数理统计试题
概率论与数理统计》期末考试试题及解答
![概率论与数理统计》期末考试试题及解答](https://img.taocdn.com/s3/m/ed112121974bcf84b9d528ea81c758f5f61f29c7.png)
概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
数理统计试题5
![数理统计试题5](https://img.taocdn.com/s3/m/8d453e685727a5e9856a6165.png)
<数理统计>试题、填空题2 21•设X「X2,…,X!6是来自总体X〜N(4,二)的简单随机样本,二已知,令1 164X -16* = — ' Xi,则统计量 ---------------- 服从分布为(必须写出分布的参数)。
16 i422 .设X〜N (亠二),而1.70, 1.75 , 1.70, 1.65, 1.75是从总体X中抽取的样本,则J的矩估计值为____________ 。
3•设X〜U[a,1], X1,…,X n是从总体X中抽取的样本,求a的矩估计为 _________________ 。
4. 已知F°.1(8,20)=2,则F o.9(2O,8) = ___________ 。
5. ?和?都是参数a的无偏估计,如果有________________ 成立,则称?是比?有效的估计。
6. 设样本的频数分布为X01234频数13212则样本方差s2= _____________________ 。
7. 设总体X~N (, d2), X1, X2,…,X n为来自总体X的样本,X为样本均值,则D(X )= __________________________ 。
&设总体X服从正态分布N (卩,d 2),其中□未知,X1, X2,…,X n为其样本。
若假设检验问题为H。
:二2= — H1:二2=1,则采用的检验统计量应 _____________________________ 。
9•设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.15,则犯第一类错误的概率为_________________________ 。
10.设样本X1,X2,…,X n来自正态总体N(卩,1),假设检验问题为:H0:卩=0㈠比:卩式0,则在H0成立的条件下,对显著水平a,拒绝域W应为_____________________________ 。
本科数理统计试题及答案
![本科数理统计试题及答案](https://img.taocdn.com/s3/m/c63d3f54773231126edb6f1aff00bed5b8f3731e.png)
本科数理统计试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是数理统计中的基本概念?A. 总体B. 样本C. 变量D. 常数2. 随机变量X的概率分布函数F(x)满足什么条件?A. 非负B. 单调递增C. 右连续D. 所有选项3. 以下哪个统计量是度量数据离散程度的?A. 均值B. 方差C. 众数D. 标准差4. 假设检验中,拒绝原假设的决策规则是基于什么?A. p值B. 置信区间C. 样本均值D. 样本方差5. 以下哪项不是参数估计的方法?A. 最大似然估计B. 贝叶斯估计C. 插值估计D. 矩估计6. 两个独立随机变量X和Y的协方差Cov(X,Y)为0意味着什么?A. X和Y是独立的B. X和Y是相同的C. X和Y的方差为0D. X和Y的均值相等7. 以下哪项是描述总体分布特征的参数?A. 样本均值B. 样本方差C. 总体均值D. 总体方差8. 在回归分析中,如果自变量和因变量之间存在线性关系,那么回归系数的符号表示什么?A. 正相关B. 负相关C. 无相关D. 强相关9. 以下哪项是描述数据集中趋势的统计量?A. 极差B. 四分位数C. 变异系数D. 标准差10. 以下哪项是假设检验中的两类错误?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 抽样误差和非抽样误差D. 总体误差和样本误差二、填空题(每题2分,共20分)1. 统计学中的“大数定律”表明,随着样本量的增大,样本均值会______总体均值。
2. 如果随机变量X服从标准正态分布,则其概率密度函数为______。
3. 在统计学中,一个数据集的中位数是将数据集从小到大排列后位于______位置的数值。
4. 相关系数的取值范围是______。
5. 假设检验的原假设通常表示为______,备择假设表示为______。
6. 在回归分析中,如果回归系数为正,则表示自变量和因变量之间存在______关系。
7. 统计学中的“中心极限定理”说明,即使总体分布未知,只要样本量足够大,样本均值的分布将近似为______分布。
数理统计考试试题及答案
![数理统计考试试题及答案](https://img.taocdn.com/s3/m/6613232ae97101f69e3143323968011ca300f7d5.png)
一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
数理统计试题及答案
![数理统计试题及答案](https://img.taocdn.com/s3/m/367717eff424ccbff121dd36a32d7375a417c6e9.png)
数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
数理统计期末测试题
![数理统计期末测试题](https://img.taocdn.com/s3/m/4bb9838dcc22bcd126ff0c50.png)
数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。
不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。
025.01015u ⨯±4、假设检验的统计思想是 。
小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。
0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为 。
1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。
用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布 。
)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2=≤λX P ,则____=λ 。
用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P , 则____=λ01.04)1,0(~1z N nX=⇒λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布 )170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。
数理统计试题
![数理统计试题](https://img.taocdn.com/s3/m/ae750a16daef5ef7bb0d3c0e.png)
<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
2.设),(~2σμN X ,而,,,,是从总体X 中抽取的样本,则μ的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x,x, …,x )落入W 的概率为,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __。
12.设为来自正态总体的一个简单随机样本,其中参数和均未知,记,,则假设:的检验使用的统计量是 。
数理统计试题及答案
![数理统计试题及答案](https://img.taocdn.com/s3/m/93262aa0a1116c175f0e7cd184254b35effd1a78.png)
一、 (满分12分)X X X n ,,,12是总体X 的随机样本, X 的密度函数为)( ⎩≥⎨=><<∞⎧-λλλx f x e x x 0,0()0,0(1) 求X 的特征函数;(2) 利用X 的特征函数,求EX D X ,(); (3) 求∑==S X k k n1的概率密度函数. 二、(满分8分))(>X X X n n ,,,1122是总体μσN (,)2的随机样本,记 ,∑∑∑∑+--===-=-=-==+==+S S n n n n Y X Y X S X Y S X Y Z n Y Y k k n k k n k k k k n n n n 11,,(),()1111()121111*2*212112212*22*2222求统计量Z 的分布.三、 (满分14分)总体X 服从均匀分布θU (0,), X X X n ,,,12为其样本,(1) 证明,==+=+θθθn X n X X n n ,(1)2ˆˆˆ11()2(1)3都是未知参数θ的无偏估计; (2) 比较这三个估计量的优劣性.四、(满分14分)测得两批电子器材的电阻值(单位:Ω)分别为:A 批: 30, 32, 34, 36, 38, 42, 48, 52, 52, 56B 批: 31, 33, 37, 42, 46, 48, 53, 55, 56, 59设A 批器材的电阻μσX N ~(,),112B 批器材的电阻μσY N ~(,)222,而且总体相互独立.在显著性水平=α0.05下,能否认为两批器材的电阻的分布相同? 五、(满分14分)X X X n ,,,12是总体X 的随机样本,X 的密度函数为他其)( ⎩⎪⎨=>⎪<<⎧-θθθθf x x x 0,(;)0,01111(1)求未知参数θ的极大似然估计量θˆ; (2)证明θˆ是未知参数θ的UMVUE .六、(满分8分)将一颗骰子掷了120次,所得结果如下: 点数i 1 2 3 4 5 6 出现次数νi232718221416试在显著性水平=α0.05下,检验一颗骰子是否均匀、对称?七、 (满分16分)假定在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 对应的数据如下:x s / 1 2 3 4 5 6 7 8 9 10 μy m /7101316182123252730应用线性模型⎩⎨⎧=++εσεεεεN y a bx n ~(0,),,,,212为其样本.(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)预测腐蚀时间为=x s 6.50时,腐蚀深度y 0的范围-=a (10.95); (4) 若要使腐蚀深度在20-26μm 之间,腐蚀时间应该如何控制(=α0.05).八、 (满分14分) 某种型号的电池4批,分别为四个工厂所生产.各随机抽取5只电池样品,得它们的寿命如下:A 140 48 40 42 45 A 2 26 34 30 28 32 A 339 40 41 50 50 A 43634404035试在显著性水平=α0.05下,检验各批电池的平均寿命有无显著性的差异. 附注:计算中可能用到的数据如下:,,,,,,)(======Φ===χF F F r F t t (99) 4.03(1,8) 5.32,(3,16) 3.24.511.071(8)0.6319(99) 3.18(1.96)0.975,(18) 2.101,(8) 2.306,0.9750.950.950.950.050.9520.9750.975一、(满分12) 解:(1)X 的特征函数为())1)00()()|1()it xitxit xX e itt f x e dx edx it λλλφλλλ---∞∞---∞-∞====---⎰⎰(((2)21222222221()1(0)(0)222()1(0)(0)1()X X X X X X i it i t EX i it t EX i DX EX EX φφφλλλλφφφλλλλλ----⎛⎫'''=-=== ⎪⎝⎭--⎛⎫''''''=-=== ⎪⎝⎭=-=,,;,,;.(3)S 的特征函数为S ()[()](1/)n n X t t it φφλ-==-所以),(λn Γ~ S ,其密度函数为.0,00,!1)(1S ⎪⎩⎪⎨⎧≤>-=--y y n e y y f yn n )(λλ 二、(满分8)解:根据抽样分布定理得,*2*22222121222*2*21212(1)(1)11~(,),~(,),~(1)~(1),,n S n S Y N Y N n n n n Y Y S S μσμσχχσσ----,并且,,相互独立.于是,212*2*212*2*2122~(0,)~(0,1)(1)(1)2~(22)21)(1)2Y Y N N n n S n S n n S n S σχσσ--+---+-,,相互独立. 由t 分布的定义得 ,~(16)~(22)t Z t n =-,即. 三、(满分14分)解: (1)X 的密度函数为X 的分布函数为 0,0(),01,x F x x x x θθθθ≤⎧⎪=<<⎨⎪≥⎩;)(n X 的密度函数为()11,0()[()]()0,n n n nX n x x f x n F x f x θθθθ--⎧<<⎪==⎨⎪⎩;;其他 ()1()01ˆ.1nn n nx n n EX n dx E E X n n θθθθθ+⎡⎤====⎢⎥+⎣⎦⎰, (1)X 的密度函数为(1)11(),0()[1()]()0,n n n X n x x f x n F x f x θθθθθ--⎧-<<⎪=-=⎨⎪⎩;;其他 1(1)2(1)0()ˆ(1)1n nx x EX n dx E E n X n θθθθθθ--⎡⎤===+=⎣⎦+⎰,. 3ˆ(2)2E E X EX θθ===. 所以,1()2(1)31ˆˆˆ,(1),2n n X n X X nθθθ+==+=都是θ的无偏估计量. 2)122222()()()()2()()2(2)(1)n n n n n nx n n EXn dx D X EX EX n n n θθθθ+===-=+++⎰, ()2122222(1)(1(1)(1)2()2()(2)(1)(2)(1)n nx x n EX n D X EX EX n n n n θθθθθ--===-=++++⎰,.10()0,x f x θθθ⎧<<⎪=⎨⎪⎩,;其他()()2221()2(1)31ˆˆˆ()()()(1)()2(2)23n n n D D X D D n X D D X n n n n nθθθθθθ+===+===++,,所以,当1n >,132ˆˆˆ()()()D D D θθθ<<, 132ˆˆˆθθθ最有效,次之,效果最差. 四、(满分14)解:首先检验 2222012112:,:H H σσσσ=≠ 当0H 成立时, *21*22~(9,9)S F F S =拒绝域为 0,975(9,9) 4.03F F ≥= 或0.0251(9,9)0.2484.03F F ≤== 得 *2*21242,88,46,99.3333x S y S ====*21*220.8859S F S ==由于0.2480.8859 4.03F <=<,所以接受0H ,即认为两批器材的电阻的方差没有显著性差异.在此基础上检验012112:,:H H μμμμ=≠ 当0H 成立时,~(18)t t =拒绝域为 0.975||(18) 2.101t t ≥= 计算可得0.9242t ==- 由于||0.9242 2.101t =<,所以接受0H ,即认为两批器材的电阻的均值没有显著性的差异.综合以上,可以认为两批器材的电阻的分布相同. 五、(满分14分)解:(1) 11111()(;)()0nnk kn k k L f x x θθθθθ-====>∏∏,取对数得,11ln ()ln 1ln nk k L n x θθθ=⎛⎫=-+- ⎪⎝⎭∑令211ln ()ln 0n k k d n L x d θθθθ==--=∑ 解得 =11ˆln nkk x n θ=-∑ 所以,未知参数θ的极大似然估计量 11ˆln n k k X n θ-=-∑. (2) :(;)0f x θθ>{}=(0,1)与未知参数θ无关.[]11101211222202111(ln )ln 1(ln )ln 2ln 11ˆˆln ,()ln ttn nk k k k tE X xx dx e dt t E X xx dx e dt D X E E X D D X n n n θθθθθθθθθθθθθθθ--∞--∞==-===-===-=⎡⎤⎡⎤=-==-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰∑∑,,,,,2223222121ln 21);(ln )(θθθθθθθθ=+-=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡∂∂-=X E X f E I 由于 21ˆ()()D nnI θθθ==, 所以,=11ˆln nkk X n θ=-∑是未知参数θ的有效估计量,也是未知参数θ的UMVUE . 六、(满分8分)解: 0111:(1,2,,6),:(1,2,,6)66i i H p i H p i ===不全是当0H 成立时, 26221()(5).k k k k np np νχχ=-=∑近似服从 拒绝域为 22210.95(5)=(5)11.071αχχχ-≥=经计算得 2621() 5.911.071k k k knp np νχ=-==<∑ 所以接受0H ,可以认为这个骰子是均匀、对称的. 七、(满分16)解:(1)21112111155,()82.5,19,()512,205.n nn k xx k k k k k n nyy k xy k k k k x x L x x y y n n L y y L x y nx y ========-====-==-⨯=∑∑∑∑∑.设a 和b 的最小二乘估计分别为aˆ和b ˆ,则 205ˆˆˆ 5.3333, 2.484882.5xy xx L ay bx b L =-==== 回归方程为 ˆˆˆ 5.3333 2.4848ya bx x =+=+. (2)0:,0:10≠=b H b H当0H 成立时, )2(~ˆˆ-=n t L bt xx e σ拒绝域为 1-/20.975||(2)(8) 2.306t t n t α≥-==计算可得,ˆ0.570839.541e t σ====,由于||39.541 2.306t =>,所以,拒绝0H ,认为回归效果显著.(3)当0 6.5x =时,ε++=00bx a y ,00ˆˆˆ21.4848y a bx =+= 由于, )2(~)(11ˆˆ2000--++-=n t Lxxx x n y yt e σ得到, αα-=-<-1)}2(|{|21n tt P所以,成本0y 的置信水平为α-1的预测区间为120012ˆˆˆˆ(2)(2).yt n y t n αασσ--⎛--+- ⎝代入数据计算可得,001122ˆ20.1ˆˆˆ((22.870e e y t n y t n αασσ----+-=,所以,当06x =.5,腐蚀深度0y 的置信水平为95.0的预测区间为20.10,22.87().(4)当腐蚀深度在20-26m μ之间,近似地有0.97511ˆˆ'(')(200.5708 1.96 5.3333) 6.35ˆ 2.4848e x y u a b σ=+-=+⨯-=0.97511ˆˆ''('')=(260.5708 1.96 5.3333)7.87ˆ 2.4848e x y u a bσ=---⨯-= 所以,腐蚀时间控制6.35~7.87s ,可以使腐蚀深度在20-26m μ之间. 八(满分14)、解:20,5,44321======n n n n n r)4,,2,1(:,:143210 ====k H H k μμμμμ不全相同.当0H 成立时, ),1(~1r n r F rn S r S F e A----=拒绝域为 10.95(1,)(3,16) 3.24F F r n r F α-≥--== . 计算可得,1122111111111143,()48n n k k k k x x n S x x n =====-=∑∑2222222222112130,()40n n kk k k x xn S x x n =====-=∑∑3322333333113144,()122n n k k k k x x n S x x n =====-=∑∑4422444444114137,()32n n kk k k x xn S x x n =====-=∑∑24212==∑=rk kk e S n S 42211()5()625rA k k k k k S n x x x x ===-=-=∑∑由于 113.77 3.24Ae S r F S n r-==>-,所以拒绝0H ,即认为不同厂家的电池的平均寿命有显著性差异.。
概率论与数理统计测试题及答案
![概率论与数理统计测试题及答案](https://img.taocdn.com/s3/m/9f2af5a02af90242a895e5b4.png)
概率论与数理统计测试题一、填空题(每小题3分,共15分)1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩,则X 的概率密度为__________.5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P A B P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2X 服从 ( )分布(A) 2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -. 4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =5.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211,(())1n ii X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2~(,);X N nσμ(B)22();E S σ=(C)22();1nE S n σ=- (D)222(1)/~(1).n S n σχ--三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为、、,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率.3.(12分)设连续型随机变量X 的概率密度为sin ,0()0,a x x f x π<<⎧=⎨⎩,其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为求X 与Y 的协方差Cov (X ,Y )及P{X +Y 1}. 5.(10分)设随机变量(X,Y)的概率密度为 6,01(,)0,y y x f x y <<<⎧=⎨⎩其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.6.(10分)设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数 的矩估计量与最大似然估计量.四、证明题(2个小题,共10分)1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2(,)N μσ.2.(5分)设4321,,,X X X X 是来自总体N(,2σ)的样本,证明2212342()()2X X X X Y σ-+-= 服从2χ分布,并写出自由度.Y X 0 10 1一、填空题(每小题3分,共15分) 1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x ef x <<⎧=⎨⎩其它;5.1/8.二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,P(A 1)=,P(A 2)=,P(A 3)=,P(B|A 1)=,P(B|A 2)=,P(B|A 3)= ………3分(1)P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) ………5分=++= ………7分 (2)111()(|)0.50.15(|)0.29()0.1717P A P B A P A B P B ⨯==== (1)0分2.(10分)解:(1) X ~b(3,, 33{}0.10.9(0,1,2,3)k k k P X k C k -=== ………3分X 0 1 2 3p………7分(2)P{X 1}=1-P{X=0}= ………10分 3.(12分)解:(1)01sin 1;2a xdx a π=⇒=⎰………3分(2)()()xF x f t dt -∞=⎰ (6)分00,01sin ,02x x tdt x x ππ≤⎧⎪⎪=<≤⎨⎪>⎪⎩⎰1,0,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨⎪>⎪⎩1, (10)分2412(3){/4/2}sin .24P X xdx ππππ<<==⎰ (12)分4.(8分)解: E (X )=,E (Y )=,E (XY )= ………4分Cov (X ,Y )=E (XY )-E (X )E (Y )=- ………6分 P{X +Y 1}=++= ………8分5.(10分)解: (1)()(,)X f x f x y dy ∞-∞=⎰06,010,xydy x ⎧<<⎪=⎨⎪⎩⎰其它23,010,x x ⎧<<=⎨⎩其它 ………4分 ()(,)Y f y f x y dx ∞-∞=⎰16,010,y ydx y ⎧<<⎪=⎨⎪⎩⎰其它6(1),010,y y y -<<⎧=⎨⎩其它 ………8分(2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰ ………3分 11121μθμ-⇒=-12ˆ1X X θ-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<< ………7分1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑ ………8分11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑ ………10分四、证明题(2个小题,共10分)1.证明 :X的概率密度为22(),x X f x -= ………1分函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1(),(),y x h y h y μσσ-'===………3分22()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--'==⇒ ………5分2.证明:212~(0,2)~(0,1),X X N N σ-⇒~(0,1),N ………2分两者独立 ………4分因此 22212342()()~(2)2X X X X Y χσ-+-= ………5分。
数理统计 期末试题及答案
![数理统计 期末试题及答案](https://img.taocdn.com/s3/m/a3cdd9775b8102d276a20029bd64783e09127dbe.png)
数理统计期末试题及答案注意事项:本文为数理统计期末试题及答案,按照试题的要求,将试题和答案进行整理和排版,以便学生们参考和复习。
以下为试题及答案的详细内容。
一、选择题1. 下列哪个统计图可以用于表示定性变量的分布情况?A. 饼图B. 直方图C. 线图D. 散点图答案:A2. 假设某地区的年降雨量服从正态分布,平均降雨量为50mm,标准差为10mm。
设有一天的降雨量为X,X~N(50,10^2),则P(X≥60)等于多少?A. 0.1587B. 0.3413C. 0.5000D. 0.8413答案:D3. 在一场篮球赛中,甲队的命中率为75%,乙队的命中率为80%。
已知甲队共投篮20次,乙队共投篮30次。
问:甲队在这场比赛中命中球的次数比乙队多多少次?A. 1B. 2C. 3D. 4答案:B4. 某投资公司第一天投资100万美元,以后每天投资额为前一天的1/4。
设投资额构成一个等比数列,求该公司的总投资额。
A. 200万美元B. 240万美元C. 250万美元D. 300万美元答案:C5. 一个城市中共有A、B、C三个医院,过去一年中A医院门诊病人数占总病人数的1/3,B医院门诊病人数占总病人数的1/4,C医院门诊病人数占总病人数的1/6。
如果某天随机选择一位门诊病人,那么他就诊于C医院的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3答案:A二、计算题1. 设X为正态分布随机变量,已知X~N(50,16),求P(45≤X≤55)。
答案:要求P(45≤X≤55),可以使用标准正态分布表计算。
先求得标准化后的值:(45-50)/4=-1.25,(55-50)/4=1.25。
查表可得P(-1.25≤Z≤1.25)=0.7881-0.1056=0.6825。
故P(45≤X≤55)≈0.6825。
2. 甲、乙两人独立地各自以相同的速率生产零件,甲人生产的零件平均每小时有2个次品,乙人生产的零件平均每小时有3个次品。
数理统计期中考试试题及答案
![数理统计期中考试试题及答案](https://img.taocdn.com/s3/m/d9a363c450e79b89680203d8ce2f0066f4336462.png)
数理统计期中考试试题及答案一、选择题(每题5分,共20分)1. 下列哪项是描述数据离散程度的统计量?A. 平均数B. 中位数C. 众数D. 方差答案:D2. 以下哪个分布是描述二项分布的?A. 正态分布B. 泊松分布C. 均匀分布D. 二项分布答案:D3. 以下哪个公式是计算样本方差的?A. \( \bar{x} = \frac{\sum_{i=1}^{n}x_i}{n} \)B. \( s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1} \)C. \( \sigma^2 = \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \)D. \( \mu = \frac{\sum_{i=1}^{n}x_i}{n} \)答案:B4. 以下哪个统计量用于衡量两个变量之间的相关性?A. 标准差B. 相关系数C. 回归系数D. 均值答案:B二、填空题(每题5分,共20分)1. 一组数据的均值是50,中位数是45,众数是40,这组数据的分布是_____。
答案:右偏分布2. 如果一个随机变量服从标准正态分布,那么其均值μ和标准差σ分别是_____和_____。
答案:0,13. 在回归分析中,如果自变量X的增加导致因变量Y的增加,那么X和Y之间的相关系数是_____。
答案:正数4. 假设检验的目的是确定一个统计假设是否_____。
答案:成立三、计算题(每题10分,共30分)1. 已知样本数据:2, 4, 6, 8, 10,求样本均值和样本方差。
答案:均值 = 6,方差 = 82. 假设一个二项分布的随机变量X,其成功概率为0.5,试求X=2的概率。
答案:\( P(X=2) = C_4^2 \times 0.5^2 \times 0.5^2 = 0.25 \)3. 已知两个变量X和Y的相关系数为0.8,求X和Y的线性回归方程。
答案:需要更多信息,如X和Y的均值和方差,才能求解。
数理统计学试题 答案
![数理统计学试题 答案](https://img.taocdn.com/s3/m/1233c8fe58fafab069dc02b8.png)
第一学期成人本科数理统计学试题一、选择题(每题1分,共30分)1、样本是总体中:(D)A、任意一部分B、典型部分C、有意义的部分D、有代表性的部分E、有价值的部分2、参数是指:(C)A、参与个体数B、研究个体数C、总体的统计指标D、样本的总和E、样本的统计指标3、抽样的目的是:(E)A、研究样本统计量B、研究总体统计量C、研究典型案例D、研究误差E、样本推断总体参数4、脉搏数(次/分)是:(B)A、观察单位B、数值变量C、名义变量D.等级变量E.研究个体5、疗效是:(D)A、观察单位B、数值变量C、名义变量D、等级变量E、研究个体6、抽签的方法属于(D)A、分层抽样B、系统抽样C、整群抽样D、单纯随机抽样E、二级抽样7、统计工作的步骤正确的是(C)A、收集资料、设计、整理资料、分析资料B、收集资料、整理资料、设计、统计推断C、设计、收集资料、整理资料、分析资料D、收集资料、整理资料、核对、分析资料E、搜集资料、整理资料、分析资料、进行推断8、实验设计中要求严格遵守四个基本原则,其目的是为了:(D)A、便于统计处理B、严格控制随机误差的影响C、便于进行试验D、减少和抵消非实验因素的干扰E、以上都不对9、对照组不给予任何处理,属(E)A、相互对照B、标准对照C、实验对照D、自身对照E、空白对照10、统计学常将P≤0.05或P≤0.01的事件称(D)A、必然事件B、不可能事件C、随机事件D、小概率事件E、偶然事件11、医学统计的研究内容是(E)A、研究样本B、研究个体C、研究变量之间的相关关系D、研究总体E、研究资料或信息的收集.整理和分析12、统计中所说的总体是指:(A)A、根据研究目的确定的同质的研究对象的全体B、随意想象的研究对象的全体C、根据地区划分的研究对象的全体D、根据时间划分的研究对象的全体E、根据人群划分的研究对象的全体13、概率P=0,则表示(B)A、某事件必然发生B、某事件必然不发生C、某事件发生的可能性很小D、某事件发生的可能性很大E、以上均不对14、总体应该由(D)A、研究对象组成B、研究变量组成C、研究目的而定D、同质个体组成E、个体组成15、在统计学中,参数的含义是(D)A、变量B、参与研究的数目C、研究样本的统计指标D、总体的统计指标E、与统计研究有关的变量16、调查某单位科研人员论文发表的情况,统计每人每年的论文发表数应属于(A)A、计数资料B、计量资料C、总体D、个体E、样本17、统计学中的小概率事件,下面说法正确的是:(B)A、反复多次观察,绝对不发生的事件B、在一次观察中,可以认为不会发生的事件C、发生概率小于0.1的事件D、发生概率小于0.001的事件E、发生概率小于0.1的事件18、统计上所说的样本是指:(D)A、按照研究者要求抽取总体中有意义的部分B、随意抽取总体中任意部分C、有意识的抽取总体中有典型部分D、按照随机原则抽取总体中有代表性部分E、总体中的每一个个体19、以舒张压≥12.7KPa为高血压,测量1000人,结果有990名非高血压患者,有10名高血压患者,该资料属(B)资料。
概率论与数理统计第四章测试题
![概率论与数理统计第四章测试题](https://img.taocdn.com/s3/m/5cba79a9b90d6c85ed3ac641.png)
第4章随机变量得数字特征一、选择题1.设两个相互独立得随机变量X与Y得方差分别为4与2,则随机变量3X-2Y得方差就是(A) 8 (B) 16 (C) 28 (D) 442.若随机变量与得协方差,则以下结论正确得就是( )(A) 与相互独立(B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY3.设随机变量与相互独立,且,则( )(A) (B)(C) (D)4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关得充要条件为(A) EX=EY (B) E(X2)- (EX)2= E(Y2)- (EY)2(C) E(X2)= E(Y2) (D) E(X2)+(EX)2= E(Y2)+ (EY)25.设、就是两个相互独立得随机变量且都服从于,则得数学期望( ) (A) (B) 0 (C) (D)6.设、就是相互独立且在上服从于均匀分布得随机变量,则( )(A) (B) (C) (D)7.设随机变量与得方差存在且不等于0,则D(X+Y)=DX+DY就是X与Y( )(A) 不相关得充分条件,但不就是必要条件(B) 独立得充分条件,但不就是必要条件(C) 不相关得充分必要条件(D) 独立得充分必要条件8.若离散型随机变量得分布列为,则( )(A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n次,以X与Y分别表示正面向上与反面向上得次数,则X与Y得相关系数等于(A)-1 (B)0 (C) (D)110.设随机变量X与Y独立同分布,具有方差>0,则随机变量U=X+Y与V=X-Y(A)独立(B) 不独立(C) 相关(D) 不相关11.随机变量X得方差存在,且E(X)=μ,则对于任意常数C,必有。
(A)E(X-C)2=E(X2)-C2(B)E(X-C)2=E(X-μ)2(C)E(X-C)2< E(X-μ)2(D)E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=, 则P(1<X<3) =( )(A)0 (B) (C) (D)二、填空题1.设表示10次独立重复射击命中目标得次数,每次命中目标得概率为0、4,则2.设一次试验成功得概率为,进行了100次独立重复试验,当时,成功得次数得标准差得值最大,其最大值为3.设随机变量X在区间[-1,2]上服从均匀分布,随机变量,则得方差DY=4.,,,则,5.设随机变量服从于参数为得泊松分布,且已知,则6.设(X,Y)得概率分布为:则=。
数理统计期末试题
![数理统计期末试题](https://img.taocdn.com/s3/m/98011ebddc88d0d233d4b14e852458fb760b3842.png)
数理统计期末试题数理统计期末试题————————————————————————————————作者:————————————————————————————————日期:数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92s x ,试求)6.0|(| x P .6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有)|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2N 的样本,试求22121 x x x x Y 服从分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d是任意两个不为0的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度。
概率论与数理统计试题及答案
![概率论与数理统计试题及答案](https://img.taocdn.com/s3/m/fd0dfa19ce84b9d528ea81c758f5f61fb7362836.png)
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2 N 的简单随机样本,2已知,令161161i i X X ,则统计量164X 服从分布为 (必须写出分布的参数)。
2.设),(~2N X ,而,,,,是从总体X 中抽取的样本,则 的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0 F ,则 )8,20(9.0F 。
5. ˆ和 ˆ都是参数a 的无偏估计,如果有 成立 ,则称 ˆ是比 ˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120 :=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x,x, …,x )落入W 的概率为,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布(,1)N ,且 未知,设1,,n X X L 为来自该总体的一个样本,记11nii X X n ,则 的置信水平为1 的置信区间公式是 ;若已知10.95 ,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __。
12.设n X X X ,,,21 为来自正态总体2(,)N 的一个简单随机样本,其中参数 和2 均未知,记11n i i X X n ,221()ni i Q X X ,则假设0H :0 的t 检验使用的统计量是 。
(用X 和Q 表示)13.设总体2~(,)X N ,且 已知、2 未知,设123,,X X X 是来自该总体的一个样本,则21231()3X X X ,12323X X X ,222123X X X ,(1)2X 中是统计量的有 。
14.设总体X 的分布函数()F x ,设n X X X ,,,21 为来自该总体的一个简单随机样本,则n X X X ,,,21 的联合分布函数 。
15.设总体X 服从参数为p 的两点分布,p (01p )未知。
设1,,n X X K 是来自该总体的一个样本,则21111,(),6,{},max n ni in i n i ni i X XX X X X pX 中是统计量的有 。
16.设总体服从正态分布(,1)N ,且 未知,设1,,n X X L 为来自该总体的一个样本,记11nii X X n ,则 的置信水平为1 的置信区间公式是 。
17.设2~(,)X X X N ,2~(,)Y Y Y N ,且X 与Y 相互独立,设1,,m X X L 为来自总体X 的一个样本;设1,,n Y Y L 为来自总体Y 的一个样本;2X S 和2Y S 分别是其无偏样本方差,则2222//X X Y Y S S 服从的分布是 。
18.设 2,0.3X N,容量9n ,均值5X ,则未知参数 的置信度为的置信区间是 (查表0.025 1.96Z )19.设总体X ~2(,)N ,X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
20.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120 :=:,则采用的检验统计量应________________。
21.设12,,,n X X X 是来自正态总体2(,)N 的简单随机样本, 和2均未知,记11n i i X X n ,221()ni i X X ,则假设0:0H 的t 检验使用统计量T= 。
22.设11m i i X X m 和11n i i Y Y n 分别来自两个正态总体211(,)N 和222(,)N 的样本均值,参数1 ,2 未知,两正态总体相互独立,欲检验22012:H ,应用 检验法,其检验统计量是 。
23.设总体X ~2(,)N ,2, 为未知参数,从X 中抽取的容量为n 的样本均值记为X ,修正样本标准差为*n S ,在显著性水平 下,检验假设0:80H ,1:80H 的拒绝域为 ,在显著性水平 下,检验假设2200:H (0 已知),2110:H 的拒绝域为 。
24.设总体X ~12(,),01,,,,n b n p p X X X 为其子样,n 及p 的矩估计分别是 。
25.设总体X ~ 120,,(,,,)n U X X X 是来自X 的样本,则 的最大似然估计量是 。
26.设总体X ~2(,0.9)N ,129,,,X X X 是容量为9的简单随机样本,均值5x ,则未知参数 的置信水平为0.95的置信区间是 。
27.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4 则零件尺寸偏差的数学期望的无偏估计量是28.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X则当C 时CY ~2(2) 。
29.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=30.设X 1,X 2,…X n 为来自正态总体2(,)N :的一个简单随机样本,则样本均值11ni i n 服从二、选择题1.1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ,则YZ~( ) )(A )1,0(N )(B )16(t )(C )16(2 )(D )8,8(F2.已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A )( +A n i i X n B 1211)( a X C )( +10 131)(X a X D +5 3.设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2N 和)5,2(N 的样本,21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 4.设总体),(~2N X ,n X X ,,1 为抽取样本,则 n i i X X n 12)(1是( ))(A 的无偏估计 )(B 2 的无偏估计 )(C 的矩估计 )(D 2 的矩估计5、设n X X ,,1 是来自总体X 的样本,且 EX ,则下列是 的无偏估计的是( ))(A 111n i i X n )(B n i i X n 111 )(C ni i X n 21 )(D 1111n i i X n 6.设n X X X ,,,21 为来自正态总体2(,)N 的一个样本,若进行假设检验,当__ __时,一般采用统计量X t(A)220 未知,检验= (B)220 已知,检验= (C)20 未知,检验= (D)20 已知,检验= 7.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为im 的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C)方差分析中211.()im r e ij i i j S y y 包含了随机误差外,还包含效应间的差异(D)方差分析中2.1()rA i i i S m y y 包含了随机误差外,还包含效应间的差异8.在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误9.对总体2~(,)X N 的均值 和作区间估计,得到置信度为95%的置信区间,意义是指这个区间(A)平均含总体95%的值 (B)平均含样本95%的值(C)有95%的机会含样本的值 (D)有95%的机会的机会含 的值 10.在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 11. 设总体X 服从正态分布 212,,,,,n N X X XL 是来自X 的样本,则2 的最大似然估计为(A ) 211n i i X X n (B ) 2111n i i X X n (C )211n i i X n (D )2X12.X 服从正态分布,1 EX ,25EX ,),,(1n X X 是来自总体X 的一个样本,则ni inX X 11服从的分布为___ 。
(A)N (1 ,5/n) (B)N (1 ,4/n) (C)N (1 /n,5/n) (D)N (1 /n,4/n)13.设n X X X ,,,21 为来自正态总体2(,)N 的一个样本,若进行假设检验,当___ __时,一般采用统计量X U(A)220 未知,检验= (B)220 已知,检验= (C)20 未知,检验= (D)20 已知,检验= 14.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为i m 的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C) 方差分析中211.()im r e ij i i j S y y 包含了随机误差外,还包含效应间的差异(D) 方差分析中2.1()rA i i i S m y y 包含了随机误差外,还包含效应间的差异15.在一次假设检验中,下列说法正确的是___ ____ (A)第一类错误和第二类错误同时都要犯(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都要变小(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误16.设ˆ 是未知参数 的一个估计量,若ˆE ,则ˆ 是 的___ _____(A)极大似然估计 (B)矩法估计 (C)相合估计 (D)有偏估计17.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为,则犯第一类错误的概率为__________。