MAX1197

合集下载

MAX7491中文资料

MAX7491中文资料

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect devic Rev 0; 7/00
Dual Universal Switched-Capacitor Filters
General Description
The MAX7490/MAX7491 consist of two identical lowpower, low-voltage, wide dynamic range, Rail-to-Rail®, 2nd-order switched-capacitor building blocks. Each of the two filter sections, together with two to four external resistors, can generate all standard 2nd-order functions: bandpass, lowpass, highpass, and notch (band reject). Three of these functions are simultaneously available. Fourth-order filters can be obtained by cascading the two 2nd-order filter sections. Similarly, higher order filters can easily be created by cascading multiple MAX7490/MAX7491s. Two clocking options are available: self-clocking (through the use of an external capacitor) or external clocking for tighter cutoff frequency control. The clockto-center frequency ratio is 100:1. Sampling is done at twice the clock frequency, further separating the cutoff frequency and Nyquist frequency. The MAX7490/MAX7491 have an internal rail splitter that establishes a precise common voltage needed for single-supply operation. The MAX7490 operates from a single +5V supply and the MAX7491 operates from a single +3V supply. Both devices feature a low-power shutdown mode and come in a 16-pin QSOP package.

安全基本监控器-Bihl+Wiedemann GmbH说明书

安全基本监控器-Bihl+Wiedemann GmbH说明书

Safety Basic Monitors 2 x electronic safe outputs Up to 4 x 2 channels safe inputs•optionally the safe inputs will be used as well as standard inputs and signal outputsSafe ASi outputs are supported•max. 32 independent ASi outputsmultiple safe ASi outputs possible via a single addressChip card for storage of configuration data Protection category IP20(Figure similar)FigureModelInputs Safety, SIL 3, Cat. 4Inputs safety,expandable to Outputs Safety, SIL 3, cat. 4 Safety outputs,independent according to SIL 3,expandable toSafety commu-nication Fieldbus interface 1 power supply, 1 gateway for 2 ASi networks,inexpensive power supplies Diagnostic and configuration interface (1)(1)Diagnostic and configuration interface"USB": Access to ASi Master and Safety Monitor with Bihl+Wiedemann proprietary software by using the USB interface."Ethernet diagnostic + Modbus TCP diagnostic": Access to ASi Master and Safety Monitor with Bihl+Wiedemann software or diagnos-tic via Modbus TCP by using the Ethernet diagnostic interface.Article no.Safety Basic Monitor with extended features 3 x 2 channels input 3 optional for speed monitor up to 4kHzmax. 31 x 2 channels, max. 1891 in max.configuration2 release circuits; 2 x elec-tronic safe output max. 32,max. 991 in max configurationSafe LinkSignalingcontactsyes, max. 0,5A/ASi network,max. 8A with ASi power supply Ethernet diagnostic +Modbus TCP (2)diagnostic(2)Modbus TCP diagnostic capability from Ident.no.: 15775 (see lateral label). For a full-fledged Modbus TCP fieldbus interface use one of our Modbus TCP gateways in stainless steel or Modbus TCP gateways with integrated safety monitor.BWU2852Safety BasicMonitor with extended features4 x 2 channelsinputs 3+4optional forspeed monitorup to 4kHz max. 31 x 2channels2 release circuits; 2 x elec-tronic safe output max. 16–Signaling contactsyes, max. 0,5A/ASi network,max. 8A with ASi power supplyUSB BWU2700Safety Basic Monitor with extended features4 x 2 channels,inputs 3+4compatible as replacement with consortial monitormax. 31 x 2 channels 2 release circuits; 2 x elec-tronic safe outputmax. 16–ASi monitors no, max. 8A/ASi networkUSB BWU2567Article no.BWU2567BWU2700BWU2852Connection ConnectionCOMBICON clampsLength of connector cable unlimited (1)Safety Monitor Respond delay <40ms ASi Master ASi Master integratedInterfaceDiagnostic and configuration interfaceUSBEthernet diagnostic + Modbus TCP diagnosticchip card slotASiVoltage30V (18...31,6V)Max. current consumption200mA(2)Max. current withinternal decoupling out of AUX─500mA(2),(4) AUXVoltage24V (20...30V) (PELV)Max.current consumption max. 4AInputNumber4x 2-channel safe inputs SIL3, cat.4 or8 standard inputs and signaling outputs 3x 2-channel safe inputs SIL3,cat.4 or6 standard inputs and signalingoutputsSwitching current15mA (T=100μs), continuously 4mA at 24VSafety signal floating contactsinputs 3+4 optional for OSSDsfloating contacts or OSSDsSupply voltage out of AUXSensor supply short-circuit and overload protected according to EN 61131Network connection betweenthe safe input terminalsmax. resistance 150ΩOutputNumber2(4) output switching elements;semiconductor outputs (output circuits 1 and 2)max. contact load: 700mA DC-13 at 24V(2)Supply voltage out ofAUXActuator supply short-circuit and overload protected according to EN 61131Max. output current signal out-puts10mA per outputMax. output current for OSSDsupply1,4A (S71)(2)–Test pulse if output is on:minimum interval between 2 test pulses: 250ms (from safety version 4.3);maximum pulse width 1msDisplayLED S1...Sn (yellow)state of safe input S1...S8state of safe input S1...S6 LED SM (green/yellow/red)state of Safety MonitorLED ASi M (green/yellow/red)state of ASi masterLED O1 (green/yellow/red)output 1 has switchedLED O2 (green/yellow/red)output 2 has switchedLED NET (green)–Modbus communication active 1 button ServiceArticle no.BWU2567BWU2700BWU2852Environment Applied standardsEN 60529EN 61508EN 62061EN 61131EN ISO 13849-1Operation altitude max. 2000mAmbient temperature0°C …+55°C-30°C …+55°C (5)no condensation permittedStorage temperature -25°C …+85°C-25°C …+85°C Housing plastic, for DIN rail mountingProtection classIP20Tolerable loading referring to humidityaccording to EN 61131-2Voltage of insulation ≥500V Weight160g Dimensions (W / H / D in mm)22,5 / 99 / 114Mounting position vertical (mounting rail horizontal, ASi clamps pointing downwards)(3)MountingCan be combined with Bihl+Wiedemann devices of the same design and neighboring devices with max. 3W heat radiation. For higher heat radiation, a minimum distance of one module width(22.5mm) must be provided.(1)Loop resistance ≤150Ω(2)(3)Make sure there is adequate ventilation. The supply air temperature at the bottom of the housing may not exceed values specified under ambient temperature.(4)(5)temperature range up to -30°C from Ident.No.≥16254.Article no.BWU2567BWU2700BWU2852Wiring rulesArticle no.BWU2567BWU2700BWU2852ASi Safety Monitor Safety MonitorSafety Basis Monitor, successor for ASi consortialSafety Monitor, replacement compatibleSafety Basis Monitor, with extended featuresOptimized to ASi Monitor operations yesnoRelease circuits1632Antivalent switches for local inputsyesStandstill monitors of local inputs4 x 50Hz3 x 50HzStandstill/speed monitors of local inputs 2-4 axes, up to 400Hz2-4 axes,up to 4kHz1-2 axes, up to 4kHzElectrical dataPower supply decoupling unit–integratedAccessories:•Safety Software for Configuration, Diagnosis and Programming (art.no.BW2916)•Chip card, memory capacity 128 KB (art. no. BW2222)•Safe Contact Expander 1 or 2 independent channels (art. no. BWU2548 / BWU2539)•Safe Contact Expander 10 A or 20 A (art. no. BW3016 / BW3281)•ASi Safety 4I/2O Module, 4 x 2 channels safety inputs and 2 fast electronic safety outputs in IP20 (art.no.BWU2314) as supplementary module•ASi Speed Monitor (art.no.BWU2427 / BWU2849) as supplementary module•USB cable for Safety Basic Monitor (art.no.BW2530)。

MAX4475

MAX4475

概述MAX4575/MAX4576/MAX4577是低电压,高静电放电(ESD)保护,双单极/单掷(SPST)模拟开关。

常关闭(NO)和常开(NC)引脚对± 15kV的ESD保护而不闭锁或损坏。

每个交换机可以处理轨到轨®模拟信号。

关断漏电流0.5nA在25 ° C。

这些适合低失真音频模拟开关应用和首选的解决方案在自动化测试设备或机械继电器开关电流所需的应用程序。

他们具有低功耗的要求(0.5μW),需要更少的电路板空间,比机械更可靠继电器。

每个设备控制的TTL / CMOS输入电压等级是双边的。

这些开关的功能保证操作+2 V至+12 V单电源供电,使他们的理想使用电池供电的应用。

电阻70Ω(最大),交换机之间的匹配,0.5Ω(典型值)单位在指定的信号范围内(2Ω典型)。

MAX4575有两个无开关,MAX4576两个NC交换机和MAX4577有一个NO和一个NC开关。

这些器件采用8引脚μMAX和SO封装。

应用电池供电系统音频和视频信号路由低电压数据采集系统采样和保持电路通信电路继电器替代品____________________________Features?NO / NC引脚的ESD保护± 15kV的(人体模型)± 15KV(IEC 1000-4-2气隙放电)± 8千伏(IEC 1000-4-2接触放电)?与MAX4541/MAX4542/MAX4543引脚兼容?保证电阻+5 V时的70Ω(最大)在+3 V,150Ω(最大)?通电阻平坦度2Ω(典型值)为+5 V在+3 V,6Ω(典型值)?电阻匹配0.5Ω(典型值)为+5 V在+3 V,0.6Ω(典型值)?保证0.5nA漏电流在TA = +25 ° C?2 V至+12 V单电源电压?TTL / CMOS逻辑兼容?低失真:0.015%?- 3dB带宽> 300MHz的?轨到轨信号范围MAX4575/MAX4576/MAX4577± 15kV ESD保护,低电压,双通道,单刀单掷,CMOS模拟开关______________________________________________________________ __马克西姆综合产品119-1762;冯0 7 / 00;对于免费样品和最新文献,参观访问www.maxim - 或电话1-800-998-8800。

MAX2659ELT+T;MAX2659ELTV+T;MAX2659ELT+TG47;MAX2659EVKIT+;中文规格书,Datasheet资料

MAX2659ELT+T;MAX2659ELTV+T;MAX2659ELT+TG47;MAX2659EVKIT+;中文规格书,Datasheet资料

PARAMETER Supply Voltage
Supply Current
Digital Input-Logic High Digital Input-Logic Low Digital Input Current RFIN DC Voltage
CONDITIONS SHDN = high Shutdown mode, SHDN = low
MAX2659
19-0797; Rev 4; 8/11 EVAALVUAAILTAIOBNLEKIT
GPS/GNSS Low-Noise Amplifier
General Description
The MAX2659 high-gain, low-noise amplifier (LNA) is designed for GPS, Galileo, and GLONASS applications. Designed in Maxim’s advanced SiGe process, the device achieves a 20.5dB gain and an ultra-low-noise figure of 0.8dB while maximizing the input-referred 1dB compression point and the 3rd-order intercept point at -12dBm and -5dBm, respectively.
Note 4: Measured with a tone located at 5MHz offset from the center of the GPS band.
2 _______________________________________________________________________________________ /

MAX941CSA中文资料

MAX941CSA中文资料

ELECTRICAL CHARACTERISTICS
(V+ = 2.7V to 6.0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C. See Note 14.)
PARAMETER Positive Supply Voltage Input Voltage Range
Internal hysteresis ensures clean output switching, even with slow-moving input signals. The MAX941 features latch enable and device shutdown.
The single MAX941 and dual MAX942 are offered in a tiny µMAX package. Both the single and dual MAX942 are available in 8-pin DIP and SO packages. The quad MAX944 comes in 14-pin DIP and narrow SO packages.
__________________________________________________________Pin Configurations
TOP VIEW
MAX941
V+ 1 IN+ 2 IN- 3 SHDN 4
8 N.C. 7 OUT 6 GND 5 LATCH
DIP/SO/µMAX
SYMBOL V+
V
MIN TYP MAX UNITS

MAX2605-MAX2609中文资料

MAX2605-MAX2609中文资料

General DescriptionThe MAX2605–MAX2609 evaluation kits (EV kits) simplify evaluation of this family of voltage-controlled oscillators (VCOs). These kits enable testing of the devices’ per-formance and require no additional support circuitry.Both signal outputs use SMA connectors to facilitate connection to RF test equipment.These EV kits are fully assembled and tested. Their oscil-lation frequencies are set to approximately the midrange of the respective VCOs.Featureso Easy Evaluationo Complete, Tunable VCO Test Board with Tank Circuit o Low Phase Noiseo Fully Assembled and TestedEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits19-1673 Rev 0; 9/00Ordering InformationComponent SuppliersFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.MAX2606 Component ListMAX2605 Component ListE v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 2_______________________________________________________________________________________Quick StartThe MAX2605–MAX2609 evaluation kits are fully assembled and factory tested. Follow the instructions in the Connections a nd Setup section for proper device evaluation.Test Equipment Required•Low-noise power supplies (these are recommended for oscillator noise measurement). Noise or ripple will frequency-modulate the oscillator and cause spectral spreading. Batteries can be used in place of power supplies, if necessary.– Use a DC power supply capable of supplying +2.7V to +5.5V. Alternatively, use two or three 1.5V batteries.– Use a DC power supply capable of supplying +0.4V to +2.4V, continuously variable, for TUNE.Alternatively, use two 1.5V batteries with a resistive voltage divider or potentiometer.•An RF spectrum analyzer that covers the operating frequency range of the MAX2605–MAX2609• A 50Ωcoaxial cable with SMA connectors •An ammeter (optional)Connections and Setup1)Connect a DC supply (preset to +3V) to the V CC and GND terminals (through an ammeter, if desired) on the EV kit.2)Turn on the DC supply. If used, the ammeter readingMAX2607 Component ListMAX2608 Component ListEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________3approximates the typical operating current specified in the MAX2605–MAX2609 data sheet.3)Connect the VCO output (OUT+ or OUT-) to a spec-trum analyzer with a 50Ωcoaxial cable.4)Apply a positive variable DC voltage between 0.4V and 2.4V to TUNE.5)Check the tuning bandwidth on the spectrum analyz-er by varying the tuning voltage (+0.4V to +2.4V).Layout ConsiderationsThe EV kit PC board can serve as a guide for laying out a board using the MAX2605–MAX2609. Generally, the VCC pin on the PC board should have a decoupling capacitor placed close to the IC. This minimizes noisecoupling from the supply. Also, place the VCO as far away as possible from the noisy section of a larger sys-tem, such as a switching regulator or digital circuits.The VCO ’s performance is strongly dependent on the availability of the external tuning inductor. For best per-formance, use high-Q components and choose their val-ues carefully. To minimize the effects of parasitic ele-ments, which degrade circuit performance, place the tuning inductor and C BYP close to the VCO. For higher-frequency versions, include the parasitic PC board inductance and capacitance when calculating the oscillation frequency. In addition, remove the ground plane around and under the tuning inductor to minimize the effect of parasitic capacitance.Noise on TUNE translates into FM noise on the outputs;therefore, keep the trace between TUNE and the control circuitry as short as possible. If necessary, use an RC filter to further suppress noise, as done on the EV kits.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 4_______________________________________________________________________________________Figure 2. MAX2608/MAX2609 EV Kits SchematicFigure 1. MAX2605/MAX2606/MAX2607 EV Kits SchematicEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________5Figure 3. MAX2605/MAX2606/MAX2607 EV Kits ComponentPlacement Guide—Top Silk ScreenFigure 4. MAX2608/MAX2609 EV Kits Component PlacementGuide—Top Silk ScreenFigure 5. MAX2605/MAX2606/MAX2607 EV Kits PC BoardLayout—Component SideFigure 6. MAX2608/MAX2609 EV Kits PC Board Layout—Component SideMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits Figure 7. MAX2605/MAX2606/MAX2607/MAX2608/MAX2609EV Kits PC Board Layout—Ground Plane。

MAX8510 MAX8511 MAX8512 极低噪声、低掉电的线性调压器说明说明书

MAX8510 MAX8511 MAX8512 极低噪声、低掉电的线性调压器说明说明书

General DescriptionThe MAX8510/MAX8511/MAX8512 ultra-low-noise, low-dropout (LDO) linear regulators are designed to deliver up to 120mA continuous output current. These regulators achieve a low 120mV dropout for 120mA load current. The MAX8510 uses an advanced architecture to achieve ultra-low output voltage noise of 11μV RMS and PSRR of 54dB at 100kHz.The MAX8511 does not require a bypass capacitor, hence achieving the smallest PC board area. The MAX8512’s output voltage can be adjusted with an external divider.The MAX8510/MAX8511 are preset to a variety of voltag-es in the 1.5V to 4.5V range. Designed with a P-channel MOSFET series pass transistor, the MAX8510/MAX8511/MAX8512 maintain very low ground current (40μA).The regulators are designed and optimized to work with low-value, low-cost ceramic capacitors. The MAX8510 requires only 1μF (typ) of output capacitance for stability with any load. When disabled, current consumption drops to below 1μA.Package options include a 5-pin SC70 and a tiny 2mm x 2mm x 0.8mm TDFN package.Applications●Cellular and Cordless Phones ●PDA and Palmtop Computers ●Base Stations●Bluetooth Portable Radios and Accessories ●Wireless LANs ●Digital Cameras ●Personal Stereos●Portable and Battery-Powered EquipmentFeatures●Space-Saving SC70 and TDFN (2mm x 2mm) Packages ●11μV RMS Output Noise at 100Hz to 100kHzBandwidth (MAX8510)●78dB PSRR at 1kHz (MAX8510) ●120mV Dropout at 120mA Load●Stable with 1μF Ceramic Capacitor for Any Load ●Guaranteed 120mA Output●Only Need Input and Output Capacitors (MAX8511) ●Output Voltages: 1.5V, 1.8V, 2.5V, 2.6V, 2.7V, 2.8V,2.85V, 3V,3.3V,4.5V (MAX8510/MAX8511) and Adjustable (MAX8512) ●Low 40μA Ground Current ●Excellent Load/Line Transient●Overcurrent and Thermal Protection19-2732; Rev 5; 5/19Output Voltage Selector Guide appears at end of data sheet.Ordering Information continued at end of data sheet.*xy is the output voltage code (see Output Voltage Selector Guide). Other versions between 1.5V and 4.5V are available in 100mV increments. Contact factory for other versions.+Denotes a lead(Pb)-free/RoHS-compliant package.T = Tape and reel.PART*TEMP RANGE PIN-PACKAGEMAX8510EXKxy+T -40°C to +85°C 5 SC70MAX8510/MAX8511/MAX8512Ultra-Low-Noise, High PSRR,Low-Dropout, 120mA Linear RegulatorsOrdering InformationClick here for production status of specific part numbers.IN to GND ................................................................-0.3V to +7V Output Short-Circuit Duration ...........................................Infinite OUT, SHDN to GND .....................................-0.3V to (IN + 0.3V)FB, BP , N.C. to GND ................................-0.3V to (OUT + 0.3V)Continuous Power Dissipation (T A = +70°C)5-Pin SC70 (derate 3.1mW/°C above +70°C) .............0.247W 8-Pin TDFN (derate 11.9mW/°C above = 70°C) .........0.953W Operating Temperature Range ...........................-40°C to +85°CMilitary Operating Temperature Range .............-55°C to +110°C Junction Temperature ......................................................+150°C Storage Temperature Range ............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Lead (Pb)-free packages .................................................+260°C Packages containing lead (Pb) .......................................+240°C(Note 1)SC70Junction-to-Ambient Thermal Resistance (θJA ) ........324°C/W Junction-to-Case Thermal Resistance (θJC ) .............115°C/WTDFNJunction-to-Ambient Thermal Resistance (θJA ) .......83.9°C/W Junction-to-Case Thermal Resistance (θJC ) ...............37°C/W(V IN = V OUT + 0.5V, T A = -40°C to +85°C, unless otherwise noted. C IN = 1μF, C OUT = 1μF, C BP = 10nF. Typical values are at +25°C; the MAX8512 is tested with 2.45V output, unless otherwise noted.) (Note 2)PARAMETER SYMBOL CONDITIONSMIN TYPMAX UNITS Input Voltage Range V IN26VOutput Voltage Accuracy I OUT = 1mA, T A = +25°C-1+1%I OUT = 100µA to 80mA, T A = +25°C -2+2I OUT = 100µA to 80mA-3+3Maximum Output Current I OUT 120mA Current LimitI LIMV OUT = 90% of nominal value 130200300mA Dropout Voltage (Note 3)V OUT ≥ 3V, I OUT = 80mA 80170mVV OUT ≥ 3V, I OUT = 120mA1202.5V ≤ V OUT < 3V, I OUT = 80mA 902002.5V ≤ V OUT < 3V, I OUT = 120mA 1352V ≤ V OUT < 2.5V, I OUT = 80mA 1202502V ≤ V OUT < 2.5V, I OUT = 120mA180Ground Current I Q I OUT = 0.05mA4090µA V IN = V OUT (nom) - 0.1V, I OUT = 0mA 220500Line Regulation V LNR V IN = (V OUT + 0.5V) to 6V, I OUT = 0.1mA 0.001%/V Load RegulationV LDR I OUT = 1mA to 80mA 0.003%/mA Shutdown Supply CurrentI SHDNV SHDN = 0VT A = +25°C 0.0031µAT A = +85°C 0.05Ripple RejectionPSRRf = 1kHz, I OUT = 10mAMAX851078dBMAX8511/MAX851272f = 10kHz, I OUT = 10mA MAX851075MAX8511/MAX851265f = 100kHz, I OUT = 10mAMAX851054MAX8511/ MAX851246MAX8512Low-Dropout, 120mA Linear RegulatorsAbsolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical CharacteristicsPackage Thermal Characteristics Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layerboard. For detailed information on package thermal considerations, refer to /thermal-tutorial .(V IN = V OUT + 0.5V, T A = -40°C to +85°C, unless otherwise noted. C IN = 1μF, C OUT = 1μF, C BP = 10nF. Typical values are at +25°C; the MAX8512 is tested with 2.45V output, unless otherwise noted.) (Note 2)Note 2: Limits are 100% tested at +25°C. Limits over operating temperature range are guaranteed by design.Note 3: Dropout is defined as V IN - V OUT when V OUT is 100mV below the value of V OUT for V IN = V OUT + 0.5V.Note 4: Time needed for V OUT to reach 90% of final value.(V IN = V OUT + 0.5V, C IN = 1μF, C OUT = 1μF, C BP = 10nF, T A = +25°C, unless otherwise noted.)PARAMETER SYMBOLCONDITIONSMINTYP MAXUNITSOutput Noise Voltage (RMS)f = 100Hz to 100kHz, I LOAD = 10mA MAX851011µVMAX8511/MAX8512230f = 100Hz to 100kHz, I LOAD = 80mA MAX851013MAX8511/MAX8512230Shutdown Exit Delay R LOAD = 50Ω (Note 4)300µs SHDN Logic Low Level V IN = 2V to 6V 0.4V SHDN Logic High Level V IN = 2V to 6V 1.5V SHDN Input Bias Current V IN = 6V, V SHDN = 0V or 6VT A = +25°C µA T A = +85°C 0.01FB Input Bias Current (MAX8512)V IN = 6V,V FB = 1.3VT A = +25°C 0.0060.1µA T A = +85°C0.01Thermal Shutdown 160°C Thermal-Shutdown Hysteresis10°C MAX8510OUTPUT VOLTAGE ACCURACYvs. LOAD CURRENTM A X 8510 t o c 02LOAD CURRENT (mA)% D E V I A T I O N (%)10080604020-0.4-0.200.20.40.6-0.60120MAX8510OUTPUT VOLTAGE ACCURACYvs. TEMPERATURETEMPERATURE (°C)% D E V I A T I O N (%)603510-15-0.8-0.6-0.4-0.200.20.40.60.81.0-1.0-4085MAX8510OUTPUT VOLTAGE vs. INPUT VOLTAGEINPUT VOLTAGE (V)O U T P U T V O L T A G E (V )543210.51.01.52.02.53.00.06MAX8512Low-Dropout, 120mA Linear RegulatorsElectrical Characteristics (continued)Typical Operating Characteristics(V IN = V OUT + 0.5V, C IN = 1μF, C OUT = 1μF, C BP = 10nF, T A = +25°C, unless otherwise noted.)MAX8510DROPOUT VOLTAGE vs. OUTPUT VOLTAGEOUTPUT (V)D R O P O U T V O L T A G E (m V )3.02.82.62.42.2501001502002502.03.2MAX8510GROUND PIN CURRENT vs. TEMPERATUREM A X 8510 t o c 08TEMPERATURE (°C)G R O U N D P I N C U R R E N T (µA )603510-153540455030-4085MAX8510OUTPUT NOISE400µs/divMAX8510GROUND PIN CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)G R O U N D P I N C U R R E N T (µA )43211502005010025030035005MAX8510PSRR vs. FREQUENCYFREQUENCY (kHz)P S R R (d B )1101000.14050601020307080900.011000MAX8510OUTPUT NOISE SPECTRAL DENSITYvs. FREQUENCYMAX8510 toc12FREQUENCY (kHz)O U T P U T N O I S E D E N S I T Y (n V /H z )0.11101001.E+031.E+021.E+041.E+010.011000MAX8510DROPOUT VOLTAGE vs. LOAD CURRENTLOAD CURRENT (mA)D R O P O U T V O L T A G E (m V )1008060402030609012015000120MAX8510GROUND PIN CURRENT vs. LOAD CURRENTLOAD CURRENT (mA)G R O U N D P I N C U R R E N T (µA )10080604020408012016020024000120MAX8511PSRR vs. FREQUENCYFREQUENCY (kHz)P S R R (d B )0.111010040506010203070809000.011000MAX8512Low-Dropout, 120mA Linear RegulatorsTypical Operating Characteristics (continued)(V IN = V OUT + 0.5V, C IN = 1μF, C OUT = 1μF, C BP = 10nF, T A= +25°C, unless otherwise noted.)MAX8510LOAD TRANSIENT RESPONSE1ms/div V OUT 10mV/divMAX8510EXITING SHUTDOWN WAVEFORM20µs/divV OUT = 2.85VR LOAD = 47ΩOUTPUT VOLTAGE 2V/divSHUTDOWN VOLTAGEMAX8510LOAD TRANSIENT RESPONSE NEAR DROPOUT1ms/divV OUT 10mV/divMAX8510ENTERING SHUTDOWN DELAY40µs/divC BP = 0.01µFOUTPUT VOLTAGE 2V/divSHUTDOWN VOLTAGEMAX8510REGION OF STABLE C OUT ESRvs. LOAD CURRENTM A X 8510 t o c 20LOAD CURRENT (mA)C O U T E S R (Ω)806040200.11101000.01120100STABLE REGIONMAX8510OUTPUT NOISE vs. BP CAPACITANCEM A X 8510 t o c 13BP CAPACITANCE (nF)O U T P U T N O I S E (µV )1051015202501100MAX8510LINE TRANSIENT RESPONSE200µs/divV IN = 3.5V TO 4VV OUT 2mV/divMAX8510SHUTDOWN EXIT DELAY20µs/divV OUT 1V/divSHUTDOWN VOLTAGEV OUT = 3V C BP = 100nFMAX8512Low-Dropout, 120mA Linear RegulatorsTypical Operating Characteristics (continued)Detailed DescriptionThe MAX8510/MAX8511/MAX8512 are ultra-low-noise, low-dropout, low-quiescent current linear regulators designed for space-restricted applications. The parts are available with preset output voltages ranging from 1.5V to 4.5V in 100mV increments. These devices can supply loads up to 120mA. As shown in the Functional Diagram , the MAX8510/MAX8511 consist of an innovative bandgap core and noise bypass circuit, error amplifier, P-channel pass transistor, and internal feedback voltage-divider. The MAX8512 allows for adjustable output with an external feedback network.The 1.225V bandgap reference is connected to the error amplifier’s inverting input. The error amplifier compares this reference with the feedback voltage and amplifies the difference. If the feedback voltage is lower than the refer-ence voltage, the pass-transistor gate is pulled low. This allows more current to pass to the output and increases the output voltage. If the feedback voltage is too high, the pass transistor gate is pulled high, allowing less cur-rent to pass to the output. The output voltage is fed back through an internal resistor voltage-divider connected to the OUT pin.An external bypass capacitor connected to BP (MAX8510) reduces noise at the output. Additional blocks include a current limiter, thermal sensor, and shutdown logic.Internal P-Channel Pass TransistorThe MAX8510/MAX8511/MAX8512 feature a 1Ω (typ) P-channel MOSFET pass transistor. This provides sev-eral advantages over similar designs using a PNP pass transistor, including longer battery life. The P-channel MOSFET requires no base drive, which considerably reduces quiescent current. PNP-based regulators waste considerable current in dropout when the pass transistor saturates. They also use high base-drive current under heavy loads. The MAX8510/MAX8511/MAX8512 do not suffer from these problems and consume only 40μA of quiescent current in light load and 220μA in dropout (see the Typical Operating Characteristics ).Output Voltage SelectionThe MAX8510/MAX8511 are supplied with factory-set output voltages from 1.5V to 4.5V, in 100mV increments (see Ordering Information ). The MAX8512 features a user-adjustable output through an external feedback net-work (see the Typical Operating Circuits ).To set the output of the MAX8512, use the following equa-tion:OUT REF V R1R2X -1V=where R2 is chosen to be less than 240kΩ and V REF = 1.225V. Use 1% or better resistors.PINNAMEFUNCTIONMAX8510MAX8511MAX8512SC70TDFN -EP SC70TDFN -EP SC70TDFN -EP 151515IN Unregulated Input Supply 232323GNDGround343434SHDN Shutdown. Pull low to disable the regulator.42————BP Noise Bypass for Low-Noise Operation. Connect a 10nF capacitor from BP to OUT. BP is shorted to OUT in shutdown mode.————42FB Adjustable Output Feedback Point575757OUT Regulated Output Voltage. Bypass with a capacitor to GND. See the Capacitor Selection and Regulator Stability section for more details.—1, 6, 841, 2, 6,—1, 6, 8N.C.No connection. Not internally connected.——————EPExposed Pad (TDFN Only). Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point.MAX8512Low-Dropout, 120mA Linear RegulatorsPin DescriptionShutdownThe MAX8510/MAX8511/MAX8512 feature a low-power shutdown mode that reduces quiescent current less than 1μA. Driving SHDN low disables the voltage reference, error amplifier, gate-drive circuitry, and pass transistor (see the Functional Diagram), and the device output enters a high-impedance state. Connect SHDN to IN for normal operation.Current LimitThe MAX8510/MAX8511/MAX8512 include a current lim-iter, which monitors and controls the pass transistor’s gate voltage, limiting the output current to 200mA. For design purposes, consider the current limit to be 130mA (min) to 300mA (max). The output can be shorted to ground for an indefinite amount of time without damaging the part. Thermal-Overload ProtectionThermal-overload protection limits total power dissipation in the MAX8510/MAX8511/MAX8512. When the junction temperature exceeds T J = +160°C, the thermal sensor signals the shutdown logic, turning off the pass transis-tor and allowing the IC to cool down. The thermal sensor turns the pass transistor on again after the IC’s junction temperature drops by 10°C, resulting in a pulsed output during continuous thermal-overload conditions.Thermal-overload protection is designed to protect the MAX8510/MAX8511/MAX8512 in the event of a fault con-dition. For continual operation, do not exceed the abso-lute maximum junction temperature rating of T J = +150°C. Operating Region and Power DissipationThe MAX8510/MAX8511/MAX8512 maximum power dis-sipation depends on the thermal resistance of the case and circuit board, the temperature difference between the die junction and ambient, and the rate of airflow. The power dissipation across the device is:P = I OUT (V IN - V OUT)The maximum power dissipation is:P MAX = (T J - T A) / (θJC + θCA)where T J - T A is the temperature difference between the MAX8510/MAX8511/MAX8512 die junction and the sur-rounding air, θJC is the thermal resistance of the package, and θCA is the thermal resistance through the PC board, copper traces, and other materials to the surrounding air. The GND pin of the MAX8510/MAX8511/MAX8512 per-forms the dual function of providing an electrical connec-tion to ground and channeling heat away. Connect the GND pin to ground using a large pad or ground plane.Noise ReductionFor the MAX8510, an external 0.01μF bypass capaci-tor between BP and OUT with innovative noise bypass scheme reduces output noises dramatically, exhibiting 11μV RMS of output voltage noise with C BP = 0.01μF and C OUT = 1μF. Startup time is minimized by a poweron cir-cuit that precharges the bypass capacitor. Applications InformationCapacitor Selectionand Regulator StabilityUse a 1μF capacitor on the MAX8510/MAX8511/MAX8512 input and a 1μF capacitor on the output. Larger input capacitor values and lower ESRs provide better noise rejection and line-transient response. Reduce output noise and improve load-transient response, stability, and power-supply rejection by using large output capacitors. Note that some ceramic dielectrics exhibit large capaci-tance and ESR variation with temperature. With dielec-trics such as Z5U and Y5V, it may be necessary to use a 2.2μF or larger output capacitor to ensure stability at temperatures below -10°C. With X7R or X5R dielectrics, 1μF is sufficient at all operating temperatures. A graph of the region of stable C OUT ESR vs. load current is shown in the Typical Operating Characteristics.Use a 0.01μF bypass capacitor at BP (MAX8510) for low-output voltage noise. The leakage current going into the BP pin should be less than 10nA. Increasing the capaci-tance slightly decreases the output noise. Values above 0.1μF and below 0.001μF are not recommended. Noise, PSRR, and Transient ResponseThe MAX8510/MAX8511/MAX8512 are designed to deliv-er ultra-low noise and high PSRR, as well as low dropout and low quiescent currents in battery-powered systems. The MAX8510 power-supply rejection is 78dB at 1kHz and 54dB at 100kHz. The MAX8511/MAX8512 PSRR is 72dB at 1kHz and 46dB at 100kHz (see the Power-Supply Rejection Ratio vs. Frequency graph in the Typical Operating Characteristics).When operating from sources other than batteries, improved supply-noise rejection and transient response can be achieved by increasing the values of the input and output bypass capacitors, and through passive filter-ing techniques. The Typical Operating Characteristics show the MAX8510/MAX8511/MAX8512 line- and load-transient responses.MAX8512Low-Dropout, 120mA Linear RegulatorsDropout VoltageA regulator’s minimum dropout voltage determines the lowest usable supply voltage. In battery-powered sys-tems, this determines the useful end-of-life battery volt-age. Because the MAX8510/MAX8511/MAX8512 use aP-channel MOSFET pass transistor, their dropout voltage is a function of drain-to-source on-resistance (RDS(ON)) multiplied by the load current (see the Typical Operating Characteristics ).MAX8512Low-Dropout, 120mA Linear RegulatorsFunctional Diagram*xy is the output voltage code (see Output Voltage Selector Guide). Other versions between 1.5V and 4.5V are available in 100mV increments. Contact factory for other versions.**EP = Exposed pad.+Denotes a lead(Pb)-free/RoHS-compliant package.T = Tape and reel.(Note: Standard output voltage options, shown in bold , are available. Contact the factory for other output voltages between 1.5V and 4.5V. Minimum order quantity is 15,000 units.)PART*TEMP RANGE PIN-PACKAGE MAX8510MXK33/PR3+-55°C to +110°C 5 SC70MAX8510ETAxy+T -40°C to +85°C 8 TDFN-EP** 2mm x 2mm MAX8511EXKxy+T -40°C to +85°C 5 SC70MAX8511ETAxy+T -40°C to +85°C 8 TDFN-EP** 2mm x 2mm MAX8512EXK+T -40°C to +85°C 5 SC70MAX8512ETA+T-40°C to +85°C8 TDFN-EP** 2mm x 2mmPARTV OUT (V)TOP MARKMAX8510EXK16+T 1.6AEX MAX8510EXK18+T 1.8AEA MAX8510ETA25+T 2.5AAO MAX8510EXK27+T 2.7ATD MAX8510ETA28+T 2.8AAR MAX8510EXK29+T 2.85ADS MAX8510MXK33/PR3+ 3.3AUV MAX8510ETA30+T 3AAS MAX8510ETA33+T 3.3AAT MAX8510ETA45+T 4.5AAU MAX8510MXK33/PR3+ 3.3AUV MAX8511EXK15+T 1.5ADU MAX8511ETA18+T 1.8AAV MAX8511ETA25+T 2.5AAP MAX8511ETA26+T 2.6AAW MAX8511EXK28+T 2.8AFA MAX8511ETA29+T 2.85AAX MAX8511EXK89+T 2.9AEH MAX8511EXK31+T 3.1ARS MAX8511ETA33+T 3.3AAY MAX8511EXK45+T4.5AEJ MAX8512ETA+TAdjustableAAQPACKAGE TYPE PACKAGE CODE OUTLINE ND PATTERN NO.8 TDFN T822+121-016890-00645 SC70X5+121-007690-0188MAX8512Low-Dropout, 120mA Linear RegulatorsTypical Operating Circuits (continued)Ordering Information (continued)Output Voltage Selector GuidePackage InformationFor the latest package outline information and land patterns (footprints), go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.Chip InformationPROCESS: BiCMOSREVISION NUMBERREVISION DATE DESCRIPTIONPAGES CHANGED 48/11Corrected errors and added lead-free packages 1, 2, 3, 6, 955/19Updated Output Voltage Selector Guide9Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.MAX8512Low-Dropout, 120mA Linear RegulatorsRevision HistoryFor pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https:///en/storefront/storefront.html.。

ADDA转换器元件集.

ADDA转换器元件集.

ADDA转换器元件集第一部分A/D、D/A转换器基本知识第1章A/D转换器基本原理1.1 A/D转换器概述1.1.1 A/D转换器的作用1.1.2 A/D转换器的编码1.2 A/D转换器的常用术语及性能指标1.3 A/D转换器误差及其对系统性能的影响1.3.1 数据采集系统的误差分配1.3.2 A/D转换器自身的误差1.3.3 数据采集系统的噪声第2章A/D转换器的种类及结构2.1 逐次逼近型A/D转换器2.2 流水线型A/D转换器-型A/D转换器2.4 闪速A/D转换器2.5 积分型A/D转换器2.6 压频转换器2.7 智能A/D转换器2.7.1 智能A/D转换器还是带A/D转换器的控制器2.7.2 作为智能A/D转换器的MSC1210第3章A/D转换器外围电路3.1 信号调理电路3.1.1 电桥3.1.2 信号放大或衰减3.1.3 信号隔离3.1.4 滤波3.2 电压基准的特性及选用3.2.1 电压基准的主要参数3.2.2 常用电压基准的类型3.2.3 电压基准的选用第4章D/A转换器基本原理及分类4.1 D/A转换器基本概念及常用术语4.1.1 D/A转换器的用途4.1.2 D/A转换器的常用术语4.2 D/A转换器的误差及失真4.3 D/A转换器的种类及结构4.3.1 D/A转换器结构简介4.3.2 Kelvin分压器(Kelvin Divider)4.3.3 全解码型D/A转换器4.3.4 二进制加权型D/A转换器(Binary-Weighted DAC)4.3.5 倒T形D/A转换器4.3.6 分段型D/A转换器4.3.7 过采样/内插D/A转换器第二部分A/D、D/A转换器手册A/D转换器选型表D/A转换器选型表A/D、D/A转换器手册ICL7126MAX138/MAX139/MAX140MAX1492/MAX1494TC14433/TC14433AICL7135ICL7135C/TLC7135CTC7135AD570/AD571AD7466/AD7467/AD7468AD7476/AD7477/AD7478AD7476A/AD7477A/AD7478AADCS7476/ADCS7477/ADCS7478AD7813ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 ADC0820TLC0820AC/TLC0820AIAD7820ADC08031/ADC08032/ADC08034/ADC08038 ADC08060ADC08L060ADC08100ADC08200ADC1173ADC1175ADC1175-5ADC08061/ADC08062ADC08161ADC08131/ADC08134/ADC08138ADC08351ADC08831/ADC08832ADCV0831ADS830/ADS831ADS930/ADS931ADS7826/ADS7827/ADS7829MAX100MAX101AMAX104MAX106MAX108MAX152MAX165/MAX166TLC5510/TLC5510A/TLC5540TLC548/TLC549AD876AD578/AD579AD7451/AD7441AD7470/AD7472AD7910/AD7920AD9060AD7810ADC1005ADC1001ADC1061ADC10030ADC10040ADC10065ADC10080ADC10061/ADC10062/ADC10064ADC10461/ADC10462/ADC10464ADC10321ADC10221ADC10731/ADC10732/ADC10734/ADC10738 ADS820/ADS821ADS822/ADS823/ADS825/ADS826/ADS828 ADS5102/ADS5103LTC1091/LTC1092/LTC1093/LTC1094LTC1197/LTC1197L/LTC1199/LTC1199L LTC1392TLV1572MAX151MAX1444MAX1446MAX1448MAX1449MAX1426MAX1425MCP3001THS1030/THS1031THS1040/THS1041TLC1549C/TLC1549I/TLC1549MTLV1549C/TLC1549I/TLC1549MAD572AD574AAD674BAD774BAD678AD871AD1671AD1672AD7450/AD7450A/AD7440AD7452/AD7453AD7457AD7475/AD7495AD7482AD7490AD7492/AD7492-5AD7572AD7572AAD7853/AD7853LAD7854/AD7854LAD7870/AD7875/AD7876AD7870AAD7878AD7893AD7895AD7896AD7898AD9221/AD9223/AD9220ADC912AADC12L066ADC12L063ADC1241ADC1251ADC12010ADC12020ADC12040ADC12H030/ADC12H032/ADC12H034/ADC12H038 ADC12030/ADC12032/ADC12034/ADC12038ADC12041ADC12081ADC12181/ADC12191ADC12281ADC12441ADC12451ADS807ADS1286ADS5410ADS800/ADS801/ADS802 ADS803/ADS804/ADS805 ADS808/ADS809ADS1286ADS5220/ADS5221ADS5410ADS7804ADS7806ADS7808ADS7810ADS7812ADS7816ADS7817ADS7818ADS7822ADS7823ADS7834ADS7835ADS7881CLC5957ICL7109TC7109/TC7109ALTC1272LTC1273/LTC75/LTC76 LTC1274/LTC1277LTC1278LTC1279LTC1282LTC1285/LTC1288LTC1286/LTC1298ADS1286LTC1287LTC1292/LTC1297LTC1400LTC1401LTC1402LTC1404LTC1405LTC1409LTC1410LTC1412LTC1415LTC1420LTC1860/LTC1861LTC1860L/LTC1861LMAX162/MX7572MAX170MAX1211MCP3201TC7109/TC7109ATHS1215/THS1230ADC14061ADC14071ADC14161MAX194MAX1156/MAX1158/MAX1174 MAX1157/MAX1159/MAX1175 ADS850AD679AD7484AD7485AD7871/AD7872AD7894AD7940AD9241AD9243AD7851TLC3541/TLC3545ADS850ADS5421ADS8324THS1401/THS1403/THS1408 THS14F01/THS14F03THS1401-EP/03-EP/08-EPAD676AD1376/AD1377AD9260AD7701AD7715AD7720AD7722AD7723AD7725ADC16061ADS1202ADS7805TLC4541/TLC4545ADS1100/ADS1110ADS1605/ADS1606ADS7807ADS7809ADS7811/ADS7815ADS7813ADS8320/ADS8321ADS8322/ADS8323ADS8325ADS8371ADS8401/ADS8402ADS8411/ADS8412LTC1603LTC1608LTC1864/LTC1865LTC2433-1MAX195MAX1162MAX1165/MAX1166MAX1169MAX1178/MAX1188MAX1179/1187/1189MAX1460MAX1462TC3400TC500/TC500A/TC510/TC514 AD7703LTC2421/LTC2422AD1555/AD1556LTC2401/LTC2402MAX105MAX107MAX1197MAX1198THS0842ADC10D020ADC10D040ADS5203/ADS5204AD7866ADC10D040MAX133/MAX134AD7904/AD7914/AD7924 AD7908/AD7918/AD7928ADC0808/ADC0809ADC0816/ADC0817ADC0844/ADC0848MAX1191MAX1193MAX1195MAX1196TLC0834/TLC0838LTC0831/LTC0832TLC540/TLC541/TLC542AD7911/AD7921AD7912/AD7922AD7934/AD7933AD7936/AD7935AD7938/AD7939AD7994/AD7993AD7998/AD7997AD7776/AD7777/AD7778AD7811/AD7812AD7816/AD7817/AD7818ADC10154/ADC10158ADC10662/ADC10664ADS5120/ADS5121/ADS5122 LTC1090LTC1283LTC1852/LTC1853MAX1090/MAX1092MAX1091/MAX1093MCP3002MCP3004/MCP3008THS1007/THS1009THS10064/THS10082TLC1550I/TLC1550M/TLC1551I TLC1541/TLC1542/TLC1543 TLC1514/TLC1518TLV1571/TLV1578TLV1570TLV1562TLV1543C/TLV1543I/TLV1543M TLV1504/TLV1508AD7858/AD7858LAD7859/AD7859LAD7862AD7864AD7873AD7874AD7880AD7886AD7887AD7888AD7890AD7891AD7892AD7923AD7927AD7992ADC12L030/ADC12L032/ADC12L034/ADC12L038 ADC78H89ADC12048ADC12062ADC12130/ADC12132/ADC12138ADC12662ADS2806/ADS2807ADS7800ADS7824ADS7828ADS7841ADS7842ADS7844ADS7852ADS7861ADS7862ADS7864ADS7870LM12L458LM12454/LM12458/LM12H458LTC1289LTC1290LTC1291LTC1293/LTC1294/LTC1296LTC1594L/LTC1598LMAX115/MAX116MAX186/MAX188MAX197MAX1226/MAX1228/MAX1230MAX1290/MAX1292MAX1291/MAX1293MAX1294/MAX1296MAX1295/MAX1297MAX1304~MAX1306/MAX1308~MAX1310/MAX1312~MAX1314 MCP3202MCP3204/MCP3208THS12082THS1206THS1207/THS1209TLV2553/TLV2556TLV2544/TLV2548TLC2543C/TLC2543I/TLC2543MTLV2541/TLV2542/TLV2545TLC3574/TLC3578/TLC2574/TLC2578TLC2554/TLC2558TLC2551/TLC2552/TLC2555AD7856AD7863AD7865AD7899AD7729ADS7871MAX110/MAX111MAX125/MAX126MAX1067/MAX1068TLC3544/TLC3548AD7654AD73360AD7705/AD7706AD7707AD7709AD7721AD7724ADS1112ADS7825ADS8341/ADS8343ADS8342ADS8344/ADS8345ADS8361ADS8364LTC2436-1MAX1167/MAX1168TC3401TC3402TC3403TC3404TC3405TC530/TC534MAX1400MAX1401MAX1402MAX1403LTC2424/LTC2428LTC2404/LTC2408LTC2412LTC2414/LTC2418LTC1426DAC0800/DAC0802DAC0808DAC0830/DAC0832LTC1329-10/LTC1329-50/LTC1329A-50 LTC1428-50MAX5186/MAX5189AD8600DS1851LTC1665/LTC1660LTC1427-50MAX5180/MAX5183MAX5858LTC1661LTC1662LTC1663LTC1664LTC1669MAX5354/MAX5355MAX5158/MAX5159LTC8043LTC7541ALTC7543/LTC8143LTC1590LTC1666/LTC1667/LTC1668LTC1257MAX5886LTC1456LTC1450/LTC1450LLTC1451/LTC1452/LTC1453LTC1659MAX5120/MAX5121MAX5122/MAX5123MAX5174/MAX5176MAX5175/MAX5177MAX5352/MAX5353MX7845AD7237A/AD7247ALTC1446/LTC1446LLTC1448LTC1454/LTC1454LLTC2602/LTC2612/LTC2622 MAX5154/MAX5155MAX5156/MAX5157MX7837/MX7847LTC1458/LTC1458LLTC2600/LTC2610/LTC2620 MAX535/MAX5351MAX5130/MAX5131MAX5132/MAX5133MAX5150/MAX5151MAX5152/MAX5153MAX5839MX7839DAC14135LTC1591/LTC1597MAX5887LTC1654LTC1658MAX5170/MAX5172MAX5171/MAX5173MAX5195MX7841LTC1595/LTC1596/LTC1596-1 LTC1599MAX5888LTC1650LTC1655/LTC1655LLTC1657/LTC1657LLTC1821MAX5200/MAX5203MAX5204/MAX5207MAX5621/MAX5622/MAX5623 MAX5631/MAX5632/MAX5633。

MAX913中文资料

MAX913中文资料

M A X912/M A X913————单/双路,超高速,低功耗,精密的TTL比较器1.总体描述MAX913(单)和MAX912(双)高速,低功耗比较器是一个拥有独特设计就是在其线性区域是它的比较是可以防止振荡。

没有要求最低输入转换率。

它是由差分输入和互补的TTL输出。

快速传播延迟(10ns的典型值),具有极低的电源电流和宽共模输入范围,包括负电流使MAX912/MAX913达到的低功耗理想效果,高速,单电源+5V(或±5V)的应用,例如有V/F转换器和开关稳压器。

MAX912/MAX913保持着稳定的线性区域输出。

此功能消除了常见的在输出不稳定时产生高速驱动时具有的比较滞销输入信号。

该MAX912/MAX913可以单一+5V电源供电或±5V的分别供应。

该MAX913是一个改进的LT1016的替代品。

在输入一小能量时它提供了更宽的输入电压范围和等效速度。

在MAX912双比较具有同等性能的MAX913并且包括独立的锁存控制功能。

2.应用过零检测器以太网线接收器开关稳压器高速采样电路高速触发器扩展范围的V/F转换器快速脉冲宽度/高度的判别3.特点超快速(为10ns)单+5V或±5V的双电源供电输入范围扩展至负电源以下低功耗:6毫安(+5V)的每次比较无最小输入信号摆率的要求无电源电流扣球稳定的线性区可投入任一电源低失调电压:0.8mV4.引脚配置顶视图:5.绝对最大额定值:正电源电压 (7V)负电源电压..............................................-7V差分输入电压.......................................±15V输入电压....................................-0.3V至15V锁存引脚电压...................................等于耗材连续输出电流.....................................±20mA连续功耗(TA=70℃)8引脚塑料DIP(减少9.09mW/妹高于70°)......727mW 8引脚SO(减少5.88mW/每高于70°).................471mW 8引脚CERDIP(减少8.00mW/每高于70°).........640mW 16引脚塑料DIP(减少10.53mW/高于70°).......842mW 16引脚窄的SO(减免8.70mW/高于70°)..........696mW16引脚CERDIP(减免10.00mW/高于70°)..........800mW工作温度范围:MAX91C......................................................0℃至70℃MAX91E....................................................-40℃至85℃MAX91MJ.................................................-55℃至125℃储存温度范围........................................-65°C至150°C焊接温度(10秒).........................................................300℃注:超越“绝对最大额定值“,即可能造成永久性损坏设备。

MAX713中文资料

MAX713中文资料

BATTERY MANAGEMENT Jul 09, 1998 Switch-Mode Battery Charger Delivers 5AThe fast-charge controller IC3 (Figure 1) normally directs current to the battery via an external pnp transistor. In this circuit, the transistor is replaced with a 5A switching regulator (IC1) that delivers equivalent power with higher efficiency.Figure 1. By controlling the PWM duty cycle of switching regulator IC1, the fast-charge controller (IC3) makes efficient delivery of the battery's charging current.IC1 is a 5A buck switching regulator whose output is configured as a current source. Its internal power switch (an npn transistor) is relatively efficient because V CE(SAT) is small in comparison with the 15V-to-40V inputs. (For applications that require 2A or less, the low-saturation, non-Darlington power switch of a MAX726 offers better efficiency.)R6 senses the battery-charging current and enables IC3 to generate an analog drive signal at DRV. The signal is first attenuated by the op amp to assure stability by reducing gain in the control loop. It then drives IC1's compensation pin (VC), which gives direct access to the internal PWM comparator. IC3 thus controls the charging current via the PWM duty cycle of IC1. The Q1 buffer provides current to the DRV input.Loop stability is also determined by the feedback loop's dominant pole, set by C4 at the CC terminal of IC3. If you increase the value of the battery filter capacitor (C5), you should make a proportional increase in the value of C4. Lower values, however, assure good transient response. If your application produces load transients during the fast-charge cycle, check the worst-case response to a load step. To assure proper termination of the charge, battery voltage should settle within 2msec to 5mV times N (where N is the number of battery cells). More InformationMAX713:QuickView-- Full (PDF) Data Sheet-- Free Samples。

MAXIM MAX709 DATA SHEET

MAXIM MAX709 DATA SHEET

MAX709Power-Supply Monitor with Reset________________________________________________________________Maxim Integrated Products 1__________________Pin Configuration__________Typical Operating CircuitCall toll free 1-800-998-8800 for free samples or literature.19-0136; Rev. 1; 6/94_______________General DescriptionThe MAX709 provides a system reset during power-up,power-down, and brownout conditions. When V CC falls below the reset threshold, RESET goes low and holds the µP in reset for 140ms min after V CC rises above the threshold.The RESET output is guaranteed to be in the correct state with V CC down to 1V. The MAX709 provides excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, or +3V powered systems. The MAX709 is available 8-pin DIP, µMAX, and SO packages._______________________ApplicationsMinimum Component Count, Low-Cost Processor Systems___________________________Featureso +5V, +3.3V, and +3V Versions o No External Components o Low Costo Precise Power-Down Reset Threshold o 140ms Min Power-On Reset Delay o Immune to Short Negative V CC Transients o 8-Pin DIP, µMAX, and SO Packages o Low Supply Current: 35µA - MAX709R/S/T65µA - MAX709L/M______________Ordering Information* Dice are specified at T A = +25°C ,DC parameters only.Note:This part offers a choice of five different reset thresholdvoltages. Select the letter corresponding to the desired nominal reset threshold voltage, and insert it into the blank to complete the part number.查询MAX709供应商M A X 709Power-Supply Monitor with Reset 2_______________________________________________________________________________________Terminal Voltage (with respect to GND)V CC ................................................-0.3V to 6.0V RESET....................................-0.3V to (V CC + 0.3V)Input Current, V CC ..........................................20mA Output Current, RESET .....................................20mA Rate-of-Rise, V CC .........................................100V/µs Continuous Power Dissipation (T A = +70°C)Plastic DIP (derate 9.09mW/°C above +70°C)........727mW µMAX (derate 4.10mW/°C above +70°C).............330mW SO (derate 5.88mW/°C above +70°C).................471mWOperating Temperature RangesMAX709_C___ ...................................0°C to +70°C MAX709_E___ .................................-40°C to +85°C Storage Temperature Range ..................-65°C to +160°C Lead Temperature (soldering, 10sec)....................+300°CELECTRICAL CHARACTERISTICS(V CC = full range, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 1:Supply current is measured with V CC = 3.6V for MAX709R/S/T, and V CC = 5.5V for all versions.ABSOLUTE MAXIMUM RATINGSMAX709Power-Supply Monitor with Reset_________________________________________________________________________________________________33000-60100POWER-UP RESET DELAY vs. TEMPERATURE50250TEMPERATURE (°C)P O W E R -U P R E S E T D E L A Y (m s )60150100-202020010020-60-2060100SUPPLY CURRENT vs. TEMPERATURE4080TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )2060240-60100POWER-DOWN RESET DELAYvs. TEMPERATURE420TEMPERATURE (°C)P O W E R -D O W N R E S ET D E L A Y (µs )60128-202016__________________________________________Typical Operating Characteristics1.0050.997-60-2060100NORMALIZED RESET THRESHOLDvs. TEMPERATURE0.9991.003TEMPERATURE (°C)N O R M A L I Z E D R E S ET T H R E S H O L D201.0010.995M A X 709Power-Supply Monitor with Reset 4_________________________________________________________________________________________________Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the microprocessor (µP) during power-up, power-down, and brownout con-ditions, the MAX709 is relatively immune to short dura-tion negative-going V CC transients (glitches).Figure 1 shows typical transient duration vs. reset com-parator overdrive, for which the MAX709 does not gen-erate a reset pulse. The graph was generated using a negative-going pulse applied to V CC , starting 1.5V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator over-drive). The graph indicates the typical maximum pulse width that a negative-going V CC transient may have without causing a reset pulse to be issued. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, for the MAX709L/MAX709M, a V CC transient that goes 100mV below the reset threshold and lasts 40µs or less will not cause a reset pulse to be issued.A 0.1µF bypass capacitor mounted as close as possible to pin 2 (V CC ) provides additional transient immunity.Ensuring a Valid RESET OutputDown to V CC = 0VWhen V CC falls below 1V, the MAX709 RESET output no longer sinks current—it becomes an open circuit.Therefore, high-impedance CMOS logic inputs con-nected to the RESET output can drift to undermined voltages. This presents no problem in most applica-tions, since most µP and other circuitry is inoperative with V CC below 1V. However, in applications where the RESET output must be valid down to 0V, adding a pull-down resistor to the RESET pin will cause any stray leakage currents to flow to ground, holding RESET low (see Figure 2). The resistance value of R1 is not criti-cal. It should be about 100k Ω, which is large enough not to load RESET and small enough to pull RESET to ground.____________________Pin DescriptionFigure 1.Maximum Transient Duration without Causing aReset Pulse vs. Reset Comparator OverdriveMAX709Power-Supply Monitor with Reset_______________________________________________________________________________________5Interfacing to µPs with Bidirectional Reset PinsMicroprocessors with bidirectional reset pins (such as the Motorola 68HC11 series) can contend with the MAX709 reset output. If, for example the MAX709RESET output is asserted high and the µP wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7k Ωresistor between the MAX709RESET output and the µP reset I/O (see Figure 3).Buffer the MAX709 RESET output to other system com-ponents.CCFigure 3.Interfacing to µPs with Bidirectional Reset I/OM A X 709Power-Supply Monitor with ResetMAX709Power-Supply Monitor with Reset_______________________________________________________________________________________7RESETVCCGND0.045" (1.143mm)0.056" (1.422mm)___________________Chip Topography________________________________________________________Package InformationTRANSISTOR COUNT: 380SUBSTRATE CONNECTED TO V CCMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8___________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©1994 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.M A X 709Power-Supply Monitor with Reset__________________________________________Package Information (continued)。

XC95108

XC95108

Features• 7.5 ns pin-to-pin logic delays on all pins •f CNT to 125 MHz• 108 macrocells with 2400 usable gates • Up to 108 user I/O pins• 5 V in-system programmable (ISP)- Endurance of 10,000 program/erase cycles- Program/erase over full commercial voltage and temperature range• Enhanced pin-locking architecture • Flexible 36V18 Function Block- 90 product terms drive any or all of 18 macrocells within Function Block- Global and product term clocks, output enables, set and reset signals• Extensive IEEE Std 1149.1 boundary-scan (JTAG) support• Programmable power reduction mode in each macrocell• Slew rate control on individual outputs • User programmable ground pin capability• Extended pattern security features for design protection • High-drive 24 mA outputs • 3.3 V or 5 V I/O capability• Advanced CMOS 5V FastFLASH technology• Supports parallel programming of more than one XC9500 concurrently• Available in 84-pin PLCC, 100-pin PQFP , 100-pin TQFP and 160-pin PQFP packagesDescriptionThe XC95108 is a high-performance CPLD providing advanced in-system programming and test capabilities for general purpose logic integration. It is comprised of six 36V18 Function Blocks, providing 2,400 usable gates with propagation delays of 7.5 ns. See Figure 2 for the architec-ture overview.Power ManagementPower dissipation can be reduced in the XC95108 by con-figuring macrocells to standard or low-power modes of operation. Unused macrocells are turned off to minimize power dissipation.Operating current for each design can be approximated for specific operating conditions using the following equation:I CC (mA) =MC HP (1.7) + MC LP (0.9) + MC (0.006 mA/MHz) f Where:MC HP = Macrocells in high-performance mode MC LP = Macrocells in low-power mode MC = Total number of macrocells used f = Clock frequency (MHz)Figure 1 shows a typical calculation for the XC95108device.XC95108 In-System Programmable CPLDDecember 4, 1998 (Version 3.0)Product SpecificationFigure 1: Typical I CC vs. Frequency for XC95108查询XC95108供应商XC95108 In-System Programmable CPLDNote: Function Block outputs (indicated by the bold line) drive the I/O Blocks directlyXC95108 In-System Programmable CPLDAbsolute Maximum RatingsWarning:Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These arestress ratings only, and functional operation of the device at these or any other conditions beyond those listed underRecommended Operating Conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.Recommended Operation Conditions1Note: 1. Numbers in parenthesis are for industrial-temperature range versions.Endurance CharacteristicsSymbol Parameter Value Units V CC Supply voltage relative to GND -0.5 to 7.0 V V IN DC input voltage relative to GND -0.5 to V CC + 0.5 V V TS Voltage applied to 3-state output with respect to GND -0.5 to V CC + 0.5 V T STG Storage temperature -65 to +150 °C T SOLMax soldering temperature (10 s @ 1/16 in = 1.5 mm) +260 °CSymbol Parameter Min Max UnitsV CCINT Supply voltage for internal logic and input buffer 4.75(4.5) 5.25(5.5)VV CCIO Supply voltage for output drivers for 5 V operation 4.75 (4.5) 5.25 (5.5) V Supply voltage for output drivers for 3.3 V operation 3.0 3.6 V V IL Low-level input voltage 0 0.80 V V IH High-level input voltage 2.0 V CCINT +0.5 V V OOutput voltage 0 V CCIO VSymbol Parameter Min Max Units t DR Data Retention 20 - Years N PEProgram/Erase Cycles 10,000 - CyclesXC95108 In-System Programmable CPLDDC Characteristics Over Recommended Operating ConditionsAC CharacteristicsNote: 1. f CNT is the fastest 16-bit counter frequency available, using the local feedback when applicable.f CNT is also the Export Control Maximum flip-flop toggle rate, f TOG .2. f SYSTEM is the internal operating frequency for general purpose system designs spanning multiple FBs.Symbol Parameter Test Conditions Min Max Units V OHOutput high voltage for 5 V operation I OH = -4.0 mAV CC = Min2.4 V Output high voltage for3.3 V operation I OH = -3.2 mA V CC = Min 2.4VV OLOutput low voltage for 5 V operation I OL = 24 mAV CC = Min0.5 V Output low voltage for 3.3 V operation I OL = 10 mA V CC = Min0.4 VI IL Input leakage current V CC = Max V IN = GND or V CC±10.0 µAI IH I/O high-Z leakage current V CC = Max V IN = GND or V CC±10.0 µAC IN I/O capacitance V IN = GND f = 1.0 MHz10.0 pFI CCOperating Supply Current (low power mode, active)V I = GND, No load f = 1.0 MHz100 (Typ) ma Symbol Parameter XC95108-7 XC95108-10XC95108-15 XC95108-20UnitsMin Max Min Max Min Max Min Maxt PDI/O to output valid 7.5 10.0 15.0 20.0 ns t SU I/O setup time before GCK 4.5 6.0 8.0 10.0 ns t H I/O hold time after GCK 0.0 0.0 0.0 0.0 ns t CO GCK to output valid 4.5 6.0 8.0 10.0 ns f CNT 116-bit counter frequency 125.0 111.1 95.2 83.3 MHz f SYSTEM 2Multiple FB internal operating frequency 83.3 66.7 55.6 50.0 MHz t PSU I/O setup time before p-term clock input 0.5 2.0 4.0 4.0 ns t PH I/O hold time after p-term clock input 4.0 4.0 4.0 6.0 ns t PCO P-term clock to output valid 8.5 10.0 12.0 16.0 ns t OE GTS to output valid 5.5 6.0 11.0 16.0 ns t OD GTS to output disable 5.5 6.0 11.0 16.0 ns t POE Product term OE to output enabled 9.5 10.0 14.0 18.0 ns t POD Product term OE to output disabled 9.5 10.0 14.0 18.0 ns t WLHGCK pulse width (High or Low) 4.0 4.5 5.5 5.5 nsXC95108 In-System Programmable CPLDInternal Timing ParametersNote: 3. t PTA is multiplied by the span of the function as defined in the family data sheet.Symbol ParameterXC95108-7 XC95108-10XC95108-15 XC95108-20UnitsMin Max Min Max Min Max Min MaxBuffer Delayst IN Input buffer delay 2.5 3.5 4.5 6.5 ns t GCK GCK buffer delay 1.5 2.5 3.0 3.0 ns t GSR GSR buffer delay 4.5 6.0 7.5 9.5 ns t GTS GTS buffer delay 5.5 6.0 11.0 16.0 ns t OUT Output buffer delay 2.5 3.0 4.5 6.5 ns t EN Output buffer enable/disable delay 0.0 0.0 0.0 0.0 ns Product Term Control Delays t PTCK Product term clock delay 3.0 3.0 2.5 2.5 ns t PTSR Product term set/reset delay 2.0 2.5 3.0 3.0 ns t PTTS Product term 3-state delay 4.5 3.5 5.0 5.0 ns Internal Register and Combinatorial delays t PDI Combinatorial logic propagation delay 0.5 1.0 3.0 4.0 ns t SUI Register setup time 1.5 2.5 3.5 3.5 ns t HI Register hold time 3.0 3.5 4.5 6.5 ns t COI Register clock to output valid time 0.5 0.5 0.5 0.5 ns t AOI Register async. S/R to output delay 6.5 7.0 8.0 8.0 ns t RAI Register async. S/R recovery before clock 7.5 10.0 10.0 10.0 ns t LOGI Internal logic delay 2.0 2.5 3.0 3.0 ns t LOGILP Internal low power logic delay 10.0 11.0 11.5 11.5 ns Feedback Delayst F FastCONNECT matrix feedback delay 8.0 9.5 11.0 13.0 ns t LF Function Block local feeback delay 4.0 3.5 3.5 5.0 ns Time Adders t PTA 3Incremental Product Term Allocator delay 1.0 1.0 1.0 1.5 ns t SLEW Slew-rate limited delay 4.0 4.5 5.0 5.5 ns Figure 3: AC Load CircuitXC95108 In-System Programmable CPLD XC95108 I/O PinsNotes: [1] Global control pinFunction Block Macrocell PC84PQ100TQ100PQ160BScan Order Notes Function Block Macrocell PC84PQ100TQ100PQ160BScanOrderNotes11––– 25 32131––– 45 2131211513 21 31832143129 47 2101321614 22 31533153230 49 20714–2119 29 31234–3634 57 2041531715 23 30935173432 54 2011641816 24 30636183533 56 19817––– 27 30337––– 50 1951851917 26 30038193735 58 1921962018 28 29739203836 59 189110–2624 36 294310–4543 69 186******** 30 291311213937 60 183******** 33 288 [1]312234139 62 180113––– 34 285313––– 52 177114102523 35 282 [1]314244240 63 174115112725 37 279315254341 64 171116122927 42 276 [1]316264442 68 168117133028 44 273317315149 77 1651 18 – – – 43 270 3 18 – – – 74 16221––– 158 26741––– 123 159******** 154 26442578381 134 156******** 156 26143588482 135 15324–4 2 4 25844–8280 133 1502574199 159 255 [1]45618785 138 ******** 1 2 25246628886 139 14427––– 9 24947––– 128 14128765 3 6 246 [1]48638987 140 13829776 4 8 243 [1]49659189 142 135210–97 12 240410––– 147 132211798 6 11 237411669290 143 12921280108 13 234412679391 144 126213––– 14 231413––– 153 12321481119 15 228414689593 146 120215821210 17 225415699694 148 117216831311 18 222416–9492 145 114217841412 19 219417709795 152 1112 18 – – – 16 216 4 18 – – – 155 108XC95108 In-System Programmable CPLDXC95108 I/O Pins (continued)XC95108 Global, JTAG and Power PinsFunction Block Macrocell PC84PQ100TQ100PQ160BScan Order Notes Function Block Macrocell PC84PQ100TQ100PQ160BScanOrderNotes51––– 76 10561–––915152325250 79 10262456765 103 4853335452 82 9963466866 104 4554–4846 72 9664–7573 116 4255345553 86 9365476967 106 3956355654 88 9066487068 108 3657–––788767––– 105 3358365755 90 8468507270 111 3059375856 92 8169517371 113 27510–––8478610––– 107 24511396058 95 75611527472 115 21512406260 97 72612537674 117 18513–––8769613––– 112 155******** 98 66614547876 122 12515436563 101 63615557977 124 9516–6159 96 60616–8179 129 6517446664 102 57617568078 126 35 18 – – – 89 54 6 18 – – – 114 0Pin Type PC84 PQ100 TQ100 PQ160I/O/GCK1 9 24 22 33I/O/GCK2 10 25 23 35I/O/GCK3 12 29 27 42I/O/GTS1 76 5 3 6I/O/GTS2 77 6 4 8I/O/GSR 74 1 99 159TCK 30504875TDI 28474571TDO 59 85 83 136TMS 29494773V CCINT 5 V 38,73,78 7,59,100 5,57,98 10,46,94,157V CCIO 3.3 V/5 V 22,64 28,40,53,90 26,38,51,88 1,41,61,81,121,141GND 8,16,27,42,49,60 2,23,33,46,64,71,77,86 100,21,31,44,62,69,75,84 20,31,40,51,70,80,99GND – – – 100,110,120,127,137GND – – – 160No connects – – – 3,5,7,32,38,39,48,53,55,65,66,67,83,85,93,109, 118,119,125,130,131, 132,149,150,151XC95108 In-System Programmable CPLDOrdering InformationComponent AvailabilityC = Commercial = 0° to +70°C I = Industrial = –40° to +85°CRevision ControlSpeed Options- 2020 ns pin-to-pin delay -1515 ns pin-to-pin delay -1010 ns pin-to-pin delay -7 7 ns pin-to-pin delayPackaging OptionsPC84 84-Pin Plastic Leaded Chip Carrier (PLCC)PQ100100-Pin Plastic Quad Flat Pack (PQFP)TQ100100-Pin Very Thin Quad Flat Pack (TQFP)PQ160160-Pin Plastic Quad Flat Pack (PQFP)Temperature OptionsC Commercial 0°C to +70°C I Industrial –40°C to +85°CXC95108 -7 PQ 160 CDevice TypeSpeed Package TypeNumber of PinsTemperature Range Pins 84 100 160TypePlastic PLCC Plastic PQFP Plastic TQFP PlasticPQFPCode PC84 PQ100 TQ100 PQ160XC95108–20 C(I) C(I) C(I) C(I)–15 C(I) C(I) C(I) C(I)–10 C(I) C(I) C(I) C(I)–7 C(I) C(I) C(I) C(I)Date Revision 12/04/98 Update AC Characteristics and Internal Parameters。

MAX1779中文资料

MAX1779中文资料

MAX1779
Ordering Information
PART MAX1779EUE TEMP. RANGE -40°C to +85°C PIN-PACKAGE 16 TSSOP
Pin Configuration ________________________Applications
TFT Active-Matrix LCD Displays Passive-Matrix LCD Displays PDAs Digital-Still Cameras Camcorders
PARAMETER Input Supply Range Input Undervoltage Threshold IN Quiescent Supply Current SUPP Quiescent Current SUPN Quiescent Current IN Shutdown Current SUPP Shutdown Current SUPN Shutdown Current MAIN BOOST CONVERTER Output Voltage Range FB Regulation Voltage FB Input Bias Current Operating Frequency Oscillator Maximum Duty Cycle Load Regulation Line Regulation Integrator Gm LX Switch On-Resistance LX Leakage Current LX Current Limit Maximum RMS LX Current FB Fault Trip Level POSITIVE CHARGE PUMP VSUPP Input Supply Range VSUPP Falling edge 1.07 2.7 RLX(ON) ILX ILIM ILX = 100mA VLX = +13V 350 IMAIN = 0 to 50mA, VMAIN = +5V VMAIN VFB IFB fOSC VFB = +1.25V, INTG = GND VIN 1.235 -50 212 79 250 85 0.1 0.1 320 1.0 0.01 450 250 1.1 1.14 13 2.0 20 650 1.248 13 1.261 50 288 92 V V nA kHz % % %/V µs Ω µA mA mA V V SYMBOL VIN VUVLO IIN ISUPP ISUPN VIN rising, 40mV hysteresis (typ) VFB = VFBP = +1.5V, VFBN = -0.2V VFBP = +1.5V VFBN = -0.1V V SHDN = 0, VIN = +5V V SHDN = 0, VSUPP = +13V V SHDN = 0, VSUPN = +13V CONDITIONS MIN 2.7 2.2 2.4 0.5 0.25 0.25 0.1 0.1 0.1 TYP MAX 5.5 2.6 1 0.55 0.55 10 10 10 UNITS V V mA mA mA µA µA µA

MAX197BCNI中文资料

MAX197BCNI中文资料

HBEN 5 SHDN 6 D7 7 D6 8 D5 9 D4 10 D3/D11 11 D2/D10 12 D1/D9 13 D0/D8 14
MAX197
24 INT 23 CH7 22 CH6 21 CH5 20 CH4 19 CH3 18 CH2 17 CH1 16 CH0 15 AGND
Functional Diagram appears at end of data sheet.
The MAX197 multi-range, 12-bit data-acquisition system (DAS) requires only a single +5V supply for operation, yet accepts signals at its analog inputs that may span both above the power-supply rail and below ground. This system provides 8 analog input channels that are independently software programmable for a variety of ranges: ±10V, ±5V, 0V to +10V, or 0V to +5V. This increases effective dynamic range to 14 bits, and provides the user flexibility to interface 4mA-to-20mA, ±12V, and ±15V powered sensors to a single +5V system. In addition, the converter is overvoltage tolerant to ±16.5V; a fault condition on any channel does not affect the conversion result of the selected channel. Other features include a 5MHz bandwidth track/hold, a 100ksps throughput rate, software-selectable internal or external clock and acquisition, 8+4 parallel interface, and an internal 4.096V or an external reference. A hardware SHDN pin and two programmable powerdown modes (STBYPD, FULLPD) are provided for lowcurrent shutdown between conversions. In STBYPD mode, the reference buffer remains active, eliminating start-up delays. The MAX197 employs a standard microprocessor (µP) interface. A three-state data I/O port is configured to operate with 8-bit data buses, and data-access and bus-release timing specifications are compatible with most popular µPs. All logic inputs and outputs are TTL/CMOS compatible. The MAX197 is available in 28-pin DIP, wide SO, SSOP, and ceramic SB packages. For a different combination of ranges (±4V, ±2V, 0V to 4V, 0V to 2V), refer to the MAX199 data sheet. For 12-bit bus interface, refer to the MAX196 and MAX198 data sheets.

Agilent 11970系列混合器数据手册说明书

Agilent 11970系列混合器数据手册说明书

Agilent 11970 Series Harmonic MixersData Sheet For use with the Agilent E4407B, 8560E/EC Series, 8566B,71000 Series, and PSA Series spectrum analyzers,plus the N9030A PXA signal analyzerExceptional performanceThe Agilent Technologies 11970 Series harmonic mixers are general purpose mixers employing a dual-diode design to achieve very flat frequency response and lowconversion loss. Each mixer is calibrated across its full band:11970K* 18 to 26.5 GHz 11970A 26.5 to 40 GHz11970Q 33 to 50 GHz 11970U 40 to 60 GHz11970V 50 to 75 GHz 11970W 75 to 110 GHzThis series of mixers has been designed for a local oscillator frequency of 3 to 6.1 GHz. Accurate absolute amplitude measurements can be made by using the mixer’s conversion loss calibration chart. The SWR of the waveguide input is typically 2.2:1 to further minimize measurement uncertainty. The combination of high gain-compression level and low conversion loss provides the maximum dynamic range for measuring input signals.* 11970K is excluded from PXA support18 to 110 GHz11970K*, 11970A, 11970Q, 11970U, 11970V, 11970W19812Easy to useThe excellent frequency response and low conversionloss are achieved without external dc bias or tuning stubs. Since bias and tuning stubs are not required, manualoperation is simplified, and the complexity of hardware and software for automatic systems is greatly reduced. The repeatability of amplitude measurements is also enhanced. The dual-diode design of the mixers further simplifiesmeasurements by suppressing the odd-order harmonics by more than 20 dB, which makes identification of the mixing products easier.RuggedThe rugged Agilent 11970 Series mixers willsurvive input levels up to 100 milliwatts (+20 dBm)with no damage to the mixer diodes. They will withstand shocks up to 30 G’s and the vibration required by MIL-STD 28800C, Type III, Class 3 tests.Figure 1. The 11970 Series mixers have separate LO input and IF output portsAgilent 8560E/EC Series spectrum analyzer Extended frequency 8560E/ECSeriesFrequency extension for the Agilent E4407B,8560E/EC Series, 8566B, and 71000 Series and PSA Series spectrum analyzersThe 11970 Series harmonic mixers are fully compatiblewith the Agilent E4407B, 8560E/EC Series, 8566B (requires a preamplifier), 71000, and PSA Series spectrum analyzers. Accurate frequency and amplitude measurements are made directly from the spectrum analyzer’s display after calibration using the mixer’s calibration chart.Frequency extension for the Agilent N9030A PXA Series signal analyzerThe 11970 Series harmonic mixers (11970K excluded) are also compatible with the N9030A PXA Series high-performance signal analyzer. The PXA offers optional external mixing (Option EXM), enabling it to work with the 11970 Series and other external mixers for frequency extension. An external diplexer is required because the PXA external mixing has a single SMA LO/IF port, whereas the 11970 Series mixers have separate LO and IF ports. Recommended diplexers can be purchased from Agilentas N9020A-E13, or from OML Inc. as DLP.313B.Spectrum analyzerExtended frequency PSA SeriesAgilent E4407B spectrum analyzer Extended frequency E4407B ESA-E SeriesAgilent N9030APXA Series signal analyzer Extended frequency PXA Seriesharmonic mixer3Input frequency, GHzNominal frequency response & conversion loss1826.533 40 50 60 75 110C o n v e r s i o n l o s s , d B50454035302520KAQUVWSpecificationsSpecifications describe the device’s warranted performance over the temperature range 0 to 55° C (except where noted).11970 Series tested with Agilent PSA spectrum analyzersAgilent model number Frequency range (GHz) LOharmonic number Maximum conversion loss (dB) Nominal spectrum analyzer noise (dBm)1 kHz BW Frequency response (dB) Nominal gain compression (dBm)11970K 18 to 26.56– 24 –105 ±1.9 –311970A 26.5 to 40 8– 26 –102 ±1.9 –511970Q 33 to 50 10– 28 –101 ±1.9 –711970U 40 to 60 10– 28 –101 ±1.9 –711970V 50 to 75 14– 40 –92 ±2.1 –311970W75 to 11018–46–85±3.0–1Nominal performance, as noted in the following tables, while not warranted, provides information useful in applying the device.1. An LO power of between 14.5 to 16 dBm at the mixer’s LO input is necessary to achieve the given frequency response and spectrum analyzer amplitude accuracy specifications. When LO power varies between 14 to 18 dBm at the mixer’s LO input, add ±1 dB to the frequency response and spectrum analyzer amplitude accuracy specification.4Agilent model number Flange Weight X Y Z 11970K UG-595/U WR-42 0.17 kg 0.36 lb 36 mm 1.4 in 51 mm 2.0 in 90 mm 3.5 in 11970A UG-599/U WR-28 0.14 kg 0.32 lb 36 mm 1.4 in 51 mm 2.0 in 71 mm 2.8 in 11970Q UG-383/U WR-220.14 kg 0.32 lb36 mm 1.4 in 51 mm 2.0 in 76 mm 3.0 in 11970U UG-383/U-M WR-19 0.14 kg 0.32 lb 36 mm 1.4 in 51 mm 2.0 in 76 mm 3.0 in 11970V UG-385/U WR-15 0.14 kg 0.32 lb 36 mm 51 mm 76 mm 1.4 in 2.0 in 3.0 in 11970WUG-387/U WR-100.14 kg 0.32 lb36 mm 1.4 in51 mm 2.0 in76 mm 3.0 in11970 Series tested with Agilent PXA signal analyzerAgilent model number Frequency range (GHz)LOharmonic number 1Maximum conversion loss (dB)Nominal signalanalyzer noise (dBm)21 kHz BW Frequency response (dB)Nominal gain compression (dBm)11970A 26.5 to 406–/8–26–110/–108±1.9–511970Q 33 to 50 8–/10–28–108/–106±1.9–711970U 40 to 6010–28–106±1.9–711970V 50 to 7512–/14–40 –96/–94±2.1–3 11970W75 to 11018–46 –88±3.0–11. When used with 11970 Series mixer in A-, Q-, or V-band, the PXA’s LO harmonics are automatically switched between two different numbers as listed to optimize conversion loss.2. If the LO harmonics are switched, the noise levels for the signal analyzer/mixer combination will change, corresponding to the different LO harmonic numbers.Ordering Information* Not compatible with N9030A PXA** Required if the 11970 mixer is used with the Agilent PXAWarranty and ServiceStandard warranty for 11970 mixers is 12 monthsStandard warranty for N9029A-E13 diplexer is 3 months, provided by OML, Inc./find/externalmixersAgilent Email Updates/find/emailupdatesGet the latest information on the products and applications you select.LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.Agilent Channel Partners/find/channelpartnersGet the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:/find/contactus Americas Canada (877) 894 4414 Brazil(11) 4197 3500Mexico 01800 5064 800 United States (800) 829 4444 Asia Pacific Australia 1 800 629 485China800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 180****8100Taiwan0800 047 866Other AP Countries(65) 375 8100Europe & Middle East Belgium 32 (0) 2 404 93 40 Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700 * 0.125 €/minute Germany 49 (0) 7031 464 6333 Ireland 1890 924 204Israel 972-3-9288-504/544Italy 39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden 0200-88 22 55United Kingdom 44 (0) 131 452 0200For other unlisted countries:/find/contactusRevised: June 8, 2011Product specifications and descriptions in this document subject to change without notice.© Agilent Technologies, Inc. 2011Published in USA, September 19, 20115968-1445EAgilent Advantage Services is committed to your success throughout your equipment’s lifetime. To keep you competi-tive, we continually invest in tools and processes that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equip-ment and services more effectively. By sharing our measure-ment and service expertise, we help you create the products that change our world./quality/find/advantageservicesAdvancedTCA ® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the Advanced TCA for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high- performance measurement and automation system.。

MAX1290中文资料

MAX1290中文资料
元器件交易网
19-1532; Rev 0; 9/99
KIT ATION EVALU E L B AVAILA
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs with +2.5V Reference and Parallel Interface
D4 5 D3/D11 6 D2/D10 7 D1/D9 8 D0/D8 9
MAX1291
23 COM 22 CH0 21 CH1 20 CH2 19 CH3 18 CH4 17 CH5 16 CH6 15 CH7
Ordering Information
PART MAX1291ACEI MAX1291BCEI MAX1291AEEI MAX1291BEEI TEMP. RANGE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 28 QSOP 28 QSOP 28 QSOP 28 QSOP INL (LSB) ±0.5 ±1 ±0.5 ±1
INT 10 RD 11 WR 12 CLK 13 CS 14
QSOP Pin Configurations continued at end of data sheet.
Ordering Information continued at end of data sheet.
Typical Operating Circuits appear at end of data sheet.
元器件交易网
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs with +2.5V Reference and Parallel Interface MAX1291/MAX1293

MAX809(复位芯片)

MAX809(复位芯片)

3
VCC
Description
Ground
RESET output remains low while VCC is below the reset voltage threshold, and for a reset timeout period after VCC rises above reset threshold
RESET output remains high while VCC is below the reset voltage threshold, and for a reset timeout period after VCC rises above reset threshold
Supply Voltage (Typ)
Typical Applications
• Computers • Embedded Systems • Battery Powered Equipment • Critical Microprocessor Power Supply Monitoring
VCC
VCC MAX809/810
RESET RESET
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.
DEVICE MARKING INFORMATION
VCC PROCESSOR
RESET INPUT
GND
GND

3
1 2
SOT−23 (TO−236) CASE 318

MAX481_MAX483_MAX485_MAX487_MAX1487_MAX490_MAX491_中文资料

MAX481_MAX483_MAX485_MAX487_MAX1487_MAX490_MAX491_中文资料

本文是Maxim 正式英文资料的译文,Maxim 不对翻译中存在的差异或由此产生的错误负责。

请注意译文中可能存在文字组织或翻译错误,如需确认任何词语的准确性,请参考Maxim 提供的英文版资料。

索取免费样品和最新版的数据资料,请访问Maxim 的主页: 。

_____________________________ _概述MAX481、MAX483、MAX485、MAX487-MAX491以及MAX1487是用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器。

MAX483、MAX487、MAX488以及MAX489具有限摆率驱动器,可以减小EMI ,并降低由不恰当的终端匹配电缆引起的反射,实现最高250k b p s 的无差错数据传输。

M A X 481、MAX485、MAX490、MAX491、MAX1487的驱动器摆率不受限制,可以实现最高2.5Mbps 的传输速率。

这些收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120(A 至500(A 之间。

另外,MAX481、MAX483与MAX487具有低电流关断模式,仅消耗0.1µA 。

所有器件都工作在5V 单电源下。

驱动器具有短路电流限制,并可以通过热关断电路将驱动器输出置为高阻状态,防止过度的功率损耗。

接收器输入具有失效保护特性,当输入开路时,可以确保逻辑高电平输出。

MAX487与MAX1487具有四分之一单位负载的接收器输入阻抗,使得总线上最多可以有128个M A X 487/MAX1487收发器。

使用MAX488-MAX491可以实现全双工通信,而MAX481、MAX483、MAX485、MAX487与MAX1487则为半双工应用设计。

_______________________________应用低功耗RS-485收发器低功耗RS-422收发器电平转换器用于EMI 敏感应用的收发器工业控制局域网____________________下一代器件的特性♦容错应用MAX3430: ±80V 故障保护、失效保护、1/4单位负载、+3.3V 、RS-485收发器MAX3440E-MAX3444E: ±15kV ESD 保护、±60V 故障保护、10Mbps 、失效保护、RS-485/J1708收发器♦对于空间受限应用MAX3460-MAX3464: +5V 、失效保护、20Mbps 、Profibus RS-485/RS-422收发器MAX3362: +3.3V 、高速、RS-485/RS-422收发器,采用SOT23封装MAX3280E-MAX3284E: ±15kV ESD 保护、52Mbps 、+3V 至+5.5V 、SOT23、RS-485/RS-422、真失效保护接收器MAX3293/MAX3294/MAX3295: 20Mbps 、+3.3V 、SOT23、RS-485/RS-422发送器♦对于多通道收发器应用MAX3030E-MAX3033E: ±15kV ESD 保护、+3.3V 、四路RS-422发送器♦对于失效保护应用MAX3080-MAX3089: 失效保护、高速(10Mbps)、限摆率RS-485/RS-422收发器♦对于低电压应用MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V 供电、±15kV ESD 保护、12Mbps 、限摆率、真正的RS-485/RS-422收发器MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487低功耗、限摆率、RS-485/RS-422收发器_____________________________________________________________________选择表19-0122; Rev 8; 10/03定购信息在本资料的最后给出。

表格数据的图形化1

表格数据的图形化1

表格数据的图形化-1一、选择题1.在Excel中建立图表时,我们一般( )A.建完图表后,再输入数据B.先输入数据,再建立图表C.在输入的同时,建立图表D.首先建立一个图表标签2.在Excel中,在下面的选项中,正确的是( )。

①、Excel具有强大的数据分析功能②、Excel具有图表处理等能力③、在Excel中可以利用宏观功能简化操作④、Excel具有分类汇总的功能A.①②④B.①②③④C.①③④D.②③④3.在Excel2003中将数据用条形、线条、柱形、点及其它形状表示,这些形状统称为( )A.数据标示B.数组C.数据表D.图表4.Excel广泛应用于( )。

A.工业设计、机械制造、建筑工程等各个方面B.统计分析、财务管理分析、股票分析和经济、行政管理等各个方面C.美术设计、装潢、图片制作等各个方面D.多媒体制作5.EXCEL的主要功能是( )A.表格处理,文字处理,文件处理B.表格处理,网络通讯,图表制作C.表格处理,数据处理,图表制作D.表格处理,数据处理,网络通讯表格数据的图形化-2一、选择题1.EXCEL处理的对象是( )A.工作簿B.文档C.程序D.图形2.Excel电子表格中,饼图主要是用来表示( )A.不同项目之间的数目B.事物随时间变化C.各部分数据在总体中的百分比D.各数据的平均值3.在EXCEL中,最适合反映数据之间量的变化快慢的一种图表类型是( )A.柱形图B.散点图C.饼图D.折线图4.在Excel 中,当修改工作表数据时,图表( )A.不会更新B.不一定更新C.会被更新D.有时会被更新5.在Microsoft Excel中,图表是工作表数据的一种视觉表示形式,图表是动态的,改变图表( )后,系统就会自动更新图表A.X轴数据B.Y轴数据C.图例D.所依赖数据表格数据的图形化-3一、选择题1.Excel表格数据的图形化步骤( )A.选定数据区域→应用“图表向导”→插入图表B.选定数据区域→插入图表→应用“图表向导”C.应用“图表向导”→选定数据区域→插入图表D.应用“图表向导”→插入图表→选定数据区域2.在EXCEL中,最适合反映单个数据在所有数据构成的总和中所占比例的一种图表类型是( )A.柱形图B.条形图C.饼图D.折线图3.为了直观使用图表分析比较各省金、银、铜牌的数量,最好使用哪种图表()A.柱形图B.雷达图C.饼形图D.折线图4.Excel 图表的显著特点是工作表中的数据变化时,图表( )A.随之改变B.不出现变化C.自然消失D.生成新图表,保留原图表表格数据的数值计算-1一、选择题1.Excel中单元格的地址B12表示( )A.第12列B行B.第B列12行C.第B列的前12个单元格D.第B列的后12个单元格2.算式“12×6-24÷4”在Excel中进行计算,输入的计算格式为( )A.12×6-24÷4=B.=12×6-24÷4C.12*6-24/4=D.=12*6-24/43.Excel文件默认的扩展名是_________。

python中solution类与maxdepth方法

python中solution类与maxdepth方法

python中solution类与maxdepth方法摘要:1.Python中的Solution类2.Solution类的maxdepth方法3.使用maxdepth方法优化解决方案4.实例分析5.总结与建议正文:在Python中,Solution类通常用于解决复杂问题,它可以帮助我们将问题分解为更小的部分,并实现高效的解决方案。

Solution类的maxdepth方法则是一种优化技术,它可以限制解决方案的深度,从而提高算法的效率。

**1.Python中的Solution类**Solution类是一个泛指,它可以代表任何解决复杂问题的类。

在Python 中,我们可以自定义一个Solution类,用于封装问题的解决方案。

通过继承和多态,我们可以针对不同的问题设计相应的Solution子类。

**2.Solution类的maxdepth方法**maxdepth方法是一种优化技术,用于限制解决方案的深度。

在递归算法中,maxdepth可以防止栈溢出,提高程序的稳定性。

maxdepth方法接收一个整数参数,表示允许的最大深度。

在实现maxdepth方法时,我们需要判断当前解决方案的深度是否超过最大深度,如果超过,则返回一个错误提示,否则继续执行解决方案。

**3.使用maxdepth方法优化解决方案**在实际应用中,我们可以通过以下步骤使用maxdepth方法优化解决方案:1.分析问题,确定合适的递归策略。

2.设计Solution类,并实现maxdepth方法。

3.在递归过程中,调用maxdepth方法,判断当前深度是否超过最大深度。

4.如果超过最大深度,返回错误提示或采取其他策略,如回溯、剪枝等。

5.如果没有超过最大深度,继续执行解决方案。

**4.实例分析**以八皇后问题为例,我们可以设计一个Solution类并实现maxdepth方法来优化解决方案:```pythonclass Solution:def maxdepth(self, n: int) -> int:if n <= 1:return 0return 1 + max(self.maxdepth(i) for i in range(1, n + 1) if self.check(n, i))def check(self, n: int, i: int) -> bool:for j in range(n):if i == j or i == n - j - 1:continueif self.check(n - 1, j) and self.check(n - 1, i - j):return Truereturn Falsedef solveNQueens(self, n: int) -> List[List[str]]:self.res = []self.max_depth = self.maxdepth(n)self.dfs(0, 0, n, self.res)return self.resdef dfs(self, row: int, col: int, n: int, res: List[List[str]]) -> None: if row == n:res.append(["".join(item) for item in self.board])returnfor i in range(n):if self.check(n, i):self.board[row][i] = "Q"self.dfs(row + 1, i + 1, n, res)self.board[row][i] = "."def board = [[None] * n for _ in range(n)]**5.总结与建议**在解决复杂问题时,使用Solution类和maxdepth方法可以提高算法的可读性和实用性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

37
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
36 35 34 33 32 31
N.C. N.C. OGND OVDD OVDD OGND N.C. N.C. D0B D1B D2B D3B
Applications
Baseband I/Q Sampling Multichannel IF Sampling Ultrasound and Medical Imaging Battery-Powered Instrumentation WLAN, WWAN, WLL, MMDS Modems Set-Top Boxes VSAT Terminals
Dual, 8-Bit, 60Msps, 3V, Low-Power ADC with Internal Reference and Parallel Outputs MAX1197
ABSOLUTE MAXIMUM RATINGS
VDD, OVDD to GND ...............................................-0.3V to +3.6V OGND to GND.......................................................-0.3V to +0.3V INA+, INA-, INB+, INB- to GND ...............................-0.3V to VDD REFIN, REFOUT, REFP, REFN, COM, CLK to GND .................................-0.3V to (VDD + 0.3V) OE, PD, SLEEP, T/B, D7A–D0A, D7B–D0B to OGND .............................-0.3V to (OVDD + 0.3V) Continuous Power Dissipation (TA = +70°C) 48-Pin TQFP (derate 12.5mW/°C above +70°C).........1000mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-60°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
Features
MAX1197
Ordering Information
PART MAX1197ECM TEMP RANGE -40°C to +85°C PIN-PACKAGE 48 TQFP-EP*
*EP = Exposed paddle Functional Diagram and Pin Compatible Upgrades table appear at end of data sheet.
TQቤተ መጻሕፍቲ ባይዱP-EP
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
19-2411; Rev 0; 4/02
Dual, 8-Bit, 60Msps, 3V, Low-Power ADC with Internal Reference and Parallel Outputs
General Description
The MAX1197 is a 3V, dual, 8-bit analog-to-digital converter (ADC) featuring fully differential wideband trackand-hold (T/H) inputs, driving two ADCs. The MAX1197 is optimized for low-power, small size, and high-dynamic performance for applications in imaging, instrumentation and digital communications. This ADC operates from a single 2.7V to 3.6V supply, consuming only 120mW while delivering a typical signal-to-noise and distortion (SINAD) of 48.5dB at an input frequency of 30MHz and a sampling rate of 60Msps. The T/H-driven input stages incorporate 400MHz (-3dB) input amplifiers. The converters may also be operated with singleended inputs. In addition to low operating power, the MAX1197 features a 3mA sleep mode as well as a 0.1µA power-down mode to conserve power during idle periods. An internal 2.048V precision bandgap reference sets the full-scale range of the ADC. A flexible reference structure allows the use of this internal or an externally applied reference, if desired, for applications requiring increased accuracy or a different input voltage range. The MAX1197 features parallel, CMOS-compatible threestate outputs. The digital output format can be set to two’s complement or straight offset binary through a single control pin. The device provides for a separate output power supply of 1.7V to 3.6V for flexible interfacing with various logic families. The MAX1197 is available in a 7mm x 7mm, 48-pin TQFP package, and is specified for the extended industrial (-40°C to +85°C) temperature range. Pin-compatible lower and higher speed versions of the MAX1197 are also available. Refer to the MAX1195 data sheet for 40Msps and the MAX1198 data sheet for 100Msps. In addition to these speed grades, this family will include a multiplexed output version (MAX1196, 40Msps), for which digital data is presented time interleaved and on a single, parallel 8-bit output port. For a 10-bit, pin-compatible upgrade, refer to the MAX1182 data sheet. With the N.C. pins of the MAX1197 internally pulled down to ground, this ADC becomes a drop-in replacement for the MAX1182. o Single 2.7V to 3.6V Operation o Excellent Dynamic Performance 48.5dB/45.3dB SINAD at fIN = 30MHz/200MHz 69dBc/53.5dBc SFDR at fIN = 30MHz/200MHz o -72dB Interchannel Crosstalk at fIN = 20MHz o Low Power 120mW (Normal Operation) 9mW (Sleep Mode) 0.3µW (Shutdown Mode) o 0.05dB Gain and ±0.05° Phase Matching o Wide ±1VP-P Differential Analog Input Voltage Range o 400MHz -3dB Input Bandwidth o On-Chip 2.048V Precision Bandgap Reference o User-Selectable Output Format—Two’s Complement or Offset Binary o Pin-Compatible 8-Bit and 10-Bit Upgrades Available
相关文档
最新文档