoABC综上所述33(1)322Lx y ds -+=+=+⎰ . (3)⎰,其中L 为圆周22x y x +=;解 直接化为定积分.1L 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ==.于是201cos222d πθθ=⋅=⎰⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解 如图所示, 2222 LABBCCDx yzds x yzds x yzds x yzds =++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt ==,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==故122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))CDx yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222LA BB CC Dx y z d s x y z d sx y z d sd s =++⎰⎰⎰⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。

高数第10章经典类型题参考答案

高数第10章经典类型题参考答案

第十章 经典类型题一、二重积分的计算(1)直角坐标系1.画出积分区域,并计算二重积分2+1x D e dxdy ⎰⎰(),其中D 是由x 轴,x y =及1x =所围成的闭区域。

解:2+1x D e dxdy ⎰⎰()1=.2e 2.计算二重积分D σ⎰⎰,其中D 是由2与1y x y ==所围成区域。

解:D σ⎰⎰4=-.153.计算二重积分2Dx dxdy ⎰⎰,其中D 是由直线2,3,y x y x ===所围成的闭区域. 解:83.12D xdxdy =⎰⎰ 4. 计算二重积分sin d d ,D x x y x ⎰⎰其中D 是直线2,y x x π==及x 轴所围成的闭区域. 解:sin d d =4.D x x y x ⎰⎰5.计算二重积分22D x dxdy y⎰⎰,其中D 是直线12,,2y y x x x ===所围成的闭区域。

解: 22=3.D x dxdy y⎰⎰ (2)极坐标系6.计算二重积分22x y D e dxdy +⎰⎰,其中D 是由中心在原点,半径为a 的圆周所围成的闭区域. 解:222+(1).x y a D edxdy e π-=-⎰⎰7. 计算二重积分Dx σ⎰⎰2d ,其中D 是圆x y +=221所围成的闭区域。

解: 1.4D x σπ⎰⎰2d =22arctan,1D y dxdy D x y x+=⎰⎰8. 计算其中是由直线y=x,x 轴和围成的在圆周第一象限的闭区域。

. 解:2arctan .64Dy dxdy x π=⎰⎰ 9.计算二重积分cos()D x σ⎰⎰22+y d ,其中D是由直线,y x =轴和圆4x y +=22所围成的在第一象限的闭区域。

解: 2cos(D x σ⎰⎰2+y )d sin 4π6=. 二、三重积分的计算10.计算()⎰⎰⎰++V dxdydz z y x sin ,其中V 是平面2π=++z y x 和三个坐标平面所围成的区域。

同济版高等代数与解析几何第十章习题答案

同济版高等代数与解析几何第十章习题答案

同济版高等代数与解析几何第十章习题答案习题10.11、写出二次型的矩阵如下:(1)⎪⎪⎪⎭⎫⎝⎛--332321211;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----23013120012121212323;(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000120100202121; (4)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------0321301221011210n n n n n n .2、二次型可以表示为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n n n n x x x a a a a a a x x x x a x a x a a x a x a x x x x q 212121************),,,(),,,(),,,(),,,(,),,,(21n x x x q 的矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a A 2122212121112121),,,(.当,a a a n 时021==== q 的秩为0;当,a a a n 时不全为0,,,21 q 的秩为1.3、二次型的秩未必是A ;应为(),ij b B =其中,2jiij ij a a b +=.4、(1)若A 为反对称矩阵,即A A -=',则AX X AX X X A X AX X '-=''-='-'=')()(,从而 0='A X X ;反之,若对任意X 都有0='A X X ,令)(ij a A =,取())(0,,1,,0i i X ='='ε,则0=='ii i i a A εε.取j i X εε'+'=' ,则0=+++='jj ji ij ii a a a a AX X ,得0=+ji ij a a ,即ji ij a a -=,故A 为反对称矩阵.(2)因对任意n 维向量X ,都有0='A X X ,由(1)知,A A -='. 又由A A =',因而A A -=,得A=0.(3)因对任意n 维向量X ,都有BXX AX X '=',即0)(=-'X B A X ,又显然B A -是对称矩阵,故由(2)得O B A =-,即A=B .5、由A 可逆,且A A =',得A A A A ='-1,故A 与A /合同.6、因A 与B 合同,C 与D 合同,故存在可逆矩阵21,P P ,使 D CP P B AP P ='='2211,.取⎪⎪⎭⎫ ⎝⎛=21P O O P P ,则P 可逆,且有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛'D O O B P C O O A P .7、(1)当a >0,b>0时,取⎪⎪⎪⎪⎭⎫ ⎝⎛=b a P 1001,则P 为可逆实矩阵.且2I AP P =',从而A 与I 在R 上合同. (2)当0≠ab 时,0,0≠≠b a ,取⎪⎪⎪⎪⎭⎫ ⎝⎛=b a P 1001,则P 为可逆复矩阵.且2I AP P ='. 习题10.21、(1))44()2(),,(234222222121321x x x x x x x x x x x q +++++==232221)2()(x x x x +++.令⎪⎩⎪⎨⎧=+=+=,,2,33322211x y x x y x x y 即⎪⎩⎪⎨⎧=-=+-=,,2,2333223211y x y y x y y y x 代入原二次型,得2221321),,(y y x x x q +=.所作非退化线性替换是⎪⎩⎪⎨⎧=-=+-=.,2,2333223211y x y y x y y y x (2)对二次型作非退化线性替换⎪⎩⎪⎨⎧=+=-=.,,33212211y x y y x y y x 得3213212121321)()())((),,(y y y y y y y y y y x x x q ++-++-=.)(22322231322221y y y y y y y y --+=+-=再令⎪⎩⎪⎨⎧==+=,,,3322311y z y z y y z 即⎪⎩⎪⎨⎧==-=.,,3322311z y z y z z y 代入得232221321),,(z z z x x x q --=. 所作的非退化线性替换是⎪⎩⎪⎨⎧=-+=--=.,,3332123211z x z z z x z z z x(3)422241222114321)(),,,(x x x x x x x x x q +-+= =2424422212211)44()(x x x x x x x ++--+ =242424122211)2()(x x x x x +--+ 令⎪⎪⎩⎪⎪⎨⎧==-=+=,,,2,443342222111x y x y x x y x x y 即⎪⎪⎩⎪⎪⎨⎧==+=--=,,,2,4433422422111y x y x y y x y y y x 代入,得242241214321),,,(y y y x x x x q +-=. (4)2212113)1(22312432221121)()()(),,,(nn n n n n ni n n i ni i n x x x x x x x x x x q +-=-=+++++++=∑∑ .令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=+=+=--==∑∑,,,,1113312222111n n n n n n n i i n i i x y x x y x x y x x y 即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=--==∑∑.,,,11131222111n n n nn n ni i i ni i i y x y y x x y x y y x 将变换代入,得22121)1(222432121),,,(n nn n n nn y y y y x x x q +--++++= .(5)作非退化线性替换⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+=-=+=-=+=---nn n n n n y y x y y x y y x y y x yy x y y x 212221212434433212211 q 化为222122423222121),,,(n n n y y y y y y x x x q -++-+-=- .(6)∑∑∑===⎪⎭⎫ ⎝⎛==ni nj n i i i j j i i n x a x a x a x x x q 112121))((),,,( .设0≠i a ,令⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=====+++=++--,,,,,,11112222111n n i i i i i i n n x y x y x y x y x y x a x a x a y即,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==------====+++---+-,,,,,,111121111221112n n i i n a a i a a i a a a a a i i i i y x y x y y y y y x y x y x y x i n i i i i i i二次型化为:2121),,,(y x x x q n = .2、(1)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛7230002000122110100100010001121221110 I A ,取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2211010023P ,则 ⎪⎪⎪⎭⎫ ⎝⎛--='2700020001AP P .(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛------=100010011112121212121P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛---='232122AP P ;(3)⎪⎪⎪⎭⎫⎝⎛-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=3731131,1001021AP P P . 3、(1)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛-----=212132221A ,⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛100310421300010001100010001212132221 I A ,⎪⎪⎪⎭⎫⎝⎛=100310421P .经非退化线性替换X=PY ,二次型化为2322213213),,(y y y x x x q +-=.验算: ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛='311100310421212132221134012001AP P .(2)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫⎝⎛--=011102120A , ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛100111000400011000100010111021201111 I A ,⎪⎪⎪⎭⎫ ⎝⎛-=1001121212121P .经非退化线性替换X=PY ,二次型化为2322213214),,(y y y x x x q ++-=.验算: ⎪⎪⎪⎭⎫⎝⎛-='100040001AP P .4、设A 为秩等于r 的对称矩阵,则存在可逆矩阵P ,使得rr E E E AP P +++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=' 2211011,.1112211111)()()(------'++'+'=p E P P E P P E P A rr令11)(--'=P E P A ii i ,则i i A A =',且秩),,2,1(1)(r i E A ii i ===秩,同时有 r A A A A +++= 21.5、用A ,B 表示所给两个对角形矩阵,由于二次型2222121212121),,,(),,,(n i i i n n n x x x x x x A x x x x x x q nλλλ+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 可经过非退化线性替换⎪⎪⎩⎪⎪⎨⎧===ni ni i y x y x y x 2121化得2222211222212211),,,(n n i i i i n y y y y y y x x x q ni n i λλλλλλ+++=+++==()⎪⎪⎪⎪⎪⎭⎫⎝⎛n n y y y B y y y 2121,,,,故A 与B 合同.6、因A 为复数域上的对称矩阵,故存在复数域上的可逆矩阵P 1,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n d d d AP P 002111,因为在复数域内,任何数可开平方,故有112121110000)(--⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=P d d d d d d P A n n令112100-⎪⎪⎪⎪⎪⎭⎫⎝⎛=P d d d P n,则有P P A '=.习题10.31、(1)q 矩阵为⎪⎪⎪⎭⎫⎝⎛----=320222021A ,A 的特征多项式())1)(5(232222021+--=---=-x x x x x x A xA .A 的特征值为2,5,-1.对的特征值2=λ 解齐次方程组0120202021321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-x x x 求得基础解系)2,1,2(1--=η,单位化得),,(3231321--=γ,同理求得属于特征值5,-1的单位特征向量分别为),,(3232312-=γ, ),,(3132323=γ.取正交矩阵⎪⎪⎪⎭⎫ ⎝⎛---=12222121231U .则⎪⎪⎪⎭⎫⎝⎛-='152AU U ,q 通对正交的线性替换X=UY ,化为23222132152),,(y y y x x x q -+=. (2)q 的矩阵为⎪⎪⎪⎭⎫⎝⎛=204060402A ,它的特征多项式为:)2()6(240604022+-=-----=-x x x x x A xI ,A 的特征值为6(二重),-2. 对于特征值6,解齐次方程组:⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321404000404x x x . 求得一个基础解系为)1,0,1(1-=η,)0,1,0(2=η它们已是正交向量组,将它们单位化,得),0,(21211=γ )0,1,0(2=γ对于特征值-2,同理可求得相应的特征向量)1,0,1(3-=η,单位化得),0,(21213-=γ 取⎪⎪⎪⎪⎭⎫ ⎝⎛-=2121212100100U ,则U 为正交矩阵,且⎪⎪⎪⎭⎫ ⎝⎛-='200060006AU U .对二次型作正交线性替换X=UY ,就化成232221266y y y -+. (3)q 的矩阵为⎪⎪⎪⎭⎫⎝⎛----=242422221A .A 的特殊征多项式)7()2(2+-=-x x A xI ,A 的特征值为2,2,-7.对于特征值2,求得两个相应的线性无关的特征向量)0,1,2(1-=α,)1,0,2(2=α将它们正交化得)0,1,2(11-==αβ,)5,4,2(12=β单位化得)0,,(51521-=γ,),,(5355345322=γ对于特征值-7,求得相应的特征向量为)2,2,1(3-=α单位化得),,(3232313-=γ取⎪⎪⎪⎪⎭⎫ ⎝⎛--=32535325345131532520U ,则U 是正交矩阵,且⎪⎪⎪⎭⎫ ⎝⎛-='700020002AU U , q 可经过正交线性替换X=UY ,化为 232221321722),,(y y y x x x q -+=. (4))q 的矩阵为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=0110,000100100000010010B B B A .)1)(1(1112+-=-=--=-x x x xx B xI ,B 的特征值为1,-1.对特征值为1,求得B 的属于1特征向量为)1,1(1=α,单位化得),(21211=γ,对于-1,求得相应的特征向量为)1,1(2-=β,单位化得),(21212-=γ.取⎪⎪⎭⎫⎝⎛-=21212121Q ,则Q 为正交矩阵.且⎪⎪⎭⎫ ⎝⎛-='1001BQ Q . 令⎪⎪⎭⎫⎝⎛=Q Q U 00,则U为正交矩阵.且⎪⎪⎪⎪⎪⎭⎫⎝⎛--='100001000010001AU U .作正交线性替换X=UY ,二次型就化为24232221y y y y -+-. 2、因为A 是实对称矩阵,故它的特征值0λ是实数,从而存在不全为0的实数n x x x ,,,21 使得⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x x x x A 21021λ.于是,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n x x A x x x x x x q 212121),,,(),,,()(),,,(22221021021n n n x x x x x x x x x +++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= λλ.3、因为AX X x x x q n '=),,,(21 是实二次型,故存在正交的线性替换X=UY (U 为正交矩阵),使 AX X x x x q n '=),,,(21 =2222211nn y y y λλλ+++ (1) 其中n λλλ,,,21 为A 的全部特征值.由于n λλλ≤≤≤ 21,又由于22221ny y y +++ =Y Y y y y y y y n n '=⎪⎪⎪⎪⎪⎭⎫⎝⎛ 2121),,,(,故对n R 中的任意向量X ,由(1)得='≤'AX X Y Y 1λ2222211nn y y y λλλ+++ Y Y n '≤λ (2) 因为U 为正交矩阵,I U U ='故Y Y IY Y UY U Y UY UY X X '='=''='=')()(从而由(2)得XX AX X X X n '≤'≤'λλ1.4、因为A 为实对称矩阵,所以存在正交矩阵U 使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='n AU U λλλ0021,这里R n ∈λλλ,,,21 是A 的全部特征值.由于i λ>0,i=1,2,…,n ,故U U U U A n n '⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎪⎪⎭⎫⎝⎛=221210000λλλλλλU U U U n n '⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλλ00002121令U U S n '⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλ0021,则S 为实对称矩阵,并且有2S A =. 习题10.41、(1)2221321),,(y y x x x q +=已经是C 上和R 上的典范形; (2)在C 上,对232221321),,(z z z x x x q --=,再作非退化线性替换 ⎪⎩⎪⎨⎧===332211iwz iw z w z ,可化为典范形232221321),,(w w w x x x q ++=; 而在R 上,232221321),,(z z z x x x q --=已经是典范形.(3)在C 上,对242241214321),,,(y y y x x x x q +-=,再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧====344322112z y z y iz y z y ,可化为典范形2322214321),,,(z z z x x x x q ++=;在R 上,对 24221214321),,,(y y y x x x x q +-=,再作非退化实线性替换⎪⎪⎩⎪⎪⎨⎧====244332112z y z y z y z y ,可化为典范形2322214321),,,(z z z x x x x q -+=. (4)q 在C 上和R 上的典范形都是:2212221n n z z z z ++++-(5)q 在C 上的典范形为:222122221nn n z z z z z +++++++ ;在R 上的典范形为:222122221n n n z z z z z ---++++ .(6)2121),,,(y x x x q n = 已经是典范形.2、q 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=000222222c b ca ba A .因为0≠ab 故0,0≠≠b a ,从而知A 与⎪⎪⎪⎭⎫ ⎝⎛--abc a a 000000合同. (1)ab>0时,若c=0,则q 的秩r=2,符号差011=-=s ;若c>0,则q 的秩r=3,符号差121-=-=s ; 若c<0,则q 的秩r=3,符号差112=-=s ;(2)ab<0时,若c=0,则q 的秩r=2,符号差011=-=s ;若c>0,则q 的秩r=3,符号差112=-=s ; 若c<0,则q 的秩r=3,符号差121-=-=s .3、二次型的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++++++++++=)()2(2)1()2(24432)1(3222n n n n n n n n n n n A λλλλλλλλλ可证,A 与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+---+---0001000200011210n n 合同.因后一矩阵与λ无关,从而得A 的秩和符号差与λ无关,即二次型的秩和符号差与λ无关.4、类数=2)2)(1()1(21++=+++n n n .n=3时,各类典范形为:⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛111,111,111,111;⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛011,011,011;⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛000;001,001.5、充分性.设实二次型),,,(21n x x x q 的秩为2,且符号差为0,则它可以经非退化线性替换X=PY 化为典范形),,,(21n x x x q =))((21212221y y y y y y -+=-.由X P y '=,可知,11,y y 可由n x x x ,,,21 线性表示.代入上式得),,,(21n x x x q 是两实系数n 元一次齐次多项式的乘积.若q 的秩为1,则q 可经非退化线性替换X=PY 化为典范形2121),,,(y x x x q n = ,同理可得结论成立.必要性.设二次型可分解为),,,(21n x x x q =))((22112211n n n n x b x b x b x a x a x a ++++++ ,其中),,2,1(,n i Rb a i i =∈.若),,,(21n a a a 与),,,(21n b b b 成比例,即ii ka b =,且设1≠a ,可对q 作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+++=n n n n x y x y x a x a x a y 2222111 化为),,,(21n x x x q =21ky .此时二次型),,,(21n x x x q 的秩为1.若),,,(21n a a a 与),,,(21n b b b 不成比例,不如设),(21a a 与),(21b b 不成比例,则01221≠-b a b a ,从而⎪⎪⎪⎩⎪⎪⎪⎨⎧==+++=+++=nn n n nn x y x y x b x b x b y x a x a x a y 332211222111是非退化线性变换.对),,,(21n x x x q 作此变换后再作如下线性替换⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=+=nn z y z y z z y z z y 33212211 就得),,,(21n x x x q =222121z z y y -=. 因此,二次型),,,(21n x x x q 的秩为2,并且符号差是零.6、只需证齐次线性方程0='AX A 与AX=0同解.设X 是AX=0的解,则有0='AX A ,即X 也是0='AX A 的解;反之,设X 是0='AX A 的解,则有0='=''O X AX A X ,即0)()(='AX AX .因为A 为实矩阵,X 为实向量,故AX=0.即X 是AX=0的解,于是,A /A 与A 的秩相同.7、把q 写成),,,(21n x x x q =AX A X '',),,,(21n x x x X =',因为A A A A '='')(,得A A '是q 的矩阵,q 的秩等于AA '的秩,由上题得q 的秩等于A 的秩.习题10.51、(1)q 的矩阵为⎪⎪⎪⎭⎫⎝⎛=621221111A它的顺序主子式为11=D >0,121112==D >0,46212211113==D >0,故q 是正定的. (2)q 的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2010010310420321A 因为A 的2阶顺序主子式042212==D ,由此可知,q 不是正定的.(3)取不全为0的实数1,0,0321===x x x ,有0)1,0,0(=q ,故q 不是正定的.(4)),,,(21n x x x q 的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111121212121212121 A它的k 阶顺序主子式)1()(1111212121212121212121+==k D k k>0,(k=1,2,…,n ).故q 是正定的. (5)q 的矩阵为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000100000000010101212121212121A它的k 阶顺序主子式100010000000001011212121212121=k D =)1()(1+k k>0(k=1,2,…,n ). 故q 是正定的. 2、(1)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫⎝⎛=3010112λλA ,),,(321x x x q 是正定的充要条件是:A 的顺序主子式221==D >0,22222λλλ-==D >0,23353010112λλλ-==D >0 由此解得:3535<<-λ.所以,当3535<<-λ时,),,(321x x x q 是正定的.(2)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫⎝⎛--=451151122λλA , 由于A 的二阶顺序主子式01111=,故不论λ取任何值,q 都不能是正定的.(3)q 的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=1000011011011λλλA , 由λ>0,1112-=λλλ>0,)2()1(1111112-+=--λλλλλ>0,)2()1(2-+=λλA >0.解得λ>2.故当λ>2时,q 是正定的.3、因A 是正定的,故存在可逆实矩阵P ,使P P A '=,由此可得,)(111'=---P P A ,从而1-A 是正定的.4、因A 是正定矩阵,故存在可逆实矩阵Q ,使IAQ Q ='.又因为BQ Q '是实对称矩阵,故存在正交矩阵U ,使U BQ Q U )(''是对角矩阵.令P=QU ,则BP P '是对角矩阵,且I IU U AQU Q U AP P ='=''='也是对角矩阵.5、因A 是实对称矩阵,故对任意实数t ,tI+A 是实对称矩阵. 对A ,存在正交矩阵U ,使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='n AU U λλλ0021,其中n λλλ,,,21 是A 的全部特征值.于是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=+'n n t t t tI U A tI U λλλλλλ0000)(2121,故tI+A 的全部特征值为n t t t λλλ+++,,,21 .当t 充分大时,i t λ+>0,i=1,2,…,n .于是,当t 充分大时,tI+A 是正定的.6、因A 是正定矩阵,故存在正交矩阵U ,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n AU U λλλ 00000021,其中n λλλ,,,21 是A 的全部特征值.由于A 是正定的,所以时,i λ>0,i=1,2,…,n .于是U U U U U U A n n n '⎪⎪⎪⎪⎪⎭⎫⎝⎛'⎪⎪⎪⎪⎪⎭⎫⎝⎛='⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλλλλλ000000212121. 令U U S n '⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλ0021,则S 是正定的,且使2S A =.7、因A 是可逆实矩阵,故A A '是正定矩阵.由第6题知,存在正定矩阵S ,使A A '=2S .于是,SS A S A A )()(121'='=--.令S A U )(1'=-,可证U 是正交矩阵,并且A=US .8、当n=1时,结论显然成立.假设对于n-1阶正定矩阵,结论成立.现设A 是n 阶正定矩阵,把A 分块为:()⎪⎪⎭⎫⎝⎛==-nn n ij a B B A a A 1,其中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=-------1,12,11,11,222211,122111n n n n n n n a a aa a a a a a A,⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n n n n a a a B ,121 .令⎪⎪⎭⎫ ⎝⎛=---10111B A I P n n ,则⎪⎪⎭⎫ ⎝⎛'-='--B A B a I AP P n nn n 1100.因为1-n A 为正定矩阵,故01≥'-B A B n ,当且仅当B=0时,等号成立.由于1='=P P ,所以,()B A B a A P A P A n nn n 11--'-='=,从而nn n a A A 1-≤,当且仅当B=0时等号成立.由归纳假设,1,122111---≤n n n a a a A ,当且仅当1-n A 为对角形时等号成立.所以,nn n n a a a a A 1,12211--≤ ,当且仅当A 为对角形时等号成立.9、当0=A 时,结论成立.当0≠A 时,A 是可逆实矩阵,从而A A '是正定矩阵,并且A A '的主对角线上的元素为222212222221221221211,,,nn n n n n a a a a a a a a a +++++++++ .利用第8题的结果,得()∏=+++≤'=nj njj j a a a A A A 1222212.10、充分性:若),,,(21n x x x q 的秩和正惯性指数都等于r ,则q 可经过非退化实线性替换X=PY ,变为),,,(21n x x x q =22221r y y y +++ ,从而对任一组实数n x x x ,,,21 由X=PY 可得X P Y 1-=,即可求得相应的实数n r y y y y ,,,,,21 ,使),,,(21n x x x q =22221r y y y +++ 0≥即q 是半正定的.必要性: 设),,,(21n x x x q 是半正定的,则q 的负惯性指数必为零.否则,q 可经非退化实线性替换X=PY ,化为),,,(21n x x x q =221221r p p y y y y ---+++ ,p<r .于是,当1=r y ,其余0=i y 时,由X=PY 可得相应的值n x x x ,,,21 代入上式得01),,,(21<-=n x x x q ,这与q 是半正定相矛盾. 11、考虑三元二次型C yz B xz A xy z y x z y x q cos 2cos 2cos 2),,(222---++=.它的矩阵为⎪⎪⎪⎭⎫ ⎝⎛------=1cos cos cos 1cos cos cos 1C B C A B A A ,容易得它的所有顺序主子式111==D >0,A A AD 22cos 11cos cos -=---=>0,0=A .所以),,(z y x q 是半正定二次型.故对任意实数x,y,z 有),,(z y x q ≥0,即不等式成立.12、),(y x q 的矩阵为⎪⎪⎭⎫⎝⎛=c b b a A它的一切顺序主子式为2,b ac A a a -==.(1)若ac b -2<0,即A >0,则显然q 是正定⇔a>0.(2)若ac b -2>0,即A <0,二次型不是正定的,且秩A=2,故A 的两个特征值21,λλ必异号.从而得到),(y x q 是不定的.(1)的几何意义是:方程),(y x q =1表示中心在原点的椭圆; (2)的几何意义是:方程),(y x q =1表示中心在原点的双曲线.13、因为A <0,故二次型),,,(21n x x x q =AX X '的秩为n .且不是正定的,故它的负惯性指数至少是1,从而),,,(21n x x x q 可经过非退化实线性替换X=PY ,化为),,,(21n x x x q ==''='APY P Y AX X 221221n p p y y y y ---+++ , (1)其中p ≤1<n ,当y n=1,其余y i=0时,由X=PY 确定的向量00≠X ,且100-='AX X <0. 14、因为有实n 维向量1X ,使11AX X q '=>0,说q 不是半负定的;又由于有实n 维向量2X ,使22AX X q '=<0,说明q 不是半正定的,从而q 是不定的.故q 的正、负惯性指数都>1,于是q 可经过非退化实线性替换X=PY ,化为),,,(21n x x x q =221221r p p y y y y ---+++其中p≤1<r .取y 1=1,y r =1,而其余y i =0,代入X=PY 解得向量0≠X ,且有q=='00AX X 221221rp p y y y y ---+++ =010012222=---++ . 习题10.61、对R k C x g x f b a ∈∈,)(),(],[,有)),(())(()()())()(())()((x g s x f s dxx g dx x f dx x g x f x g x f s b a b a b a +=⎰+⎰=+⎰=+))(()())(())((x f ks dx x f k dx x kf x kf s ba b a =⎰=⎰=.2、由已知得⎪⎩⎪⎨⎧=++-=-=+1)()()(1)()(1)()(3212121αααααααf f f f f f f ,解得:0)(1=αf ,1)(2=αf ,0)(3=αf ,从而2332211332211)()()()(x f x f x f x x x x f =++=++αααααα.3、对Vx x x n n ∈+++=αααξ 2211,定义n n x a x a x a f +++= 2211)(ξ.容易验证,f 是V 上的一个线性函数,且n i a f i i ,,2,1,)( ==α.又设g 是V 上的另一个线性函数,且满足n i a g i i ,,2,1,)( ==α,则)()()()(221111ξααξf a x a x a x g x x g g n n n i ni i i i i =+++===∑∑== .所以,fg =.4、假设)(ξf 、)(ξg 都不是零函数,则必存在V∈00,ηξ,使0)(0≠ξf ,0)(0≠ηg .若0)(0≠ξg 或0)(0≠ηf ,则)(0ξh =)(0ξf 0)(0≠ξg ,或)(0ηh =)(0ηf 0)(0≠ηg ,推出)(ξh 不是零函数;若0)(0=ξg 且0)(0=ηf ,取000ηξζ+=,则)(0ζh =)(00ηξ+f )(00ηξ+g =)(0ξf 0)(0≠ηg ,推出)(ξh 不是零函数.5、(1)是双线性函数;(2)不是双线性函数;(3)当c=0时,是双线性函数;当0≠c ,不是双线性函数.6、(1)利用矩阵迹的性质:)()();()()(S atr aS tr T tr S tr T S tr =+=+直接可验证.(2)当n=3时,设33)(⨯=ij a A ,则)()(),(kl ji kl ijkl ij AE E tr AE E tr E E f ='= ⎩⎨⎧=≠===∑∑==.,,,0)()(3131l j a l j E a tr E E E a tr ikjl ik kl st ji s t st因为),(Y X f 在基}3,2,1,|{=j i E ij 下的度量矩阵是一个23阶矩阵,用分块形式表示为:⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211A A A A A A A A A A , 其中333231332221231211100),(),(),(),(),(),(),(),(),(I a a a a E E f E E f E E f E E f E E f E E f E E f E E f E E f A ij ij ijijj i j i j i j i j i j i j i j i j i ij =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=. 于是,),(Y X f 在基}3,2,1,|{=j i E ij 下的度量矩阵是⎪⎪⎪⎭⎫⎝⎛=333332331323322321313312311I a I a I a I a I a I a I a I a I a A . 7、(1)),(ηξf 在基4321,,,αααα下的度量矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=⎪⎪⎪⎪⎪⎭⎫⎝⎛=3124218481024066842),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(44342414433323134232221241312111ααααααααααααααααααααααααααααααααf f f f f f f f f f f f f f f f A . ),(ηξf 在基4321,,,ββββ下的度量矩阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------='=75717152315237925115125171AT T B . (3)设非零向量),,,(4321x x x x =ξ,使0),(=ξξf ,即022432121=--x x x x x .取0,02431≠====a x x x x ,则0),,,(4321≠=x x x x ξ,并使得0),(=ξξf .8、(1)因为对一切V ∈η,有0),0(=ηf ,所以Wo ∈,即W 非空.对任意F k k W ∈∈2121,,,ξξ,由0),(1=ηξf 0),(2=ηξf ,对一切V ∈η,得,0),(),(),(22112211=+=+ηξηξηξξf k f k k k f 对一切V ∈η, 即W k k ∈+2211ξξ,故W 是V的一个子空间.(2)若),(ηξf 是非退化的,则对任意W∈ξ,有0),(=ηξf ,对一切V ∈η,故得o =ξ.于是,W={0}.反之,设W={0}.令0),(=ηξf ,对一切V ∈η,则W∈ξ,但W={0},故o =ξ.从而),(ηξf 是非退化的.9、(1)对∑=∈=ni i i Vx 1αξ,则)()(2211n n i i x x x f f αααξ+++= )()()(2211n i n i i f x f x f x ααα+++= .因为,⎩⎨⎧≠==.,0;,1)(j i j i f j i α 代入上式,得i i x f =)(ξ.从而,∑==ni i i f 1)(αξξ.(2)∑=∈=ni i i Vx 1αξ,由(1),有∑==ni i i f 1)(αξξ,故∑∑====ni i i n i i i f f f f f 11)()())(()(αξαξξ∑∑====ni i i ni i i f f f f 11))()(()()(ξαξα,从而,∑==ni ii f f f 1)(α.(3)先证n f f f ,,,21 线性无关.设),,,(,0212211F a a a f a f a f a n n n ∈=+++ ,分别用n ααα,,,21 代入,得到021====n a a a .因此,n f f f ,,,21 线性无关.又由(2)知,L (V ,F )中的每向量f 都可以由n f f f ,,,21 线性表示,因而n f f f ,,,21 是L (V ,F )的基,于是L (V ,F )的维数也是n .习题10.71、对任意)(,F M Y X n ∈,由)()(,T tr T tr A A '==',得),()()())(()(),(X Y f AX Y tr X A Y tr AY X tr AY X tr Y X f ='=''=''='=,所以,),(Y X f 是双线性函数.2、2),(),(2),(),(),(ξηηξξηηξηξf f f f f -++=,令2),(),(1),(ξηηξηξf f f +=,2),(),(2),(ξηηξηξf f f -=,则有=),(1ηξf ),(1ξηf ,),(),(2),(),(2ηξξηηξξηf f f f -==- ,且=),(ηξf ),(1ηξf +),(2ηξf .唯一性:设),(ηξf 还可分解为=),(ηξf ),(1ηξg +),(2ηξg ,其中),(1ηξg =),(1ξηg ,),(2ηξg =),(2ξηg -.于是,),(),(11ηξηξg f -=),(),(22ηξηξf g - , (1)),(),(11ηξηξg f -=),(),(11ξηξηg f -=),(),(22ξηξηf g -=),(2ηξg -+),(2ηξf (2)由(1)、(2)得2(),(1ηξf ),(1ηξg -)=0, 从而),(1ηξf =),(1ηξg ,并且),(2ηξg =),(2ηξf .3、若),(ηξf 是反对称的,则),(ηξf =),(ξηf -,取ηξ=,有 ),(ξξf =),(ξξf -,故),(ξξf =0.反之,若对任意V ∈ξ,有),(ξξf =0,对任意V ∈ηξ,,0=),(ηξηξ++f =),(ξξf +),(ηξf +),(ξηf +),(ηηf=),(ηξf +),(ηξf .从而),(ηξf =),(ξηf -,即),(ηξf 是反对称的.4、(1)因为2≥n ,所以V 中存在两个线性无关的向量βα,,若0),(=ααf ,则取αξ=,即可.现设0),(≠ααf ,则0),(),(2),(),(2=++=++βββαααβαβαf x f x f x x f 在C 中有解,设一个解为x 0,令βαξ+=0x ,由于βα,线性无关,得0≠ξ,并使得0),(=ξξf .(2)由(1)知,存在非零的ξ,使0),(=ξξf .因为f 非退化,所以,必存在γ,使0),(≠γξf .否则,若对一切0),(,=∈γξγf V ,由f 非退化,得0=ξ,矛盾.取,),(1γγξδf =则有1),(=δξf .令ξδδδη2),(f -=,则ηξ,线性无关,且0),(),(,1),(===ηηξξηξf f f .5、取V 的一个基n ααα,,,21 .对任意Vy y y x x x n n n n ∈+++=+++=αααηαααξ 22112211,,令n n n n y b y b y b f x a x a x a f +++=+++= 2211222111)(,)(ηξ, 其中)(),(21i i i i f b f a αα==.则))(()()(),(2211221121n n n n y b y b y b x a x a x a f f f ++++++== ηξηξ()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n y y y b b b a a a x x x 21212121,,,),,,(.由此可得,),(ηξf 在基n ααα,,,21 下的度量矩阵为()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a A 2122212121112121,,,.因为),(ηξf 是对称的,故A 是对称矩阵,因而得i j j i b a b a =,即j j i i b a b a ::=,),,2,1,(n j i =.于是,有),,,(),,,(2121n n b b b a a a λ=.设02≠f ,则0≠λ,且)()(21ξλξf f =,取)()(2ξξf g =,则有)()()()()()(),(2221ηξληξληξηξg g f f f f f ===.6、因为),(ηξf 是反对称的,故存在V 的一个基321,,ααα,使),(ηξf 在这个基下的度量矩阵为⎪⎪⎪⎭⎫⎝⎛-=000001010A ,这样,对任意332211αααξx x x ++=,V y y y ∈++=332211αααη有),(ηξf =1221321321),,(y x y x y y y A x x x -=⎪⎪⎪⎭⎫ ⎝⎛,令)(1ξf =),(2αξf ,)(2ξf =),(1ξαf ,则21,f f 是V 上的线性函数,且满足),(ηξf =)(1ξf )(2ηf )(1ηf -)(2ξf .7、设A 是一个n 阶反对称矩阵,取定数域F 上n 维线性空间的一个基n ααα,,,21 ,对Vy y y x x x n n n n ∈+++=+++=αααηαααξ 22112211,,令),(ηξf =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n y y y A x x x 2121),,,(,则),(ηξf 是V 上的一个对称双线性函数,且),(ηξf 在基n ααα,,,21 下的度量矩阵恰是A .由定理10.7.3知,存在V 的一个基n βββ,,,21 ,使),(ηξf 在这个基下的矩阵是⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0001100110 B .从而,A 与B 合同. 习题10.81、(1)设A 、B 是酉矩阵,则I B B B B I A A A A ='='='=',.于是,I B B IB B B A A B AB A B AB AB ='='=''=''=')())(()()(,从而,AB 是酉矩阵.又因为酉矩阵A 的逆矩阵A A '=-1,所以,)(1A A ='-于是,I AA A A =='---111)(,同理,I A A ='--)(11,故1-A 也是酉矩阵.(2)设A 为酉矩阵,则,I A A ='两边取行列式,得,1||='A 即,1||||=A 故||A 的模的平方等于1,即|A|的模等于1.(3)设λ是酉矩阵A 的特征值,n n C x x x ∈'=),,,(21 ξ是A 的属于特征值λ的特征向量,则0,≠=ξλξξA .于是,一方面,由,I A A ='得ξξξξξξξξ'=''='=')()()()()(A A A A A A .另一方面,)()()()()(ξξλλλξλξξξ'='='A A .所以,ξξξξλλ'=')(.而0||||||222212211>+++=+++='n n n x x x x x x x x x ξξ, 得,1=λλ,故λ的模等于1.2、参考第九章关于欧氏空间标准正交基的讨论.3、若0||||==ηξ,则0==ηξ,V 的任一个酉变换σ都满足ηξσ=)(.若0||||≠=ηξ,取ηηξξηξ||11||11,==,则11,ηξ是两个单位向量.分别将它们扩充为V 的两个规范正交基n n ηηηξξξ,,,;,,,2121 .则必存在V 的一个线性变换σ,使得i i ηξσ=)(,n i ,,2,1 =.由于σ把V 的规范正交基变为规范正交基,所以σ是酉变换,且ηηηξσξξσ===i ||)(||)(1.4、把A的列n ααα,,,21 看作是n 维酉空间n C 的一个基,对其正次化、单位化变为规范正交基n γγγ,,,21 ,相当于在A 的右边乘一些上三角矩阵,对角线上元素都大于零:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n t t t t t t 000),,,(),,,(222112112121αααγγγ,n i t ii ,,2,1,0 =>. 取12221121121000),,,,(-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==nn n n n t t t t t t T U γγγ,A=UT ,且U ,T 满足要求.唯一性,设另有 11T U A =,实数的上三角形矩阵为对角线上元素全为正为酉矩阵11,T U ,可得 1111--=TT U U ,由11-TT 是对角线元素全是正实数的上三角形矩阵,得11U U -是对角线上元素全为正实数的上三角形矩阵,从而I U U =-11,于是U U =1,进而T T =1.5、对于酉矩阵A ,利用归纳法和第八章特征向量的讨论可知,存在可逆复矩阵P ,使得11A AP P =-是上三角形矩阵.由第4题知,P=UT ,其中U 是酉矩阵,T 是上三角形矩阵,代入可得,111A AUT U T =--.于是有B T TA AU U ==--111是上三角形矩阵.由于AU U B 1-=是酉矩阵,得1)(-'=B .由此根据B 是上三角形矩阵,可得1)(-'B ,即B 为下三角形矩阵,故B 为对角形矩阵.6、设A 是埃尔米特矩阵,λ是A 的特征值,n n C x x x ∈'=),,,(21 ξ是A 的属于特征值λ的特征向量,则0,≠=ξλξξA . 于是,由A A =',得ξξξξξξξλξξξλA A A ''='===)(),(),(),(),()()()(ξξλξξλλξξξξξξ='='='='=A A .又因为0),(≠ξξ,从而λλ=,即λ是实数.现设μλ,是A 的不同的特征值,ηξ,是A 的分别属于特征值μλ,的特征向量,则μλ,都是实数,并且 0,0,,≠≠==ηξμηηλξξA A .于是,ηξηξηξηλξηξλA A A ''='===)(),(),(),( ),(),()()(ηξμμηξμηξηξηξ=='='='=A A . 由于μλ≠,得0),(=ηξ,即ηξ与彼此正交.7、类似第5题中的证明,存在酉矩阵U ,使B AU U =-1是上三角形矩阵.于是,B AU U U A U U A U AU U B ==='''='='----1111)()(.由B '为下三角形矩阵,B 为上三角形矩阵知,B 为对角形矩阵.8、类似第5题中的证明,存在酉矩阵U ,使B AU U =-1是上三角形矩阵,由此 可证B 也是规范矩阵.现令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n b b b b b b B 00022211211,对比B B B B '='对应位置上的元素,可得 )(,0j i bij <=.所以B 是对角形矩阵.。

(完整版)同济大学高数第10章重积分

(完整版)同济大学高数第10章重积分

多元函数积分学是定积分概念的推广,包括二重积分、三重积分、曲线积分和曲面积分.它们所解决的问题的类型不同,但解决问题的思想和方法是一致的,都是以“分割、近似、求和、取极限”为其基本思想,它们的计算最终都归结为定积分.本章主要介绍二重积分与三重积分的概念、性质、计算方法及其应用.27610.1 二重积分的概念及性质10.1.1 二重积分的概念实例1 设函数),(y x f z =在有界闭区域D 上连续,且0),(≥y x f .以函数),(y x f z =所表示的曲面为顶,以区域D 为底,且以区域D 的边界曲线为准线而母线平行于z 轴的柱面为侧面的立体叫做曲顶柱体,如图10.1.1所示.求该曲顶柱体的体积V .图10.1.1 图10.1.2 对于平顶柱体,它的体积就等于底面积乘高.现在曲顶柱体的顶是曲面,当点),(y x 在D 上变动时,其高度),(y x f z =是一个变量,因此不能直接用上述方法求其体积,但是可以沿用求曲边梯形面积的方法和思路求其体积.具体步骤如下第一步(分割).用一组曲线网将区域D 任意分成n 个小区域1σ∆,2σ∆,…i σ∆,…n σ∆,其中记号i σ∆ (i = 1,2,…,n )也用来表示第i 个小区域的面积.分别以每个小区域的边界曲线为准线作母线平行于z 轴的柱面,这些柱面把原来的曲顶柱体分割成n 个小曲顶柱体1V ∆,2V ∆…,i V ∆…,n V ∆,其中记号i V ∆(i = 1,2,…,n )也用来表示第i个小曲顶柱体的体积.第二步(近似).因为),(y x f 在区域D 上连续,在每个小区域上其函数值变化很小,这个小曲顶柱体可以近似地看作平顶柱体(如图10.1.2).分别在每个小区域i σ∆上任取一点),(i i ηξ,以),(i i f ηξ为高,i σ∆为底的小平顶柱体的体积i i i f σηξ∆),(作为第i 个小曲顶柱体体积i V ∆的近似值,即),,2,1(),(n i f V i i i i Λ=∆≈∆σηξ.第三步(求和).这n 个小平顶柱体体积之和可作为原曲顶柱体体积V 的近似值,即i i ni i n i i f V V σηξ∆≈∆=∑∑==),(11.第四步(取极限).对区域D 分割越细,近似程度越高,当各小区域直径的最大值0→λ(有界闭区域的直径是指区域上任意两点间距离的最大值)时,若上述和式的极限存在,则该极限值就是曲顶柱体的体积V ,即有i i ni i f V σηξλ∆=∑=→),(lim 10. 实例 2 设有一个质量非均匀分布的平面薄片,它在xOy 平面上占有有界闭区域D ,此薄片在点D y x ∈),(处的面密度为),(y x ρ,且),(y x ρ在D 上连续.求该薄片的质量M .如果平面薄片是均匀的,即面密度是常数,则薄片的质量就等于面密度与面积的乘积.现在薄片的面密度随着点),(y x 的位置而变化,我们仍然可以采用上述方法求薄片的质量.用一组曲线网将区域D 任意分成n 个小块1σ∆,2σ∆…,n σ∆;由于),(y x ρ在D 上连续,只要每个小块i σ∆ (i = 1,2,…, n )的直径很小,这个小块就可以近似地看作均匀小薄片.在i σ∆上任取一点),(i i ηξ,用点),(i i ηξ 图10.1.3处的面密度),(i i ηξρ近似代替区域i σ∆上各点处的面密度(如图10.1.3),从而求得小薄片i σ∆的质量的近似值),(i i i M ηξρ≈∆i σ∆),,2,1(n i Λ=;整个薄片质量的近似值为i i ni i M σηξρ∆∑≈=),(1.将薄片无限细分,当所有小区域i σ∆的最大直径0→λ时,若上述和式的极限存在,这个极限值就是所求平面薄片的质量,即 i ni i i M σηξρλ∆∑==→),(lim 10. 尽管上面两个问题的实际意义不同,但解决问题的方法是一样的,而且最终都归结为求二元函数的某种特定和式的极限.在数学上加以抽象,便得到二重积分的概念.根据二重积分的定义可知,例10.1.1中曲顶柱体的体积V 是其曲顶函数),(y x f 在底面区域D 上的二重积分,即⎰⎰=Dy x f V σd ),(;例10.1.2中平面薄片的质量M 是其面密度函数),(y x ρ在其所占闭区域D 上的二重积分,即⎰⎰=Dy x M σρd ),(.关于二重积分的几点说明.(1) 如果函数),(y x f 在区域D 上的二重积分存在,则称函数),(y x f 在D 上可积.如果函数),(y x f 在有界闭区域D 上连续,则),(y x f 在D 上可积.(2) 当),(y x f 在有界闭区域D 上可积时,积分值与区域D 的分法及点),(i i ηξ的取法无关.(3) 二重积分只与被积函数),(y x f 和积分区域D 有关.二重积分⎰⎰Dy x f σd ),(的几何意义.(1) 若在闭区域D 上0),(≥y x f ,二重积分表示曲顶柱体的体积;(2) 若在闭区域D 上0),(≤y x f ,二重积分表示曲顶柱体体积的负值;(3) 若在闭区域D 上),(y x f 有正有负,二重积分表示各个部分区域上曲顶柱体体积的代数和.10.1.2 二重积分的性质二重积分有与定积分完全类似的性质,这里我们只列举这些性质,而将证明略去.280例10.1.1比较⎰⎰+D y x σd )(与⎰⎰+Dy x σd )(3的大小,其中D 是由直线0,0==y x 及1=+y x 所围成的闭区域.解 由于对任意的D y x ∈),(,有1≤+y x ,故有y x y x +≤+3)(,因此≥+⎰⎰D y x σd )(⎰⎰+Dy x σd )(3. 例10.1.2 估计⎰⎰++Dy x σd )1(的值,其中D 为矩形区域,10≤≤x ,20≤≤y .解 被积函数在区域D 上的最大值与最小值分别为4和1,D 的面积为2,于是⎰⎰≤++≤Dy x 8d )1(2σ.习题10.11.使用二重积分的几何意义说明12231()d D I x y σ=+⎰⎰与22232()d D I x y σ=+⎰⎰的之间关系,其中D 1是矩形域-1 ≤ x ≤ 1,-1 ≤ y ≤ 1,D 2是矩形域0 ≤ x ≤ 1,0 ≤ y ≤ 1.2. 比较下列积分的大小.(1)σd y x D ⎰⎰+=I 21)(与σd y x D⎰⎰+=I 32)(,其中D 由x 轴、y 轴及直线1=+y x 所围成;(2) σd y x D ⎰⎰+=I )ln(1与()[]σd y x D ⎰⎰+=I 22ln ,其中{}10,53),(≤≤≤≤=y x y x D .3.估计下列积分值的大小.(1) σd y x xy D⎰⎰+=I 4)(,其中D :0 ≤ x ≤ 2, 0 ≤ y ≤ 2; (2) σd y x D ⎰⎰++=I )94(22,其中D :422≤+y x .4.一薄片(不考虑其厚度)位于xOy 平面上,占有区域D ,薄片上分布有面密度为u = u (x ,y )的电荷,且u (x ,y )在D 上连续,使用二重积分表示薄片的全部电荷Q .10.2 二重积分的计算28210.2.1 直角坐标系下二重积分的计算我们知道,如果函数),(y x f 在有界闭区域D 上连续,则在区域D 上的二重积分存在,且它的值与区域D 的分法和各小区域i σ∆ ),,2,1(n i Λ=上点),(i i ηξ的选取无关,故可采用一种便于计算的划分方式,即在直角坐标系下用两族平行于坐标轴的直线将区域D 分割成若干个小区域. 则除去靠区域D边界的不规则的小区域外,其余的小区域全部是小矩形区域. 图10.2.1设小矩形区域σ∆的边长分别为x ∆和y ∆(如图10.2.1),则小矩形区域的面积为y x ∆∆=∆σ.因此,在直角坐标系下,可以把面积元素记为y x d d d =σ.则在直角坐标系下,二重积分可表示成下面我们将利用平行截面法来求曲顶柱体的体积,以获得利用直角坐标系计算二重积分的方法.设曲顶柱体的顶是曲面),(y x f z =(0),(≥y x f ),底是xOy 平面上的闭区域D (如图10.2.2),即区域D 可用不等式组表示为{})()(,),(21x y y x y b x a y x D ≤≤≤≤=,其中函数),(y x f z = 在区域D 上连续,函数)()(21x y x y 与在区间[a ,b ]上连续,该区域的特点是:穿过区域D 内部且垂直于x 轴的直线与D 的边界的交点不多于两点.图10.2.2用过区间[a ,b ]上任意一点x 且垂直于x 轴的平面去截曲顶柱体,所得到的截面是一个以)](),([21x y x y 为底,以),(y x f z =为曲边的曲边梯形(如图10.2.3),其面积为⎰=)( )( 21d ),()(x y x y y y x f x A .再利用平行截面面积为已知的立体的体积公式,便得到曲顶柱体的体积为x y y x f x x A V b a b a x y x y d ]d ),([d )( )( )( 21⎰⎰⎰==. 图10.2.3根据二重积分的几何意义可知,这个体积也就是所求二重积分的值,从而有上式右端称为先对y 后对x 的二次积分.由此看到,二重积分的计算可化成计算两次单积分来进行,这种方法称为累次积分法.对y 积分时,把x 看作常数,把),(y x f 只看作y 的函数,并对y 从)(1x y 到)(2x y 进行定积分;然后把算得的结果(关于x 的函数)再对x 在区间[a ,b ]上进行定积分.在上述过程中,我们假定0),(≥y x f ,但实际上公式并不受此条件的限制.类似地,如果积分区域D 如图10.2.4所示,则区域D 可表示为{}d y c y x x y x y x D ≤≤≤≤=,)()(),(21,其中函数)()(21y x y x 与在区间[c ,d ]上连续,该区域的特点是:穿过区域D 内部且垂直于y轴的直线与D 的边界的交点不多于两点.284图10.2.4这时则有以下公式:上式右端称为先对x 后对y 的二次积分.如果积分区域D 不属于上述两种类型,如图10.2.5所示.即平行于x 轴或y 轴的直线与D 的边界的交点多于两点,这时可以用平行于x轴或平行于y 轴的直线把D 分成若干个小区域,使每个小区域都属于上述类型之一,则可利用性质3,将D 上的积分化成每个小区域上积分的和.图10.2.5 图10.2.6 例10.2.1 计算⎰⎰=Dy x xy I d d 2,其中区域D :10≤≤x ,12y ≤≤.解 作区域D 的图形(如图10.2.6),这是矩形区域.化成累次积分时,积分上下限均为常数.如果先对y 积分,则把x 看作常数,得y xy x y x xy I D d d d d 1 0 2 1 22⎰⎰⎰⎰==⎰⎰===1 0 10 21367d 37d ]3[x x x y x . 如果先对x 积分,则有67d 21d ]2[d d d d 2 1 21021222 1122=====⎰⎰⎰⎰⎰⎰y y y x y x xy y y x xy I D.例10.2.2 计算⎰⎰Dy x xy d d 22,其中D 由抛物线x y =2及直线2-=x y 所围成.解 画D 的图形(如图10.2.7 a ).解方程组⎩⎨⎧-==22x y xy ,得交点坐标为(1, -1),(4, 2).图10.2.7 a 图10.2.7 b若选择先对x 积分,这时D 可表示为{}21,2),(2≤≤-+≤≤=y y x y y x D ,从而y y y y y y x y x xy y y x xy y yy y Dd )44(d ][d 2d d d 22162342221221 2 2222⎰⎰⎰⎰⎰⎰-+--+-++=== 35615]7345[217345=-++=-y y y y .若先对y 积分后对x 积分,由于下方边界曲线在区间[0,1]与[1,4]上的表达式不一致,这时就必须用直线1=x 将区域D 分成1D 和2D 两部分(如图10.2.7 b ).则1D 和2D 可分别表示为{}10,),(1≤≤≤≤-=x x y x y x D , {}41,2),(2≤≤≤≤-=x x y x y x D ,由此得286⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--+=+=xx xxD D Dy xy x y xy x y x xy y x xy y x xy 224 11 02222d 2d d 2d d d 2d d 2d d 221.显然,计算起来要比先对x 后对y 积分麻烦,所以恰当地选择积分次序是化二重积分为二次积分的关键.选择积分次序与积分区域的形状及被积函数的特点有关.例10.2.3 求由两个圆柱面222R y x =+和222R z x =+相交所形成的立体的体积. 解 根据对称性,所求体积V 是图10.2.8 a 所画出的第一卦限中体积的8倍.第一卦限的立体为一曲顶柱体,它以圆柱面22x R z -=为顶,底为xOy 面上的四分之一圆(如图10.2.8 b ),用不等式组表示为⎭⎬⎫⎩⎨⎧≤≤-≤≤=R x x R y y x D 0,0),(22,所求体积为y x R x y x x R V Rx R Dd d 8d d 8 0222222⎰⎰⎰⎰--=-=32 02 0022316d )(8d ][822R x x R x y x R RRx R=-=-=⎰⎰-.图10.2.8 a 图10.2.8 b以上我们采用的是先对y 后对x 的积分次序,如果先对x 后对y 积分,则有x x R y y x x R V Rx R Dd d 8d d 8 0222222⎰⎰⎰⎰--=-=.虽然也能得到相同的结果,但计算要复杂的多.例10.2.4 计算二重积分x xxy yyd sin d 1 0⎰⎰. 解 积分区域D 如图10.2.9所示,直接计算显然不行,因为x xxd sin ⎰不能表示为初等函数.但被积函数与y 无关,因此我们考虑交换积分次序后再计算.x y xx y x x x x x xy x x x x yyd ][sin d sin d d sin d 221 0 1 0 1 0⎰⎰⎰⎰⎰== ⎰⎰⎰-=-=111d sin d sin d )sin (sin x x x x x x x x x 1sin 1)1sin 1(cos )1cos 1(-=-+-=. 图10.2.910.2.2 极坐标系下二重积分的计算前面讨论了在直角坐标系下计算二重积分的方法.但有些二重积分,其被积函数和积分区域(如圆形、扇形、环形域等)用极坐标系表示时比较简单,这时可考虑利用极坐标计算二重积分.下面介绍在极坐标系下二重积分的计算方法.因为二重积分与积分区域D 的分法无关,所以可用极坐标系下以极点为中心的一族同心圆=r 常数以及从极点发出的一族射线=θ常数来分割区域D .不失一般性,我们考虑极径由r 变到r r d +和极角由θ变到θθd +所得到的区域(如图10.2.10).该小区域可近似地看作边长分别为r d 和θd r 的小矩形,于是极坐标下的面积元素θσrdrd d =.再用坐标变换θcos r x =,θsin r y =代替被积函数),(y x f 中的x 和y ,于是得到二重积分在极坐标系下的表达式图10.2.10 图10.2.11实际计算时,与直角坐标情况类似,还是化二重积分为累次积分来进行计算,这里仅介绍先r 后θ的积分次序,积分的上下限则要根据极点与区域D 的位置而定.下面分三种情况说明在极坐标系下,如何化二重积分为累次积分.(1)极点O 在积分区域D 之外(如图10.2.11).此时区域D 界于射线αθ=和βθ=之间(βα<﴿,这两条射线与D 的边界的交点把区域边界曲线分为内边界曲线)(1θr r =和外边界曲线)(2θr r =两个部分,则{}βθαθθ≤≤≤≤=,)()(),(21r r r y x D ,(2)极点O 在积分区域D 之内(如图10.2.12).此时极角θ从0变到π2,如果D 的边界曲线方程是)(θr r =,则{}πθθ20,)(0),(≤≤≤≤=r r y x D ,(3)极点O 在积分区域D 的边界上(如图10.2.13)此时极角θ从α变到β,设区域D 的边界曲线方程是)(θr r =,则{}βθαθ≤≤≤≤=,)(0),(r r y x D ,图10.2.12 图10.2.13特别地,当1)sin ,cos (=θθr r f 时,σσσ( =⎰⎰Dd 为区域D 的面积),即当βθαθθθ≤≤== ),()(0)(21r r r ,时,即为在定积分应用中用极坐标计算曲边扇形面积的公式.一般情况下,当二重积分的被积函数中自变量以22y x ±,xy ,x y ,y x 等形式出现且积分区域由圆弧与射线组成(如以原点为中心的圆域、扇形域、圆环域,以及过原点而中心在坐标轴上的圆域等),利用极坐标计算往往更加简便.用极坐标计算二重积分时,需画出积分区域D 的图形,并根据极点与区域D 的位置关系,选用上述公式.例10.2.5 将二重积分⎰⎰Dy x f σd ),(化为极坐标系下的累次积分,其中D 表示为{}0,2),(22≥≤+=y Rx y x y x D ,解 画出D 的图形(如图10.2.14),在极坐标系下,D 可表示为⎭⎬⎫⎩⎨⎧≤≤≤≤=20,cos 20),(πθθR r y x D ,于是可得290⎰⎰⎰⎰=2cos 2 0d )sin ,cos (d d ),(πθθθθσR Dr r r r f y x f .图10.2.14 图10.2.15例10.2.6 计算⎰⎰--Dy xy x d d e 22,其中D 是圆盘222a y x ≤+在第一象限的部分.解 画出D 的图形(如图10.2.15),在极坐标系下,D 可表示为⎭⎬⎫⎩⎨⎧≤≤≤≤=20,0),(πθθa r r D ,于是可得⎰⎰⎰⎰⎰⎰----==Dar r Dy x r r r r y x 2d ed d d ed d e2222πθθ)e 1(4d ]e 21[22020 a a r ---=-=⎰πθπ.例10.2.7 求由球面22224a z y x =++与圆柱面ax y x 222=+所围且含于柱面内的立体体积.图10.2.16 a 图10.2.16 b解 如图10.2.16 a 所示,由于这个立体关于xOy 面与xOz 面对称,所以只要计算它在第一卦限的部分.这是以球面2224y x a z --=为顶,以曲线22x ax y -=与x 轴所围成的半圆D 为底(如图10.2.16 b )的曲顶柱体,其体积为σd 44222⎰⎰--=Dy x a V .在极坐标下,⎭⎬⎫⎩⎨⎧≤≤≤≤=20,cos 20),(πθθθa r r D ,于是得到 θθθππθd )4(34d 4d 4cos 2 0223222cos 2 022a a r a r r a r V ⎰⎰⎰--=-=)43(916d )sin 1(3323233-=-=⎰πθθπa a . 习题10.21.画出积分区域并计算下列二重积分. (1)(1)d d Dx y x y --⎰⎰,:0, 0,1D x y x y ≥≥+≤;(2) 22(),D xy d σ+⎰⎰其中D 是矩形闭区域:||1,||1;x y ≤≤;(3)cos(),Dx x y d σ+⎰⎰其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三角形闭区域.;(4)e d d xy Dy x y ⎰⎰,1:2, 12D y x x≤≤≤≤.2.将二重积分(,)d d Df x y x y ⎰⎰化为二次积分,其中积分区域D 是:(1) 以(0,0),(1,0),(1,1)为顶点的三角形区域; (2) 由直线2,==x x y 及双曲线)0(1>=x xy 所围成的区域.3.交换下列二次积分的积分次序.(1)112 0 d (,)d xx x f x y y -⎰⎰; (2) 0d (,)d aa x f x y y -⎰⎰;(3)dx y x f dyeey⎰⎰10),(; (4) 1 22 0 0 1 0d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰.2924.画出下列积分区域,并把二重积分⎰⎰Dy x y x f d d ),(化成极坐标系下的二次积分.(1) D :)0(2222b a b y x a <<≤+≤; (2) D :x y x 222≤+.5.将积分 22 0 0d ()d Rx f x y y +⎰⎰化成极坐标形式.6.利用极坐标计算下列积分. (1)(632)d d Dx y x y --⎰⎰,D :222R y x ≤+;(2)d Dx y ⎰⎰,D :22224ππ≤+≤y x ;(3)D,D :122≤+y x .7.选择适当的坐标系计算下列积分.(1)2d d Dy x y ⎰⎰,D 由, , 0, cos 4x x y y x ππ====所围成;(2)22ln(1)d d Dx y x y ++⎰⎰;D :222x y R +≤,0, 0x y ≥≥;(3)22d d Dx yx y x y ++⎰⎰,D :122≤+y x ,1≥+y x . 8.求圆锥面221y x z +-=与平面z = x ,x = 0所围成的立体体积.9. 求由平面0=x ,0=y ,1=z ,1=+y x 及y x z ++=1所围成的立体的体积.10.3 三重积分10.3.1 三重积分的概念将二重积分的概念推广,就得到三重积分的概念.在直角坐标系中,如果用平行于坐标面的平面来划分Ω,那么除了包含Ω的边界点的一些不规则小闭区域外,得到的小闭区域i v ∆为长方体. 设长方体小闭区域i v ∆的边长为j x ∆、k y ∆、l z ∆,则l k j i z y x v ∆∆∆=∆.因此在直角坐标系中,有时也把体积微元dv 记作dxdydz ,而把三重积分记作⎰⎰⎰Ωdxdydz z y x f ),,(其中dxdydz 叫做直角坐标系中的体积微元.当函数(,,)f x y z 在闭区域Ω上连续时,(10.3.1)式右端的和的极限必定存在,也就是函数(,,)f x y z 在闭区域Ω上的三重积分必定存在. 以后我们总假定函数(,,)f x y z 在闭区域Ω上是连续的.关于二重积分的一些术语,例如,被积函数、积分区域等,也可相应地用294到三重积分上. 三重积分的性质也与二重积分的性质类似,这里不再重复了.如果(,,)f x y z 表示某物体在点),,(z y x 处的密度,Ω是该物体所占有的空间闭区域,(,,)f x y z 在Ω上连续,则i ni iiiv f ∆∑=1),,(ζηξ是该物体的质量m 的近似值,这个和当0→λ时的极限就是该物体的质量m ,所以⎰⎰⎰Ω=dv z y x f m ),,(当(,,)1f x y z ≡时,⎰⎰⎰Ωdv 积分值就等于积分区域Ω的体积.10.3.2 在直角坐标系下三重积分的计算 1 先一后二法设函数(,,)f x y z 在空间有界闭区域Ω上连续.设区域Ω在xoy 面上的投影区域为D ,如果平行于z 轴且穿过区域Ω的直线与Ω的边界曲面的交点不超过两个,此区域表示为{}D y x y x z z y x z z y x ∈≤≤=Ω),(,),(),(),,(21.即过区域Ω在xoy 面上的投影区域D 内任一点),(y x ,做平行于z 轴的直线,穿进Ω的点总在曲面1∑:),(1y x z z =上,穿出Ω的点总在曲面2∑:),(2y x z z =上,且),(),(21y x z y x z ≤(如图10.3.1).此时三重积分可化为⎰⎰⎰⎰⎰⎰=ΩDy x z y x z dz z y x f d dv z y x f ),(),(21),,(),,(σ即先对z 积分再计算在D 上的二重积分(先一后二法).假如闭区域},)()(),{(21b x a x y y x y y x D ≤≤≤≤=把这个二重积分化为二次积分,于是得到三重积分的计算公式 即把三重积分化为先对z ,再对y ,最后对x 的三次积分如果平行于x 轴或y 轴且穿过闭区域Ω内部的直线与Ω的边界曲面S 相交不多于两点,也可把闭区域Ω投影到yoz 面上或xoz 面上,这样便可以把三重积分化为按其他顺序的三次积分.因此,在直角坐标系下的三重积分可能有6种不同顺序的三次积分.如果平行于坐标轴且穿过闭区域Ω内部的直线与边界曲面S 的交点多于两个,也可像处理二重积分那样,把Ω分成若干部分,使Ω上的三重积分化为各部分闭区域上的三重积分的和.例10.3.1 计算三重积分⎰⎰⎰Ω=z y x x I d d d ,其中积分区域Ω为平面12=++z y x 及三个坐标面所围成的闭区域.,)296解 积分区域Ω是如图10.3.2所示的四面体, 将Ω投影在xoy 面,投影区域D 为 }10,210),{(≤≤-≤≤=x xy y x D在D 内任取一点),(y x ,过此点作平行于z 轴的直线,该直线通过平面0=z 穿入Ω内,然后通过平面y x z 21--=穿出Ω外,所以,积分区域Ω表示为 ),,{(z y x =Ωy x z 210--≤≤,}10,210≤≤-≤≤x xy . 于是,由公式(10.3.2)得⎰⎰⎰⎰⎰⎰Ω--==Dyx xdz dxdyz y x x I 210d d d⎰⎰⎰---=yx x xdz dydx2102101dy y x xdx x⎰⎰---=2101)21(481)2(411032=+-=⎰dx x x x 例10.3.2 计算三重积分⎰⎰⎰Ωv x d ,其中积分区域Ω为椭圆抛物面222z x y =+及抛物柱面22z x =-所围成的闭区域.解 积分区域Ω如图10.3.3所示,Ω在xoy 坐标面上的投影区域为}1),{(22≤+=y x y x D .积分区域Ω表示为 ),,{(z y x =Ω}),(,22222D y x x z y x ∈-≤≤+于是x⎰⎰⎰⎰⎰⎰-+Ω=22222d x y x Dxdz d v x σ2221212xx y dx xdz --+=⎰⎰1221(1)dx x x y dy -=--⎰0= 图10.3.32 先二后一法有时,我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间区域Ω如图10.3.4所示,则12c z c ≤≤,12(,)z c c ∀∈,过z 点作z 轴的垂面,与区域Ω的截面为z D ,则⎰⎰⎰⎰⎰⎰=ΩzDc cd z y x f dz dv z y x f σ),,(),,(21即先计算在z D 上的二重积分,再对z 积分(先二后一法).例10.3.3 计算三重积分⎰⎰⎰Ωv z d 2,其中Ω是椭球体),,{(z y x =Ω2222221x y z a b c ++≤}. 图10.3.4 解 将Ω投影到z 轴上,则c z c -≤≤,对任意),(c c z -∈,过点),0,0(z 的平面截椭球体得到椭圆域为z D :2222221x y z a b c+≤-,),(c c z -∈(如图10.3.5),即空间闭区域Ω可表示为{}c z c cz b y a x z y x ≤≤--≤+=Ω,1),,(222222,于是zy22y +2983222221541d abc dz z c z ab dxdy dz z v z zD cc cc ππ=⎪⎪⎭⎫ ⎝⎛-==⎰⎰⎰⎰⎰⎰⎰--Ω但是,若采用“先一后二法” 将Ω投影到xoy 平面上得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤+=1),(2222b y a x y x D则⎰⎰⎰Ωv z d22a adx dz -=⎰⎰⎰32223222)3a a x y c dx dy a b -=--⎰⎰. 此积分很难完成. 图10.3.5 10.3.3柱坐标系和球坐标系下三重积分的计算 1 利用柱坐标系计算三重积分.空间直角坐标系中,将xoy 面用极坐标系表示所建立的坐标系就是柱坐标系. 设),,(z y x M 为空间直角坐标系中一点图10.3.6此点在xoy 面上投影点)0,,(y x P 表示成相应的极坐标形式为),(θr ,则M 点的柱坐标为),,(z r θ(如图10.3.6).这里规定r ,θ,z 的变化范围为+∞<≤r 0,02θπ≤≤,+∞<<∞-z在柱坐标系中: 0r r =(常数),表示以z 轴为中心的圆柱面;θ=0θ(常数),表示通过z 轴的半平面,此半平面与zox 面的夹角为0θ;z =0z (常数),表示平行于xoy 坐标面的平面.空间直角坐标与柱坐标的关系为⎪⎩⎪⎨⎧===.,sin ,cos z z r y r x θθ (10.3.2)现在要把三重积分⎰⎰⎰Ωdv z y x f ),,(中的变量变换为柱面坐标.为此,用=r 常数,θ=常数,z =常数把Ω分成许多小闭区域,除了含Ω的边界点的一些不规则小闭区域外,这种小闭区域都是柱体.考虑由r ,θ,z 各取得微小增量dr ,θd ,dz 所成的柱体的体积(如图10.3.7).这个体积等于高和底面积的乘积.现在高为dz 、底面积在不计高阶无穷小时为θrdrd (即极坐标系中的面积元素),于是得dz rdrd dv θ=,这就是柱面坐标系中的体积元素.300图10.3.7再注意到关系式(10.3.2),就得到三重积分的变量从直角坐标变换为柱面坐标的公式(10.3.3).设空间区域Ω在xoy 面上的投影区域}),()(),{(21βθαθϕθϕθ≤≤≤≤=r r D , 空间区域Ω}),(),,(),(),,{(21D r r z z r z z r ∈≤≤=θθθθ 则柱坐标系下的三重积分化为三次积分为:dz rdrd z r r f θθθ⎰⎰⎰Ω),sin ,cos (⎰⎰⎰=),(),()()(2121),sin ,cos (θθθϕθϕβαθθθr z r z dz z r r f rdrd例10.3.4 计算三重积分⎰⎰⎰Ωv z d ,其中Ω是由圆锥面z =、圆柱面222x y x +=与平面0z =所围成的闭区域.解 积分区域Ω在xoy 平面上的投影区域(如图10.3.8),20y =}2),{(22x y x y x D ≤+=,并且0z ≤≤图10.3.8于是,}22,cos 20,0),,{(πθπθθ≤≤-≤≤≤≤=Ωr r z z r . 43d 0cos 2022πθθθππ===⎰⎰⎰⎰⎰⎰⎰⎰⎰-ΩΩrzdz rdr d dz drd zr v z . 例10.3.5 计算三重积分⎰⎰⎰Ω++221d d d yx z y x ,其中Ω是由抛物面z y x 422=+及 平面)0(>=h h z 所围成的闭区域.解 在柱坐标系下积分区域Ω表示为 (如图10.3.9)}20,20,),,{(42πθθ≤≤≤≤≤≤=Ωh r h z z r r则⎰⎰⎰Ω++221d d d yx zy x ⎰=πθ20d ⎰+hr rr202d 1⎰hr z 42d]4)41ln()41[(4h h h -++=π.图10.3.92 利用球坐标系计算三重积分除直角坐标系、柱坐标系之外,空间点还可以用球坐标系表示.设),,(z y x M 为空间直角坐标系中一点,此点在xoy 面上投影点为)0,,(y x P ,用r 表示点M 到原点o 的距离,θ表示x 轴正向按逆时针到向量OP 的转角, ϕ表示z 轴正向与向量OM 的夹角,则坐标),,(ϕθr 称为点M 的球坐标(如图10.3.10).这里r ,θ,ϕ的变化范围为0r ≤<+∞,02θπ≤≤,πϕ≤≤0302点M 的球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:sin cos sin sin cos x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩(10.3.4)图10.3.10在球坐标系下,r =常数,表示中心在原点的球面;θ=常数,表示过z 轴的半平面;ϕ=常数,表示原点为顶点,z 轴为中心轴的圆锥面.为了把三重积分中的变量从直角坐标系变换为球面坐标,设),,(z y x f 定义在空间有界闭区域Ω上的连续函数,用r =常数,θ=常数,ϕ=常数,分割空间区域Ω,考虑由r ,θ,ϕ各取得微小增量dr ,θd ,ϕd 所成的六面体的体积(如图10.3.11).不计高阶无穷小,可把这个六面体看作长方体,其经线方向的长为ϕrd ,纬线方向的宽为θϕd r sin ,向径方向的高为dr ,于是得ϕθϕd drd r dv sin 2=.这就是球面坐标系中的体积元素.图10.3.11再注意到关系式(10.3.4),就得到三重积分的变量从直角坐标变换为球面坐标的公式(10.3.5).要计算变量变换为球面坐标后的三重积分,可把它化为对r 、对θ及对ϕ的三次积分. 例10.3.6计算三重积分⎰⎰⎰Ω++z d y d x d z y x )(222,其中Ω是由圆锥面22z x y =+与球面2212z x y =--.解 在球坐标系下,圆锥面22z x y =+的方程为4πϕ=,球面2212z x y =--的方程为32=z .如图10.3.12所示,Ω表示为 图10.3.12Ω),,{(θϕr =03r ≤≤02θπ≤≤,04πϕ≤≤}于是⎰⎰⎰Ω++z d y d x d z y x )(222⎰⎰⎰Ω⋅=ϕθϕd d r d r r sin 2223r =4πϕ=ϕθϕϕθϕθϕd drd r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ= (10.3.5)304⎰=πθ20d ⎰40d sin πϕϕ⎰3204d r r)22(53288-=π. 习题 10.31.化三重积分⎰⎰⎰Ωdv z y x f ),,(为三次积分,其中积分区域Ω分别是:(1) 由曲面22y x z +=及平面1=z 所围成的闭区域;(2) 由圆柱面122=+y x 及平面1=z ,0=z ,0=x ,0=y 所围成的位于第一卦限内的闭区域.2.计算三重积分,zdxdydz Ω⎰⎰⎰其中积分区域Ω是由三个坐标面及平面1=++z y x 所围成的闭区域.3.利用柱面坐标计算下列积分.(1) ⎰⎰⎰Ω+dv y x )(222,其中Ω是由圆柱体122=+y x 、0=z 及3=z 所围成的闭区域.(2) ⎰⎰⎰Ω+dxdydz y x 22,其中Ω是由曲面229z x y =--与0z =所围成的闭区域;(3)⎰⎰⎰Ωdxdydz x 2,其中Ω是由曲面221z x y =+=与0z =所围成的闭区域.4.利用球面坐标计算下列积分.(1) 2,y dxdydz Ω⎰⎰⎰其中积分区域Ω为介于两球面2222x y z a ++=与2222x y z b ++=之间的部分()0a b ≤≤;(2) 22(),x y dxdydz Ω+⎰⎰⎰其中积分区域Ω是由曲面z与z 所围成的闭区域.5.选用适当的坐标计算下列三次积分.(1) 11310;dx dz -⎰(2) 1;dx ⎰6.一个物体由旋转抛物面22y x z +=及平面1=z 所围成,已知其任一点处的密度ρ与到z 轴距离成正比,求其质量m .10.4 重积分的应用我们曾用元素法讨论了定积分的应用问题,该方法也可以推广到重积分的应用中. 假设所求量U 对区域D 具有可加性,即当区域D 分成若干小区域时,量U 相应地分成许多部分量,且量U 等于所有部分量之和.在D 内任取一直径很小的小区域σd ,设),(y x 是σd 上任一点,如果与σd 相应的部分量可以近似地表示为σd ),(y x f 的形式,那么所求量U 就可用二重积分表示为⎰⎰=Dy x f U σd ),(,其中σd ),(y x f 称为所求量U 的元素或微元,记为U d ,即σd ),(d y x f U =.10.4.1 立体体积和平面图形的面积设一立体Ω,它在xOy 面上的投影为有界闭区域D ,上顶与下底分别为连续曲面),(2y x z z =与),(1y x z z =,侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面,求此立体的体积V (如图10.4.1).在区域D 内任取一直径很小的小区域σd ,设),(y x 是σd 图 10.4.1 上任一点,以σd 的边界曲线为准线作母线平行于z 轴的柱面,截立体得一个小柱形(如图10.4.1),因为σd 的直径很小,且),(2y x z z =,),(1y x z z =在D 上连续,所以可用高为-=),(2y x z z ),(1y x z z =,底为σd 的小平顶柱体的体积作为小柱形体积的近似值,得体积元素为σd )],(),([d 12y x z y x z V -=将体积元素在D 上积分,即得立体的体积306例10.4.1 求由曲面22y x z +=及222y x z --=所围成的立体的体积.解 如图10.4.2所示,立体的上顶曲面是222y x z --=,下底曲面是22y x z +=,在xOy 面上的投影区域D 的边界曲线方程为122=+y x ,它是上顶曲面和下底曲面的交线在xOy 面上的投影,是从22y x z +=与222y x z --=中消去z 而得出的.利用极坐标,可得σσd )](1[2d ])()2[(222222y x y x y x V DD+-=+---=⎰⎰⎰⎰ππθπ=-⋅⋅=-=⎰⎰10422 010 2]42[22d )1(d 2r r r r r .图10.4.2 图10.4.3例10.4.2 求曲线θsin 2=r 与直线6πθ=及3πθ=围成平面图形的面积(如图10.4.3).解 设所求图形的面积为A ,所占区域为D ,则⎰⎰=DA σd .利用极坐标可将区域D 表示为⎪⎩⎪⎨⎧≤≤≤≤θπθπsin 2036r ,于是⎰⎰⎰⎰⎰===3 6 sin 202sin 2 036 d 21d d d ππθθππθθσr r r A D6d )2cos 1(d sin 23 63 6 2πθθθθππππ=-==⎰⎰.10.4.2 曲面面积假设曲面S 的方程为),(y x f z =,S 在xOy 面上的投影是有界闭区域xy D ,函数),(y x f 在xy D 上具有连续偏导数,求曲面S 的面积A .在闭区域xy D 内任取一直径很小的小区域σd ,设),(y x p 是σd 内任一点,则曲面S 上的对应点为)),(,,(y x f y x M .过点M 作曲面S 的切平面T ,并以小区域σd 的边界曲线为准线,作母线平行于z 轴的柱面,它在曲面S 和切平面T 上分别截得小块曲面A ∆和小块切平面A d (如图10.4.4).显然,A ∆与A d 在xOy 面上的投影都是σd ,因为σd 的直径很小,所以小块曲面的面积就可以用小块切平面的面积近似代替,即有≈∆A A d ,从而A d 为曲面S 的面积元素.图10.4.4 图10.4.5设曲面S 在点M 处的法向量与z 轴正向的夹角为锐角γ,则切平面T 与xOy 面的夹角也为γ (如图10.4.5),于是cos d d γσ⋅=A .注意到切平面的法向量为n =}1 ),( ),({,,z y f y x f y x --,所以 ),(),(11cos 22y x f y x f yx++=γ,即得 σγσd ),(),(1cos d d 22y x f y x f A y x ++==, 这就是曲面S 的面积元素,在xy D 上积分得曲面S 的面积为这就是计算曲面面积的公式.308如果曲面S 的方程为),(z y g x =或),(x z h y =,S 在yOz 面或zOx 面上的投影区域分别记为yz D 或zx D .类似地,可得曲面S 的面积为例10.4.3 求球面22224a z y x =++被圆柱面ax y x 222=+截下部分的面积(如图10.4.6).图10.4.6解 利用对称性,只需求出球面在第一卦限部分的面积,再4倍即可.在第一卦限,球面方程为2224y x a z --=,投影区域xy D 为半圆形区域:0≥y , ax y x 222≤+.2224yx a x xz ---=∂∂,2224yx a y yz ---=∂∂,2222242)()(1yx a a yz x z --=∂∂+∂∂+,利用极坐标,得到r r ra a y x yx a a A a D xyd 42d 4d d 4242cos 2 022222⎰⎰⎰⎰-=--=πθθ⎰⎰-=--=22cos 20222d )sin 1(16d ]4[8πθπθθθar a a a)12(162-=πa .10.4.3 平面薄片的重心由力学知道,由n 个质点构成的质点组的重心坐标为.∑∑====ni ini ii y mmx MM x 11,∑∑====ni ini ii x mmy MM y 11,其中),(i i y x 是第i 个质点的位置坐标,i m 是第i 个质点的质量,M 是n 个质点的总质量,x M 和y M 分别是质点组对x 轴和y 轴的静力矩.设有一平面薄板,它占有xOy 面上的有界闭区域D ,在点),(y x 处的面密度为),(y x ρ,且),(y x ρ在D 上连续,求薄片的重心坐标(如图10.4.7).为求薄片的重心坐标,在区域D 上任取一直径很小的小区域σd ,设),(y x 是σd 上任一点,注意到),(y x ρ在区域D 上连续且σd 的直径很小,可知σd 上的部分质量近似等于σρd ),(y x ,从而得质量元素为d (,)d M x y ρσ=.图10.4.7可将小薄片σd 视为位于点),(y x 处的一个质点,则小薄片对x 轴和y 轴的静力矩分别为σρd ),(d y x y M x =,σρd ),(d y x x M y =.将上述元素在D 上积分,即得⎰⎰=Dy x M σρd ),(,⎰⎰=Dx y x y M σρd ),(,⎰⎰=Dy y x x M σρd ),(.因此平面薄片的重心坐标为特别地,如果薄片是均匀的,则面密度ρ为常数,从而薄片的重心即为薄片占有的平。

高等数学 同济二版上册课后答案

高等数学 同济二版上册课后答案

第一章1-4节 1、计算下列极限7)2382lim 222+--+→x x x x x分析:本题分子分母同时趋近于0,根据表达式的形式,考虑利用约分将趋于0的项约去。

解:原式6)1(lim )4(lim 14lim )2)(1()2)(4(lim2222=-+=-+=---+=→→→→x x x x x x x x x x x x 9))sin(sin sin lima x ax a x --→分析:本题分子分母同时趋于0,但不能约分,利用复合函数求极限,通过变量替换进行求解 解一:令0,,,→→+=-=u a x u a x a x u 时则。

a uua a u u u a a u u a a uau a u a u a u a u u u u u cos )2cos42sinsin (cos lim ]2cos2sin 2)2sin 21(sin [cos lim ]sin )1(cos sin [cos lim sin sin sin cos cos sin limsin sin )sin(lim020000=-=-+=-+=-+=-+=→→→→→原式 解二:利用三角函数的和差化积,以及等价替换a ax ax a x a x a x a x a x ax cos 22cos 2lim )sin(2sin 2cos2lim=--⋅+⋅=--+=→→原式11)6)1(lim )4(lim 14lim 4lim 020202230=++-=++-=++-→→→→t t t t t t t t t t t t t t t (应该为4) 13)31)312(lim 2lim )312)(4()4(2lim )312)(4(9)12(lim 4312lim44444=++=++--=++--+=--+→→→→→x x x x x x x x x x x x x x本题利用了分子有理化 2、计算下列极限 1)nnn arctan lim∞→解:因为2arctan 01π<→∞→n ,n,n 而时,无穷小与有界函数之积仍然为无穷小,所以原式n nn arctan 1lim∞→==0 2)0sin 1lim 1sin lim=+=+∞→∞→n n nn n n n n 3)1arctan 11arctan 11lim arctan arctan lim =+-=+-∞→∞→xxxx x x x x x x 第一章1-5节 1、计算下列极限 2)βαβαββααβα==→→x x x x x x x x sin sin lim sin sin lim00解法2:原式βαβα==→x x x 0lim5)212cos122sin 21lim 2cos 2sin 22sin 2lim sin cos 1lim 0200=⋅⋅=⋅=-→→→x x x x x x xx x x x x x 解法2:原式2121lim 20=⋅=→x x x x7)πππππ-=-=-=-=-→→→→uu u u u u x x u u u x 0001lim tan lim )1(tan lim 1tan lim分析:本题利用了变量替换和等价替换 9)2)2(21lim )12(coslim 222-=⎥⎦⎤⎢⎣⎡-=-∞→∞→x x x x x x分析:∞→x 时,02→x 。

(完整版)高等数学II练习册-第10章答案

(完整版)高等数学II练习册-第10章答案

(完整版)⾼等数学II练习册-第10章答案习题10-1 ⼆重积分的概念与性质1.根据⼆重积分的性质,⽐较下列积分的⼤⼩:(1)2()D x y d σ+??与3()Dx y d σ+??,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成;(2)ln()Dx y d σ+??与2[ln()]Dx y d σ+??,其中D 是三⾓形闭区域,三顶点分别为(1,0),(1,1),(2,0);2.利⽤⼆重积分的性质估计下列积分的值:(1)22sin sin DI x yd σ=,其中{(,)|0,0}D x y x y ππ=≤≤≤≤;(2)22(49)DI x y d σ=++??,其中22{(,)|4}D x y x y =+≤.(3).DI =,其中{(,)|01,02}D x y x y =≤≤≤≤解 (),f x y =Q 2,在D 上(),f x y 的最⼤值()14M x y ===,最⼩值()11,25m x y ====故0.40.5I ≤≤习题10-2 ⼆重积分的计算法1.计算下列⼆重积分:(1)22()Dx y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤;(2)cos()Dx x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三⾓形闭区域。

2.画出积分区域,并计算下列⼆重积分:(1)x y De d σ+??,其中{(,)|||1}D x y x y =+≤(2)22()Dxy x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。

3.化⼆重积分(,)DI f x y d σ=为⼆次积分(分别列出对两个变量先后次序不同的两个⼆次积分),其中积分区域D 是:(1)由直线y x =及抛物线24y x =所围成的闭区域;(2)由直线y x =,2x =及双曲线1(0)y x x=>所围成的闭区域。

同济高等数学第十章学习指导及习题详解

同济高等数学第十章学习指导及习题详解
615
部分,你会得出结论.
第二节 二重积分的计算法
1. 复习第六章第二部分,曲顶柱体可以看作平行截面面积为已知 的立体吗?平行截面的面积如何表达?如何用定积分表示曲顶柱体 的体积?如果你对于上述问题难以解答,仔细阅读本节第一部分,从 中找出答案.
2. 在直角坐标系下,化二重积分为二次积分时,如何根据积分区 域的类型及被积函数确定积分次序和积分限? 仔细揣摩例 1 至例 4, 你会从中找到答案.
z z2 x, y, z z1 x, y 的位置关系;从代数的角度看,它们的大小
关系.怎样求积分区域 Ω 在 xOy 面上的投影区域 Dxy ?这些问题对于 计算三重积分是至关重要的.
3. 如何建立柱面坐标系,柱面坐标系中坐标面是什么曲面?直 角坐标与柱面坐标有何关系?怎样将直角坐标系下的三重积分转化 为柱面坐标系下的三重积分?阅读本节第二部分,在书上找出答案.
z f (x, y) 为顶, 以 D 为底的曲顶柱体的体积. 物理意义 设平面薄片占有闭区域 D,其面密度为 (x, y) ,则
其质量为
m (x, y)d . D
存在定理 若 f (x, y) 在闭区域 D 上连续,则 f (x, y) d 存在. D
性质 1(线性性质)设 、 为常数,则
第三节 三重积分
1. 将定积分、二重积分的定义性质类比推广,可以得到三重积 分的定义性质.阅读本节第一部分内容,指出二重积分与三重积分的
616
区别.从几何上看,三重积分 dv 表示什么? Ω 2. 阅读本节第一部分,细心体会“化三重积分为先对 z 后对 x, y
二重积分”时,从几何上看,对 z 积分时,积分的上、下限
4. 积分区域和被积函数在什么情况下,利用柱面坐标计算三重 积分比较简单?结合极坐标系下的二重积分的计算方法,细心揣摩第 二部分内容,从中找出问题的答案.

高等数学第十章答案

高等数学第十章答案

高等数学第十章答案【篇一:高等数学2第十章答案_62010】=txt>1.根据二重积分的性质,比较下列积分的大小:(1)成;2223d与,其中积分区域是圆周(x?2)?(y?1)?2所围(x?y)d?(x?y)d????? dd(2)??ln(x?y)d?与??[ln(x?y)]d?,其中d是三角形闭区域,三顶点分别为(1,0),dd2(1,1),(2,0);2.利用二重积分的性质估计下列积分的值:(1)i?22sinxsinyd?,其中d?{(x,y)|0?x??,0?y??};??d(2)i?2222,其中d?{(x,y)|x?y?4}.(x?4y?9)d???d(3).i?d,其中d?{(x,y)|0?x?1,0?y?2}解f?x,y??,积分区域的面积等于2,在d上f?x,y?的最大值1m?11?x?y?0?,最小值m???x?1,y?2? 45故0.4?i?0.5习题10-2二重积分的计算法1.计算下列二重积分:(1)22(x?y)d?,其中d?{(x,y)||x|?1,|y|?1};??d(2)??xcos(x?y)d?,其中d是顶点分别为(0,0),(?,0)和(?,?)的三角形闭区域。

d2.画出积分区域,并计算下列二重积分:(1)x?ye??d?,其中d?{(x,y)||x|?y?1}d2(2)??(xd2?y2?x)d?,其中d是由直线y?2,y?x及y?2x所围成的闭区域。

3.化二重积分i???f(x,y)d?为二次积分(分别列出对两个变量先后次序不同的两个二次d积分),其中积分区域d是:2(1)由直线y?x及抛物线y?4x所围成的闭区域;(2)由直线y?x,x?2及双曲线y?1(x?0)所围成的闭区域。

x34.求由曲面z?x2?2y2及z?6?2x2?y2所围成的立体的体积。

5.画出积分区域,把积分22其中积分区域d是: ??f(x,y)dxdy表示为极坐标形式的二次积分, d(1){(x,y)|x?y?2x};4(2){(x,y)|0?y?1?x,0?x?1}6.化下列二次积分为极坐标形式的二次积分:(1)?2dxxfdy;5【篇二:高等数学课后习题答案第十章】重积分性质,比较??dln(x?y)d?与??d[ln(x?y)]d?2的大小,其中:(1)d表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)d表示矩形区域{(x,y)|3?x?5,0?y?2}.解:(1)区域d如图10-1所示,由于区域d夹在直线x+y=1与x+y=2之间,显然有图10-11?x?y?2从而0?lnx(?y?)12故有ln(x?y)?[lnx(?y )]d所以 ??ln(x?y)?d???[lxn?(y2?)]d时,有(2)区域d如图10-2所示.显然,当(x,y)?dx?y?3.图10-2 从而 ln(x+y)1 故有ln(x?y)?[lnx(?y )]d2??所以(1)(2)(3)ln(x?y)?d???d[lxn?(y2?)]d2. 根据二重积分性质,估计下列积分的值: i?i?i???????d?,d?{(x,y)|0?x?2,0?y?2}22;;d(x,y)?d0?y?2时,有0?x?2,2222.解:(1)因为当因而0?xy?4.从而2??2d??故??即而d??d????d?2??d??d??d??d?d??dd???得8???d2??2(2) 因为0?sinx?1,0?siny?1,从而 220?sinxsiny?1故即??d0d????dsinxsinyd??222??d1d?0???dsinxsinyd????dd???2所以0???d22222(3)因为当2(x,y)?d20?x?y?4所以时,229?x?4y?9?4(x?y)?9?25故 ??即d9d??2??d(x?4y?9)d??222??d25d?9????d(x?4y?9)d??25?2所以??d223. 根据二重积分的几何意义,确定下列积分的值:??(1)(2)d(a??,d?{(x,y)|x?y?a};d?{(x,y)|x?y?a}.222222??d?,(a?解:(1)??d?,在几何上表示以d为底,以z轴为轴,以(0,0,a)为顶点的圆锥的体积,所以d(a???133??(2)d?在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故??d??233lim4. 设f(x,y)为连续函数,求2r?0??df(x,y)d?,d?{(x,y)|(x?x0)?(y?y0)?r}222.解:因为f(x,y)为连续函数,由二重积分的中值定理得,?(?,?)?d,使得??d2(?,?)?(x0,y0),又由于d是以(x0,y0)为圆心,r为半径的圆盘,所以当r?0时,lim2r?0??df(x,y)d??lim2r?0r?02于是:5. 画出积分区域,把(1)(?,?)?(x0,y0)limf(?,?)?f(x0,y0)??df(x,y)d?化为累次积分:;d?{(x,y)|x?y?1,y?x?1,y?0}2(2)d?{(x,y)|y?x?2,x?y}2xd?{(x,y)|y?(3),y?2x,x?2}解:(1)区域d如图10-3所示,d亦可表示为y?1?x?1?y,0?y?1.??所以2df(x,y)d???10dy?1?yy?1f(x,y)dx(2) 区域d如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域d可表示为y?x?y?2,?1?y?2图10-3 图10-4??所以df(x,y)d???2?1dy?y?2y2f(x,y)dxy?(3)区域d如图10-5所示,直线y=2x与曲线 2x的交点(1,2),与x=2的交点为(2,4),曲线 y?2x与2x=2的交点为(2,1),区域d可表示为x ?y?2x,1?x?2.图10-5??所以df(x,y)d???21dx?2f(x,y)dyx2x.6. 画出积分区域,改变累次积分的积分次序: ?(1)?(3)1020dy?2yyf(x,y)dx; (2) ?edx?lnx0f(x,y)dy;dy3?2yf(x,y)dx; (4)33?y0?dx?sinx?sinx2f(x,y)dy;(5) ?1dy?2y0f(x,y)dy??1dy?f(x,y)dx.0?y?2,解:(1)相应二重保健的积分区域为d:y?x?2y.如图10-6所示.2图10-60?x?4,d亦可表示为:202yy2x24所以?dy?f(x,y)dx??dxxf(x,y)dy.2(2) 相应二重积分的积分区域d: 1?x?e,0?y?lnx.如图10-7所示.图10-70?y?1,d亦可表示为:e?x?e, 10y所以?e1dx?lnx0f(x,y)dy??dy?eeyf(x,y)dx(3) 相应二重积分的积分区域d 为:0?y?1,?x?3?2y,如图10-8所示.图10-8d亦可看成d1与d2的和,其中 0?x?1,d1:1?x?3,d2:103?2y0?y?x, 0?y?12(3?x).10x022?所以dyf(x,y)dx??dx?f(x,y)dy??311dx?x220(3?x)f(x,y)dy.(4) 相应二重积分的积分区域d为:?sin?y?sinx.如图10-9所示.图10-9d亦可看成由d1与d2两部分之和,其中 d1:d2:?1?y?0,0?y?1,【篇三:高等数学第十章测试练习】基础练习题一、选择题(共5题,每题4分,共20分)1.下列方程中,是一阶齐次微分方程的为( b ) a.xy?ylny b. y? yydy(1?ln) c.y?2y d.?10x?y xxdx2.一阶线性微分方程y?p(x)y?q(x)的积分因子为( a ) a.e?p(x)dxb.??p(x)dxp(x)dx c. d.??p(x)dx e?3.微分方程y?6y?9y?0的通解为( b ) a.(c2?c1x)e b.(c2?c1x)e?3xc.(c2?x)e1 d.(c2?c1x)ecx3x4.下列方程中,线性微分方程有( c ) a.y?yy(1?ln)b.yy?(y)2 xxc.y?8y?25y?0 d.(1?y2)dx?(arctany?x)dy5.设y1,y2是ay?by?cy?f(x)的两个特解,则下列说法正确的是( c ) a.y1?y2仍为该方程的特解b.y1?y2仍为该方程的特解c.y?y1?y2?y1为该方程的特解d. y?c1y1?c2y2为该方程的通解二、填空题(共5题,每题4分,共20分) 1.设曲线上任意点p(x,y)处的切线的斜率为x,且曲线经过点(?2,1),则该曲线的方程为 yy2?x2?3?0 。

高等数学第十章习题

高等数学第十章习题

(2) 圆周 x2 + y2 = a2 的正向 (a > 0);
(3) 正方形 x + y = 1的正向;
(4) 曲线 y = π cos x 上从点 A(−π, −π) 到 B(π, −π) 的一段弧.
解 令 P(x, y) = x + y , Q(x, y) = − x − y , 易知
x2 + y2
(C) 表示面密度为 x2 + y2 的曲面 ∑ 对 z 轴的转动惯量; (D) 表示面密度为 1 的流体通过曲面 ∑ 指定侧的流量.
(2) 设曲面 S : x2 + y2 + z2 = a2 (z ≥ 0), S1 为 S 在第一卦限的部分, 则有( C ).
(A) ∫∫ xdS = 4∫∫ xdS;
0
0 a2 − ρ2
∫a
=a
ρ2

0 a2 − ρ2
(令 ρ = a sin t )
故应选 C.
∫ = a
π 2
a 2sin 2t

a
cos t
dt
=
a3
1
×
π
=
1
πa3 ,
0 a cos t
22 4
(3) S 及 S1 如图 10.61 所示. 由高斯公式, 可得
2
∫∫ x2dydz + y2dzdx + z2dxdy
(4) 设 D 为 L 所围成的平面有界闭区域, 根据格林公式, 可得
4
∫L F idr = ∫L (x + y)dx + (x − y)dy = ∫∫ (1 −1)dxdy = 0. D
∫ 4.
计算

高中数学必修二《第十章 概率》同步练习及答案

高中数学必修二《第十章 概率》同步练习及答案

《第十章概率》同步练习10.1随机事件与概率10.1.1 有限样本空间与随机事件基础巩固训练一、选择题1.下列事件中,随机事件的个数为( )①明天是阴天;②方程x2+2x+5=0有两个不相等的实根;③明年长江武汉段的最高水位是29.8 m;④三角形中任意两边的和大于第三边.A.1 B.2C.3 D.4答案 B解析其中①是随机事件,②是不可能事件,③是随机事件,④是必然事件.2.一个口袋中装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸一个球得到白球”,这个事件是( )A.随机事件B.必然事件C.不可能事件D.不能确定答案 A解析一个口袋中装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸一个球得到白球”,这个事件是随机事件.故选A.3.掷两枚骰子,所得点数之和记为X,那么X=4表示的随机试验结果是( ) A.一枚是3点,一枚是1点B.一枚是3点,一枚是1点或两枚都是2点C.两枚都是4点D.两枚都是2点答案 B解析掷两枚骰子,所得点数之和记为X,那么X=4表示的随机试验结果是一枚是3点,一枚是1点或两枚都是2点.故选B.4.在10名学生中,男生有x名,现从这10名学生中任选6名去参加某项活动:①至少有1名女生;②5名男生,1名女生;③3名男生,3名女生.若要使①为必然事件、②为不可能事件、③为随机事件,则x为( )A.5 B.6C.3或4 D.5或6答案 C解析由题意,知10名学生中,男生人数少于5人,但不少于3人,∴x=3或x=4.故选C.5.在一个袋子中装有分别标注1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出小球标注的数字之差的绝对值为2或4的事件包含的样本点个数为( )A.2 B.4C.6 D.8答案 B解析从5个小球中任取2个,其中数字之差的绝对值为2或4的事件包含(1,3),(1,5),(2,4),(3,5)4个样本点,选B.二、填空题6.“函数y=a x(a>0,且a≠1)在定义域(-∞,1]上是增函数”是________事件.答案随机解析当a>1时,y=a x在(-∞,1 ]上是增函数.当0<a<1时,y=a x在(-∞,1]上是减函数,故事件随a值变化会有不同结果,为随机事件.7.将一枚骰子掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实数根的样本点个数为________.答案19解析一枚骰子掷两次,先后出现的点数构成的样本点共36个.其中方程有关根的充要条件为b2≥4ac,共有1+2+4+6+6=19个样本点.8.同样抛三枚均匀的硬币,则样本点的总个数和恰有2个正面朝上的样本点个数分别为________.答案8,3解析由题意,样本点的总个数为23=8,恰好有2个正面朝上的样本点为正正反、正反正、反正正,共3个.三、解答题9.已知集合M={-1,0,1,2},从集合M中有放回地任取两元素作为点P的坐标.(1)写出试验的样本空间;(2)求“点P落在坐标轴上”的样本点个数.解(1)样本空间Ω={(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(1,2),(2,-1),(2,0),(2,1),(2,2)}.(2)用事件A表示“点P落在坐标轴上”这一事件,则A包含的样本点有(-1,0),(0,-1),(0,0),(0,1),(0,2),(1,0),(2,0),共7个.能力提升训练做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个数字,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的样本空间;(2)求这个试验样本点的总数;(3)写出事件A:“第1次取出的数字是2”的集合表示;(4)说出事件B={(0,1),(0,2)}所表示的实际意义.解(1)这个试验的样本空间为Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)易知这个试验的样本点的总数是6.(3)A={(2,0),(2,1)}.(4)事件B表示“第1次取出的数字是0”.10.1.2 事件的关系和运算基础巩固训练一、选择题1.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两弹都击中飞机},B={两弹都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列说法不正确的是( )A.A⊆D B.B∩D=∅C.A∪C=D D.A∪C=B∪D答案 D解析由于至少有一弹击中飞机包括两种情况:两弹都击中飞机,只有一弹击中飞机,故有A⊆D,故A正确.由于事件B,D是互斥事件,故B∩D=∅,故B 正确.再由A∪C=D成立可得C正确.A∪C=D={至少有一弹击中飞机},不是必然事件,而B∪D为必然事件,故D不正确.2.抽查10件产品,设A={至少有2件次品},则A-等于( )A.{至多有2件次品} B.{至多有两件正品}C.{至少有两件正品} D.{至多有一件次品}答案 D解析“至少有2件次品”表示事件包含次品数最少是2,对立事件则应该为“至多有一件次品”,故选D.3.一人连续掷硬币两次,事件“至少有一次为正面”的互斥事件是( ) A.至多有一次为正面B.两次均为正面C.只有一次为正面D.两次均为反面答案 D解析对于A,至多有一次为正面与至少有一次为正面,能够同时发生,不是互斥事件;对于B,两次均为正面与至少有一次为正面,能够同时发生,不是互斥事件;对于C,只有一次为正面与至少有一次为正面,能够同时发生,不是互斥事件;对于D,两次均为反面与至少有一次为正面,不能够同时发生,是互斥事件.故选D.4.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.则在上述事件中,是对立事件的是( ) A.①B.②④C.③D.①③答案 C解析从1~9中任取两数,有以下三种情况:(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数.故选C.5.从装有2个红球和2个白球的盒子中任取两个球,下列情况是互斥而不对立的两个事件的是( )A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少一个红球;都是白球D.至多一个红球;都是红球答案 B解析A中至少有一个红球包含两种情形:一红一白,两个红,至少有一个白球包含:一红一白,两个白,这两个事件不互斥,C,D中的两个事件互斥且对立.二、填空题6.在抛掷一枚骰子的试验中,事件A表示“出现不大于4的偶数点”,事件B表示“出现小于5的点数”,则事件A∪B-表示________.答案出现的点数为2,4,5,6解析因为B-表示“出现大于等于5的点数”,即“出现5,6点”,所以A ∪B-表示“出现的点数为2,4,5,6”.7.同时掷两枚骰子,两枚骰子的点数之和可能是2,3,4,…,11,12中的一个.记事件A为“点数之和是2,4,7,12”,事件B为“点数之和是2,4,6,8,10,12”,事件C为“点数之和大于8”,则事件“点数之和为2或4”可记为________.答案A∩B∩C-解析∵事件A={2,4,7,12},事件B={2,4,6,8,10,12},∴A∩B={2,4,12}.又C={9,10,11,12},∴A∩B∩C-={2,4}.8.从一副扑克牌(去掉大、小王,共52张)中随机选取一张,给出如下四组事件:①“这张牌是红心”与“这张牌是方块”;②“这张牌是红色牌”与“这张牌是黑色牌”;③“这张牌牌面是2,3,4,6,10之一”与“这张牌是方块”;④“这张牌牌面是2,3,4,5,6,7,8,9,10之一”与“这张牌牌面是A,K,Q,J之一”,其中互为对立事件的有________(写出所有正确的编号).答案②④解析从一副扑克牌(去掉大、小王,共52张)中随机选取一张,①“这张牌是红心”与“这张牌是方块”是互斥事件,但不是对立事件;②“这张牌是红色牌”与“这张牌是黑色牌”是互斥事件,也是对立事件;③“这张牌牌面是2,3,4,6,10之一”与“这张牌是方块”不是互斥事件,故更不会是对立事件;④“这张牌牌面是2,3,4,5,6,7,8,9,10之一”与“这张牌牌面是A,K,Q,J之一”是互斥事件,也是对立事件.故答案为②④.三、解答题9.甲、乙、丙三人独立破译密码,用事件的运算关系表示:(1)密码被破译;(2)至少有一人破译;(3)至多有一人破译;(4)恰有一人破译;(5)只有甲破译;(6)密码未被破译.解用A,B,C分别表示甲、乙、丙破译密码,则(1)A∪B∪C;(2)A∪B∪C;(3)A∩B-∩C-+A-∩B∩C-+A-∩B-∩C+A-∩B-∩C-;(4)A∩B-∩C-+A-∩B∩C-+A-∩B-∩C;(5)A∩B-∩C-;(6)A-∩B-∩C-.能力提升训练判断下列各事件是不是互斥事件,是不是对立事件,并说明理由.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是男生;(4)至少有1名男生和全是女生.解(1)是互斥事件,不是对立事件.理由是:在所选的2名同学中,“恰有1名男生”实质是选出“1名男生、1名女生”,它与“恰有2名男生”不可能同时发生,所以是一对互斥事件,但其并事件不是必然事件,所以不是对立事件.(2)既不是互斥事件,也不是对立事件.理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”两种结果.“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”两种结果,他们可能同时发生.(3)既不是互斥事件,也不是对立事件.理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”,这与“全是男生”可能同时发生.(4)既是互斥事件,又是对立事件.理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”两种结果,它与“全是女生”不可能同时发生,且其并事件是必然事件,所以他们是对立事件.10.1.3 古典概型基础巩固训练一、选择题1.下列概率模型中,是古典概型的个数为( )①从区间[1,10]内任取一个数,求取到1的概率;②从1~10中任意取一个整数,求取到1的概率;③在一个正方形ABCD内画一点P,求点P刚好与点A重合的概率;④向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.A.1 B.2C.3 D.4答案 A解析古典概型的特征是样本空间中样本点的个数是有限的,并且每个样本点发生的可能性相等,故②是古典概型;④由于硬币质地不均匀,样本点发生的可能性不一定相等,故不是古典概型;①和③中的样本空间中的样本点的个数不是有限的,故不是古典概型.故选A.2.从集合{a,b,c,d,e}的所有子集中任取一个,则这个集合恰是集合{a,b,c}的子集的概率是( )A.35B.25C.14D.18答案 C解析集合{a,b,c,d,e}共有25=32个子集,而集合{a,b,c}的子集有23=8个,所以所求概率为832=14.3.某学校食堂推出两款优惠套餐,甲、乙、丙三位同学选择同一款套餐的概率为( )A.110B.18C.14D.12答案 C解析设两款优惠套餐分别为A,B,列举样本点如图所示.由图可知,共有8个样本点,这8个样本点发生的可能性是相等的.其中甲、乙、丙三位同学选择同一款套餐包括(A,A,A),(B,B,B),共2个样本点,故所求概率为P=28=14.4.甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.38B.58C.316D.516答案 B解析两人分别从1,2,3,4四个数中任取一个,共有16个样本点,这16个样本点发生的可能性是相等的.其中满足|a-b|≤1的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为1016=58.5.某大学餐饮中心为了解新生的饮食习惯,在全校大一学生中进行了抽样调查.已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,则至多有1人喜欢甜品的概率为( ) A.0.3 B.0.4C.0.6 D.0.7答案 D解析记2名喜欢甜品的学生分别为a1,a2,3名不喜欢甜品的学生分别为b1,b2,b3.从这5名数学系学生中任取3人的所有可能结果共10个,分别为(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3),这10种结果发生的可能性是相等的.记事件A表示“至多有1人喜欢甜品”,则事件A所包含的样本点有(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3),共7个.根据古典概型的概率计算公式,得至多有1人喜欢甜品的概率P(A)=710=0.7,故选D.二、填空题6.同时掷两枚相同的骰子,则两枚骰子向上的点数之积等于12的概率为________.答案1 9解析同时掷两枚相同的骰子的样本点总数为36,这36个样本点发生的可能性是相等的,满足两枚骰子向上的点数之积为12的样本点有(2,6),(3,4),(4,3),(6,2),共4个,故所求概率为436=19.7.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是________.答案1 5解析抽取的a,b组合有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种情况,这15种情况发生的可能性是相等的.其中(1,2),(1,3),(2,3)满足b>a,故所求概率为315=15.8.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“有缘数”的概率是________.答案1 2解析由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个,这24个数出现的可能性是相等的.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为1224=12.三、解答题9.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球总数比白球总数多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2),(B,a1),(B,a2),(B,b1),(B,b2).(2)不正确,理由如下:由(1),知所有可能的摸出结果共12种,且这12种结果发生的可能性是相等的.其中摸出的2个球都是红球的结果有{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23,故不中奖的概率比较大.能力提升训练小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.解(1)将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.从5道题中任选2道题解答,每一次选1题(不放回),样本空间Ω={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)},共20个样本点,这20个样本点发生的可能性是相等的.设事件A为“所选的题不是同一种题型”,则事件A包含的样本点有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12个,所以P(A)=1220=0.6.(2)从5道题中任选2道题解答,每一次选1题(有放回),样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)},共25个样本点,这25个样本点发生的可能性是相等的.设事件B为“所选的题不是同一种题型”,则事件B包含的样本点有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12个,所以P(B)=1225=0.48.10.1.4 概率的基本性质基础巩固训练一、选择题1.甲、乙两队举行足球比赛,若甲队获胜的概率为13,则乙队不输的概率为( )A.56B.34C.23D.13答案 C解析乙队不输的概率为1-13=23.2.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A.0.95 B.0.97C.0.92 D.0.08答案 C解析设事件“抽检一件是甲级”为事件A,“抽检一件是乙级”为事件B,“抽检一件是丙级”为事件C,由题意可得事件A,B,C为互斥事件,且P(A)+P(B)+P(C)=1,因为乙级品和丙级品均属次品,且P(B)=0.05,P(C)=0.03,所以P(A)=1-P(B)-P(C)=0.92.故选C.3.已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A+B)=( )A.0.3 B.0.6C.0.7 D.0.9答案 C解析∵随机事件A,B,C中,A与B互斥,B与C对立,P(A)=0.3,P(C)=0.6,∴P(B)=1-P(C)=0.4,P(A+B)=P(A)+P(B)=0.7.选C.4.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4C.0.6 D.0.7答案 B解析设事件A为只用现金支付,事件B为只用非现金支付,事件C为既用现金支付也用非现金支付,则P(A)+P(B)+P(C)=1,因为P(A)=0.45,P(C)=0.15,所以P(B)=0.4.故选B.5.掷一枚骰子的试验中,出现各点的概率为16.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+B-(B-表示事件B的对立事件)发生的概率为( )A.13B.12C.23D.56答案 C解析由题意,知B-表示“大于或等于5的点数出现”,事件A与事件B-互斥,由概率的加法计算公式可得P(A+B-)=P(A)+P(B-)=26+26=46=23.二、填空题6.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选中男教师的概率为920,则参加联欢会的教师共有________人.答案120解析设参加联欢会的教师共有n人,由于从这些教师中选一人,“选中男教师”和“选中女教师”两个事件是对立事件,所以选中女教师的概率为1-9 20=1120.再由题意,知1120n-920n=12,解得n=120.7.给出命题:(1)对立事件一定是互斥事件;(2)若A,B为两个事件,则P(A∪B)=P(A)+P(B);(3)若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1;(4)若事件A,B满足P(A)+P(B)=1,则A,B互为对立事件.其中错误命题的个数是________.答案 3解析由互斥事件与对立事件的定义可知(1)正确;只有当事件A,B为两个互斥事件时才有P(A∪B)=P(A)+P(B),故(2)不正确;只有事件A,B,C两两互斥,且A∪B∪C=Ω时,才有P(A)+P(B)+P(C)=1,故(3)不正确;由对立事件的定义可知,事件A,B满足P(A)+P(B)=1且A∩B=∅时,A,B才互为对立事件,故(4)不正确.8.甲射击一次,中靶的概率是P1,乙射击一次,中靶的概率是P2,已知1P1,1 P2是方程x2-5x+6=0的根,且P1满足方程x2-x+14=0.则甲射击一次,不中靶的概率为________;乙射击一次,不中靶的概率为________.答案1223解析由P1满足方程x2-x+14=0知,P2 1-P1+14=0,解得P1=12;因为1P1,1P2是方程x2-5x+6=0的根,所以1P1·1P2=6,解得P2=13.因此甲射击一次,不中靶的概率为1-12=12,乙射击一次,不中靶的概率为1-13=23.三、解答题9.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.解先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,这16个结果出现的可能性是相等的.又满足条件n≥m+2的有(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=3 16,故满足条件n<m+2的事件的概率为1-P1=1-316=1316.能力提升训练某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.解(1)记“一次停车不超过1小时”为事件A,“一次停车1到2小时”为事件B,“一次停车2到3小时”为事件C,“一次停车3到4小时”为事件D.由已知得P(B)=13,P(C+D)=512.又事件A,B,C,D互斥,所以P(A)=1-13-512=14.所以甲的停车费为6元的概率为1 4 .(2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,这16种情况发生的可能性是相等的;而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个.所以所求概率为316.10.2 事件的相互独立性基础巩固训练一、选择题1.若A,B是相互独立事件,且P(A)=14,P(B)=23,则P(A B-)=( )A.112B.16C.14D.12答案 A解析∵A,B是相互独立事件,且P(A)=14,P(B)=23,则A与B-也是相互独立事件,∴P(A B-)=P(A)·P(B-)=14×13=112.故选A.2.已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1-P(A)P(B)是下列哪个事件的概率?( )A.事件A,B同时发生B.事件A,B至少有一个发生C.事件A,B至多有一个发生D.事件A,B都不发生答案 C解析P(A)P(B)是指A,B同时发生的概率,1-P(A)P(B)是A,B不同时发生的概率,即至多有一个发生的概率.3.在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,假设在这段时间内两地是否下雨之间没有影响,则这段时间内,甲、乙两地都不下雨的概率为( )A .0.12B .0.88C .0.28D .0.42答案 D解析 P =(1-0.3)×(1-0.4)=0.42.4.袋中装有红、黄、蓝3种颜色的球各1个,从中每次任取1个,有放回地抽取3次,则3次全是红球的概率为( )A.14B.19C.13D.127 答案 D解析 有放回地抽取3次,每次可看作一个独立事件.每次取出的球为红球的概率为13,“3次全是红球”为三个独立事件同时发生,其概率为13×13×13=127.5.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.34B.23C.35D.12 答案 A解析 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.二、填空题6.某人有8把外形相同的钥匙,其中只有一把能打开家门.一次该人醉酒回家,每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则该人第三次打开家门的概率是________.答案49512解析 由已知每次打开家门的概率为18,则该人第三次打开家门的概率为⎝⎛⎭⎪⎫1-18⎝ ⎛⎭⎪⎫1-18×18=49512.7.一道数学竞赛试题,甲同学解出它的概率为12,乙同学解出它的概率为13,丙同学解出它的概率为14,由甲、乙、丙三人独立解答此题,则只有一人解出的概率为________.答案1124解析 只有一人解出的概率P =12×23×34+12×13×34+12×23×14=1124.8.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.答案 35解析 因甲、乙、丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35. 三、解答题9.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率.解设甲、乙、丙当选的事件分别为A,B,C,则有P(A)=45,P(B)=35,P(C)=710.(1)因为事件A,B,C相互独立,所以恰有一名同学当选的概率为P(A B-C-)+P(A-B C-)+P(A-B-C)=P(A)P(B-)P(C-)+P(A-)P(B)P(C-)+P(A-)P(B-)P(C)=45×25×310+15×35×310+15×25×710=47250.(2)至多有两人当选的概率为1-P(ABC)=1-P(A)P(B)P(C)=1-45×35×710=83125.能力提升训练某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100米跑的成绩进行一次检测,求:(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大.解设甲、乙、丙三人100米跑成绩合格分别为事件A,B,C,显然事件A,B,C相互独立,则P(A)=25,P(B)=34,P(C)=13.设恰有k人合格的概率为P k(k=0,1,2,3).(1)三人都合格的概率为P 3=P(ABC)=P(A)P(B)P(C)=25×34×13=110.(2)三人都不合格的概率为P 0=P(A-B-C-)=P(A-)P(B-)P(C-)=35×14×23=110.(3)恰有两人合格的概率为P 2=P (AB C -)+P (A B -C )+P (A -BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率为P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512. 综合(1)(2)可知P 1最大.所以出现恰有一人合格的概率最大.10.3 频率与概率 基础巩固训练一、选择题1.某人将一枚质地均匀的硬币连掷了10次,正面朝上的情形出现了6次.若用A 表示正面朝上这一事件,则事件A 的( )A .概率为35B .频率为35C .频率为6D .概率接近0.6答案 B解析 事件A ={正面朝上}的概率为12,因为试验次数较少,所以事件A 的频率为35,与概率值相差太大,并不接近.故选B.2.抛掷一枚质地均匀的硬币,如果连续抛掷100次,那么第99次出现正面朝上的概率为( )A.199 B.1100 C.99100 D.12答案 D解析 ∵第99次抛掷硬币出现的结果共有两种不同的情形,且这两种情形等可能发生,∴所求概率为P =12.3.袋子中有四个小球,分别写有“东”“方”“骄”“子”四个字,从中任取一个球,取后放回,再取,直到取出“骄”字为止,用随机模拟的方法,估计第二次就停止的概率.且用1,2,3,4表示取出的小球上分别写有“东”“方”“骄”“子”这四个字,每两个随机数为1组代表两次的结果,经随机模拟产生了20组随机数:23 14 12 31 3341 44 22 31 4312 13 24 42 3223 11 43 31 24则第二次停止的概率是( )A.14B.15C.13D.16答案 A解析由20组随机数,知直到第二次停止的有:23,43,13,23,43,共5组,故所求概率为P=14.故选A.4.通过模拟实验,产生了20组随机数:6830 3013 7055 7430 77404422 7884 2604 3346 09526807 9706 5774 5725 65765929 9768 6071 9138 6754如果恰有三个数,在1,2,3,4,5,6中,则表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为( )A.14B.13C.15D.16答案 A解析表示恰有三次击中目标的有:3013,2604,5725,6576,6754,共5组,随机数总共20组,故四次射击恰有三次击中目标的概率约为520=14.5.一个样本量为100的样本,其数据的分组与各组的频数如下:则样本数据落在(10,40]上的频率为( )A.0.13 B.0.39C.0.52 D.0.64答案 C解析(10,40]包含(10,20],(20,30],(30,40]三部分.所以数据在(10,40]上的频数为13+24+15=52,由f n(A)=nAn可得频率为0.52.故选C.二、填空题6.某人进行打靶练习,共射击10次,其中有2次10环,3次9环,4次8环,1次脱靶.在这次练习中,这个人中靶的频率是________,中9环的频率是________.答案0.9 0.3解析打靶10次,9次中靶,1次脱靶,所以中靶的频率为910=0.9;其中有3次中9环,所以中9环的频率是310=0.3.7.已知随机事件A发生的频率是0.02,事件A出现了10次,那么可能共进行了________次试验.答案500解析设进行了n次试验,则有10n=0.02,解得n=500,故共进行了500次试验.8.样本量为200的样本的频率分布直方图如图所示.根据样本的频率分布直方图,计算样本数据落在[6,10)内的频数为________,估计数据落在[2,10)内的概率约为________.答案64 0.4解析样本数据落在[6,10)内的频数为200×0.08×4=64,样本数据落在[2,10)内的频率为(0.02+0.08)×4=0.4,由频率估计概率,知所求概率约为0.4.三、解答题9.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中任意抽取一个,求:(1)事件A(6.92<d≤6.94)的频率;(2)事件B(6.90<d≤6.96)的频率;(3)事件C(d>6.96)的频率;(4)事件D(d≤6.89)的频率.解(1)事件A的频率f(A)=17+26100=0.43.(2)事件B的频率f(B)=10+17+17+26+15+8100=0.93.(3)事件C的频率f(C)=2+2100=0.04.。

同济版高数第二册10-1

同济版高数第二册10-1

步骤如下:
1. 分割 将曲顶柱 体的底D分割成n个 小区域 i , 1 i n; 2. 近似、求和 用 小平顶柱体体积之 x 和近似表示曲顶柱 n 体的体积; V V
i 1
z
z f ( x, y)
o
D
n

y
(i ,i )
i
i
f i ,i i ,
D : x y 1,1 x 1.
解 (2)积分区域如图
-1
1
y 1 x
( x
D
3
y 1)dxdy

D
0 x ydxdy 1dxdy 2
3 D
小结
二重积分的定义 (和式的极限) 二重积分的几何意义 (曲顶柱体的体积)
二重积分的物理意义(平面薄板的质量) 二重积分的性质 思考题
[ f ( x , y ) g( x , y )]d
D
f ( x , y )d g( x , y )d .
D D
(性质1、2 称为积分的线性性质)
性质3 对区域具有可加性 ( D D1 D2 )
f ( x, y )d f ( x, y )d f ( x, y )d .
0 i 1
n
D
n
平面薄片的质量:M lim ( i , i )Δ i ( x , y )d .
0 i 1
D
二重积分的几何意义 当被积函数大于零时,二重积分是柱体的体积. 当被积函数小于零时,二重积分是柱体的体积的负值. 物理意义: 平面薄板的质量.
练习:根据二重积分的几何意义计 2 d ,
D
D: x y R .

《高等数学》(北大第二版 )第10章习题课

《高等数学》(北大第二版 )第10章习题课

L

D
L-
∂Q ∂P ∫ = ∫∫ ( ∂x − ∂y )dxdy = 2∫∫ dxdy = 8 D L− + 0 B D ∂Q ∂P − )dxdy − ∫ ) ∴ ∫ = -( ∫ − ∫ ) = -(∫∫ ( ∂x ∂y D 0B L 0B L +0 B
B(4,0)

x
= −8 + 0 = −8
B0
比较以上几种解法,方法5最简便,方法6次之.
例 4 计算 ∫ x 2 + y 2 dx + y[ xy + ln( x + x 2 + y 2 )]dy
其中L为曲线y=sinx (0 ≤ 解 应用格林公式
L
x ≤ π ) 按x增大方向 .
y
∂Q ∂P y 2 =y + , = 2 2 ∂y ∂x x +y
L
解1 I = ∫ (2 x ⋅ x 2 − x 2 )dx + [ x + ( x 2 ) 2 ]2 xdx
0
0 1
+ ∫ [2 y 2 ⋅ y − ( y 2 ) 2 ]2 ydy + ( y 2 + y 2 )dy
Y=x2
7 17 1 0 x = − = . 6 15 30 y = ϕ ( x) (0 ≤ x ≤ 1). ∂Q ∂P 解2 I = ∫∫ ( − )dxdy x = ψ ( y ) (1 ≥ y ≥ 0). ∂x ∂y D 1 x 1 = ∫∫ (1 - 2x) dxdy = ∫ dx ∫ 2 (1 − 2 x)dy = . 0 x 30 D
Γ为球面上的三角形x 2 + y 2 + z 2 = a 2 ( x ≥ 0, y ≥ 0, z ≥ 0)围线的正向.

同济版高数第二册10-2

同济版高数第二册10-2
D1 D2 D3 D4
D1
0
1
D2
2 x
此题用直角系算麻烦! D4
二、在极坐标系下二重积分的计算
1 1 2 2 i ( ri ri ) i ri i 2 2 r ri ri 1 ( 2ri ri )ri i r ri 2 1 2 ri ri i ri i , 2
f1 ( x , y )
D
f2 ( x , y) 均非负
D
f ( x , y )dxdy f1 ( x , y )dxdy f 2 ( x , y )dxdy
D
因此上面讨论的累次积分法仍然有效 .
例 设函数 f ( x , y )连续,
D
且f ( x , y ) xy f ( x , y )dxdy , 其中 D是y 0, y x 2 , x 1围成的闭区域,
D是由曲线x y 2 及x 1围成的闭区域.
例11 计算 y x 2 d . 其中 D : 1 x 1, 0 y 1.
D
解 先去掉绝对值符号,如图

D
y x 2 d
D3
2

D1 D2
1
( x
0
2
y )d ( y x )d
解 e
dy 无法用初等函数表示
积分时必须考虑次序
x e
D
2 y2
dxdy dy x e
0
0
2
1
y
2 y2
dx
e
0
1
y
2
2 1 1 2 y3 y y 2 dy e dy (1 ). 0 6 e 3 6

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)习题10-11.设在xOy面内有一分布着质量的曲线弧L,在点(x,y)处它的线密度为μ(x,y),用对弧长的曲线积分分别表达:(1)这曲线弧对x轴、对y轴的转动惯量I x,I y;(2)这曲线弧的重心坐标,.解在曲线弧L上任取一长度很短的小弧段ds(它的长度也记做ds),设(x,y)为小弧段ds上任一点.曲线L对于x轴和y轴的转动惯量元素分别为dI x=y2μ(x,y)ds,dI y=x2μ(x,y)ds.曲线L对于x轴和y轴的转动惯量分别为,.曲线L对于x轴和y轴的静矩元素分别为dM x=yμ(x,y)ds,dM y=xμ(x,y)ds.曲线L的重心坐标为,.2.利用对弧长的曲线积分的定义证明:如果曲线弧L分为两段光滑曲线L1和L2,则.证明划分L,使得L1和L2的连接点永远作为一个分点,则.令λ=max{∆s i}→0,上式两边同时取极限,即得.3.计算下列对弧长的曲线积分:(1),其中L为圆周x=a cos t,y=a sin t (0≤t≤2π);解=.(2),其中L为连接(1, 0)及(0, 1)两点的直线段;解L的方程为y=1-x (0≤x≤1);.(3), 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) ..(4), 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界;解 L =L 1+L 2+L 3, 其中L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t ,L 3: x =x , y =x ,因而 ,.(5)⎰Γ++ds zy x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解,.(6), 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、(0, 0, 2)、(1, 0, 2)、(1, 3, 2);解 Γ=AB +BC +CD , 其中AB : x =0, y =0, z =t (0≤t ≤1),BC : x =t , y =0, z =2(0≤t ≤3),CD : x =1, y =t , z =2(0≤t ≤3),故.(7), 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解.(8), 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解.4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心.解 建立坐标系如图10-4所示, 由对称性可知, 又ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa 5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心.解 .(1).(2),,,,故重心坐标为.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明: .证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段,则L : x =a , y =t , t 从b 1变到b 2. 于是.2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线,证明.证明L : x =x , y =0, t 从a 变到b , 所以.3. 计算下列对坐标的曲线积分:(1), 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以.(2), 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π,L 2: x =x , y =0, x 从0变到2a ,因此.(3), 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到的一段弧;解.(4)⎰+--+L yx dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行); 解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L y x dy y x dx y x 22)()(.(5), 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧;解 ⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x .(6), 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1..(7), 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1);解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0,BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1,故.(8), 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故4. 计算, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧;解 L : x =y 2, y =y , y 从1变到2, 故.(2)从点(1, 1)到点(4, 2)的直线段;解 L : x =3y -2, y =y , y 从1变到2, 故(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线;解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2,L 2: x =x , y =2, x 从1变到4,故dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰ .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧.解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故.5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为x =R cos θ, y =R sin θ,θ从0变到, 于是场力所作的功为.6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1)沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线,则重力所作的功为7.把对坐标的曲线积分化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0, 0)到(1, 1);解L的方向余弦,故.(2)沿抛物线y=x2从点(0, 0)到(1, 1);解曲线L上点(x,y)处的切向量为τ=(1, 2x),单位切向量为,故.(3)沿上半圆周x2+y2=2x从点(0, 0)到(1, 1).解L的方程为,其上任一点的切向量为,单位切向量为,故.8.设Γ为曲线x=t,y=t2,z=t3上相应于t从0变到1的曲线弧,把对坐标的曲线积分化成对弧长的曲线积分.解曲线Γ上任一点的切向量为τ=(1, 2t, 3t2)=(1, 2x, 3y),单位切向量为,.习题10-31.计算下列曲线积分,并验证格林公式的正确性:(1),其中L是由抛物线y=x2及y2=x所围成的区域的正向边界曲线;解L=L1+L2,故,而 dxdy x dxdy y P x Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰ ,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. (2), 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x ,而,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故.(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故.3. 计算曲线积分,其中L为圆周(x-1)2+y2=2,L的方向为逆时针方向.解,.当x2+y2≠0时.在L内作逆时针方向的ε小圆周l:x=εcosθ,y=εsinθ(0≤θ≤2π),在以L和l为边界的闭区域Dε上利用格林公式得,即.因此.4.证明下列曲线积分在整个xOy面内与路径无关,并计算积分值:(1);解P=x+y,Q=x-y,显然P、Q在整个xOy面内具有一阶连续偏导数,而且,故在整个xOy面内,积分与路径无关.取L为点(1, 1)到(2, 3)的直线y=2x-1,x从1变到2,则.(2);解P=6xy2-y3,Q=6x2y-3xy2,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,故积分与路径无关,取路径(1, 2)→(1, 4)→(3, 4)的折线,则.(3).解P=2xy-y4+3,Q=x2-4xy3,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,所以在整个xOy面内积分与路径无关,选取路径为从(1, 0)→(1, 2)→(2, 1)的折线,则.5. 利用格林公式, 计算下列曲线积分:(1), 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线(a >0);解 , ,,由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222.(3), 其中L 为在抛物线2x =πy 2上由点(0, 0)到的一段弧;解 , ,,所以由格林公式,其中L 、OA 、OB 、及D 如图所示.故.(4), 其中L 是在圆周上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂yP x Q , 由格林公式有,其中L 、AB 、BO 及D 如图所示.故.6.验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(x+2y)dx+(2x+y)dy;证明因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y )的全微分..(2)2xydx+x2dy;解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y)的全微分..(3)4sin x sin3y cos xdx–3cos3y cos2xdy解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(4)解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(5)解因为,所以P(x,y)dx+Q(x,y)dy是某个函数u(x,y)的全微分.7.设有一变力在坐标轴上的投影为X=x+y2,Y=2xy-8,这变力确定了一个力场,证明质点在此场内移动时,场力所做的功与路径无关.解场力所作的功为.由于,故以上曲线积分与路径无关,即场力所作的功与路径无关.习题10-41.设有一分布着质量的曲面∑,在点(x,y,z)处它的面密度为μ(x,y,z),用对面积的曲面积分表达这曲面对于x轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为.2. 按对面积的曲面积分的定义证明公式,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且.令, , , 则当λ→0时, 有.3. 当∑是xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,,故 .4. 计算曲面积分, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此⎰⎰+=πθ2020241rdr r d .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d.(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰.5. 计算, 其中∑是:(1)锥面及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:, D 2: x 2+y 2≤1, .+.提示: .(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:, D xy : x 2+y 2≤3,,因而 .提示: .6. 计算下面对面积的曲面积分:(1), 其中∑为平面在第一象限中的部分;解 , ,,.(2), 其中∑为平面2x +2y +z =6在第一象限中的部分; 解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,,⎰⎰--+--=x dy y xy x x dx 30230)22236(3.(3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:, D xy : x 2+y 2≤a 2-h 2,,(根据区域的对称性及函数的奇偶性).提示:,(4), 其中∑为锥面被x 2+y 2=2ax 所截得的有限部分. 解 ∑: , D xy : x 2+y 2≤2ax ,,dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑421564a =. 提示: .7. 求抛物面壳的质量, 此壳的面密度为μ=z .解 ∑: , D xy : x 2+y 2≤2,.故.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量.解 ∑: , D xy : x 2+y 2≤a 2,,.提示:.习题10-51. 按对坐标的曲面积分的定义证明公式:.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则.2. 当∑为xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为, D xy : x 2+y 2≤R , 于是zdxdyy x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰.(2), 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故.∑可表示为, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 .解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰.提示: 表示曲面的面积.(3), 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧;解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为,由两类曲面积分之间的了解可得dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰.(4), 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 xzdxdy 4000∑⎰⎰+++=由积分变元的轮换对称性可知.因此 .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块;∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是yzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰.4. 把对坐标的曲面积分化成对面积的曲面积分:(1)∑为平面在第一卦限的部分的上侧;解 令, ∑上侧的法向量为:,单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰10-61.利用高斯公式计算曲面积分:(1),其中∑为平面x=0,y=0,z=0,x=a,y=a,z=a所围成的立体的表面的外侧;解由高斯公式原式(这里用了对称性).(2),其中∑为球面x2+y2+z2=a2的外侧;解由高斯公式原式.(3),其中∑为上半球体x2+y2≤a2,的表面外侧;解由高斯公式原式.(4)其中∑界于z=0和z=3之间的圆柱体x2+y2≤9的整个表面的外侧;解由高斯公式原式.(5),其中∑为平面x=0,y=0,z=0,x=1,y=1,z=1所围成的立体的全表面的外侧.解由高斯公式原式.2.求下列向量A穿过曲面∑流向指定侧的通量:(1)A=yz i+xz j+xy k,∑为圆柱x+y2≤a2(0≤z≤h )的全表面,流向外侧;解P=yz,Q=xz,R=xy,⎰⎰⎰dv.=0=Ω(2)A=(2x-z)i+x2y j-xz2k,∑为立方体0≤x≤a, 0≤y≤a, 0≤z≤a,的全表面,流向外侧;解P=2x-z,Q=x2y,R=-xz2,.(3)A=(2x+3z)i-(xz+y)j+(y2+2z)k,∑是以点(3,-1, 2)为球心,半径R=3的球面,流向外侧.解P=2x+3z,Q=-(xz+y),R=y2+2z,⎰⎰⎰dv.π=3=108Ω3.求下列向量A的散度:(1)A=(x2+yz)i+(y2+xz)j+(z2+xy)k;解P=x2+yz,Q=y2+xz,R=-z2+xy,.(2)A=e xy i+cos(xy)j+cos(xz2)k;解P=e xy,Q=cos(xy),R=cos(xz2),.(3)A=y2z i+xy j+xz k;解P=y2,Q=xy,R=xz,.4.设u (x,y,z)、v (x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,,依次表示u (x,y,z)、v (x,y,z)沿∑的外法线方向的方向导数.证明,其中∑是空间闭区间Ω的整个边界曲面,这个公式叫作林第二公式.证明由第一格林公式(见书中例3)知,.将上面两个式子相减,即得.5.利用高斯公式推证阿基米德原理:浸没在液体中所受液体的压力的合力(即浮力)的方向铅直向上,大小等于这物体所排开的液体的重力.证明取液面为xOy面,z轴沿铅直向下,设液体的密度为ρ,在物体表面∑上取元素dS上一点,并设∑在点(x,y,z)处的外法线的方向余弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得,,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1), 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: 表示∑的面积, ∑是半径为a 的圆.(2), 其中Γ为椭圆x 2+y 2=a 2,(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: ∑(即)的面积元素为.(3), 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则.(4), 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则.2. 求下列向量场A 的旋度:(1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 .(2)A =(sin y )i -(z -x cos y )k ;解 .(3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分化为曲线积分, 并计算积分值, 其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面, 的上侧, n 是∑的单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为x =cos θ, y =sin θ, z =0(0≤θ≤2π,由托斯公式.(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量.解.4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量:(1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0;解.(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周, z =0.解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++L L dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(.5.证明rot(a+b)=rot a+rot b.解令a=P1(x,y,z)i+Q1(x,y,z)j+R1(x,y,z)k,b=P2(x,y,z)i+Q2(x,y,z)j+R2(x,y,z)k,由行列式的性质,有.6.设u=u(x,y,z)具有二阶连续偏导数,求rot(grad u)解因为grad u=u x i+u y j+u z k,故=(u zy-u yz)i+(u zx-u xz)j+(u yx-u xy)k=0.*7.证明:(1)∇(uv)=u∇v+v∇u解=u∇v+v∇u.(2)解==u∆v+v∆u+2∇u⋅∇u.(3) ∇⋅(A⨯B )=B⋅(∇⨯A )-A⋅(∇⨯B )解B=P2i+Q2j+R2k,而所以∇⨯(A⨯B)=B⨯(∇⨯A)-A⨯( ∇⨯B )(4) ∇⨯(∇⨯A )=∇(∇⋅A )-∇2a解令A=Pi+Q j++R k,则从而命题地证总习题十1. 填空:(1)第二类曲线积分化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解 , 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑⎰⎰化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解 , 法向量.2. 选择下述题中给出的四个结论中一个正确的结论:设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________.(A )xdS xdS 14∑∑⎰⎰⎰⎰=; (B );(C )xdS zdS 14∑∑⎰⎰⎰⎰=; (D )xyzdS xyzdS 14∑∑⎰⎰⎰⎰=.解 (C ).3. 计算下列曲线积分:(1), 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为, (0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x L L )()()(222022'+'⋅==+⎰⎰⎰().(2), 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0);解.(3), 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧;解 ⎰⎰⋅-+-⋅+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L.(4), 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧;解.(5), 其中L 为上半圆周(x -a )2+y 2=a 2, y ≥0, 沿逆时针方向;解 这里P =e x sin y -2y , Q =e x cos y -2, .令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式,.(6), 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去, 沿逆时针方向.解 曲线Γ的一般方程为, 其参数方程为, t 从0变到2π.于是.4. 计算下列曲面积分:(1), 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2;解 ∑=∑1+∑2, 其中, D xy : -R ≤y ≤R , 0≤z ≤H , ;, D xy : -R ≤y ≤R , 0≤z ≤H , ,于是.(2), 其中∑为锥面(0≤z ≤h ) 的外侧;解 这里P =y 2-z , Q =z 2-x , R =x 2-y , 0=∂∂+∂∂+∂∂zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式,而40222024)sin cos ()(1h d r r d dxdy y x h πθθθθπ=-=-⎰⎰⎰⎰∑, 所以 .(3)zdxdy ydzdx xdydz ++∑⎰⎰, 其中∑为半球面的上侧;解 设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得,而 ,所以 33202R R zdxdy ydzdx xdydz ππ=-=++∑⎰⎰.(4), 其中∑为曲面(z ≥0)的上侧;解 这里, , , 其中., , ,.设∑1为z =0的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式,32223222)()(1z y x zdxdy ydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑⎰⎰⎰⎰. (5)xyzdxdy∑⎰⎰, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解 ∑=∑1+∑2, 其中∑1是(x 2+y 2≤1, x ≥0, y ≥0)的上侧;∑2是(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑⎰⎰⎰⎰⎰⎰+=dxdy y x xy dxdy y x xy xyxy D D )1(12222------=⎰⎰⎰⎰ ⎰⎰⎰⎰-⋅⋅=--=103220221sin cos 212ρρρθθθπd d dxdy y x xy xy D .5. 证明22y x ydy xdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数.解 这里, . 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且 , 所以22y x ydy xdx ++在开区域G 内是某个二元函数u (x , y )的全微分. .6. 设在半平面x >0内有力构成力场, 其中k 为常数, . 证明在此力场中场力所作的功与所取的路径无关.解 场力沿路径L 所作的功为.令, . 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且,所以上述曲线积分所路径无关, 即力场所作的功与路径无关.7. 求均匀曲面的质心的坐标.解 这里∑:, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}.设曲面∑的面密度为ρ=1, 由曲面的对称性可知, . 因为,222421a a dS ππ=⋅=∑⎰⎰, 所以 .因此该曲面的质心为.8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明:(1);(2),其中、分别是u 、v 沿L 的外法线向量n 的方向导数, 符号称为二维拉普拉斯算子. 证明 设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α).(1),所以 .(2)dxdy u v v u dxdy y u x u v y v x v u DD )()]()([22222222∆-∆=∂∂+∂∂-∂∂+∂∂=⎰⎰⎰⎰. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解 设∑为区域Ω的边界曲面的外侧, 则通量为33==Ω⎰⎰⎰dv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解 设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为.曲面∑的的单位法向量为, 由斯托克斯公式有.温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。

高等数学第二版上册课后答案

高等数学第二版上册课后答案

高等数学第二版上册课后答案高等数学第二版上册课后答案【篇一:《高等数学》详细上册答案(一--七)】lass=txt>《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1. 函数的概念及表示方法;2. 函数的有界性、单调性、周期性和奇偶性;3. 复合函数、分段函数、反函数及隐函数的概念;4. 基本初等函数的性质及其图形;5. 极限及左右极限的概念,极限存在与左右极限之间的关系;6. 极限的性质及四则运算法则;7. 极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8. 无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9. 函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10. 连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.学习任务巩固练习阶段:(本阶段是复习能力提升的关键阶段,高钻学员一定要有认真吃透本章节内所有习题)第二单、元函数微分学计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1. 导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系;2. 导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性;3. 高阶导数的概念,会求简单函数的高阶导数;4. 会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;5. 罗尔(rolle)定理、拉格朗日(lagrange)中值定理、泰勒(taylor)定理、柯西(cauchy)中值定理,会用这四个定理证明;6. 会用洛必达法则求未定式的极限;7. 函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值;8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;9. 曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.【篇二:高数第二册习题及答案】class=txt>系班姓名学号第一节对弧长的曲线积分一.选择题1.设l是连接a(?1,0),b(0,1),c(1,0)的折线,则l(x?y)ds? [ b](a)0 (b)2 (c)22 (d)2x2y2d ] ?l43(a)s(b)6s(c)12s(d)24s二.填空题1.设平面曲线l为下半圆周yx2,则曲线积分l(x2?y2)ds?2.设l是由点o(0,0)经过点a(1,0) 到点b(0,1)的折线,则曲线积分三.计算题 1.l(x?y)ds? 122l(x2?y2)nds,其中l为圆周x?acost,y?asint(0?t?2?).解:原式?2?a2a2n?12?dt2??a 2.2n?1l,其中l为圆周x2?y2?a2,直线y?x及x轴在第一象限内所围成的扇形的整个边界.解:设圆周与x轴和直线y?x的交点分别为a 和b,于是原式?oaabbo在直线oa上y?0,ds?dx得oaexdx0aae?1在圆周ab上令x?acos?,y?asin?,04得ab4ea?a?ea4在直线bo上y?x,ds?2dx得boae?1所以原式?(2?3.a)ea?2 4ly2ds,其中l为摆线的一拱x?a(t?sint),y?a(1?cost)(0?t?2?). 2解:原式?2a(1?cost)3(1?cost)dt52256a315或原式?a22?03(1?cost)02?(1?cost)dt (1?cost)dt52523332?t(2sin)2dt222?ttttdt??16a3?(1?2cos2?cos4)dcos0224258a2?sin5256a315高等数学练习题第十章曲线积分与曲面积分系班姓名学号第二节对坐标的曲线积分一.选择题1.设l以(1,1),(?1,1),(?1,?1),(1,?1)为顶点的正方形周边,为逆时针方向,则lx2dy?y2dx?[ d ](a)1(b)2(c)4(d)0 2.设l是抛物线y?x2(?1?x?1),x增加的方向为正向,则(a)0,lxds和?xdy?ydx?[ a ]l2525(b)0,0 (c),(d),0 3838二.填空题1.设设l是由原点o沿y?x2到点a(1,1),则曲线积分l(x?y)dy? 16232.设l是由点a(1,?1)到b(1,1)的线段,则三.计算题l(x2?2xy)dx?(y2?2xy)dy= 1.设l为取正向圆周x2?y2?a2,求曲线积分l(2xy?2y)dx?(x2?4x)dy.解:将圆周写成参数形式x?acos?,y?asin?,(02?),于是原式{(2a2cos?sin??2asin?)?(?asin?)?(a2cos2??4acos?)?acos? }d?2?2?{(?2a3cos?sin2??2a2sin2?)?(a3cos3??4a2cos2?)}d?2a2?22.设l是由原点o沿y?x到点a(1,1),再由点a沿直线y?x到原点的闭曲线,求larctanydy?dx x解:i1??arctan?dx ?oax(2xarctanx?1)dx1[x2arctanx?x?arctanx?x]10i2??22yarctan?dx ?aox1(arctan1?1)dx4所以原式?i1?i2? ? 3.计算242?1??14l(x?y)dx?(y?x)dy,其中l是:2(1)抛物线y?x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线. 解:(1)原式? ? ?2121{(y2?y)?2y?(y?y2)}dy(2y3?y2?y)dy343(2)过(1,1),(4,2)的直线方程为x?3y?2,dx?3dy 所以原式? ?21{3(4y?2)?(2?2y)}dy21(10y?4)dy11(3)过(1,1),(1,2)的直线方程为x?1,dx?0,1?y?2所以i1?21(y?1)dy?1 2(3)过(1,2),(4,2)的直线方程为y?2,dy?0,1?x?4所以i2?41(x?2)dx?272于是原式?i1?i2?14 4.求l(y2?z2)dx?2yzdyxdz?2,其中l为曲线x?t,y?t2,z?t3(0?t?1)按参数增加的方向进行.解:由题意,原式? ? ?高等数学练习题第十章曲线积分与曲面积分系班姓名学号第三节格林公式及其应用一.选择题 1.设曲线积分{(t01014t6)?4t6?3t4}dt(3t6?2t4)dt1 35l(x4?4xyp)dx?(6xp?1y2?5y4)dy与路径无关,则p? [ c](a)1 (b)2 (c)3(d)4 2.已知(x?ay)dx?ydy为某函数的全微分,则a?[ d] 2(x?y)(a)?1 (b)0(c)1 (d)212xx223.设l为从a(1,)沿曲线2y?x到点b(2,2)的弧段,则曲线积分?dx?2dy= [ d]ly2y(a)?3 (b)3(c)3(d)0 2【篇三:高等数学(上)第二章练习题】txt>一. 填空题1.设f(x)在x?x0处可导,且x0?0,则limx?x?02.设f(x)在x处可导,则limf2(x?h)?f2(x?2h)h?02h?______________3.设f(x)axx?0ex?1x?0在x?0处可导,则常数a?______4.已知f?(x)?sinxx?5.曲线y?x?lnxx上横坐标为x?1的点的切线方程是 6.设y?xxsinx ,则y??7.设y?e?2x,则dyx??x0?0.1?8.若f(x)为可导的偶函数,且f?(x0)?5,则f?(?x0)?二. 单项选择题9.函数f(x)在x?x0处可微是f(x)在x?x0处连续的【】a.必要非充分条件b.充分非必要条件c.充分必要条件 d.无关条件10. 设limf(x)?f(a)x?a(x?a)2?l,其中l为有限值,则在f(x)在x?a处【】a.可导且f?(a)?0 b.可导且f?(a)?0c.不一定可导d.一定不可导11.若f(x)?max(2x,x2),x?(0,4),且f?(a)不存在,a?(0,4),则必有【a.a?1 b.a?2 c.a?3 d. a?1212.函数f(x)?x在x?0处【】a.不连续b.连续但不可导c.可导且导数为零 d.可导但导数不为零2213.设f(x)3xx?1,则f(x)在x?1处【】x2x?1a.左、右导数都存在b.左导数存在但右导数不存在c.右导数存在但左导数不存在 d.左、右导数都不存在14.设f(x)?3x3?x2|x|,使f(n)(0)存在的最高阶数n为【】a.0 b. 1 c.2 d. 315.设f(u)可导,而y?f(ex)ef(x),则y??【】a.ef(x)[f?(x)f(ex)?exf?(ex)]b. ef(x)[f?(x)f(ex)?f?(ex)]c.ef(x)f?(ex)?ef?(x)f(ex) d. exef(x)f?(ex)?ef?(x)f(ex)16.函数f(x)?(x2?x?2)|x3?x|不可导点的个数是【】a.3 b. 2 c.1 d. 0】17.设f(x)可导,f(x)?f(x)(1?|sinx|),要使f(x)在x?0处可导,则必有【】a.f(0)?0b.f?(0)?0c.f(0)?f?(0)?0 d.f(0)?f?(0)?018.已知直线y?x与y?logax相切,则a?【】a.e b. e c.ee d.e19.已知f(x)?x(1?x)(2?x)?(100?x),且f?(a)?2?(98)!,则a?【】a.0 b.1 c.2 d.3 ?1?1e1,则当?x?0时,在x?x0处dy是【】 3a.比?x高阶的无穷小b.比?x低阶的无穷小c.与?x等价的无穷小d.与?x同阶但非等价的无穷小221.质点作曲线运动,其位置与时间t的关系为x?t?t?2,y?3t2?2t?1,则当t?1时,质点的速度大小等于【】 20.已知f?(x0)?a.3 b.4 c.7 d.5三. 解答下列各题22.设f(x)?(x?a)?(x),?(x)在x?a连续,求f?(a)23.y?esin24.y?2(1?2x) ,求dy x2arcsin,求y?? 2d2y325.若f(u)二阶可导,y?f(x),求2 dx1??,求y?(1) ?x?x?ln(1?t2)dyd2y27.若? ,求与2 dxdx?y?t?arctant28.y?(x2?1)e?x,求y(24)29.y?arctanx,求y(n)(0) 26.设y??1?1xx2?xx?0?30.已知f(x)??ax3?bx2?cx?d0?x?1_在(??,??)内连续且可导,2x?xx?1?求a,b,c,d的值xy31.求曲线e?2x?y?3上纵坐标为y?0的点处的切线方程x?t(1?t)?032.求曲线?y 上对应t?0处的法线方程 ?te?y?1?0233.过原点o向抛物线y?x?1作切线,求切线方程34.顶角为60底圆半径为a的圆锥形漏斗盛满了水,下接底圆半径为b(b?a)的圆柱形水桶,当漏斗水面下降的速度与水桶中水面上升的速度相等时,漏斗中水面的高度是多少?35.已知f(x)是周期为5的连续函数,它在x?0的某个邻域内满足关系式f(1?sinx)?3f(1?sinx)?8x??(x),其中,?(x)是当x?0时比x高阶的无穷小,且f(x)在x?1处可导,求曲线y?f(x)在点(6,f(6))处的切线方程习题答案及提示5. y?x x 6.x[(1?lnx)sinx?cosx]7. ?0.2 8. ?5 一. 1.?(x0) 2. 3f(x)f?(x) 3. 1 4二. 9. b 10. a 11. b 12. c 13. b 14. c 15. a16. b 17. a 18. c 19. c 20. d 21. d三. 22. 提示:用导数定义 f?(a)??(a) 23.dy??2esin2(1?2x)sin(2?4x)dxd2y343 24. y 25. 2?6xf?(x)?9xf(x) dxdytd2y1? ,2?(t?t?1) 26. y?(1)?1?2ln2 27. dx2dx428. y(24)?e?x[x2?48x?551]12x??y??29.由y?(x)? 1?x2(1?x2)2由(1?x2)y?(x)?1 两边求n阶导数,_利用莱布尼兹公式,代入x?0,得递推公式,y(n?1)(0)??n(n?1)y(n?1)(0)__利用y?(0)?1和y??(0)?0 ?(?1)k(2k)!n?2k?1 k?0,1,2,? y(0)??0n?2k?2?30. 提示:讨论分段点x?0与x?1处连续性与可导性a?2, b??3, c?1 , d?031. x?y?1?032. ex?y?1?0(n)33.y??2x35. 提示:关系式两边取x?0的极限,得f(1)?0limx?0f(1?sinx)?3f(1?sinx)?8x?(x)sinx??lim8 ?x?0sinxxx? ?si nx而 f(1?sinx)?3f(1?sinx)f(1?t)?3f(1?t)?limx?0t?0sinxtf(1?t)?f(1)f(1?t)?f(1)lim??3?4f?(1)?t?0t?t??得f?(1)?2,由周期性f(6)?f(1)?0f(x)?f(6)f?(6)?lim 令x?5?t 由周期性得 x?6x?6f(t)?f(1)?lim?2 t?1t?1切线方程y?2(x?6) lim。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= ∫ (10 y − 4)dy
1
= 11
(3)过(1,1) , (1,2)的直线方程为 x = 1, dx = 0,1 ≤ y ≤ 2 所以 I 1 =

2
1
( y − 1)dy =
1 2
(3)过(1,2) , (4,2)的直线方程为 y = 2, dy = 0,1 ≤ x ≤ 4 所以 I 2 = 于是
解:原式 =


0
a 2 n ( x ′) 2 + ( y ′) 2 dt =a 2 n+1 ∫ dt = 2π ⋅ a 2 n+1
0

2.
v ∫
L
e
x2 + y 2
ds ,其中 L 为圆周 x 2 + y 2 = a 2 ,直线 y = x 及 x 轴在第一象限内所围成的扇形
的整个边界. 解:设圆周与 x 轴和直线 y = x 的交点分别为 A 和 B , 于是原式 =
1
{( y 2 + y ) ⋅ 2 y + ( y − y 2 )}dy
= ∫ ( 2 y 3 + y 2 + y )dy
= 34 3
(2)过(1,1) , (4,2)的直线方程为 x = 3 y − 2, dx = 3dy 所以 原式 =
2

2
1
{3( 4 y − 2) + ( 2 − 2 y )}dy
2
解:原式 = 2a

π
0
(1 − cos t )2 ( x ′)2 + ( y ′)2 dt
π
5
= 2 2a 3 ∫ (1 − cos t ) 2 dt
0
=
256a 3 15
38
《 高等数学》练习(下)
高等数学练习题 系 一.选择题 专业 第二节
第十章
曲线积分与曲面积分 学号
班 姓名 对坐标的曲线积分

4
1
( x + 2)dx =
27 2
原式 = I 1 + I 2 = 14
40
《 高等数学》练习(下)
4. 求

L
( y 2 − z 2 )dx + 2 yzdy − x 2 dz , 其中 L 为曲线 x = t , y = t 2 , z = t 3 (0 ≤ t ≤ 1) 按参数增加的
方向进行. 解:由题意,原式 =
π
1 + 2 2
2.设 L 是由点 O(0,0)经过点 A(1,0) 到点 B(0,1)的折线,则曲线积分 三.计算题 1.

L
( x + y ) ds =
v ∫
L
( x 2 + y 2 ) n ds ,其中 L 为圆周 x = a cos t , y = a sin t ( 0 ≤ t ≤ 2π ).
{∫
OA
+∫ +∫
AB
BO
}e
x2 + y 2
ds
在直线 OA 上 y = 0, ds = dx 得
∫e
x2 + y2
OA
ds =

a
0
e x dx = e a − 1
在圆周 AB 上令 x = a cos θ , y = a sin θ ,0 ≤ θ ≤
π
4

37
《 高等数学》练习(下)
π
∫e
x2 + y2

L
xds 和 ∫ xdy − ydx = [ A ]
L
2 3
(B) 0,0
(C) ,
5 2 8 3
(D) ,0
5 8
二.填空题 1.设设 L 是由原点 O 沿 y = x 到点 A (1,1) ,则曲线积分
2

L
( x − y )dy =
1 6 2 3
.
2.设 L 是由点 A(1,−1) 到 B (1,1) 的线段,则 三.计算题
《 高等数学》练习(下)
高等数学练习题 系 一.选择题 专业 第一节
第十章
曲线积分与曲面积分 学号
班 姓名 对弧长的曲线积分
1.设 L 是连接 A( −1,0) , B (0 ,1) , C (1,0) 的折线,则 (A)0 2.设 L 为椭圆 (A)S 二.填空题 (B) 2

L
( x + y ) ds =
1 4 f ( u)du 。(令 u = x 2 ) ∫ 0 2 A = 2 =
43
=


0

{( 2a 2 cosθ sin θ − 2a sin θ ) ⋅ ( − a sin θ ) + (a 2 cos 2 θ − 4a cosθ ) ⋅ a cosθ }dθ
= ∫ {( −2a 3 cos θ sin 2 θ + 2a 2 sin 2 θ ) + (a 3 cos3 θ − 4a 2 cos 2 θ )}dθ
解:设 P ( x , y ) = 2 xy − y cos x ,
3 2
π
Q( x , y ) = 1 − 2 y sin x + 3 x 2 y 2 ,
因为
∂P ∂ Q = = 6 xy 2 − 2 y cos x ,所以曲线积分与路径无关。 ∂y ∂x
于是 I = [

0
( ,0 ) 2 ( 0 ,0 )
v ∫
L
(2 xy − 2 y )dx + ( x 2 − 4 x) dy =
18π

L
2 其中 L 为在抛物线 2 x = π y 上从点 (2 xy 3 − y 2 cos x)dx + (1 − 2 y sin x + 3 x 2 y 2 ) dy ,
41
《 高等数学》练习(下)
(0,0) 到 ( ,1) 的一段弧。 2
1
3
= 236
3.设 f (u ) 是 u 的连续可微函数,且 点,终点为 ( 2,0) ,求

4 0
f (u ) du = A ≠ 0 , L 为半圆周 y = 2 x − x 2 ,起点为原

L
f ( x 2 + y 2 )( xdx + ydy )
2 2 2 2
解:设 P ( x , y ) = x ⋅ f ( x + y ), Q ( x , y ) = y ⋅ f ( x + y ),
(B)2 (C)3 (D)4
[
C
]
( x + ay )dx + ydy 为某函数的全微分,则 a = ( x + y) 2
(B)0 (C)1
2
[ (D)2
D
]
(A) − 1
3. 设 L 为从 A(1, ) 沿曲线 2 y = x 到点 B ( 2,2) 的弧段, 则曲线积分 (A) − 3 二.填空题 1. 设 L 是 由 点 O (0,0) 到 点 A(1,1) 的 任 意 一 段
39
《 高等数学》练习(下)
= [ x 2 arctan x − x + arctan x − x ]1 0 =
π
2
−2
I2 =
y ∫AO arctan x dy − dx =

0
1
(arctan 1 − 1)dx = 1 −
π
4
所以原式 = I1 + I 2 =
π
2
− 2+1−
π
4
=
π
4
−1
3.计算
1.设 L 以 (1,1) , ( −1,1) , ( −1,−1) , (1,−1) 为顶点的正方形周边,为逆时针方向,则

L
x 2 dy + y 2 dx =
(B)2
2
[D (C)4 (D)0
]
(A)1
2.设 L 是抛物线 y = x (−1 ≤ x ≤ 1) , x 增加的方向为正向,则 (A) 0,
π
+ ∫ π2
( ,1)
π
( ,0 ) 2
]( 2 xy 3 − y 2 cos x)dx + (1 − 2 y sin x + 3x 2 y 2 )dy
= ∫ (1 − 2 y + 3 ⋅ =
2. 证明
1
π2
4
⋅ y 2 )dy
π2
4

(3,4) (1,2)
(6 xy 2 − y 3 )dx + (6 x 2 y − 3 xy 2 ) dy 与路径无关并计算其积分值
42
《 高等数学》练习(下)
因为
∂P ∂Q = 2 xyf ′( x 2 + y 2 ) = ,所以该积分与路径无关。 ∂y ∂x
若记 ( 0,0), ( 2,0) 分别为 O , A 则原积分 =

OA
2
f ( x 2 + y 2 )( xdx + ydy )
= ∫ f ( x 2 ) xdx
0

L
( x + y )dx + ( y − x )dy ,其中 L 是:
2
(1)抛物线 y = x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段; (3)先沿直线从点(1,1)到点(1,2) ,然后再沿直线到点(4,2)的折线. 解: (1)原式 =

2 1
2

L
相关文档
最新文档