2017概率作业纸答案
概率作业纸第六章答案
概率作业纸第六章答案第六章参数估计第⼀节参数的点估计⼀、选择1. 以样本的矩作为相应(同类、同阶)总体矩的估计⽅法称为(A ). (A) 矩估计法 (B) ⼀阶原点矩法 (C) 贝叶斯法 (D) 最⼤似然法2. 总体均值)(X E 的矩估计值是(A ).(A )x (B )X (C )1x (D )1X⼆、填空1.设总体X 服从泊松分布)(λP ,其中0>λ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数λ的最⼤似然估计值为x .2.设总体X 在区间[]θ,0上服从均匀分布,其中0>θ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数θ的矩估计值为x 2. 三、简答题1. 设设总体X 的概率密度为,0()0, 0x e x f x x θθ-?>=?≤?,求参数θ的矩估计值.解:,0dx xe EX x ?+∞-=θθ设du dx u x x u θθθ1,1,===则00111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞==-+=+-?=θ1故1EXθ=,所以x 1?=θ2. 设总体X 服从⼏何分布.,3,2,1,)1();(1 =-=-x p p p x p x 如果取得样本观测值为n x x x ,,,21 ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v 1)()(1==,所以x x n p ni i ==∑=111由此可得参数的矩估计值为xp1=. 似然函数为nx n ni x ni i i p p p p p L -=-∑-=-==∏1)1())1(()(11取对数,得).1ln()(ln )(ln 1p n xp n p L ni i--+=∑=于是,得0)(11)(ln 1=---=∑=ni i n x p p n dp p L d .由此可得参数的最⼤似然估计值为x p1?=. 3. 设总体X 服从“0-1”分布: .1,0,)1();(1=-=-x p p p x p x x如果取得样本观测值为)10(,,,21或=i n x x x x ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v ==)()(1,所以x x n p ni i ==∑=11由此可得参数的矩估计值为x p=?. 似然函数为∑-∑=-===-=-∏ni ini iiix n x ni x x p pp pp L 11)1())1(()(11取对数,得).1ln()(ln )()(ln 11p x n p x p L ni ini i--+=∑∑==于是,得0)(111)(ln 11=---=∑∑==ni i n i i x n p x p dp p L d .由此可得参数的最⼤似然估计值为x p=?.第⼆节衡量点估计好坏的标准⼆、选择1. 估计量的⽆偏性是指( B ).(A )统计量的值恰好等于待估总体参数(B) 所有可能样本估计值的数学期望等于待估总体参数 (C) 样本估计值围绕待估总体参数使其误差最⼩ (D) 样本量扩⼤到和总体单元相等时与总体参数⼀致 2. 估计量的有效性是指( C ).(A )估计量的数学期望等于被估计的总体参数 (B) 估计量的具体数值等于被估计的总体参数 (C) 估计量的⽅差⽐其它估计量的⽅差⼩ (D) 估计量的⽅差⽐其它估计量的⽅差⼤ 3. 估计量的⼀致性是指( D ).(A) 估计量的具体数值等于被估计的总体参数 (B) 估计量的⽅差⽐其它估计量的⽅差⼩ (C) 估计量的⽅差⽐其它估计量的⽅差⼤(D) 随样本容量的增⼤,估计量的值越来越接近被估计的总体参数⼆、填空1.设),,(??2111n X X X θθ=与),,(??2122n X X X θθ=都是参数θ的⽆偏估计量,如果 )?()?(21θθD D <,则称1?θ⽐2θ有效. 2. 设总体X 的均值µ=)(X E ,⽅差2)(σ=X D ,则x 是总体均值的⽆偏的、有效的、⼀致的估计量,2S 是总体⽅差的⽆偏的、有效的、⼀致的估计量.三、简答题1.从总体X中抽取样本321,,X X X ,证明下列三个统计量,632?3211X X X ++=µ,442?3212X X X ++=µ,333?3213X XX ++=µ都是总体均值的⽆偏估计量;并确定哪个估计更有效.证:设总体X 的均值与⽅差分别为µ=)(X E ,2)(σ=X D .则因为样本与总体服从相同的分布,所以有µ=)(i X E ,.3,2,1,)(2==i X D i σ所以有;613121)632()?(3211µµµµµ=++=++=X X X E E ;412121)422()?(3212µµµµµ=++=++=X X X E E .313131)333()?(3213µµµµµ=++=++=X X X E E 所以1µ,2µ,3µ都是总体均值的⽆偏估计量.;1873619141)632()?(22223211σσσσµ=++=++=X X X D D ;8316116141)442()?(22223212σσσσµ=++=++=X X X D D ;31919191)333()?(22223213σσσσµ=++=++=X X X D D 因为),?()?()?(123µµµD D D <<所以认为估计量3?µ更有效. 2.设1?θ和2?θ为参数θ的两个独⽴的⽆偏估计量,且假定21?2?θθD D =,求常数c 和d ,使21θθθd c +=为θ的⽆偏估计,并使⽅差θ?D 最⼩. 解:由于θθθθθθ)(??)??(?2121d c dE cE d c E E +=+=+=,且知θθ=?E ,故得c+d=1。
概率作业纸第二章答案
第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC ⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为C B A第四节 概率的古典定义一、选择1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A )21 (B )53 (C )103 (D )101 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为11322535C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为1910102091812=C C C 。
三、简答题1.将3个球随机地投入4个盒子中,求下列事件的概率(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球;(3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。
解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 第五节 概率加法定理一、选择1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A))()(AB P C P = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P2.已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。
概率作业纸第二章答案
第二章 随机变量及其分布第二节 离散随机变量一、选择1. 设离散随机变量X 的分布律为:),3,2,1(,}{ ===k b k X P k λ 且0>b ,则λ为( C )(A) 0>λ (B)1+=b λ (C)b +=11λ (D)11-=b λ 二、填空1.进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是{} 1,2, , 54)51(1=⋅==-K K X P K三、计算题1. 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============第三节 超几何分布 二项分布 泊松分布一、选择1.设随机变量),3(~),,2(~p B Y p B X , {}{}()CY P X P =≥=≥1,951则若(A)43 (B)2917 (C)2719 (D)97 二、填空1.设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{})0902.0_____(32_42-=e X P =则.三、计算题1.某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍. (1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率;9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~10610682108≈-≈=-=≥≈===≈==≈====⨯====⋯===------X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、填空题1.设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 . ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取( A )(A)52,53-==b a (B)32,32==b a (C)23,21=-=b a (D)23,21-==b a 2.设⎪⎪⎩⎪⎪⎨⎧≥<<**≤=2,12)(,4)(,0)(2x x xx x F ,当(*)取下列何值时,)(x F 是连续型随机变量的分布函数.( A )(A) 0 (B) 0.5 (C) 1.0 (D)1.5三.计算题1.设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A 第六节 连续随机变量的概率密度一、选择1.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它(B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为+∞<<∞-+=x x x F ,arctan 121)(π(1)(11)P X -≤≤= 0.5 (2)概率密度()f x =2111x +⋅π 三、计算题1. 设随机变量X 的概率密度:,10(),010,1c x x f x c x x x +-≤≤⎛=-≤≤ >⎝求:(1)常数c ;(2)概率(0.5)P X ≤ 解:(1)1)()(11=-++⎰⎰-dx x c dx x c ,c=1(2) (0.5)P X ≤=75.0)1()1(5.005.0=-++⎰⎰-dx x dx x2.已知随机变量X 的概率密度1(),2xf x e x -=-∞<<+∞, 求:分布函数()F x 。
17概率题(卷子格式)
1.小王和小亮玩抛硬币的游戏,在抛两枚硬币时,规则如下:抛出两个正面小王胜,抛出一正一反,则小亮胜,请问:这个游戏规则对双方公平吗?2.小明的小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明胜,当所转到的数字之积为偶数时,小刚胜,这个游戏对双方公平吗?3.下面是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,配成紫色小明胜,配不成紫色小亮胜,游戏公平吗?4.在一纸箱中装入尺码相同的 2 双黑袜子和 1双白袜子(不分左右),你随意拿出 2 只,那么恰好是一双的概率是多少?5.小红一次写了3封信,又写了3个信封,如果她任意将3张信纸装入3个信封中,正好有一封信的信纸和信封是一致的概率是多少?6.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率. 1.有两组扑克牌各三张,牌面数字均为1,2,3随意从每组牌中各抽一张,数字和等于4的概率是()A.95B.92C.31D.942.( )A.525B.625C.1025D.19253.某厂生产的2000件产品中,有不合格产品m件,今分10次各抽取50件产品进行检测,平均有不合格产品1件,对m的叙述正确的是()A.40=m B.40≠m C.m的值应在40左右 D.无法确定4.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志。
从而估计该地区有黄羊()A.400只 B 600只 C800只 D1000只5.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条做上标记,然后放回湖里,经过一段时间,第二次再捕上200条,若其中带有标记的鱼有32条,那么估计湖里大约有条鱼.A.300 B.332 C.625 D.128006.袋中有除颜色外其余完全相同的红色、黄色、蓝色、白色球若干个,小明现又放入5个黑球后,小颖通过多次的摸球实验后,发现摸到红色、黄色、白色及黑色的频率分别为25%,30%,10%,5%,试估计出袋中红色、黄色、蓝色及白色球各有多少个?7.口袋中放有2只红球和5只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取二只球,则两次都取到黄球的概率是_____.8.将分别标有1、2、3的三张卡片洗匀后(这三张卡片除号码外完全相同),背面朝上放在桌上,随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,恰好是“32”的概率是 .9.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是;10.图中所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是;1.王大爷承包了一个鱼塘养殖观赏鱼,经他精心喂养鱼的长势很好。
概率作业纸第一章答案
第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为C B A第四节 概率的古典定义一、选择1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A )21 (B )53 (C )103 (D )101 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为11322535C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为1910102091812=C C C 。
三、简答题1.将3个球随机地投入4个盒子中,求下列事件的概率(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球;(3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。
解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 第五节 概率加法定理一、选择1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A))()(AB P C P = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P2.已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。
概率课后习题答案(全)
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1, 且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1). 解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。
概率作业纸第四章答案
第四章 正态分布第一节 正态分布的概率密度与分布函数一、选择1. 设),(~2σμN X ,那么当σ增大时,则)(σμ<-X P ( C ) (A) 增大 (B) 减少 (C) 不变 (D) 增减不定 2. 随机变量~(,1),X N μ且{2}{2},P X P X >=≤则μ=( B ) (A) 1 (B) 2 (C) 3 (D) 4二、填空1. 设随机变量),100(~2σN X ,且3085.0)103(=>X P ,则=<<)10397(X P 0.383 2.设随机变量),50(~2σN X ,且6826.0)5347(=<<X P ,则=>)53(X P 0.1587三、计算题1. 某地区的月降水量X (单位:mm )服从正态分布)4,40(2N ,试求该地区连续10个月降水量都不超过50mm 的概率.9396.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()44050440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”=“某月降水量不超过解:设==-≤-=≤φx x 第二节 正态分布的数字特征一、选择1. 设随机变量X 与Y 独立,)4.0,10(~,)2.0,10(~B Y B X ,则=+)2(Y X E ( D ) (A) 6 (B) 4 (C) 10 (D) 8二、填空___2______;1____e 1)(.1122的方差为的数学期望为则,的概率密度函数为已知连续型随机变量X X x f X x x-+-=π.___2___))21(,0(,.22π=--Y X E Y X N Y X 的数学期望则随机变量的随机变量,正态分布是两个相互独立且服从设三、计算题.d )(d )()2(;)1(e61)(.16442c x x p x x p DX EX x x p X c cx x ,求常数若已知,求,的概率密度函数为已知连续型随机变量⎰⎰∞+∞-+--=+∞<<∞-=π.203221)32()32(1)32()32(12132321)()32(2132321)()2(3)(,2)(),3,2(~32161)()1(32232)2(23232)2(32)2(644222222==-=-Φ-Φ-=-Φ-Φ-=-==-Φ=-======⎰⎰⎰⎰⎰⎰∞+--∞+⨯--∞+--∞-∞-⨯--∞-⨯--+--c c c c c c dt e x t dx edx x P c dt ex t dx edx x P X D X E N X eex P c t cx ct c c x c x x x 所以,,从而,知所以,得从而,知所以,由于解ππππππ第三节 二维正态分布一、计算题1.已知矢径OP 的终点的坐标为),(Y X 服从二维正态分布22221),(y x e y x f +-=π求矢径OP 的长度OP Z =的概率密度 解 22Y X OP Z +==)()()(22z Y X P z Z P z F Z ≤+=≤= 当0≤z 时,显然有0)(=z F Z ;当0>z 时dxdye z F y x zy x Z 2222221)(+≤+-=⎰⎰π.121222022z r z edr red ---==⎰⎰πθπ所以,Z 的分布函数为⎪⎩⎪⎨⎧≤>-=-.0,0;0,1)(22z z e z F z Z对z 求导数,即得Z 的概率密度⎪⎩⎪⎨⎧≤>=-.0,0;0,)(22z z ze z f z Z第四节 正态随机变量的线性函数的分布一、选择1.设X ,Y 是相互独立的随机变量,且),(~,),(~222211σμσμN Y N X ,则下列结论正确的是(B )(A ))(,(~22121σσμμ+++N Y X (B)),(~222121σσμμ+++N Y X (C)))(,(~22121σσμμ---N Y X (D)),(~222121σσμμ---N Y X{}{}212121212122,)D (,)C (,)B (,)A ()(,5,4);5,(~),4,(~,.2p p p p p p p p A Y P p X P p N Y N X Y X >=<=-≥=-≤=都有对任何实数才有的个别值只对都有对任何实数都有对任何实数则记均服从正态分布与设随机变量μμμμμμμμ二、填空1.设随机变量X 与Y 独立,且)2,1(~,)1,0(~2N Y N X ,则32+-=Y X Z 的概率密度为+∞<<-∞=--z ez f z z ,41)(16)2(2π2.设随机变量X 与Y 独立,且)1,1(~,)1,0(~N Y N X ,则)1(≤+Y X P = 0.5.___21___,21}1{).21,(.3=则如果分布相互独立且都服从正态与已知随机变量μμ=≤+Y X P N Y X第五节 中心极限定理一、填空____21___}2)({2.1≤≥-X E X P X 式有估计,则根据切比雪夫不等的方差为设随机变量二、计算题1.已知一本书有500页,每一页的印刷错误的个数服从泊松分布)2.0(P .各页有没有错误是相互独立的,求这本书的错误个数多于88个的概率.((1.2)0.8849Φ=) 解:设i X 表示第i 页上的错误个数,)500,2,1(, =i 则)2.0(~P X i ,因此2.0)(,2.0)(==i i X D X E )500,2,1(, =i设X 表示这本书上的错误总数,由列维中心极限定理知)100,100(~5001N X X i i ∑==因此{}{}12881881(1.2)0.884910P X P X P -⎫>=-≤=-≤=Φ=⎬⎭ 2.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数. 求被盗索赔户不小于14户且不多于30户的概率近似值. ( 利用棣莫弗--拉普拉斯定理近似计算.933.0)5.1(,994.0)5.2(=Φ=Φ )解: )(2.0,100~B X , 因为 100=n 较大,所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1) )()(42014)42030(3014-Φ--Φ=≤≤X P )5.1)5.2(-Φ-Φ=(927.0)933.01(994.0=--=3.某品牌家电三年内发生故障的概率为0.2,且各家电质量相互独立.某代理商发售了一批此品牌家电,三年到期时进行跟踪调查:(1)抽查了四个家电用户,求至多只有一台家电发生故障的概率; (2)抽查了100个家电用户,求发生故障的家电数不小于25的概率( (2)利用棣莫弗---拉普拉斯定理近似计算. 8944.0)25.1(=Φ )解:设X 表示发生故障的家电数,则 (1) )(2.0,4~B X)(1≤X P =)(0=X P +)(1=X P=48.0+8192.08.02.0314=⨯⨯C(2) )(2.0,100~B X , 因为 100=n 较大,所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1))()(420251)25(125-Φ-=≤-=≥X P X P )25.11(Φ-= 1056.08944.01=-=。
2017概率作业纸答案
第一章 随机事件及其概率§1.1 随机事件§1.2 随机事件的概率一、单选题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D )(A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销”(C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销”2.对于事件、A B ,有B A ⊂,则下述结论正确的是( C )(A )、A B 必同时发生; (B )A 发生,B 必发生;(C )B 发生,A 必发生; (D )B 不发生,A 必发生3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P二、填空题1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:AB C . 2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%.3. 设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=716;()P ABC =916;(,,)P A B C =至多发生一个34;(,,P A B C =恰好发生一个)316.§1.3古典概率一、填空题1.将数字1,2,3,4,5写在5卡片上,任取3排成3位数,则它是奇数的概率为35.2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3. 3.若袋中有3个红球,12个白球,从中不返回地取10次,每次取一个,则第一次取得红球的概率为15,第五次取得红球的概率为15. 4. 盒中有2只次品和4只正品,有放回地从中任意取两次,每次取一只,则(1)取到的2只都是次品19; (2)取到的2只中正品、次品各一只49; (3)取到的2只中至少有一只正品89. 二、计算题1.一份试卷上有6道题. 某位学生在解答时由于粗心随机地犯了4处不同的错误. 试求:(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率.解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296.(1)设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2)设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3)设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P . 2. 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率.解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有nN C 种不同取法.(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为k n k M N M C C --,由古典概型计算公式,()k n k M N M n N C C P A C --=。
2017年高考数学—概率(选择+填空+答案)
2017年高考数学—概率(选择+填空+答案)1.(17全国1理2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 2.(17全国1理6)621(1)(1)x x ++展开式中2x 的系数为 A .15 B .20 C .30 D .353.(17全国1文2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数4.(17全国1文4)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 45.(17全国2理3 )我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏6.(17全国2理6).安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.(17全国2理7)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.(17全国2文11 )从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A.110 B.15 C.310D.25 9.(17全国3理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳10.(17全国3理4)5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .80 11.(17山东理(5))为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )17012.(17山东理(8))从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A )518 (B )49 (C )59(D )79 13.(17山东文(8))如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)。
概率作业纸第七章答案
概率作业纸第七章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March2第七章 假设检验第一节 假设检验的基本概念一、选择1. 在假设检验中,作出拒绝假设0H 的决策时,则可能( A )错误.(A ) 犯第一类 (B ) 犯第二类 (C )犯第一类,也可能犯第二类 (D ) 不犯2. 对正态总体μ的数学期望进行假设检验,如果在显著性水平05.0下接受00:μμ=H ,那么在显著性水平01.0下,下列结论中正确的是( A ).(A )必接受0H (B )可能接受,也可能拒绝0H(C )必拒绝0H (D )不接受,也不拒绝0H3. 在假设检验中,0H 表示原假设,1H 表示备择假设,则犯第一类错误的情况为( B ) .(A )1H 真,接受1H (B )1H 不真,接受1H(C )1H 真,拒绝1H (D )1H 不真,拒绝1H二、填空1. 假设检验的原理是 小概率事件的实际不可能行原理 .2. 设总体),(~2σμN X ,n X X X ,,,21 是来自总体的样本,则检验假设00:μμ=H ,当2σ为已知时的统计量是nX u σμ0-=;当2σ未知时的统计量是nS X t 0μ-=. 三、简答题化肥厂用自动打包机包装化肥.某日测得9包化肥的质量(kg )如下: 49.7 49.8 50.3 50.5 49.7 50.1 49.9 50.5 50.4.已知每包化肥的质量服从正态分布,是否可以认为每包化肥的平均质量为50 kg (05.0=α) 解:设0H :50=μ; 1H :50≠μ.由于2σ未知,选统计量)1(~0--=n t n S X t μ对显著性水平05.0=α,查表得31.2)8()1(025.02==-t n t α。
由样本值计算得1.50=x ,,3354.0≈s3 )1(31.2894.033354.0501.502-=<≈-=n t t α接受0H ,认为每包化肥的平均质量为50 kg .第二节 正态总体参数的假设检验二、选择1.设总体),(~2σμN X ,μ为未知参数,样本n X X X ,,,21 的方差为2S ,对假设检验2:,2:10<≥σσH H ,水平为α的拒绝域是( B ).(A ))1(2122-≤-n αχχ (B ))1(122-≤-n αχχ(C ))(2122n αχχ-≤ (D ))(122n αχχ-≤2. 设总体),(~2σμN X ,μ未知,n X X X ,,,21 为来自总体的样本.记x 为样本均值,2s 为样本方差,对假设检验2:,2:10<≥σσH H ,应取检验统计量2χ为 ( C ) .(A )8)1(2s n - (B )6)1(2s n - (C )4)1(2s n - (D )2)1(2s n - 3. 在假设检验中,原假设和备选假设( C ).(A )都有可能成立(B) 都有可能不成立(C) 只有一个成立而且必有一个成立(D) 原假设一定成立,备选假设不一定成立二、填空1. 设总体),(~2σμN X ,其中参数2,σμ未知,n X X X ,,,21 是取自总体X 的简单随机样本,对于给定的显著性水平)10(<<αα,检验假设20212020:;:σσσσ≠=H H ,时,选取的检验统计量服从)1(-n t .42. 设总体),(~2σμN X ,2σ未知,n X X X ,,,21 为来自总体样本,记x 为样本均值,2s 为样本方差,对假设检验0100:;:μμμμ<≥H H ,取检验统计量nS X t 0μ-=,则在显著性水平)10(<<αα下拒绝域为)1(--<n t t α.三、简答题1. 机器包装食盐,每袋净重量X (单位:g )服从正态分布,规定每袋净重量为500(g ).某天开工后,为检验机器工作是否正常,从包装好的食盐中随机抽取9袋,测得其净重量为:497 507 510 475 484 488 524 491 515 以显著性水平05.0=α检验这天包装机工作是否正常?解:设0H :500=μ; 1H :500≠μ由于2σ未知,选统计量)1(~0--=n t n S X t μ对显著性水平05.0=α,查表得31.2)8()1(025.02==-t n t α。
统计与概率2017有答案
张仁寿2017-2018河北模拟试卷16份亮点好题精选汇编一、统计与概率1.(2分)(2017•涿州市一模)小红制作了十张卡片,上面分别标有0~9这十个数字.从这十张卡片中随机抽取一张恰好能被3整除的概率是()A.B.C.D.【解答】解:∵出0~9这十个数字中能被整除的数为:3,6,9三个数,∴从这十张卡片中随机抽取一张恰好能被3整除的概率是:.故选A2.(2分)(2017•涿州市一模)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=4 B.m+n=8 C.m=n=4 D.m=3,n=5【解答】解:根据概率公式,摸出白球的概率为:,摸出不是白球的概率为:,由于二者相同,故有=,整理得,m+n=8.故选:B.3. (10分)(2017•涿州市一模)(2015•宁夏)为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?【解答】解:(1)总人数为:12÷30%=40(人),A级占:×100%=15%,D级占:1﹣35%﹣30%﹣15%=20%;C级人数:40×35%=14(人),D级人数:40×20%=8(人),补全统计图得:(2)估计不及格的人数有:4500×20%=900(人);(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是:20%.4.(3分)(2017•冀州市模拟)某校调查了20名同学某一周玩手机游戏的次数,调查结果)【分析】需先根据加权平均数的求法,列出式子,解出结果即可.【解答】解:平均数为=5.5,故选B.【点评】本题主要考查了加权平均数,在解题时要根据题意列出式子,正确的计算是解答本题的关键.5. (9分)(2017•冀州市模拟)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);(2)甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为120°;(3)该班学生的身高数据的中位数是160或161 ;(4)假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?【分析】(1)在整理数据时漏了一个数据,它在169.5﹣﹣174.5内(答案不唯一).(2)先求出总人数,再求出求出159.5﹣164.5这一部分所对应的人数即可求出所对应的扇形圆心角的度数为;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,分2种情况讨论可得答案;(4)用树形图将所有情况列举出来即可求得概率.【解答】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为:120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有32个,则这两个只能是160或161.故答案为:160或161;(4)列表得:P(一男一女)==.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.特别是中位数的求法要运用分类讨论的思想,6. (3分)(2017•裕华区一模)(2016•安顺)某校九年级(1)班全体学生2016年初中毕A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.7. (9分)(2017•裕华区一模)某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画 B.保龄球C.航模 D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图(2)补充完整;(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数;(2)首先求得C项目对应人数,即可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.【点评】此题考查了列表法或树状图法求概率以及扇形与条形统计图.注意概率=所求情况数与总情况数之比.8. (3分)(2017•长安区一模)如图,甲、乙是两个不透明的圆桶,甲桶内的三张牌分别标记数字2,3,4乙桶内的两张分别标记数字1,2(这些牌除所标数字不同外,其余均相同).若小宇从甲乙两个圆桶中各随机抽出一张牌,其数字之和大于4的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出取出的这两张卡片上的数字之和大于4的概率即可.【解答】解:画树状图得:由树形图可知所有可能的结果有6种,其数字之和大于4的有3种结果,所以小宇从甲乙两个圆桶中各随机抽出一张牌,其数字之和大于4的概率=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9. (9分)(2017•长安区一模)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前,后引体向上的个数进行统计分析,得到乙组男生训练前,后引体向上的平均个数分别是6个和10个,及下面不完整的统计表和图的统计图.(1)a= 7 ,b= 4 ,c= 6.5 ;(2)甲组训练后引体向上的平均个数比训练前增长了75 %;(3)你认为哪组训练效果好?并提供一个支持你观点的理由;(4)小华说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.:你同意他的观点吗?说明理由.【分析】(1)根据平均数、众数和中位数的定义即可求解;(2)根据即可求得增长率;(2)求出各组的增长的数值,即可作出判断;(3)设第二组的人数是x,判断二组增长的数值是否是9x﹣6x即可.【解答】解:(1)a=(8+9+6+6+7+6)÷6=7,b=4,c=(6+7)÷2=6.5;(2)(7﹣4)÷4×100%=3÷4×100%=75%;(3)甲组训练效果较好.因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%,甲组训练前、后平均个数的增长率大于乙组的增长率.(4)不同意.因为乙组训练后的平均个数增加了:50%×0+20%×7+20%×8+10%×10=4个,所以不同意小华的观点.故答案为:7,4,6.5;75.【点评】本题考查了统计表,扇形统计图和条形统计图,正确判断小华的观点的正误是本题的难点.10. (11分)2017•河北唐山(2016•聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.10. (12分)(2017•邢台县一模)近年来,为加强生态城市建设,邢台市大力发展绿色交通,构建公共、绿色交通体系,2016年11月28日公共自行车陆续放置在车桩中,琪琪随机调查了若干市民租用公共自行车的骑车时间:(单位:h),将获得的数据分成五组,绘制了如下统计图,请根据图中信息,解答下列问题.(1)这次被调查的总人数是多少?(2)试求表示D组的扇形圆心角的度数,并补全条形统计图;(3)公共自行车系统投入使用后,按规定市民借车1小时内免费,1小时至2小时收费1元,2小时至3小时收费3元,3小时以上,在3元的基础上,每小时加收3元(不足1小时均按1小时计算)请估算,在租用公共自行车的市民中,缴费超过3元的人数所占的百分比.(4)A组5人中3女2男,从中随机抽取2人,则恰好是一男一女的为事件A,用列表法或者树状图法求出事件A的概率P.【分析】(1)根据C组的人数和所占的百分比,即可求出这次被调查的总人数;(2)用360乘以D组所占的百分比,求出D组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数,从而补全统计图;(3)求出租用公共自行车的市民中,缴费超过3元的人数即可得到所占的百分比;(4)画树状图展示所有12种等可能的结果数,再找出选中一男一女的结果数,然后根据概率公式求解.【解答】解:(1)被调查总人数为14÷28%=50人;(2)表示A组的扇形圆心角的度数为×360=108°;∵D组的人数为15人,∴补全统计图如图所示:(3)被调查的50人中,骑自行车的时间超过3元的人数为15+6=21人,∴在租用公共自行车的市民中,缴费超过3元的人数所占的百分比=×100%=42%;(4)画树状图为:共12种等可能的结果数,其中选中一男一女的结果数为12,所以恰好选中一男一女的概率==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.11. (9分)2017河北•模拟(2016•天津)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.。
17概率统计作业答案与提示7.1-7.3
概率作业17:第七章第1—3节
2 2 0.975 (10) 3.25 12 (10) 4.5 0.025 (10) 20.5
样本值在置信区间内,即小概率事件没有发生,假设成立, 因此,可以认为该日生 产的铜丝折断力的标准差也是4 公斤.
4.设某次考试的学生成绩 服从正态分布,从中随 机地抽取36位 考生的成绩,算得平均 成绩为66.5分,标准差为 分。 15 ()问在显著水平 0.05下,是否可以认为这次 1 考试全体考生大 的平均成绩为 分? 70 ( )在显著水平 0.05下,是否可以认为这次 2 考试考生的成绩的 方差为 2 。 16
2 其中: 2
( n 1) S
2 0
2
2
2
2 ~ 2 ( n 1)
2 2 2 查表求 (n 1) 0.025 (35) 54, 2 (n 1) 0.975 (35) 20.4, 2 1 2
2 由n 36, x 66.5, 0 70, s 15, 计算 2 ;
35 15 2 其中: 30.76 2 2 0 16 2 2 2 ( n 1) 20.4 2 ( n 1) 30.76 ( n 1) 54
2 2
1 2 2
( n 1) S 2
小概率事件没有发生, 即假设成立 可以认为考生成绩的方 , 差是16 2 。
S S t ( 8) X t (8)) 1 n 2 n 2
X 0 其对立事件即超出置信 区间的事件为 P t (8) , = S n 2 也就是P ( t t (8)) ,
查表求t (8) t0.025 (8) 2.31
课时作业17 概率的意义
课时作业17 概率的意义——基础巩固类——1.“某彩票的中奖概率为”意味着( D )A.买100张彩票就一定能中奖B.买100张彩票能中一次奖C.买100张彩票一次奖也不中D.购买彩票中奖的可能性为解析:某彩票的中奖率为,意味着中奖的可能性为,可能中奖,也可能不中奖.2.事件A发生的概率接近于0,则( B )A.事件A不可能发生B.事件A也可能发生C.事件A一定发生D.事件A发生的可能性很大3.下列说法中,正确的是( D )A.买一张电影票,座位号一定是偶数B.掷一枚质地均匀的硬币,正面一定朝上C.三条任意长的线段一定可以围成一个三角形D.从1,2,3,4,5这5个数中任取一个数,取得奇数的可能性大解析:A中也可能为奇数,B中也可能反面朝上,C中对于不满足三边关系的,则不能,而D中,取得奇数的可能性为,大于取得偶数的可能性,故选D.4.任取一个由50名同学组成的班级(称为一个标准班),至少有两位同学的生日在同一天(记为事件A)的概率是0.97.据此我们知道( D )A.取定一个标准班,A发生的可能性是97%B.取定一个标准班,A发生的概率大概是0.97C.任意取定10 000个标准班,其中大约9 700个班A发生D.随着抽取的标准班数n不断增大,A发生的频率逐渐稳定在0.97,在它附近摆动解析:对于给定的一个标准班来说,A发生的可能性不是0就是1,故A与B均不对;对于任意取定10 000个标准班,在极端情况下,事件A有可能都不发生,故C也不对;请注意:本题中A,B,C选项中错误的关键原因是“取定”这两个字,表示“明确了结果,结果是确定的”.5.根据医疗所的调查,某地区居民血型分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选1人,那么能为病人输血的概率为( A )A.50% B.15%C.45% D.65%解析:仅有O型血的人能为O型血的人输血.故选A.6.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是( D )A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性是99%解析:成功率大约是99%,说明手术成功的可能性是99%. 7.先后抛掷两枚均匀的五角、一元的硬币,观察落地后硬币的正反面情况,则下列哪个事件的概率最大( A )A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上解析:先后掷两枚均匀的五角、一元硬币,其结果有(正,正),(正,反),(反,正),(反,反)4种情况,至少有一枚硬币正面向上包括三种情况,故其概率大.8.在下列各事件中,发生的可能性最大的为( D )A.任意买1张电影票,座位号是奇数B.掷1枚骰子,点数小于或等于2C.有10 000张彩票,其中100张是获奖彩票,从中随机买1张是获奖彩票D.一袋中装有8个红球,2个白球,从中随机摸出1个球是红球解析:概率分别是PA=,PB=,PC=,PD=,故选D. 9.一个袋中装有数量差别较大的白球和黑球,从中任取一球,得白球,估计袋中数量少的球是黑球.解析:依据是“极大似然法”.10.小明和小展按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则不公平(填“公平”或“不公平”).解析:当第一个人第一次取2支时,还剩余3支,无论是第二个人取1支还是取2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜,所以不公平.11.对某厂生产的某种产品进行抽样检查,数据如下表所示.根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查1_000件产品.解析:根据频率估计概率,再由概率计算抽查产品的件数.由题表中数据知抽查5次的频率依次为0.94,0.92,0.96,0.95,0.956,可知频率在0.95附近变化,可估计概率为0.95,设大约需抽查n件产品,则≈0.95,所以n≈1 000.12.今天电视台的天气预报说:今晚阴有雨,明天白天降雨概率是60%.请回答下列问题:(1)明天白天运输部门能否抢运粮食?(2)如果明天抢运的是石灰和白糖,能否在白天进行?解:(1)在降雨概率为60%时,仍可以抢运粮食,毕竟含有40%的无雨概率,不过要采取防雨措施.(2)因为石灰和白糖属于易溶物质,最好暂时不运,否则必须采取严密的防雨措施.13.为了估计某自然保护区中天鹅的数量,可以使用以下的方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅作上记号,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只.试根据上述数据,估计该自然保护区中天鹅的数量.解:设该自然保护区中天鹅的数量n只,则≈,∴n≈1 500.所以该自然保护区中天鹅的数量约为1 500只.——能力提升类——14.孟德尔豌豆试验中,用纯黄色圆粒(显性)和纯绿色皱粒(隐性)作杂交,则子二代中黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒的比例约为( C )A.1111 B.1331C.9331 D.1339解析:为了更好地分清二代结果的性状及比例,我们不妨用X 表示黄色,x表示绿色,Y表示圆粒,y表示皱粒,则按照试验遗传机理中的统计规律,可列出下表:豌豆杂交试验的子二代结果中,黄色皱粒有Xxyy,XXyy,Xxyy三种,绿色圆粒有xxYY,xxYy,xxYy三种,绿色皱粒有xxyy一种,其余的9种均为黄色圆粒.故黄色圆粒黄色皱粒绿色圆粒绿色皱粒=9331.15.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(1)分别估计用A配方、B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=估计用B配方生产的一件产品的利润大于0的概率.解:(1)由试验结果知,用A配方生产的产品中优质品的频率为=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B配方生产的一件产品的利润大于0,当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96.所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.课时作业17 概率的意义——基础巩固类——1.“某彩票的中奖概率为”意味着( D )A.买100张彩票就一定能中奖B.买100张彩票能中一次奖C.买100张彩票一次奖也不中D.购买彩票中奖的可能性为解析:某彩票的中奖率为,意味着中奖的可能性为,可能中奖,也可能不中奖.2.事件A发生的概率接近于0,则( B )A.事件A不可能发生B.事件A也可能发生C.事件A一定发生D.事件A发生的可能性很大3.下列说法中,正确的是( D )A.买一张电影票,座位号一定是偶数B.掷一枚质地均匀的硬币,正面一定朝上C.三条任意长的线段一定可以围成一个三角形D.从1,2,3,4,5这5个数中任取一个数,取得奇数的可能性大解析:A中也可能为奇数,B中也可能反面朝上,C中对于不满足三边关系的,则不能,而D中,取得奇数的可能性为,大于取得偶数的可能性,故选D. 4.任取一个由50名同学组成的班级(称为一个标准班),至少有两位同学的生日在同一天(记为事件A)的概率是0.97.据此我们知道( D )A.取定一个标准班,A发生的可能性是97%B.取定一个标准班,A发生的概率大概是0.97C.任意取定10 000个标准班,其中大约9 700个班A发生D.随着抽取的标准班数n不断增大,A发生的频率逐渐稳定在0.97,在它附近摆动解析:对于给定的一个标准班来说,A发生的可能性不是0就是1,故A与B均不对;对于任意取定10 000个标准班,在极端情况下,事件A有可能都不发生,故C也不对;请注意:本题中A,B,C选项中错误的关键原因是“取定”这两个字,表示“明确了结果,结果是确定的”.5.根据医疗所的调查,某地区居民血型分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选1人,那么能为病人输血的概率为( A )A.50% B.15%C.45% D.65%解析:仅有O型血的人能为O型血的人输血.故选A.6.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是( D )A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性是99%解析:成功率大约是99%,说明手术成功的可能性是99%.7.先后抛掷两枚均匀的五角、一元的硬币,观察落地后硬币的正反面情况,则下列哪个事件的概率最大( A )A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上解析:先后掷两枚均匀的五角、一元硬币,其结果有(正,正),(正,反),(反,正),(反,反)4种情况,至少有一枚硬币正面向上包括三种情况,故其概率大.8.在下列各事件中,发生的可能性最大的为( D )A.任意买1张电影票,座位号是奇数B.掷1枚骰子,点数小于或等于2C.有10 000张彩票,其中100张是获奖彩票,从中随机买1张是获奖彩票D.一袋中装有8个红球,2个白球,从中随机摸出1个球是红球解析:概率分别是PA=,PB=,PC=,PD=,故选D.9.一个袋中装有数量差别较大的白球和黑球,从中任取一球,得白球,估计袋中数量少的球是黑球.解析:依据是“极大似然法”.10.小明和小展按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则不公平(填“公平”或“不公平”).解析:当第一个人第一次取2支时,还剩余3支,无论是第二个人取1支还是取2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜,所以不公平.11.对某厂生产的某种产品进行抽样检查,数据如下表所示.根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查1_000件产品.解析:根据频率估计概率,再由概率计算抽查产品的件数.由题表中数据知抽查5次的频率依次为0.94,0.92,0.96,0.95,0.956,可知频率在0.95附近变化,可估计概率为0.95,设大约需抽查n件产品,则≈0.95,所以n≈1 000.12.今天电视台的天气预报说:今晚阴有雨,明天白天降雨概率是60%.请回答下列问题:(1)明天白天运输部门能否抢运粮食?(2)如果明天抢运的是石灰和白糖,能否在白天进行?解:(1)在降雨概率为60%时,仍可以抢运粮食,毕竟含有40%的无雨概率,不过要采取防雨措施.(2)因为石灰和白糖属于易溶物质,最好暂时不运,否则必须采取严密的防雨措施.13.为了估计某自然保护区中天鹅的数量,可以使用以下的方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅作上记号,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只.试根据上述数据,估计该自然保护区中天鹅的数量.解:设该自然保护区中天鹅的数量n只,则≈,∴n≈1 500.所以该自然保护区中天鹅的数量约为1 500只.——能力提升类——14.孟德尔豌豆试验中,用纯黄色圆粒(显性)和纯绿色皱粒(隐性)作杂交,则子二代中黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒的比例约为( C )A.1111 B.1331C.9331 D.1339解析:为了更好地分清二代结果的性状及比例,我们不妨用X表示黄色,x表示绿色,Y表示圆粒,y表示皱粒,则按照试验遗传机理中的统计规律,可列出下表:豌豆杂交试验的子二代结果中,黄色皱粒有Xxyy,XXyy,Xxyy三种,绿色圆粒有xxYY,xxYy,xxYy三种,绿色皱粒有xxyy一种,其余的9种均为黄色圆粒.故黄色圆粒黄色皱粒绿色圆粒绿色皱粒=9331.15.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(1)分别估计用A配方、B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=估计用B配方生产的一件产品的利润大于0的概率.解:(1)由试验结果知,用A配方生产的产品中优质品的频率为=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B配方生产的一件产品的利润大于0,当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96.所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 随机事件及其概率§1.1 随机事件§1.2 随机事件的概率一、单选题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D )(A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销”(C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销”2.对于事件、A B ,有B A ⊂,则下述结论正确的是( C )(A )、A B 必同时发生; (B )A 发生,B 必发生;(C )B 发生,A 必发生; (D )B 不发生,A 必发生3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P二、填空题1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:AB C . 2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%.3. 设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=716;()P ABC =916;(,,)P A B C =至多发生一个34;(,,P A B C =恰好发生一个)316.§1.3古典概率一、填空题1.将数字1,2,3,4,5写在5张卡片上,任取3张排成3位数,则它是奇数的概率为35.2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3. 3.若袋中有3个红球,12个白球,从中不返回地取10次,每次取一个,则第一次取得红球的概率为15,第五次取得红球的概率为15. 4. 盒中有2只次品和4只正品,有放回地从中任意取两次,每次取一只,则(1)取到的2只都是次品19; (2)取到的2只中正品、次品各一只49; (3)取到的2只中至少有一只正品89. 二、计算题1.一份试卷上有6道题. 某位学生在解答时由于粗心随机地犯了4处不同的错误. 试求:(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率.解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296.(1)设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2)设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3)设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P . 2. 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率.解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有nN C 种不同取法.(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为k n k M N M C C --,由古典概型计算公式,()k n k M N M n N C C P A C --=。
(2)设B 表示抽取n 件产品中至少有一件不合格品的事件,则B 表示n 件产品全为合格品的事件,包含nN M C -个样本点。
则()1()1n N M n NC P B P B C -=-=-。
3.一批产品共20件,其中一等品9件,二等品7件,三等品4件。
从这批产品中任取3件,求: (1) 取出的3件产品中恰有2件等级相同的概率;(2)取出的3件产品中至少有2件等级相同的概率.解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3;(1)所求事件为事件1A 、2A 、3A 的和事件,由于这三个事件彼此互不相容,故)()()()(321321A P A P A P A A A P ++=++320116241132711129C C C C C C C ++==0.671 (2)设事件A 表示取出的3件产品中至少有2件等级相同,那么事件A 表示取出的3件产品中等级各不相同,则779.01)(1)(320141719=-=-=C C C C A P A P§1.4条件概率一、单选题1.设A ,B 互不相容,且()0,()0P A P B >>,则必有( D ). (A) 0)(>A B P (B ))()(A P B A P =(C) )()()(B P A P AB P = (D ) 0)(=B A P 2.已知()0.5P A =,()0.4P B =,()0.6P A B ⋃=,则()P A B =( D ).(A) 0.2 (B )0.45 (C) 0.6 (D )0.753.已知,()0.2,()0.3A B P A P B ⊂==,则()P BA =( C ).(A) 0.3 (B )0.2 (C) 0.1 (D )0.44.已知 ()0.4,()0.6,(|)0.5,P A P B P B A === 则 ()P A B ⋃=( D ).(A) 0.9 (B ) 0.8 (C) 0.7 (D ) 0.65. 掷一枚质地均匀的骰子,设A 为“出现奇数点”,B 为“出现1点”,则()=P B A ( C ).(A) 1/6 (B ) 1/4 (C) 1/3 (D ) 1/2二、填空题1. 已知5.0)(=A P ,6.0)(=B P 及8.0)(=A B P ,则=)(B A P 0.7 .2.设,A B 互不相容,且(),()P A p P B q ==;则()P AB =1--p q .3.设事件,A B 及A B ⋃的概率分别为0.4,0.3,0.5,则()P AB =0.2.4.已知事件B A ,互不相容,且()()6.0,3.0==B A P A P ,则()B P =0.5.5.设某种动物由出生算起活到20岁以上的概率为0.8, 活到25岁以上的概率为0.4. 如果一只动物现在已经活到20岁, 则它能活到25岁以上的概率是0.5. 三、计算题1. 一批彩电,共100台,其中有10台次品,采用不放回抽样依次抽取3次,每次抽一台,求第3次才抽到合格品的概率.解 设A i (i =1,2,3)为第i 次抽到合格品的事件,则有)(321A A A P =)()()(21312A A A P A A P A P =10/100·9/99·90/98≈0.0083.2.一个盒子装有6只乒乓球,其中4只是新球. 第一次比赛时随机地从盒子中取出2只乒乓球,使用后放回盒子.第二次比赛时又随机地从盒子中取出2只乒乓球. 试求第二次取出的球全是新球的概率.12322222113422442222222666666B B B 4P A 253i i i=1解:设:第一次取出的都是新球,:都是旧球,:一新一旧()=P(B )P(A|B )=⨯⨯+⨯⨯⨯=∑C C C C C C C C C C C C C3.某保险公司把被保险人分为3类:“谨慎的”、“一般的”、“冒失的”。
统计资料表明,这3种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%, “一般的”占50%,“冒失的”占30%,一个被保险人在一年内出事故的概率是多大?解:设1B =“他是谨慎的”, 2B =“他是一般的”, 3B =“他是冒失的”,则321,,B B B 构成了Ω的一个划分,设事件A =“出事故”,由全概率公式:)|()()(31i i i B A P B P A P ∑==0.0520%0.1550%0.3020%0.125.=⨯+⨯+⨯=§1.5 事件的独立性 §1.6 独立试验序列一、单选题1.设B A 、是两个相互独立的随机事件,0>⋅)()(B P A P ,则=)(B A P ( B )(A) )()(B P A P + (B) )()(B P A P ⋅-1 (C) )()(B P A P ⋅+1 (D) )(AB P -12.设甲乙两人独立射击同一目标,他们击中目标的概率分别为 0.9和0.8,则目标被击中的概率是( B ).(A) 0.9 (B ) 0.98 (C) 0.72 (D ) 0.83.每次试验成功率为)10(<<p p ,(1)进行10次重复试验成功4次的概率为( A )(2)进行重复试验,直到第10次试验才取得4次成功的概率为( B )(3)进行10次重复试验,至少成功一次的概率为( D )(4)进行10次重复试验,10次都失败的概率为( C )(A) 44610(1)C p p - (B) 3469(1)C p p - (C) 10(1)p - (D) 101(1)p --二、填空题1.设A 与B 为两相互独立的事件,)(B A P =0.6,)(A P =0.4,则)(B P =13.2.三台机器相互独立运转,设第一、二、三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率0.496.3.某人射击的命中率为4.0,独立射击10次,则至少击中1次的概率为1010.6-.4.某射手在三次射击中至少命中一次的概率为0.875,则这射手在一次射击中命中的概率为 0.5 .5.一批电子元件共有100个,次品率为0.05. 连续两次不放回地从中任取一个,则第二次才取到正品的概率为19396. 三、计算题1. 5名篮球运动员独立地投篮,每个运动员投篮的命中率都是80%.他们各投一次,试求:(1) 恰有4次命中的概率;(2) 至少有4次命中的概率;(3) 至多有4次命中的概率.解:设i i A 表示第i 个运动员命中,=1,2,3,4,5 (1)412345()5()50.20.80.4096=⨯=⨯⨯=P A P A A A A A(2) 512345()()()0.40960.80.7373P B P A P A A A A A =+=+=(3) 512345()1()10.80.6723P C P A A A A A =-=-= 2.一个工人看管三台车床,在一小时内车床不需要工人看管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人看管的概率. 解:设事件i A 表示第i 台车床不需要照管,事件i A 表示第i 台车床需要照管,(i =1,2,3), 根据题设条件可知:1.0)(,9.0)(11==A P A P2.0)(,8.0)(22==A P A P3.0)(,7.0)(33==A P A P设所求事件为B ,则)()(321321321321A A A A A A A A A A A A P B P +++=根据事件的独立性和互不相容事件的关系,得到: )()()()()()()(321321A P A P A P A P A P A P B P += ++)()()(321A P A P A P )()()(321A P A P A P3.08.09.07.02.09.07.08.01.07.08.09.0⨯⨯+⨯⨯+⨯⨯+⨯⨯=0.902.=3.甲、乙、丙3位同学同时独立参加《概率论与数理统计》考试,不及格的概率分别为0.4,0.3,0.5.(1)求恰有两位同学不及格的概率;(2)如果已经知道这3位同学中有2位不及格,求其中一位是同学乙的概率.解:(1)设{}A =恰有两位同学不及格,1{}B =甲考试及格,2{}B =乙考试及格,3{}B =丙考试及格.则123123123123123123()()()()()P A P B B B B B B B B B P B B B P B B B P B B B =⋃⋃=++ 123123123()()()()()()()()()0.29P B P B P B P B P B P B P B P B P B =++=(2)12312312312322()()()()15()()()()29P B B B B B B P B B B P B B B P AB P B A P A P A P A ⋃+====第二章 随机变量及其分布§2.1 随机变量§2.2 离散型随机变量及其概率分布一、单选题1. 离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是( A ).(A )1)1(-+=A λ且0>A (B )λ-=1A 且10<<λ(C )11-=-λA 且1<λ (D )0>A 且10<<λ2. 下面函数中,可以作为一个随机变量的分布函数的是( B ).(A )()211xx F += (B )()21arctan 1+=x x F π (C )()()⎪⎩⎪⎨⎧≤>-=-.0,0;0,121x x e x F x (D )()()()1,==⎰⎰+∞∞-∞-dt t f dt g f x F x 其中 3. 已知随机变量X 服从二项分布(6,0.5)B ~X ,则(2)P X ==( C ).(A )1664 (B )1516 (C ) 1564 (D ) 35 二、填空题 1. 已知随机变量X 的取值是-1,0,1,2,随机变量X 取这四个数值的概率依次是bb b b 162,85,43,21,则=b 2. 2. (1,0.8)B ~X ,则X 的分布函数是0,0()0.2,0 1.1,1<⎧⎪=≤<⎨⎪≥⎩x F x x x3. 设随机变量),3(~),,2(~p B Y p B X ,若{},951=≥X P 则{}=≥1Y P 1927.4.重复独立地掷一枚均匀硬币,直到出现正面向上为止,则抛掷次数Y 的分布为{}1(),1,2,3,2===k P Y k k .三、计算题1. 一寻呼台每分钟收到寻呼的次数服从参数为4的泊松分布.求(1)每分钟恰有7次寻呼的概率.(2)每分钟的寻呼次数大于10的概率. 解:,...)1,0(,!4)(4===-k e k k X P k(1)0596.08893.09489.0!64!74)6()7(4647=-=-=≤-≤--e e X P X P(2)0028.09972.01!1041)10(1410=-=-=≤--e X P 2. 已知盒子中有4个白球和2个红球,现从中任意取出3个,设X 表示其中白球的个数,求出X 的分布列.解:X 的可能取值为3、4、5,又53}5{,103}4{,1011}3{3524352335=========C C X P C C X P C X PX 3 4 5P 101 103 533. 设随机变量Y 的分布列为:Y 0 1 2 3P 2A 3A 4A 5A 求 (1)系数A 及Y 的分布列;(2)Y 的分布函数;(3){}{}{}13, 1.5 3.5, 2.5.P Y P Y P Y ≤≤≤≤≤ (1)∵()121520306054321+++=+++=A A A A A ∴7760=A (2)()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=.3,132,7765,21,7750,10,7730,0,0x x x x x x F (3)7765,7727,7747.§2.3 连续型随机变量及其概率密度一、单选题1. 若函数cos ,()0,x x D f x ∈⎧=⎨⎩其它 是随机变量X 的概率密度,则区间D 为 ( A ) (A )π[0,]2 (B )ππ[,]2 (C )π[0,] (D )37ππ[,]242.下列函数为随机变量的密度函数的为( D )(A) ⎩⎨⎧∈=其他,0],0[,cos )(πx x x f (B) ⎪⎩⎪⎨⎧<=其他,02,21)(x x f (C) ⎪⎩⎪⎨⎧<≥=--0,00,21)(222)(x x e x f x σμπσ (D) ⎩⎨⎧<≥=-0,00,)(x x e x f x 3. 设随机变量X 的概率密度为()f x ,则()f x 一定满足( D )(A )()01f x ≤≤ (B )()()x P X x f t dt -∞>=⎰ (C ) ()1xf x dx +∞-∞=⎰ (D )()()x P X x f t dt -∞<=⎰4.设),(~2σμN X ,那么当σ增大时,则)(σμ<-X P ( C )(A)增大 (B)减少 (C)不变 (D)增减不定5. 设(),2~2,σN X 且6.0)40(=<<X P ,则()=<0X P ( C ) (A )0.3 (B )0.4 (C )0.2 (D )0. 5二、填空题1.设连续随机变量X 的分布函数为()arctan ,F x A B x x =+-∞<<+∞ (1)A =12; B =1π;(2)(11)P X -≤≤= 0.5 ;(3)概率密度()f x =2111x π+. 2.设随机变量X 在在区间[]1,2-上服从均匀分布,则(1)(61)P x -<<-= 0 , (2) (41)P x -<<= 2/3 , (3)(23)P x -<<= 1 , (4)(16)P x <<= 1/3 .3. 设随机变量,)9,1(~N X ,则若1()2P X k <=,k = 1 . 4. 设随机变量()2~1,2X N ,6915.0)5.0(=Φ,则事件}20{<≤X 的概率为0.383. 5. 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P 0.35 . 三、计算题1. 设连续型随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤-<≤=其它432230x x x cx x f , 求:⑴ 常数c ;⑵ 概率{}62<<X P .解:⑴ 由密度函数的性质()1=⎰+∞∞-dx x f ,得()()()()()⎰⎰⎰⎰⎰+∞∞-+∞∞-+++==44331dx x f dx x f dx x f dx x f dx x f⎰⎰⎰⎰+∞∞-+⎪⎭⎫ ⎝⎛-++=4433000220dx dx x cxdx dx412947229422432302+=⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=c c x x x c 所以,得61=c .即随机变量X 的密度函数为 ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤=其它04322306x x x xx f .⑵ {}()()()()⎰⎰⎰⎰++==<<6443326262dx x f dx x f dx x f dx x f X P⎰⎰⎰+⎪⎭⎫ ⎝⎛-+=6443320226dx dx x dx x 32411254212432322=+=⎪⎪⎭⎫ ⎝⎛-+=x x x .2. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=,,1,1,ln ,1,0)(e x e x x x x F(1)求},2{<X P },41{≤<X P }23{>X P ; (2)求分布密度)(x f .解:(1)2ln )2(}2{}2{==≤=<F X P X P,11ln 1)1()4(}41{=-=-=≤<F F X P 23ln 1)23(1}23{-=-=>F X P(2)x dx x dF x f 1)()(==,⎪⎩⎪⎨⎧<≤=,,0,1,1)(其他e x xx f 3. 设k 在(0,5)上服从均匀分布,求方程02442=+++k kx x 有实根的概率. 解:x 的二次方程02442=+++k kx x 有实根的充要条件是它的判别式 ,0)2(44)4(2≥+⨯-=∆k k 即,0)2)(1(16≥-+k k 解得1,2-≤≥k k 或由假设k 在区间(0,5)上服从均匀分布,其概率密度为⎪⎩⎪⎨⎧<<=,,0,50,51)(其他x x f k故这个二次方程有实根的概率为⎰⎰⎰⎰-∞--∞-∞=+=+=-≤+≥=-≤≥=1152253051)()(}1{}2{)}1()2{(dx dx dx x f dx x f k P k P k k P p k k§2.4 随机变量的函数及其分布一、计算题1. 设随机变量X 的分布列为求2X Y =的分布列.解:2X Y =所有可能取值为0,1,4,9.2221{0}{0},5117{1}{1}{1}{1},1563011{4}{4}{2}{2}0,551111{9}{9}{3}{3}0,3030P Y P X P Y P X P X P X P Y P X P X P X P Y P X P X P X =========+=-=+======+=-=+======+=-=+=2.设随机变量X 的概率密度2,01()0,x x f x ≤≤⎧=⎨⎩其它,求下列随机变量的概率密度:(1)12Y X =+; (2) 2Y X =.解:(1)1(y),1320Y y f y -⎧⎪=≤≤⎨⎪⎩ (2)1,01()0,Y y f y ≤≤⎧=⎨⎩3. 设随机变量X 在)1,0(区间内服从均匀分布,求Xe Y =的分布密度. 解: Y 的分布函数)ln ()()()(y X P y e P y Y P y F xY ≤=≤=≤=当y>0时,y dx x f y F yY ln )()(ln ==⎰∞-(注意x 在)1,0(有值,y 在),0(e )y dy y dF y f Y Y 1)()(==, ⎪⎩⎪⎨⎧≤<=其他,0,1,1)(e y y y f Y第三章 二维随机变量及其分布§3.1 二维随机变量及其分布一、单选题1.设二维随机变量(,)X Y 的联合概率密度为 (),0,0;(,)0,.x y e x y f x y -+⎧>>=⎨⎩其他则()P X Y <=( A )(A )0.5 (B )0.55 (C ) 0.45 (D )0.62.二维随机变量(,)X Y 的联合分布函数(,)F x y 是以下哪个随机事件的的概率( B )(A )()()X x Y y ≤≤ (B )()()X x Y y ≤≤(C ) X x y ≤+ (D )X x y ≤-二、填空题1.设二维随机变量(,)X Y 的联合分布函数为(,)(arctan )(arctan )23x y F x y A B C =++ 则系数A =21π,B =2π,C =2π,(,)X Y 的联合概率密度为2226(,)(4)(9)f x y x y π=++ . 2.设二维随机变量,X Y ()的联合概率密度为(2),0,0;(,)0,.x y Ae x y f x y -+⎧>>=⎨⎩其他则 A = 2 .三、计算题1.设二维随机变量(,)X Y 的联合概率密度为:222(,),(,)(4)(9)Af x y x y x y π=-∞<<+∞++ 求 (1)系数A ;(2)}{02,03P X Y <<<<. 解:(1)由于⎰⎰+∞∞-+∞∞-=1),(y x f ,故2221(4)(9)Adxdy x y π+∞+∞-∞-∞=++⎰⎰, 222111(4)(9)Adx dy x y π+∞+∞-∞-∞=++⎰⎰1,6A=所以6A = (2)}{02,03P X Y <<<<232220611(4)(9)dx dy x y π=++⎰⎰ 116=2.设二维随机变量(,)X Y 的联合概率密度为(6),02,24;(,)0,.k x y x y f x y --<<<<⎧=⎨⎩其他试求:(1)常数k ;(2)概率(1,3)P X Y <<. 解:(1)由于⎰⎰+∞∞-+∞∞-=1),(y x f ,故1)6(--=--⎰⎰+∞∞+∞∞dxdy y x k ,18=k所以81=k (2))3,1(<<Y X P =83)6(811032=--⎰⎰dxdy y x3.将三个球随机的投入三个盒子中去,每个球投入盒子的可能性是相同的.以X 及 Y 分别表示投入第一个及第二个盒子中球的个数,求二维随机变量(,)X Y 联合概率分布. 解:3;3,2,1,0;3,2,1,0,)31()!3(!!!3),(3≤+==--===j i j i j i j i j Y i X P§3.2 边缘分布 §3.3 随机变量的独立性1.下表列出了二维随机变量(,)X Y 联合概率分布及关于X 和关于Y 的边缘概率分布的部 分数值,试将其余值填入表中的空白处2.已知随机变量1X 和2X 的概率分布如下12{0} 1.P X X ==而且(1)求1X 和2X 的联合分布;(2)问1X 和2X 是否独立?为什么? 解:(2)1X 和2X 不独立。