数理统计试题
概率论与数理统计》期末考试试题及解答
概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
数理统计试题5
<数理统计>试题、填空题2 21•设X「X2,…,X!6是来自总体X〜N(4,二)的简单随机样本,二已知,令1 164X -16* = — ' Xi,则统计量 ---------------- 服从分布为(必须写出分布的参数)。
16 i422 .设X〜N (亠二),而1.70, 1.75 , 1.70, 1.65, 1.75是从总体X中抽取的样本,则J的矩估计值为____________ 。
3•设X〜U[a,1], X1,…,X n是从总体X中抽取的样本,求a的矩估计为 _________________ 。
4. 已知F°.1(8,20)=2,则F o.9(2O,8) = ___________ 。
5. ?和?都是参数a的无偏估计,如果有________________ 成立,则称?是比?有效的估计。
6. 设样本的频数分布为X01234频数13212则样本方差s2= _____________________ 。
7. 设总体X~N (, d2), X1, X2,…,X n为来自总体X的样本,X为样本均值,则D(X )= __________________________ 。
&设总体X服从正态分布N (卩,d 2),其中□未知,X1, X2,…,X n为其样本。
若假设检验问题为H。
:二2= — H1:二2=1,则采用的检验统计量应 _____________________________ 。
9•设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.15,则犯第一类错误的概率为_________________________ 。
10.设样本X1,X2,…,X n来自正态总体N(卩,1),假设检验问题为:H0:卩=0㈠比:卩式0,则在H0成立的条件下,对显著水平a,拒绝域W应为_____________________________ 。
本科数理统计试题及答案
本科数理统计试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是数理统计中的基本概念?A. 总体B. 样本C. 变量D. 常数2. 随机变量X的概率分布函数F(x)满足什么条件?A. 非负B. 单调递增C. 右连续D. 所有选项3. 以下哪个统计量是度量数据离散程度的?A. 均值B. 方差C. 众数D. 标准差4. 假设检验中,拒绝原假设的决策规则是基于什么?A. p值B. 置信区间C. 样本均值D. 样本方差5. 以下哪项不是参数估计的方法?A. 最大似然估计B. 贝叶斯估计C. 插值估计D. 矩估计6. 两个独立随机变量X和Y的协方差Cov(X,Y)为0意味着什么?A. X和Y是独立的B. X和Y是相同的C. X和Y的方差为0D. X和Y的均值相等7. 以下哪项是描述总体分布特征的参数?A. 样本均值B. 样本方差C. 总体均值D. 总体方差8. 在回归分析中,如果自变量和因变量之间存在线性关系,那么回归系数的符号表示什么?A. 正相关B. 负相关C. 无相关D. 强相关9. 以下哪项是描述数据集中趋势的统计量?A. 极差B. 四分位数C. 变异系数D. 标准差10. 以下哪项是假设检验中的两类错误?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 抽样误差和非抽样误差D. 总体误差和样本误差二、填空题(每题2分,共20分)1. 统计学中的“大数定律”表明,随着样本量的增大,样本均值会______总体均值。
2. 如果随机变量X服从标准正态分布,则其概率密度函数为______。
3. 在统计学中,一个数据集的中位数是将数据集从小到大排列后位于______位置的数值。
4. 相关系数的取值范围是______。
5. 假设检验的原假设通常表示为______,备择假设表示为______。
6. 在回归分析中,如果回归系数为正,则表示自变量和因变量之间存在______关系。
7. 统计学中的“中心极限定理”说明,即使总体分布未知,只要样本量足够大,样本均值的分布将近似为______分布。
数理统计考试试题及答案
一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
数理统计试题及答案
数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
数理统计期末测试题
数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。
不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。
025.01015u ⨯±4、假设检验的统计思想是 。
小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。
0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为 。
1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。
用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布 。
)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2=≤λX P ,则____=λ 。
用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P , 则____=λ01.04)1,0(~1z N nX=⇒λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布 )170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。
数理统计试题
<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
2.设),(~2σμN X ,而,,,,是从总体X 中抽取的样本,则μ的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x,x, …,x )落入W 的概率为,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __。
12.设为来自正态总体的一个简单随机样本,其中参数和均未知,记,,则假设:的检验使用的统计量是 。
数理统计试题及答案
一、 (满分12分)X X X n ,,,12是总体X 的随机样本, X 的密度函数为)( ⎩≥⎨=><<∞⎧-λλλx f x e x x 0,0()0,0(1) 求X 的特征函数;(2) 利用X 的特征函数,求EX D X ,(); (3) 求∑==S X k k n1的概率密度函数. 二、(满分8分))(>X X X n n ,,,1122是总体μσN (,)2的随机样本,记 ,∑∑∑∑+--===-=-=-==+==+S S n n n n Y X Y X S X Y S X Y Z n Y Y k k n k k n k k k k n n n n 11,,(),()1111()121111*2*212112212*22*2222求统计量Z 的分布.三、 (满分14分)总体X 服从均匀分布θU (0,), X X X n ,,,12为其样本,(1) 证明,==+=+θθθn X n X X n n ,(1)2ˆˆˆ11()2(1)3都是未知参数θ的无偏估计; (2) 比较这三个估计量的优劣性.四、(满分14分)测得两批电子器材的电阻值(单位:Ω)分别为:A 批: 30, 32, 34, 36, 38, 42, 48, 52, 52, 56B 批: 31, 33, 37, 42, 46, 48, 53, 55, 56, 59设A 批器材的电阻μσX N ~(,),112B 批器材的电阻μσY N ~(,)222,而且总体相互独立.在显著性水平=α0.05下,能否认为两批器材的电阻的分布相同? 五、(满分14分)X X X n ,,,12是总体X 的随机样本,X 的密度函数为他其)( ⎩⎪⎨=>⎪<<⎧-θθθθf x x x 0,(;)0,01111(1)求未知参数θ的极大似然估计量θˆ; (2)证明θˆ是未知参数θ的UMVUE .六、(满分8分)将一颗骰子掷了120次,所得结果如下: 点数i 1 2 3 4 5 6 出现次数νi232718221416试在显著性水平=α0.05下,检验一颗骰子是否均匀、对称?七、 (满分16分)假定在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 对应的数据如下:x s / 1 2 3 4 5 6 7 8 9 10 μy m /7101316182123252730应用线性模型⎩⎨⎧=++εσεεεεN y a bx n ~(0,),,,,212为其样本.(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)预测腐蚀时间为=x s 6.50时,腐蚀深度y 0的范围-=a (10.95); (4) 若要使腐蚀深度在20-26μm 之间,腐蚀时间应该如何控制(=α0.05).八、 (满分14分) 某种型号的电池4批,分别为四个工厂所生产.各随机抽取5只电池样品,得它们的寿命如下:A 140 48 40 42 45 A 2 26 34 30 28 32 A 339 40 41 50 50 A 43634404035试在显著性水平=α0.05下,检验各批电池的平均寿命有无显著性的差异. 附注:计算中可能用到的数据如下:,,,,,,)(======Φ===χF F F r F t t (99) 4.03(1,8) 5.32,(3,16) 3.24.511.071(8)0.6319(99) 3.18(1.96)0.975,(18) 2.101,(8) 2.306,0.9750.950.950.950.050.9520.9750.975一、(满分12) 解:(1)X 的特征函数为())1)00()()|1()it xitxit xX e itt f x e dx edx it λλλφλλλ---∞∞---∞-∞====---⎰⎰(((2)21222222221()1(0)(0)222()1(0)(0)1()X X X X X X i it i t EX i it t EX i DX EX EX φφφλλλλφφφλλλλλ----⎛⎫'''=-=== ⎪⎝⎭--⎛⎫''''''=-=== ⎪⎝⎭=-=,,;,,;.(3)S 的特征函数为S ()[()](1/)n n X t t it φφλ-==-所以),(λn Γ~ S ,其密度函数为.0,00,!1)(1S ⎪⎩⎪⎨⎧≤>-=--y y n e y y f yn n )(λλ 二、(满分8)解:根据抽样分布定理得,*2*22222121222*2*21212(1)(1)11~(,),~(,),~(1)~(1),,n S n S Y N Y N n n n n Y Y S S μσμσχχσσ----,并且,,相互独立.于是,212*2*212*2*2122~(0,)~(0,1)(1)(1)2~(22)21)(1)2Y Y N N n n S n S n n S n S σχσσ--+---+-,,相互独立. 由t 分布的定义得 ,~(16)~(22)t Z t n =-,即. 三、(满分14分)解: (1)X 的密度函数为X 的分布函数为 0,0(),01,x F x x x x θθθθ≤⎧⎪=<<⎨⎪≥⎩;)(n X 的密度函数为()11,0()[()]()0,n n n nX n x x f x n F x f x θθθθ--⎧<<⎪==⎨⎪⎩;;其他 ()1()01ˆ.1nn n nx n n EX n dx E E X n n θθθθθ+⎡⎤====⎢⎥+⎣⎦⎰, (1)X 的密度函数为(1)11(),0()[1()]()0,n n n X n x x f x n F x f x θθθθθ--⎧-<<⎪=-=⎨⎪⎩;;其他 1(1)2(1)0()ˆ(1)1n nx x EX n dx E E n X n θθθθθθ--⎡⎤===+=⎣⎦+⎰,. 3ˆ(2)2E E X EX θθ===. 所以,1()2(1)31ˆˆˆ,(1),2n n X n X X nθθθ+==+=都是θ的无偏估计量. 2)122222()()()()2()()2(2)(1)n n n n n nx n n EXn dx D X EX EX n n n θθθθ+===-=+++⎰, ()2122222(1)(1(1)(1)2()2()(2)(1)(2)(1)n nx x n EX n D X EX EX n n n n θθθθθ--===-=++++⎰,.10()0,x f x θθθ⎧<<⎪=⎨⎪⎩,;其他()()2221()2(1)31ˆˆˆ()()()(1)()2(2)23n n n D D X D D n X D D X n n n n nθθθθθθ+===+===++,,所以,当1n >,132ˆˆˆ()()()D D D θθθ<<, 132ˆˆˆθθθ最有效,次之,效果最差. 四、(满分14)解:首先检验 2222012112:,:H H σσσσ=≠ 当0H 成立时, *21*22~(9,9)S F F S =拒绝域为 0,975(9,9) 4.03F F ≥= 或0.0251(9,9)0.2484.03F F ≤== 得 *2*21242,88,46,99.3333x S y S ====*21*220.8859S F S ==由于0.2480.8859 4.03F <=<,所以接受0H ,即认为两批器材的电阻的方差没有显著性差异.在此基础上检验012112:,:H H μμμμ=≠ 当0H 成立时,~(18)t t =拒绝域为 0.975||(18) 2.101t t ≥= 计算可得0.9242t ==- 由于||0.9242 2.101t =<,所以接受0H ,即认为两批器材的电阻的均值没有显著性的差异.综合以上,可以认为两批器材的电阻的分布相同. 五、(满分14分)解:(1) 11111()(;)()0nnk kn k k L f x x θθθθθ-====>∏∏,取对数得,11ln ()ln 1ln nk k L n x θθθ=⎛⎫=-+- ⎪⎝⎭∑令211ln ()ln 0n k k d n L x d θθθθ==--=∑ 解得 =11ˆln nkk x n θ=-∑ 所以,未知参数θ的极大似然估计量 11ˆln n k k X n θ-=-∑. (2) :(;)0f x θθ>{}=(0,1)与未知参数θ无关.[]11101211222202111(ln )ln 1(ln )ln 2ln 11ˆˆln ,()ln ttn nk k k k tE X xx dx e dt t E X xx dx e dt D X E E X D D X n n n θθθθθθθθθθθθθθθ--∞--∞==-===-===-=⎡⎤⎡⎤=-==-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰∑∑,,,,,2223222121ln 21);(ln )(θθθθθθθθ=+-=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡∂∂-=X E X f E I 由于 21ˆ()()D nnI θθθ==, 所以,=11ˆln nkk X n θ=-∑是未知参数θ的有效估计量,也是未知参数θ的UMVUE . 六、(满分8分)解: 0111:(1,2,,6),:(1,2,,6)66i i H p i H p i ===不全是当0H 成立时, 26221()(5).k k k k np np νχχ=-=∑近似服从 拒绝域为 22210.95(5)=(5)11.071αχχχ-≥=经计算得 2621() 5.911.071k k k knp np νχ=-==<∑ 所以接受0H ,可以认为这个骰子是均匀、对称的. 七、(满分16)解:(1)21112111155,()82.5,19,()512,205.n nn k xx k k k k k n nyy k xy k k k k x x L x x y y n n L y y L x y nx y ========-====-==-⨯=∑∑∑∑∑.设a 和b 的最小二乘估计分别为aˆ和b ˆ,则 205ˆˆˆ 5.3333, 2.484882.5xy xx L ay bx b L =-==== 回归方程为 ˆˆˆ 5.3333 2.4848ya bx x =+=+. (2)0:,0:10≠=b H b H当0H 成立时, )2(~ˆˆ-=n t L bt xx e σ拒绝域为 1-/20.975||(2)(8) 2.306t t n t α≥-==计算可得,ˆ0.570839.541e t σ====,由于||39.541 2.306t =>,所以,拒绝0H ,认为回归效果显著.(3)当0 6.5x =时,ε++=00bx a y ,00ˆˆˆ21.4848y a bx =+= 由于, )2(~)(11ˆˆ2000--++-=n t Lxxx x n y yt e σ得到, αα-=-<-1)}2(|{|21n tt P所以,成本0y 的置信水平为α-1的预测区间为120012ˆˆˆˆ(2)(2).yt n y t n αασσ--⎛--+- ⎝代入数据计算可得,001122ˆ20.1ˆˆˆ((22.870e e y t n y t n αασσ----+-=,所以,当06x =.5,腐蚀深度0y 的置信水平为95.0的预测区间为20.10,22.87().(4)当腐蚀深度在20-26m μ之间,近似地有0.97511ˆˆ'(')(200.5708 1.96 5.3333) 6.35ˆ 2.4848e x y u a b σ=+-=+⨯-=0.97511ˆˆ''('')=(260.5708 1.96 5.3333)7.87ˆ 2.4848e x y u a bσ=---⨯-= 所以,腐蚀时间控制6.35~7.87s ,可以使腐蚀深度在20-26m μ之间. 八(满分14)、解:20,5,44321======n n n n n r)4,,2,1(:,:143210 ====k H H k μμμμμ不全相同.当0H 成立时, ),1(~1r n r F rn S r S F e A----=拒绝域为 10.95(1,)(3,16) 3.24F F r n r F α-≥--== . 计算可得,1122111111111143,()48n n k k k k x x n S x x n =====-=∑∑2222222222112130,()40n n kk k k x xn S x x n =====-=∑∑3322333333113144,()122n n k k k k x x n S x x n =====-=∑∑4422444444114137,()32n n kk k k x xn S x x n =====-=∑∑24212==∑=rk kk e S n S 42211()5()625rA k k k k k S n x x x x ===-=-=∑∑由于 113.77 3.24Ae S r F S n r-==>-,所以拒绝0H ,即认为不同厂家的电池的平均寿命有显著性差异.。
概率论与数理统计测试题及答案
概率论与数理统计测试题一、填空题(每小题3分,共15分)1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩,则X 的概率密度为__________.5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P A B P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2X 服从 ( )分布(A) 2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -. 4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =5.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211,(())1n ii X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2~(,);X N nσμ(B)22();E S σ=(C)22();1nE S n σ=- (D)222(1)/~(1).n S n σχ--三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为、、,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率.3.(12分)设连续型随机变量X 的概率密度为sin ,0()0,a x x f x π<<⎧=⎨⎩,其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为求X 与Y 的协方差Cov (X ,Y )及P{X +Y 1}. 5.(10分)设随机变量(X,Y)的概率密度为 6,01(,)0,y y x f x y <<<⎧=⎨⎩其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.6.(10分)设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数 的矩估计量与最大似然估计量.四、证明题(2个小题,共10分)1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2(,)N μσ.2.(5分)设4321,,,X X X X 是来自总体N(,2σ)的样本,证明2212342()()2X X X X Y σ-+-= 服从2χ分布,并写出自由度.Y X 0 10 1一、填空题(每小题3分,共15分) 1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x ef x <<⎧=⎨⎩其它;5.1/8.二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,P(A 1)=,P(A 2)=,P(A 3)=,P(B|A 1)=,P(B|A 2)=,P(B|A 3)= ………3分(1)P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) ………5分=++= ………7分 (2)111()(|)0.50.15(|)0.29()0.1717P A P B A P A B P B ⨯==== (1)0分2.(10分)解:(1) X ~b(3,, 33{}0.10.9(0,1,2,3)k k k P X k C k -=== ………3分X 0 1 2 3p………7分(2)P{X 1}=1-P{X=0}= ………10分 3.(12分)解:(1)01sin 1;2a xdx a π=⇒=⎰………3分(2)()()xF x f t dt -∞=⎰ (6)分00,01sin ,02x x tdt x x ππ≤⎧⎪⎪=<≤⎨⎪>⎪⎩⎰1,0,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨⎪>⎪⎩1, (10)分2412(3){/4/2}sin .24P X xdx ππππ<<==⎰ (12)分4.(8分)解: E (X )=,E (Y )=,E (XY )= ………4分Cov (X ,Y )=E (XY )-E (X )E (Y )=- ………6分 P{X +Y 1}=++= ………8分5.(10分)解: (1)()(,)X f x f x y dy ∞-∞=⎰06,010,xydy x ⎧<<⎪=⎨⎪⎩⎰其它23,010,x x ⎧<<=⎨⎩其它 ………4分 ()(,)Y f y f x y dx ∞-∞=⎰16,010,y ydx y ⎧<<⎪=⎨⎪⎩⎰其它6(1),010,y y y -<<⎧=⎨⎩其它 ………8分(2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰ ………3分 11121μθμ-⇒=-12ˆ1X X θ-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<< ………7分1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑ ………8分11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑ ………10分四、证明题(2个小题,共10分)1.证明 :X的概率密度为22(),x X f x -= ………1分函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1(),(),y x h y h y μσσ-'===………3分22()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--'==⇒ ………5分2.证明:212~(0,2)~(0,1),X X N N σ-⇒~(0,1),N ………2分两者独立 ………4分因此 22212342()()~(2)2X X X X Y χσ-+-= ………5分。
数理统计 期末试题及答案
数理统计期末试题及答案注意事项:本文为数理统计期末试题及答案,按照试题的要求,将试题和答案进行整理和排版,以便学生们参考和复习。
以下为试题及答案的详细内容。
一、选择题1. 下列哪个统计图可以用于表示定性变量的分布情况?A. 饼图B. 直方图C. 线图D. 散点图答案:A2. 假设某地区的年降雨量服从正态分布,平均降雨量为50mm,标准差为10mm。
设有一天的降雨量为X,X~N(50,10^2),则P(X≥60)等于多少?A. 0.1587B. 0.3413C. 0.5000D. 0.8413答案:D3. 在一场篮球赛中,甲队的命中率为75%,乙队的命中率为80%。
已知甲队共投篮20次,乙队共投篮30次。
问:甲队在这场比赛中命中球的次数比乙队多多少次?A. 1B. 2C. 3D. 4答案:B4. 某投资公司第一天投资100万美元,以后每天投资额为前一天的1/4。
设投资额构成一个等比数列,求该公司的总投资额。
A. 200万美元B. 240万美元C. 250万美元D. 300万美元答案:C5. 一个城市中共有A、B、C三个医院,过去一年中A医院门诊病人数占总病人数的1/3,B医院门诊病人数占总病人数的1/4,C医院门诊病人数占总病人数的1/6。
如果某天随机选择一位门诊病人,那么他就诊于C医院的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3答案:A二、计算题1. 设X为正态分布随机变量,已知X~N(50,16),求P(45≤X≤55)。
答案:要求P(45≤X≤55),可以使用标准正态分布表计算。
先求得标准化后的值:(45-50)/4=-1.25,(55-50)/4=1.25。
查表可得P(-1.25≤Z≤1.25)=0.7881-0.1056=0.6825。
故P(45≤X≤55)≈0.6825。
2. 甲、乙两人独立地各自以相同的速率生产零件,甲人生产的零件平均每小时有2个次品,乙人生产的零件平均每小时有3个次品。
数理统计期中考试试题及答案
数理统计期中考试试题及答案一、选择题(每题5分,共20分)1. 下列哪项是描述数据离散程度的统计量?A. 平均数B. 中位数C. 众数D. 方差答案:D2. 以下哪个分布是描述二项分布的?A. 正态分布B. 泊松分布C. 均匀分布D. 二项分布答案:D3. 以下哪个公式是计算样本方差的?A. \( \bar{x} = \frac{\sum_{i=1}^{n}x_i}{n} \)B. \( s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1} \)C. \( \sigma^2 = \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \)D. \( \mu = \frac{\sum_{i=1}^{n}x_i}{n} \)答案:B4. 以下哪个统计量用于衡量两个变量之间的相关性?A. 标准差B. 相关系数C. 回归系数D. 均值答案:B二、填空题(每题5分,共20分)1. 一组数据的均值是50,中位数是45,众数是40,这组数据的分布是_____。
答案:右偏分布2. 如果一个随机变量服从标准正态分布,那么其均值μ和标准差σ分别是_____和_____。
答案:0,13. 在回归分析中,如果自变量X的增加导致因变量Y的增加,那么X和Y之间的相关系数是_____。
答案:正数4. 假设检验的目的是确定一个统计假设是否_____。
答案:成立三、计算题(每题10分,共30分)1. 已知样本数据:2, 4, 6, 8, 10,求样本均值和样本方差。
答案:均值 = 6,方差 = 82. 假设一个二项分布的随机变量X,其成功概率为0.5,试求X=2的概率。
答案:\( P(X=2) = C_4^2 \times 0.5^2 \times 0.5^2 = 0.25 \)3. 已知两个变量X和Y的相关系数为0.8,求X和Y的线性回归方程。
答案:需要更多信息,如X和Y的均值和方差,才能求解。
数理统计学试题 答案
第一学期成人本科数理统计学试题一、选择题(每题1分,共30分)1、样本是总体中:(D)A、任意一部分B、典型部分C、有意义的部分D、有代表性的部分E、有价值的部分2、参数是指:(C)A、参与个体数B、研究个体数C、总体的统计指标D、样本的总和E、样本的统计指标3、抽样的目的是:(E)A、研究样本统计量B、研究总体统计量C、研究典型案例D、研究误差E、样本推断总体参数4、脉搏数(次/分)是:(B)A、观察单位B、数值变量C、名义变量D.等级变量E.研究个体5、疗效是:(D)A、观察单位B、数值变量C、名义变量D、等级变量E、研究个体6、抽签的方法属于(D)A、分层抽样B、系统抽样C、整群抽样D、单纯随机抽样E、二级抽样7、统计工作的步骤正确的是(C)A、收集资料、设计、整理资料、分析资料B、收集资料、整理资料、设计、统计推断C、设计、收集资料、整理资料、分析资料D、收集资料、整理资料、核对、分析资料E、搜集资料、整理资料、分析资料、进行推断8、实验设计中要求严格遵守四个基本原则,其目的是为了:(D)A、便于统计处理B、严格控制随机误差的影响C、便于进行试验D、减少和抵消非实验因素的干扰E、以上都不对9、对照组不给予任何处理,属(E)A、相互对照B、标准对照C、实验对照D、自身对照E、空白对照10、统计学常将P≤0.05或P≤0.01的事件称(D)A、必然事件B、不可能事件C、随机事件D、小概率事件E、偶然事件11、医学统计的研究内容是(E)A、研究样本B、研究个体C、研究变量之间的相关关系D、研究总体E、研究资料或信息的收集.整理和分析12、统计中所说的总体是指:(A)A、根据研究目的确定的同质的研究对象的全体B、随意想象的研究对象的全体C、根据地区划分的研究对象的全体D、根据时间划分的研究对象的全体E、根据人群划分的研究对象的全体13、概率P=0,则表示(B)A、某事件必然发生B、某事件必然不发生C、某事件发生的可能性很小D、某事件发生的可能性很大E、以上均不对14、总体应该由(D)A、研究对象组成B、研究变量组成C、研究目的而定D、同质个体组成E、个体组成15、在统计学中,参数的含义是(D)A、变量B、参与研究的数目C、研究样本的统计指标D、总体的统计指标E、与统计研究有关的变量16、调查某单位科研人员论文发表的情况,统计每人每年的论文发表数应属于(A)A、计数资料B、计量资料C、总体D、个体E、样本17、统计学中的小概率事件,下面说法正确的是:(B)A、反复多次观察,绝对不发生的事件B、在一次观察中,可以认为不会发生的事件C、发生概率小于0.1的事件D、发生概率小于0.001的事件E、发生概率小于0.1的事件18、统计上所说的样本是指:(D)A、按照研究者要求抽取总体中有意义的部分B、随意抽取总体中任意部分C、有意识的抽取总体中有典型部分D、按照随机原则抽取总体中有代表性部分E、总体中的每一个个体19、以舒张压≥12.7KPa为高血压,测量1000人,结果有990名非高血压患者,有10名高血压患者,该资料属(B)资料。
概率论与数理统计第四章测试题
第4章随机变量得数字特征一、选择题1.设两个相互独立得随机变量X与Y得方差分别为4与2,则随机变量3X-2Y得方差就是(A) 8 (B) 16 (C) 28 (D) 442.若随机变量与得协方差,则以下结论正确得就是( )(A) 与相互独立(B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY3.设随机变量与相互独立,且,则( )(A) (B)(C) (D)4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关得充要条件为(A) EX=EY (B) E(X2)- (EX)2= E(Y2)- (EY)2(C) E(X2)= E(Y2) (D) E(X2)+(EX)2= E(Y2)+ (EY)25.设、就是两个相互独立得随机变量且都服从于,则得数学期望( ) (A) (B) 0 (C) (D)6.设、就是相互独立且在上服从于均匀分布得随机变量,则( )(A) (B) (C) (D)7.设随机变量与得方差存在且不等于0,则D(X+Y)=DX+DY就是X与Y( )(A) 不相关得充分条件,但不就是必要条件(B) 独立得充分条件,但不就是必要条件(C) 不相关得充分必要条件(D) 独立得充分必要条件8.若离散型随机变量得分布列为,则( )(A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n次,以X与Y分别表示正面向上与反面向上得次数,则X与Y得相关系数等于(A)-1 (B)0 (C) (D)110.设随机变量X与Y独立同分布,具有方差>0,则随机变量U=X+Y与V=X-Y(A)独立(B) 不独立(C) 相关(D) 不相关11.随机变量X得方差存在,且E(X)=μ,则对于任意常数C,必有。
(A)E(X-C)2=E(X2)-C2(B)E(X-C)2=E(X-μ)2(C)E(X-C)2< E(X-μ)2(D)E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=, 则P(1<X<3) =( )(A)0 (B) (C) (D)二、填空题1.设表示10次独立重复射击命中目标得次数,每次命中目标得概率为0、4,则2.设一次试验成功得概率为,进行了100次独立重复试验,当时,成功得次数得标准差得值最大,其最大值为3.设随机变量X在区间[-1,2]上服从均匀分布,随机变量,则得方差DY=4.,,,则,5.设随机变量服从于参数为得泊松分布,且已知,则6.设(X,Y)得概率分布为:则=。
数理统计期末试题
数理统计期末试题数理统计期末试题————————————————————————————————作者:————————————————————————————————日期:数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92s x ,试求)6.0|(| x P .6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有)|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2N 的样本,试求22121 x x x x Y 服从分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d是任意两个不为0的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度。
概率论与数理统计试题及答案
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2 N 的简单随机样本,2已知,令161161i i X X ,则统计量164X 服从分布为 (必须写出分布的参数)。
2.设),(~2N X ,而,,,,是从总体X 中抽取的样本,则 的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0 F ,则 )8,20(9.0F 。
5. ˆ和 ˆ都是参数a 的无偏估计,如果有 成立 ,则称 ˆ是比 ˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120 :=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x,x, …,x )落入W 的概率为,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布(,1)N ,且 未知,设1,,n X X L 为来自该总体的一个样本,记11nii X X n ,则 的置信水平为1 的置信区间公式是 ;若已知10.95 ,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __。
12.设n X X X ,,,21 为来自正态总体2(,)N 的一个简单随机样本,其中参数 和2 均未知,记11n i i X X n ,221()ni i Q X X ,则假设0H :0 的t 检验使用的统计量是 。
(用X 和Q 表示)13.设总体2~(,)X N ,且 已知、2 未知,设123,,X X X 是来自该总体的一个样本,则21231()3X X X ,12323X X X ,222123X X X ,(1)2X 中是统计量的有 。
14.设总体X 的分布函数()F x ,设n X X X ,,,21 为来自该总体的一个简单随机样本,则n X X X ,,,21 的联合分布函数 。
15.设总体X 服从参数为p 的两点分布,p (01p )未知。
设1,,n X X K 是来自该总体的一个样本,则21111,(),6,{},max n ni in i n i ni i X XX X X X pX 中是统计量的有 。
16.设总体服从正态分布(,1)N ,且 未知,设1,,n X X L 为来自该总体的一个样本,记11nii X X n ,则 的置信水平为1 的置信区间公式是 。
17.设2~(,)X X X N ,2~(,)Y Y Y N ,且X 与Y 相互独立,设1,,m X X L 为来自总体X 的一个样本;设1,,n Y Y L 为来自总体Y 的一个样本;2X S 和2Y S 分别是其无偏样本方差,则2222//X X Y Y S S 服从的分布是 。
18.设 2,0.3X N,容量9n ,均值5X ,则未知参数 的置信度为的置信区间是 (查表0.025 1.96Z )19.设总体X ~2(,)N ,X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
20.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120 :=:,则采用的检验统计量应________________。
21.设12,,,n X X X 是来自正态总体2(,)N 的简单随机样本, 和2均未知,记11n i i X X n ,221()ni i X X ,则假设0:0H 的t 检验使用统计量T= 。
22.设11m i i X X m 和11n i i Y Y n 分别来自两个正态总体211(,)N 和222(,)N 的样本均值,参数1 ,2 未知,两正态总体相互独立,欲检验22012:H ,应用 检验法,其检验统计量是 。
23.设总体X ~2(,)N ,2, 为未知参数,从X 中抽取的容量为n 的样本均值记为X ,修正样本标准差为*n S ,在显著性水平 下,检验假设0:80H ,1:80H 的拒绝域为 ,在显著性水平 下,检验假设2200:H (0 已知),2110:H 的拒绝域为 。
24.设总体X ~12(,),01,,,,n b n p p X X X 为其子样,n 及p 的矩估计分别是 。
25.设总体X ~ 120,,(,,,)n U X X X 是来自X 的样本,则 的最大似然估计量是 。
26.设总体X ~2(,0.9)N ,129,,,X X X 是容量为9的简单随机样本,均值5x ,则未知参数 的置信水平为0.95的置信区间是 。
27.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4 则零件尺寸偏差的数学期望的无偏估计量是28.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X则当C 时CY ~2(2) 。
29.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=30.设X 1,X 2,…X n 为来自正态总体2(,)N :的一个简单随机样本,则样本均值11ni i n 服从二、选择题1.1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ,则YZ~( ) )(A )1,0(N )(B )16(t )(C )16(2 )(D )8,8(F2.已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A )( +A n i i X n B 1211)( a X C )( +10 131)(X a X D +5 3.设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2N 和)5,2(N 的样本,21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 4.设总体),(~2N X ,n X X ,,1 为抽取样本,则 n i i X X n 12)(1是( ))(A 的无偏估计 )(B 2 的无偏估计 )(C 的矩估计 )(D 2 的矩估计5、设n X X ,,1 是来自总体X 的样本,且 EX ,则下列是 的无偏估计的是( ))(A 111n i i X n )(B n i i X n 111 )(C ni i X n 21 )(D 1111n i i X n 6.设n X X X ,,,21 为来自正态总体2(,)N 的一个样本,若进行假设检验,当__ __时,一般采用统计量X t(A)220 未知,检验= (B)220 已知,检验= (C)20 未知,检验= (D)20 已知,检验= 7.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为im 的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C)方差分析中211.()im r e ij i i j S y y 包含了随机误差外,还包含效应间的差异(D)方差分析中2.1()rA i i i S m y y 包含了随机误差外,还包含效应间的差异8.在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误9.对总体2~(,)X N 的均值 和作区间估计,得到置信度为95%的置信区间,意义是指这个区间(A)平均含总体95%的值 (B)平均含样本95%的值(C)有95%的机会含样本的值 (D)有95%的机会的机会含 的值 10.在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 11. 设总体X 服从正态分布 212,,,,,n N X X XL 是来自X 的样本,则2 的最大似然估计为(A ) 211n i i X X n (B ) 2111n i i X X n (C )211n i i X n (D )2X12.X 服从正态分布,1 EX ,25EX ,),,(1n X X 是来自总体X 的一个样本,则ni inX X 11服从的分布为___ 。
(A)N (1 ,5/n) (B)N (1 ,4/n) (C)N (1 /n,5/n) (D)N (1 /n,4/n)13.设n X X X ,,,21 为来自正态总体2(,)N 的一个样本,若进行假设检验,当___ __时,一般采用统计量X U(A)220 未知,检验= (B)220 已知,检验= (C)20 未知,检验= (D)20 已知,检验= 14.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为i m 的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C) 方差分析中211.()im r e ij i i j S y y 包含了随机误差外,还包含效应间的差异(D) 方差分析中2.1()rA i i i S m y y 包含了随机误差外,还包含效应间的差异15.在一次假设检验中,下列说法正确的是___ ____ (A)第一类错误和第二类错误同时都要犯(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都要变小(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误16.设ˆ 是未知参数 的一个估计量,若ˆE ,则ˆ 是 的___ _____(A)极大似然估计 (B)矩法估计 (C)相合估计 (D)有偏估计17.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为,则犯第一类错误的概率为__________。