2016-2017北京朝阳三里屯高二下期中【理】数学真题卷
2016-2017学年北京市师大附中高二下学期期中考试数学(理)试题 解析版
北京师大附中2016-2017学年下学期高二年级期中考试数学试卷(理科)一、选择题:本大题共8道小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数所对应的点在复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】复数所对应的点在复平面的第二象限.2. 在极坐标系中,圆的圆心的极坐标是()A. B. C. D.【答案】A【解析】圆即为圆化成直角坐标方程为,所以圆心的直角坐标为,极坐标是.3. 定积分的值为()A. 0B.C. 2D. 4【答案】C【解析】试题分析:由题意根据定积分的性质故选C.4. 设曲线在点(0,0)处的切线方程为,则a=()A. 0B. 1C. 2D. 3【答案】D【解析】由题意由切线方程为可得解得点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.5. 若函数在R上可导,,则=()A. 1B. -1C.D.【答案】C【解析】求导得:,把代入得解得6. 若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质,下列函数中具有T性质的是()A. B. C. D.【答案】A【解析】根据导数的几何意义,若具有T性质,则存在使或且处切线与x轴垂直.A项,,,有具有T性质,故A项正确;B项,,,切线斜率存在,不满足,不具有T性质,故B项错误;C项,,不具有T性质,故C项错误;D项,,,不具有T性质,故D项错误.7. 设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是()A. B.C. D.【答案】D【解析】试题分析:A中曲线是原函数,直线是导函数;B中递增的为原函数,递减的为导函数;C中上面的为导函数,下面的为原函数;D中无论原函数是哪一个,导函数值都要有正有负考点:1.函数图像;2.导数与函数单调性8. 设函数在R上的导函数为,且,下面的不等式在R上恒成立的是()A. B. C. D.【答案】A【解析】试题分析:设,则,因为对任意的,有,所以当时,,当时,,即在上递减,在上递增,因此是极小值也是最小值,即,所以,所以当时,,在中令,则有,即,所以对任意,有.故选A.考点:导数的应用,分类讨论思想.二、填空题:本大题共6道小题,每小题5分,共30分.9. 若,则=_______________.【答案】【解析】由,则= .点睛:本题重点考查复数的基本运算和复数的概念.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如,其次要熟悉复数的相关基本概念,如复数的实部为,虚部为,模为,对应点为,共轭复数为.10. 参数方程(为参数),化为普通方程为________________.【答案】【解析】由题可得,消去参数可得.11. 直线与曲线在第一象限内围成的封闭图形的面积为____________.【答案】4【解析】试题分析:先根据题意画出图形,得到积分上限为,积分下限为,曲线与直线在第一象限所围成饿图形的面积是,即围成的封闭图形的面积为.考点:利用定积分求解曲边形的面积.12. 函数的单调增区间为_______________.【答案】【解析】由题函数的定义域为,又,可解得13. 已知函数的图象在点处的切线与直线=0垂直,且函数在区间上是单调递增,则b的最大值等于___________.【答案】【解析】函数的导数为在点处的切线斜率为,由切线与直线=0垂直,可得,即,由函数在区间上是单调递增可得在区间上恒成立,即有的最小值,由可得的最小值为.即有,由,可得.则b的最大值为.14. 对于函数,若存在区间,使得,则称函数具有性质P,给出下列3个函数:①;②;③;其中具有性质P的函数是____________(填入所有满足条件函数的序号).【答案】②【解析】①对于函数,若正弦函数存在等值区间, 则在区间上有, 由正弦函数的值域知道, 但在区间上仅有, 所以函数不具有性质P;②对于函数,当时, ,所以函数的增区间是,,减区间是取 ,此时, ,所以函数在上的值域也为, 则具有性质P;③对于,若存在“稳定区间”,由于函数是定义域内的增函数,故有,即方程有两个解,这与y=和y=x的图象相切相矛盾.故③不具有性质P.故答案为:②.三、解答题:本大题共6道题,共80分.写出必要的文字说明、证明过程或演算步骤.15. (1)(2)设复数z满足(i是虚数单位),求z.【答案】(1);(2).【解析】试题分析:(1)根据复数的运算性质化简即可;(2)分离出z,根据复数的运算性质计算即可.试题解析:(1);(2)由题意可得:.16. 在直角坐标系中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线的参数方程为(t为参数),直线和圆C交于A,B 两点,P是圆C上不同于A,B的任意一点.(1)求圆心的极坐标;(2)求△P AB面积的最大值.【答案】(1);(2).【解析】试题分析:(1)将圆C的极坐标方程化为普通方程,即得圆心的坐标.根据极坐标的转换方法即得圆心的极坐标.(2)由直线的参数方程化为普通方程,即得圆心到直线的距离,由此可得弦长,由点P 到直线AB距离的最大值即可求出△P AB面积的最大值.试题解析:(1)圆C的普通方程为,即.所以圆心坐标为,圆心极坐标为;(2)直线的普通方程:,圆心到直线的距离,所以,点P直线AB距离的最大值为,.17. 已知函数,(其中常数)(1)当时,求的极大值;(2)试讨论在区间上的单调性.【答案】(1);(2)答案见解析.【解析】试题分析:(1)求得,可以得到函数的单调性,从而得到函数的极值;(2)求导数,再分,,三类情况,利用导数的正负,确定函数的单调性.试题解析:(1)当时,当时,;当时,在和上单调递减,在单调递减故(2)①当时,则,故时,;时,,此时在上单调递减,在单调递增;②当时,则,故,有恒成立,此时在(0,1)上单调递减;③当时,则,故时,;时,此时在上单调递减,在单调递增.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.18. 若函数,当时,有极小值-9.(1)求的解析式;(2)若函数,,当时,对于任意和的值至少有一个是正数,求实数m的取值范围.【答案】(1);(2)(0,2).【解析】试题分析:(1)先求出函数的导数,得到方程组,求出a,b,从而求出函数表达式;(2)求出的表达式,利用二次函数的图象和性质,分别对函数和的值进行讨论,建立条件关系即可得到结论;试题解析:(1)由,因为函数在时有极小值-9,所以,从而得,所以.(2)由,故,当时,若,则,满足条件;若,则,满足条件;若,,所以恒成立,恒成立,因为,当且仅当取等号,所以,即m的取值范围是(0,2).19. 已知函数,其中e为自然对数的底数,函数.(1)求函数的单调区间;(2)若函数的值域为R,求实数m的取值范围.【答案】(1)单调增区间为,单调减区间为.(2).【解析】试题分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)函数的导数,通过讨论m的范围得到函数的值域,从而确定m的具体范围即可.试题解析:(1).由得,由得.所以函数的单调增区间为,单调减区间为.(2).当时,,所以在区间上单调递减;当时,,所以在区间上单调递增.1°当时,在上单调递减,值域为,在上单调递减,值域为,因为的值域为R,所以,即.(*)由(1)可知当时,,故(*)不成立.因为在上单调递减,在上单调递增,且,所以当时,恒成立,因此.2°当时,在上单调递减,在上单调递增,所以函数在上的值域为,即.在(m,+)上单调递减,值域为.因为的值域为R,所以,即.综合1°,2°可知,实数m的取值范围是.20. 已知函数,其图象与x轴交于两点,且.(1)证明:;(2)证明:;(其中为的导函数)(3)设点C在函数的图象上,且△ABC为等边三角形,记,求的值. 【答案】(1)证明见解析;(2)证明见解析;(3).(2)计算,根据函数单调性判断的符号即可;(3)用表示出P点坐标,根据等边三角形的性质列方程化简即可求出t和a的关系,再计算的值.试题解析:(1)∵,若,则,则函数在R上单调递增,这与题设矛盾.,易知在上单调递减,在上单调递增,.(2)∵,∴两式相减得.记,则,设则是单调减函数,则有,而.(3)由得,设,在等边三角形ABC中,易知,由等边三角形性质知,即,,∵,,,又∵,.点睛:根据函数零点求参数取值,也是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.。
北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥ 6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0,||2||OA AB =,则CA BC ⋅等于A .154-B.2- C .154 D.2 7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则t a n A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos BDC ∠=(Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-.(Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,n c 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A .(Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=m a x {,}k k k d c c -(m a x {,}p q 表示,p q 中的较大值),求证:k k d d ≤+1; (Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分 (Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =-的图象经过点(,0)3π,所以 ()0.322f a π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2; 当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.- 所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos 7BDC ∠=,所以sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠=. …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以2307DB DB -⋅-=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD = …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分 (Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2x g x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >. 由()0g x '<,即1cos 02x -<,解得π03x <<. 由()0g x '>,即1cos 02x ->,解得ππ32x <<. 所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减, 所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分 19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-.(Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增.所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:所以220x a -≥+. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -=. 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。
北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0, ||2||OA AB =,则CA BC ⋅等于A .154-B.2- C .154 D.2 7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证1n T <.16.(本小题满分13分)已知函数()sin f x a x x =-(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos BDC ∠=(Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-.(Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,n c 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A .(Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1; (Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分 (Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f a π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2; 当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.- 所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos 7BDC ∠=sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠=. …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以2307DB DB -⋅-=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD = …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分 (Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2x g x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >. 由()0g x '<,即1cos 02x -<,解得π03x <<. 由()0g x '>,即1cos 02x ->,解得ππ32x <<. 所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减, 所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分 19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-.(Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增.所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:所以220x a -≥+>. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10-<.设0x =->,则1x -=. 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。
2016-2017北京朝阳17中高二下期中【理】数学真题卷
2016-2017北京朝阳17中高二下期中一、选择题:本大题共8题,每题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列结论正确的是( ).A .若cos y x =,sin y x '=B .若e x y =,则1e x y x -'=C .若1y x =,则21y x '=-D .若y y '=【答案】C【解析】A .若cos y x =,则sin y x '=-,故A 项错误;B .若e x y =,则e x y '=,故B 项错误;C .若1y x=,则21y x '=-,故C 项正确;D .若yy '=D 项错误. 故选C .2.计算πsin d 0x x =⎰( ). A .2B .0C .2-D .4【答案】A 【解析】ππsin d (cos )1(1)200x x x =-=--=⎰. 故选A .3.函数()f x 的定义域为开区间(,)a b ,导函数()f x '在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极大值点( ).A .1个B .2个C .3个D .4个【答案】B 【解析】导函数在极大值点左侧为正,右侧为负,由图象可知,这样的点有2个,所以函数()f x 在开区间(,)a b 内有极大值点有2个.故选B .4.作反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a ,b ,c 中至少有一个是偶数时,下列假设正确的是( ).A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 中至多有一个是偶数D .假设a ,b ,c 中至多有两个是偶数【答案】B 【解析】根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定是“都不是”所以假设正确的是:假设a ,b ,c 都不是偶数. 故选B .5.设函数1()21(0)f x x x x=+-<,则()f x 在其定义域内( ). A .有最大值 B .有最小值 C .是增函数 D .是减函数【答案】A 【解析】由1()21(0)f x x x x =+-<得222121()2(0)x f x x x x -'=-=<,令()0f x '=,得x =,令()0f x '>,得x <;令()0f x '<,得0x <<,∴()f x 在,⎛-∞ ⎝⎭上单调递增,在⎛⎫ ⎪ ⎪⎝⎭上单调递减,∴()f x 在x = 故选A .6.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为π0,4⎡⎤⎢⎥⎣⎦,则点P 横坐标的取值范围为( ).A .[0,1]B .[1,0]-C .1,12⎡⎤⎢⎥⎣⎦D .11,2⎡⎤--⎢⎥⎣⎦ 【答案】D【解析】223y x x =++,得22y x '=+,由曲线在点P 处切线倾斜角的取值范围为π0,4⎡⎤⎢⎥⎣⎦可知, 曲线C 在点P 处切线的斜率的取值范围为[0,1],设P 点横坐标为0x ,则00221x +≤≤,解得0112x --≤≤, 即点P 横坐标的取值范围为11,2⎡⎤--⎢⎥⎣⎦. 故选D .7.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ). A .(,5]-∞B .[5,)+∞C .(,4]-∞D .[4,)+∞ 【答案】C【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,。
2016-2017学年高二下学期期中考试数学(理)试题word版含答案
2016-2017学年高二下学期期中考试数学(理)试题时间:120分 满分150分本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束后,只交答题纸和答题卡,试题自己保留。
注意事项1.答题前,考生在答题纸和答题卡上务必用直径0.5毫米黑色签字笔将自己的班级、姓名、考号填写清楚。
请认真核准考号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3. 填空题和解答题的答案必须写在答题纸上,写在试卷上无效.第Ⅰ卷一. 选择题(每小题5分,满分60分)1.已知某条曲线的参数方程是12()(12()x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩是参数),则该曲线是( )A.直线B.圆C.椭圆D.双曲线2.已知变量x 与y 负相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( )A. 0.4 2.3y x =+B. 2 2.4y x =-C. 29.5y x =-+D. 0.3 4.5y x =-+3.若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是第( )项A.4B.3C.2D.1 4. 下列说法不正确的是( )A.随机变量,ξη满足23ηξ=+,则其方差的关系为()4()D D ηξ=B.回归分析中,2R 的值越大,说明残差平方和越小 C.画残差图时,纵坐标一定为残差,横坐标一定为编号 D.回归直线一定过样本点中心5. 设随机变量X ~N (2,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为( ) A .6 B .8 C .10 D .12 6. 根据如下样本数据得到的回归方程为 ˆˆ,y bxa =+则 A.ˆˆ0a>>,b 0 B. ˆˆ0a ><,b 0 C. ˆˆ0a <>,b 0 D. ˆˆ0a <<,b 0 7. 掷两枚均匀的大小不同的骰子,记“两颗骰子的点数和为8”为事件A ,“小骰子出现的点数小于大骰子出现的点数”为事件B,则P(A|B), P(B|A)分别为( ) A.22,155 B. 33,145 C. 11,35D. 44,515 8. 某班主任对班级90名学生进行了作业量多少的调查,结合数据建立了下列列联表:利用独立性检验估计,你认为推断喜欢电脑游戏与认为作业多少有关系错误的概率介于A.0.15~0.25B.0.4~0.5C.0.5~0.6D.0.75~0.85 (观测值表如下)9.某商场利用下列盈利表中的数据进行决策,应选择的方案是 A. 4A B. 3A C. 2A D. 1A10.在二项式n的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A.16 B. 712 C. 13 D. 51211.在回归分析与独立性检验中:① 相关关系是一种确定关系 ② 在回归模型中,x 称为解释变量,y 称为预报变量 ③ 2R 越接近于1,表示回归的效果越好 ④ 在独立性检验中,||ad bc -越大,两个分类变量关系越弱;||ad bc -越小,两个分类变量关系越强 ⑤残差点比较均匀地落在水平的带状区域中,带状区域宽度越窄,回归方程的预报精度越高,正确命题的个数为( )A.5B.4C.3D.212. 设计院拟从4个国家级课题和6个省级课题中各选2个课题作为本年度的研究项目,若国家级课题A 和省级课题B 至少有一个被选中的不同选法种数是m,那么二项式28(1)mx +的展开式中4x 的系数为( ) A.54000 B.100400 C. 100600 D.100800第Ⅱ卷二.填空题(每小题5分,满分20分)13. 在40件产品中有12件次品,从中任取2件,则恰有1件次品的概率为 . 14.64(1)(1)x x -+的展开式2x 的系数是 .15. 已知服从正态分布2(,)N μσ的随机变量,在区间(,),(2,2)μσμσμσμσ-+-+和(3,3)μσμσ-+内取值的概率分别为68.27%,95.45%和99.73%,某中学为10000名员工定制校服,设学生的身高(单位:cm )服从正态分布N (173,25),则适合身高在158~188cm 范围内学生穿的校服大约要定制 套.16. 设集合U={1,2,3,4,5},从集合U 中选4个数,组成没有重复数字的四位数,并且此四位数大于2345,同时小于4351,则满足条件的四位数共有 .三.解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.在直角坐标系x0y 中,直线l 的参数方程为1(4x t t y t =+⎧⎨=+⎩为参数),在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=.(1) 写出直线l 一般式方程与曲线C 的直角坐标的标准方程; (2) 设曲线C 上的点到直线l 的距离为d ,求d 的取值范围.18.已知在n 的展开式中,只有第5项二项式系数最大.(1) 判断展开式中是否存在常数项,若存在,求出常数项;若不存在,说明理由; (2)求展开式的所有有理项.19. 在直角坐标系x0y 中,以原点O 为极点,x 轴的正半轴为极轴,曲线C 的极坐标方程为2sin 1sin θρθ=-. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)过点P (0,2)作斜率为1的直线l 与曲线C 交于A,B 两点, ① 求线段AB 的长; ②11||||PA PB +的值. 20. 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(1)确定x,y 的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...3 钟的概率. (注:将频率视为概率)21. 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,在学习积极性高的25名学生中有7名不太主动参加班级工作,而在积极参加班级工作的24名学生中有6名学生学习积极性一般.(1) 填写下面列联表;(2)参加班级工作且学习积极性一般的学生的概率是多少?(3)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.(观测值表如下)22.在《我是歌手》的比赛中,有6位歌手(1~6号)进入决赛,在决赛中由现场的百家媒体投票选出最受欢迎的歌手,各家媒体独立地在投票器上选出3位候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他一定不选2号,;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1) 求媒体甲选中5号且媒体乙未选中5号歌手的概率;(2) ξ表示5号歌手得到媒体甲,乙,丙的票数之和,求ξ的分布列及数学期望.2016-2017学年高二下学期期中考试数学(理)试题参考答案1~12 DCBCA BABBD CD 13.286514. -3 15. 9973 16. 54 17. (1) 223013y x y x -+=+=minmax 2sin()3(2)2222d d d d πα-+====⎢⎣⎦的取值范围为,18.(1)n=8116388((1)814216-3014316,,kC kk k k k T C xk k k T k k k N --==-+=+=∈若为常数项,则即又这不可能,所以没有常数项(2)解:若1T k +为有理项,当且仅当16304k-=为整数 因为08,,0,4,8k k N k ≤≤∈=所以即展开式中的有理项检有3项,它们是59421351,,8256T x x xT T -===19.22(1)2(2),22y x x y x y =⎧=⎪⎪=⎨⎪=+⎪⎩代入得2121240,4,11||||||4t t t t t AB PA PB --==-+==+=①②20. (1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X ========= 201101( 2.5),(3).100510010p X p X ======X 的分布为X 的数学期望为33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过3钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则由于顾客的结算相互独立得121212121212()(1)1)(1)( 1.5)( 1.5)(1)(1)2)(2)(1)( 1.5)( 1.5)P A P X P X P X P X P X P X P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=+=⨯=+=⨯=+=⨯=((3333331331331112020201010204202041010400=⨯+⨯+⨯+⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过3 钟的概率为111400.21. (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型概率的计算公式可得抽到积极参加班级工作的学生的概率是P 1=2450=1225,又因为不太主动参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=1950.(2)由K 2统计量的计算公式得k =50× 18×19-6×7 224×26×25×25≈11.538,由于11.538>10.828,所以能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.22. 设A 表示事件上:“媒体甲选中5号歌手”,事件B 表示“媒体乙选中5号歌手”, (1)1244235523()()55P A P B CC CC====所以__234()()()15525P A B P A P B ⎛⎫==⨯-= ⎪⎝⎭ (2) 事件C 表示“媒体乙选中5号歌手”25361()2P C C C== 因为X 可能的取值为0,1,2,3,所以3)25__231(0)()(1(1)(1)552P X P A B C ===-⨯-⨯-= ______(1)()()()23123132119(1)(1)(1)(1)55255255250P X P A B C P A B C P A B C ==++=⨯-⨯-+-⨯⨯-+⨯⨯= ___(2)()()()2312123311955252555250P X P AB C P A B C P A BC ==++=⨯⨯+⨯⨯+⨯⨯=2313(3)()55225P X P ABC ===⨯⨯=所以X 的分布列为所为X 的期望为3191933()0123255050252E X =⨯+⨯+⨯+⨯=。
2016年高考北京理科数学试题及答案(word解析版)
2016年高考北京理科数学试题及答案(word解析版)2016年普通高等学校招生全国统一考试(北京卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2016年北京,理1,5分】已知集合{}|2A x x =<<,{}1,0,1,2,3=-,则A B =I ( )(A ){}0,1 (B ){}0,1,2 (C ){}1,0,1- (D ){}1,0,1,2-【答案】C【解析】集合{}22A x x =-<<,集合{}1,0,1,2,3B x =-,所以{}1,0,1A B =-I ,故选C .【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.(2)【2016年北京,理2,5分】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,,,则2x y +的最大值为( )(A )0 (B )3 (C )4 (D )5【答案】C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=,故选C .【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.(3)【2016年北京,理3,5分】执行如图所示的程1,2()2x +y =02x-y=0x =0x +y =3序框图,若输入的a 值为1,则输出的k 值为( )(A )1 (B )2 (C )3 (D )4【答案】B【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =,故选B .【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(4)【2016年北京,理4,5分】设a r ,b r 是向量,则“a b =r r ”是“a b a b +=-r r r r ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】D 【解析】若=a b r r 成立,则以a r ,b r 为边组成平行四边形,那么该平行四边形为菱形,+a b r r ,a b -r r 表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b-r r r r 不一定成立,从而不是充分条件;反之,+=a b a b -r r r r 成立,则以a r ,b r 为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b r r 不一定成立,从而不是必要条件,故选D .【点评】本题考查的知识点是充要条件,向量的模,分析出“a b =r r ”与“a b a b +=-r r r r ”表示的几何意义,是解答的关键.(5)【2016年北京,理5,5分】已知x y ∈R ,,且0x y >>,则( )(A )110x y -> (B )sin sin 0x y ->_ (C )11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭ (D )ln ln 0x y +>【答案】C【解析】A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y-<所以A 错; B .考查的 是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12x y ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022x y ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错,故选C .【点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题.(6)【2016年北京,理6,5分】某三棱锥的三视图如图所示,则该三棱锥的体积为( )(A )16 (B )13(C )12 (D )1【答案】A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==,故选A .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(7)【2016年北京,理7,5分】将函数sin 23y x π⎛⎫=- ⎪⎝⎭图象上的点,4P t π⎛⎫ ⎪⎝⎭向左平移()0s s >个单位长度得到点P ',若P '位于函数sin 2y x =的图象上,则( )(A )12t =,s 的最小值为6π (B )3t =,s 的最小值为6π (C )12t =,s 的最小值为3π (D )3t ,s 的最小值为3π 【答案】A 【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移s 个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以s 的最小值为π6,故选A .【点评】本题考查的知识点是函数()()sin 0,0y x A ωϕω=+>>的图象和性质,难度中档.(8)【2016年北京,理8,5分】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多【答案】B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机.③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.故选B .【点评】该题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,中档题.二、填空题:共6小题,每小题5分,共30分。
北京市2016-2017学年高二下学期期末数学试卷(理科) Word版含解析
A北京市 2016-2017 学年高二下学期期末试卷(理科数学)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每个小题给出的四个选项中,只有一个符合题目 要求的.1.在复平面内,复数 z=对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在(x+2)4 的展开式中,x 2 的系数为( ) A .24 B .12 C .6 D .43.已知函数 f (x )=ln2x ,则 f′(x )=( )A .B .C .D .4.将一枚均匀硬币随机投掷 4 次,恰好出现 2 次正面向上的概率为( )A .B .C .D .5.函数 f (x )=﹣ x 2+lnx 的极值点是()A .x=﹣1B .x=﹣C .x=1D .x=6.5 名大学生被分配到 4 个地区支教,每个地区至少分配 1 人,其中甲乙两名同学因专业相同,不能分配 在同一地区,则不同的分配方法的种数为( ) A .120 B .144 C .216 D .2407.设 a ,b ,c 是正整数,且 a ∈[70,80),b ∈[80,90),c ∈[90,100],当数据 a ,b ,c 的方差最小时, a+b+c 的值为( ) A .252 或 253 B .253 或 254 C .254 或 255 D .267 或 2688.已知函数 f (x )=e x +ax ﹣2,其中 a ∈R ,若对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣ 1 2 1 2 2 1x •f(x )<a (x ﹣x )成立,则 a 的取值范围是( ) 1 2 1 2 A .[1,+∞) B .[2,+∞) C .(﹣∞,1]D .(﹣∞,2]二、填空题:本大题共 6 个小题,每小题 5 分.、共 30 分.9.函数 f (x )=cosx ,则 f′()= .10.定积分dx 的值为 .11.设(2x+1)3=a x 3+a x 2+a x+a ,则 a +a +a +a = .3 2 1 0 0 1 2 312.由数字 1,2 组成的三位数的个数是 (用数字作答).13.在平面几何里,有勾股定理“设△ABC 的两边 AB ,AC 互相垂直,则 AB 2+AC 2=BC 2”,拓展到空间,类比 平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥 ﹣BCD 的三个侧面 ABC 、ACD 、ADB 两两互相垂直,则 .”14.研究函数f(x)=的性质,完成下面两个问题:①将f(2)、f(3)、f(5)按从小到大排列为;②函数g(x)=(x>0)的最大值为.三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.15.在数列{a}中,a=1,a=n•a,n=2,3,4,….n1n n﹣1(Ⅰ)计算a,a,a,a的值;2345(Ⅱ)根据计算结果,猜想{a}的通项公式,并用数学归纳法加以证明.n16.已知函数f(x)=x3+3x2﹣9x;(1)求f(x)的单调区间;(2)若函数f(x)在区间[﹣4,c]上的最小值为﹣5,求c的取值范围.17.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.科目A科目B科目C甲(Ⅰ)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.18.口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(Ⅰ)用含n的代数式表示1次摸球中奖的概率;(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.19.已知函数f(x)=x2e x﹣b,其中b∈R.(Ⅰ)证明:对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤;1212(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).20.设L为曲线C:y=e x在点(0,1)处的切线.(Ⅰ)证明:除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)设h(x)=e x﹣ax+ln(x+1),其中a∈R,若h(x)≥1对x∈[0,+∞)恒成立,求a的取值范围.北京市2016-2017学年高二下学期期末试卷(理科数学)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,求出在复平面内,复数z对应的点的坐标,则答案可求.【解答】解:z==则在复平面内,复数z对应的点的坐标为:(,,),位于第一象限.故选:A.2.在(x+2)4的展开式中,x2的系数为()A.24B.12C.6D.4【考点】二项式系数的性质.【分析】直接根据二项式的展开式的通项公式即可求出.【解答】解:(x+2)4的展开式的通项公式为T=C r•24﹣r•x r,r+14令r=2,故展开式中x2的系数为C2•22=24,4故选:A.3.已知函数f(x)=ln2x,则f′(x)=()A.B.C.D.【考点】导数的运算.【分析】根据复合函数的导数公式进行求解即可.【解答】解:∵f(x)=ln2x,∴f′(x)===,故选:D4.将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】将一枚均匀硬币随机投掷4次,利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出恰好出现2次正面向上的概率.【解答】解:将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为:p==.故选:B.5.函数f(x)=﹣x2+lnx的极值点是()A.x=﹣1B.x=﹣C.x=1D.x=【考点】利用导数研究函数的极值.【分析】求出原函数的导函数,确定出函数的单调区间,由此求得函数的极值点.【解答】解:由f(x)=﹣x2+lnx,得f′(x)=(x>0),当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.∴函数f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.∴函数f(x)=﹣x2+lnx的极值点为x=1.故选:C.6.5名大学生被分配到4个地区支教,每个地区至少分配1人,其中甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为()A.120B.144C.216D.240【考点】排列、组合及简单计数问题.【分析】先求出没有限制要求的5名大学生被分配到4个地区支教,每个地区至少分配1人的种数,再排除甲乙两名同学分配在同一地区的种数,问题得以解决.【解答】解:5个人分成满足题意的4组只有1,1,1,2,即只有一个单位有2人,其余都是1人,故有C2A4=240种,54其中甲乙两名同学分配在同一地区的方法为C1A3=24种,43故甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为240﹣24=216种,故选:C.7.设a,b,c是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据a,b,c的方差最小时,a+b+c的值为()A.252或253B.253或254C.254或255D.267或268【考点】极差、方差与标准差.【分析】设=,则数据a,b,c的方差s2=≥[(a﹣b)2+(b﹣c)2+(a﹣c)2],设a=b+m,c=b+n,则s2≥[m2+n2+(m+n)2],应该使得b=85,而当m+n=0,﹣1,1时,s2有可能取得最小值.【解答】解:设=,1 s s 1 s s则数据 a ,b ,c 的方差s 2=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2], 设 a=b+m ,c=b+n ,则 s 2≥[m 2+n 2+(m+n )2],= ≥取 b=85,当 m+n=0,﹣1, 时, 2 有可能取得最小值,m=﹣16,n=15 时, 2 取得最小值取 b=84,当 m+n=0,﹣1, 时, 2 有可能取得最小值,m=﹣15,n=16 时, 2 取得最小值== ..∴a+b+c=79+85+90=254,或 a+b+c=79+84+90=253. 故选:B .8.已知函数 f (x )=e x +ax ﹣2,其中 a ∈R ,若对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣ 1 2 1 2 2 1x •f(x )<a (x ﹣x )成立,则 a 的取值范围是( ) 1 2 1 2 A .[1,+∞) B .[2,+∞) C .(﹣∞,1] D .(﹣∞,2]【考点】利用导数研究函数的单调性.【分析】将不等式变形为:< 恒成立,构造函数 h (x )= ,转会为当 x <x12时,h (x )<h (x )恒成立,为了求 a 的范围,所以需要构造函数,可通过求导数,根据单调性来求它的1 2范围.【解答】解:∵对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣x •f(x )<a (x ﹣x )成立,1212211212∴不等式等价为< 成立,令 h (x )=,则不等式等价为当 x <x 时,h (x )<h (x )恒成立,1212即函数 h (x )在(0,+∞)上为增函数;h (x )=,则 h′(x )=≥0 在(0,+∞)上恒成立;∴xe x ﹣e x +2﹣a ≥0;即 a ﹣2≤xe x ﹣e x 恒成立, 令 g (x )=xe x ﹣e x ,∴g′(x )=xe x >0; ∴g (x )在(0,+∞)上为增函数; ∴g (x )>g (0)=﹣1; ∴2﹣a ≥1; ∴a ≤1.∴a 的取值范围是(﹣∞,1].A故选:C二、填空题:本大题共 6 个小题,每小题 5 分.、共 30 分.9.函数 f (x )=cosx ,则 f′()= ﹣ .【考点】导数的运算.【分析】求函数的导数,根据函数的导数公式代入直接进行计算即可. 【解答】解:∵f (x )=cosx ,∴f′(x )=﹣sinx ,f′()=﹣sin =﹣ ,故答案为:﹣10.定积分dx 的值为 .【考点】定积分.【分析】根据定积分的性质,然后运用微积分基本定理计算定积分即可.【解答】解:dx=2 x 2dx=2× x 3 = .故答案为: .11.设(2x+1)3=a x 3+a x 2+a x+a ,则 a +a +a +a = 27 . 321123【考点】二项式系数的性质.【分析】令 x=1 可得 a +a +a +a 的值.123【解答】解:令 x=1,a +a +a +a =33=27,0 1 2 3故答案为:2712.由数字 1,2 组成的三位数的个数是 8 (用数字作答). 【考点】排列、组合及简单计数问题. 【分析】直接根据分步计数原理可得.【解答】解:每一位置都有 2 种排法,故有 23=8 种, 故答案为:813.在平面几何里,有勾股定理“设△ABC 的两边 AB ,AC 互相垂直,则 AB 2+AC 2=BC 2”,拓展到空间,类比 平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥﹣BCD 的三个侧面 ABC 、ACD 、ADB 两两互相垂直,则 △S A BC2 △+S ACD △+S ADB 22=S△BCD2 .”【考点】类比推理.【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:△S ABC 故答案为:2+S22=S2.△S ABC△ACD△+S ADB△BCD 2+S△ACD△+SADB22=S△BCD2.14.研究函数f(x)=的性质,完成下面两个问题:①将f(2)、f(3)、f(5)按从小到大排列为f(5)<f(2)<f(3);;②函数g(x)=(x>0)的最大值为e.【考点】利用导数研究函数的单调性.【分析】①利用导数判断在(0,e)递增,(e,+∞)递减得出f(3)>f(5),运用作差判断f(2)﹣f (5),f(2)﹣f(3)即可得出大小.②构造函数ln(g(x))=lnx(x>0),令h(x)=lnx(x>0),运用导数求解极大值,得出h(x)的极大值为h(e)=lne=,结合对数求解即可.【解答】解:①∵函数f(x)=,∴f′(x)=,f′(x)==0,x=e,f′(x)=,>0,x∈(0,e)f′(x)=<0,x∈(e,+∞)∴在(0,e)递增,(e,+∞)递减∴f(3)>f(5),∵f(2)﹣f(5)===>0∴f(2)>f(5)∵f(2)﹣f(3)==<0∴f(3)>f(2)故答案:f(5)<f(2)<f(3);②∵函数g(x)=(x>0),∴ln(g(x))=lnx(x>0)(令 h (x )= lnx (x >0),h′(x )=h′(x )=h′(x )=(1﹣lnx )=0,x=e(1﹣lnx )<0,x >e(1﹣lnx )>0,0<x <e∴h (x )= lnx (x >0),在(0,e )递增,在(e ,+∞)递减,h (x )的极大值为 h (e )= lne= ,∴函数 g (x )=(x >0)的最大值为 e ,故答案为:e三、解答题:本大题共 6 小题,共 80 分,解答应写出文字说明、证明过程或演算步骤. 15.在数列{a }中,a =1,a =n•a ,n=2,3,4,….n1nn ﹣1(Ⅰ)计算 a ,a ,a ,a 的值;2 3 4 5(Ⅱ)根据计算结果,猜想{a }的通项公式,并用数学归纳法加以证明.n【考点】数学归纳法;归纳推理. 【分析】(Ⅰ)利用已知条件通过 n=2,3,4,5 直接计算 a ,a ,a ,a 的值,2345(Ⅱ)根据(Ⅰ)的计算结果,猜想的通{a }项公式,用数学归纳法的证明步骤直接证明即可.n【解答】解:(Ⅰ)a =1,a =n•a ,1 n n ﹣1可得 n=2 时,a =2;n=3 时,a =6;2 3a =24,a =120 4 5(Ⅱ)猜想 a =n!.n证明:①当 n=1 时,由已知,a =1!=1,猜想成立.1②假设当 n=k (k ∈N *)时猜想成立,即 a =k!.k则 n=k+1 时,a =(k+1)a =(k+1)k!=(k+1)!.k+1 k所以 当 n=k+1 时,猜想也成立.根据 ①和 ②,可知猜想对于任何 n ∈N *都成立16.已知函数 f (x )=x 3+3x 2﹣9x ; (1)求 f (x )的单调区间;(2)若函数 f (x )在区间[﹣4,c]上的最小值为﹣5,求 c 的取值范围. 【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; 2)通过讨论 c 的范 围,求出函数的最小值,从而求出 c 的具体范围. 【解答】解:(1)函数 f (x )的定义域是 R , f′(x )=3x 2+6x ﹣9,令 f′(x )>0,解得:x >1 或 x <﹣3,令f′(x)<0,解得:﹣3<x<1,∴f(x)在(﹣∞,﹣3)递增,在(﹣3,1)递减,在(1,+∞)递增;(2)由f(﹣4)=20结合(1)得:c≥1时,函数f(x)在[﹣4,c]上的最小值是f(1)=﹣5,﹣4<c<1时,函数f(x)在区间[﹣4,c]上的最小值大于﹣5,故c的范围是[1,+∞).17.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.科目A科目B科目C甲(Ⅰ)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)记“甲至少有一个科目考试成绩合格”为事件M,利用对立事件概率计算公式能求出甲至少有一个科目考试成绩合格的概率.(Ⅱ)由题意得X的可能取值为0,1,2,3,分别求出相应的概率,由此能出X的分布列和EX.【解答】解:(Ⅰ)记“甲至少有一个科目考试成绩合格”为事件M,则P()=(1﹣)(1﹣)(1﹣)=,∴甲至少有一个科目考试成绩合格的概率:P(M)=1﹣P()=1﹣.(Ⅱ)由题意得X的可能取值为0,1,2,3,P(X=0)=(1﹣)(1﹣)(1﹣)=,P(X=1)=++(1﹣)×,P(X=3)=,,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)=∴X的分布列为:123X0PEX==.18.口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(Ⅰ)用含n的代数式表示1次摸球中奖的概率;(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)设“1次摸球中奖”为事件A,利用互斥事件概率加法公式能求出用含n的代数式表示1次摸球中奖的概率.(Ⅱ)由(Ⅰ)得若n=3,则1次摸球中奖的概率为p=,由此能求出3次摸球中,恰有1次中奖的概率.(Ⅲ)设“1次摸球中奖”的概率为p,则3次摸球中,恰有1次中奖的概率为f(p)=3p3﹣6p2+3p,(0<p <1),由此利用导数性质能求出当f(p)取得最大值时,n的值.【解答】解:(Ⅰ)设“1次摸球中奖”为事件A,则P(A)==.(Ⅱ)由(Ⅰ)得若n=3,则1次摸球中奖的概率为p=,∴3次摸球中,恰有1次中奖的概率为P(1)=3(Ⅲ)设“1次摸球中奖”的概率为p,则3次摸球中,恰有1次中奖的概率为:f(p)==3p3﹣6p2+3p,(0<p<1),∵f′(p)=9p2﹣12p+3=3(p﹣1)(3p﹣1),∴当p∈(0,)时,f(p)取得最大值,令=,解得n=2或n=1(舍),∴当f(p)取得最大值时,n的值为2.19.已知函数f(x)=x2e x﹣b,其中b∈R.=3×=.(Ⅰ)证明:对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤1212(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).【考点】利用导数研究函数的单调性.【分析】(Ⅰ)利用导数转化为求解最大值,最小值的差证明.;(Ⅱ)根据最大值为;f(﹣2)=分类当b<0时,当b=0时,当b=﹣b,f(x)的最小值为:﹣b,时,当0<b<时,当b>时,判断即可.【解答】解:(Ⅰ)f(x)的定义域R,且f′(x)=x(x+2)e x,令f′(x)=0则x=0,或x=﹣2,12f′(x)=x(x+2)e x,x(﹣∞,﹣2)﹣2 f′(x)+0(﹣2,0)﹣f(x)增函数极大值减函数﹣b,∴f(x)在区间(﹣∞,0]上的最大值为;f(﹣2)=∵x∈(﹣∞,0],∴f(x)=x2e x﹣b≥﹣b,∴f(x)的最小值为:﹣b,∴对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤f(x)﹣f(x)≤;1212最大值(Ⅱ)f′(x)=x(x+2)e x,函数f(x)=x2e x﹣b,当b<0时,函数f(x)=x2e x﹣b>0恒成立,函数f(x)的零点个数为:0当b=0时,函数f(x)=x2e x,函数f(x)的零点个数为:1当b=时,函数f(x)的零点个数为;2,当0<b<时,函数f(x)的零点个数为:3,当b>时,函数f(x)的零点个数为:1,20.设L为曲线C:y=e x在点(0,1)处的切线.(Ⅰ)证明:除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)设h(x)=e x﹣ax+ln(x+1),其中a∈R,若h(x)≥1对x∈[0,+∞)恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(0),从而求出切线方程即可;(Ⅱ)求出h(x)的导数,通过讨论a的范围,单调函数的单调区间,从而求出a的具体范围即可.【解答】解:(Ⅰ)设f(x)=e x,则f′(x)=e x,∴f′(0)=1,L的方程是y=x+1,令g(x)=f(x)﹣(x+1),则除切点之外,曲线C在直线L的上方等价于g(x)>0,(x∈R,x≠0),g(x)满足g(0)=0,且g′(x)=f′(x)﹣1=e x﹣1,当x<0时,g′(x)<0,故g(x)递减,当x>0时,g′(x)>0,故g(x)递增,∴g(x)>g(0)=0,∴除切点(0,1)之外,曲线C在直线L的上方;﹣a,(Ⅱ)h(x)的定义域是{x|x>﹣1},且h′(x)=e x+①a≤2时,由(Ⅰ)得:e x≥x+1,∴h′(x)=e x+﹣a≥x+1+﹣a≥2﹣a≥0,∴h(x)在[0,+∞)递增,∴h(x)≥h(0)=1恒成立,符合题意;②a>2时,由x∈[0,+∞),且h′(x)的导数h″(x)=≥0,∴h′(x)在区间[0,+∞)递增,∵h′(0)=2﹣a<0,h′(lna)=>0,于是存在x∈(0,+∞),使得h′(x)=0,00∴h(x)在区间(0,x)上递减,在区间(x,+∞)递增,00∴h(x)<h(0)=1,此时,h(x)≥1不会恒成立,不合题意,综上,a的范围是(﹣∞,2].。
2016年高考试题(数学理)北京卷 Word版有答案
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________。
(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A ,B 两点,则 =____________________. (12)已知为等差数列,为其前n 项和,若,,则.(13)双曲线 的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B为该双曲线的焦点。
2016-2017学年北京市朝阳区高二(下)期末数学试卷(理科)
2016-2017学年北京市朝阳区高二(下)期末数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项)1.(5分)设a=log0.32,b=0.32,c=20.3,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.b<c<a2.(5分)已知i为虚数单位,复数z=i(i﹣a)(a∈R)在复平面内对应的点位于第二象限,则a的取值范围是()A.(1,+∞)B.(0,+∞)C.(﹣∞,0)D.(﹣∞,﹣1)3.(5分)在极坐标系中,曲线ρ=2sinθ的对称中心是()A.(1,)B.(1,﹣) C.(1,0) D.(1,π)4.(5分)若a=xdx,b=sinxdx,则a+b的值是()A.﹣2 B.0 C.2 D.35.(5分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=x3 B.y=(e﹣x﹣e x)C.y=lg D.y=()x6.(5分)若函数f(x)=x3﹣ax2+x在区间(0,1)内为增函数,则实数a 的取值范围是()A.[2,+∞)B.(0,2) C.(﹣∞,2)D.(﹣∞,2]7.(5分)图中各数类似“杨辉三角”,每行首末两数分别为1,2,每行除首末两数外,其余各数均等于“肩上”两数之和,则第n行的n+1个数的和为()A.3n B.3×2n﹣1C.+3 D.n2﹣n+38.(5分)某校高二学生参加社会实践活动,分乘3辆不同的巴士,共有5名带队教师,要求每车至少有一名带队教师,则不同的分配方案有()A.90种B.150种C.180种D.240种9.(5分)某次期末考试,甲、乙、丙获得了班级前三名(无并列名次).某同学曾做了三个猜测:“甲是第一名;乙不是第一名;丙不是第二名”.该同学只猜对了一个,则实际的结果是()A.甲第一名,乙第二名,丙第三名B.甲第二名,乙第三名,丙第一名C.甲第三名,乙第二名,丙第一名D.甲第二名,乙第一名,丙第三名10.(5分)已知函数f(x)=﹣(x﹣)(x﹣)(其中x∈(0,+∞)),g(x)=lnx和函数h(x)=,若方程h(x)=kx有四个不同的解,则实数k的取值范围是()A.(0,)B.(0,)C.(,)D.(,)二、填空题(本大题共6小题,每小题5分,共30分,请把正确答案填在答题卡上)11.(5分)(2x+)6的展开式的常数项是.12.(5分)已知曲线C的参数方程为(α为参数),点P为曲线C上的动点,O为坐标原点,则|PO|的最小值为.13.(5分)甲、乙、丙的投篮命中率分别为,,.三人各投篮一次,假设三人投篮相互独立,则至少有一人命中的概率是.14.(5分)若随机变量ξ的分布列为P(ξ=k)=ak(k=1,2,3),则实数a=;数学期望Eξ=.15.(5分)已知甲、乙、丙、丁四人排成一行,甲和乙相邻,甲和丙不相邻,则不同的排法有种.(用数字作答)16.(5分)若函数f(x)的导数f′(x)存在导数,记f′(x)的导数为f n(x).如果f(x)对任意x∈(a,b),都有f n(x)<0成立,则f(x)有如下性质:f()≥.其中n∈N*,x1,x2,…,x n∈(a,b).若f(x)=sinx,则f n(x)=;根据上述性质推断:当x1+x2+x3=π且x1,x2,x3∈(0,π)时,根据上述性质推断:sinx1+sinx2+sinx3的最大值为.三、解答题(本大题共3小题,共40分.解答应写出文字说明,证明过程或演算步骤.请写在答题卡上)17.(12分)已知函数f(x)=alnx+x2﹣(a+1)x(a∈R).(I)若x=2为函数f(x)的极值点,求a的值.(II)讨论函数f(x)在区间(0,2)内的单调性.18.(14分)为了了解某批产品的质量,从该批产品中随机抽取24个产品分成三组进行检测评分,得分结果如表:已知所有得分均为整数,得分在[90,100)的为一等品,[80,90)的为二等品,79分及以下的为三等品.(I)从第一组中的8件产品任取3件,记一等品的个数为X,求随机变量X的分布列.(II)若a=90,试问b为何值时,第三组产品质量得分的方差最小?(直接写出结果)(III)在(II)的结果下,以这24件产品的三等品的频率估计整批产品中三等品的概率.从该批产品(数量众多)中任取3件,记三等品的个数为Y,求随机变量Y的分布列和数学期望.19.(14分)已知函数f(x)=(x﹣1)sinx+2cosx+x.(I)求曲线y=f(x)在点(0,f(0))处的切线方程.(II)求函数f(x)在区间[0,π]上的最大值和最小值.2016-2017学年北京市朝阳区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项)1.【解答】解:∵a=log0.32<log0.31=0,0<b=0.32<0.30=1,c=20.3>20=1,∴a<b<c.故选:A.2.【解答】解:复数z=i(i﹣a)=﹣1﹣ai(a∈R)在复平面内对应的点位于第二象限,∴a<0,故选:C.3.【解答】解:由ρ=2sinθ,得ρ2=2ρsinθ,即x2+y2﹣2y=0,化为标准方程:x2+(y﹣1)2=1,对称中心的直角坐标为(0,1),极坐标为(1,).故选:A.4.【解答】解:a=xdx=x2=[12﹣(﹣1)2]=0,b=sinxdx=﹣cosx=﹣cosπ+cos0=2,则a+b=0+2=2.故选:C.5.【解答】解:根据题意,依次分析选项:对于A、y=x3,为幂函数,为奇函数,在其定义域上为增函数,不符合题意;对于B、y=(e﹣x﹣e x),其定义为R,有f(﹣x)=(e﹣x﹣e x)=(e x﹣e﹣x)=﹣f(x),则函数f(x)为奇函数,其导数y′=(﹣e﹣x﹣e x)<0,则其在定义域为减函数,符合题意,对于C、y=lg,有>0,解可得﹣1<x<1,即其定义域为(﹣1,1),关于原点对称,且f(﹣x)=lg=﹣lg=﹣f(x),为奇函数;令t=,y=lgt,分析可得t=为增函数,为y=lgt为增函数,故y=lg为增函数,不符合题意;对于D、y=()x,为指数函数,不是奇函数,不符合题意;故选:B.6.【解答】解:由f(x)=x3﹣ax2+x,得f′(x)=x2﹣ax+1,∵函数f(x)=x3﹣ax2+x在区间(0,1)内为增函数,∴f′(x)=x2﹣ax+1≥0对任意x∈(0,1)恒成立,即a≤在x∈(0,1)上恒成立,∵在(0,1)上为减函数,∴>2,则a≤2.∴实数a的取值范围是(﹣∞,2].故选:D.7.【解答】解:根据题意,由所给的表格:第1行的2个数为1、2,其和为1+2=3=3×20,第2行的3个数为1、3、2,其和为1+3+2=6=3×21,第3行的4个数为1、4、5、2,其和为1+4+5+2=12=3×22,…;则第n行的n+1个数的和为3×2n﹣1,故选:B.8.【解答】解:根据题意,分2步进行分析:①、将5名带队教师分成3组,若分成1﹣2﹣2的三组:有=15种分组方法,若分成1﹣1﹣3的三组:有=10种分组方法,则一共有15+10=25种分组方法;②、将分好的三组全排列,对应到3辆不同的巴士,有A33=6种不同的情况,则有25×6=150种不同的分配方案;故选:B.9.【解答】解:(1)若“甲是第一名”正确,则“乙不是第一名”也正确,矛盾,排除A;(2)若“乙不是第一名”正确,则“丙不是第二名”错误,故丙为第二名,乙为第三名,于是甲为第一名,故而“甲是第一名”正确,矛盾;(3)若“丙不是第二名”正确,丙为第一名或第三名,由于“乙不是第一名”错误,故而乙是第一名,于是丙为第三名,甲为第二名.故选:D.10.【解答】解:作出h(x)的函数图象如图所示:设直线y=kx与曲线g(x)=lnx相切,切点为(x0,y0),则有,解得k=.∵h(x)=kx有四个不同的解,∴直线y=kx与f(x)有2个交点,y=kx与g(x)有2个交点,∴k<,排除D,设f(x)与g(x)的交点为A,显然A在第一象限,即k OA>0,∴k>k OA.排除A,B.故选:C.二、填空题(本大题共6小题,每小题5分,共30分,请把正确答案填在答题卡上)11.【解答】解:(2x+)6的展开式的通项为T r=26﹣r C6r x6﹣2r,+1令r=3得到展开式中常数项为23C63=160故答案为:160.12.【解答】解:根据题意,曲线C的参数方程为,点P为曲线C上的动点,则|PO|2=(cosα﹣1)2+(sinα+1)2=(cos2α+sin2α)+2(sinα﹣cosα)+2=3﹣2(sinα﹣cosα)=3﹣2sin(α﹣),分析可得:|PO|2≥(3﹣2),则有|PO|≥﹣1,即|PO|的最小值为﹣1;故答案为:﹣1.13.【解答】解:甲、乙、丙的投篮命中率分别为,,,三人各投篮一次,三人投篮相互独立,则都没有投中的概率为(1﹣)•(1﹣)•(1﹣)=,∴至少有一人命中的概率是1﹣=,故答案为:.14.【解答】解:∵随机变量ξ的分布列为P(ξ=k)=ak(k=1,2,3),∴a+2a+3a=1,解得a=.P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,∴ξ的分布列为:Eξ==.故答案为:,.15.【解答】解:根据题意,要求甲与乙相邻,甲与丙不相邻,列举可得:甲乙丙丁;甲乙丁丙;乙甲丁丙;丙乙甲丁;丙丁甲乙;丙丁乙甲;丁甲乙丙;丁丙乙甲,共有8种结果,故答案为:8.16.【解答】解:设f(x)=sinx,x∈(0,π),则f′(x)=cosx,则f″(x)=﹣sinx,x∈(0,π),f(x)有如下性质:f()≥.则sinx1+sinx2+sinx3≤3sin()=3×sin=,∴sinA+sinB+sinC的最大值为,故答案为:﹣sinx,三、解答题(本大题共3小题,共40分.解答应写出文字说明,证明过程或演算步骤.请写在答题卡上)17.【解答】解:(Ⅰ)∵f(x)=alnx+x2﹣(a+1)x,∴f′(x)=,又x=2为函数f(x)的极值点,∴,解得a=2;(Ⅱ)由(Ⅰ)得,f′(x)==(0<x<2).令g(x)=x2﹣(a+1)x+a=(x﹣1)(x﹣a).当a=1时,g(x)≥0,即f′(x)≥0,函数f(x)在区间(0,2)内单调递增;当a≤0时,g(x)在(0,1)内小于0,在(1,2)内大于0,即f′(x)在(0,1)内小于0,在(1,2)内大于0,∴f(x)在(0,1)内单调递减,在(1,2)内单调递增;当0<a<1时,g(x)在(0,a)∪(1,2)上大于0,在(a,1)上小于0,即f′(x)在(0,a)∪(1,2)上大于0,在(a,1)上小于0,∴f(x)在(0,a),(1,2)上单调递增,在(a,1)上单调递减;当1<a<2时,g(x)在(0,1)∪(a,2)上大于0,在(1,a)上小于0,即f′(x)在(0,1)∪(a,2)上大于0,在(1,a)上小于0,∴f(x)在(0,1),(a,2)上单调递增,在(1,a)上单调递减;当a≥2时,g(x)在(0,1)内大于0,在(1,2)内小于0,即f′(x)在(0,1)内大于0,在(1,2)内小于0,∴f(x)在(0,1)内单调递增,在(1,2)内单调递减.18.【解答】解:(Ⅰ)第一组中一等品有2件,从第一组中的8件产品任取3件,一等品的个数X=0,1,2.P(x=0)==,P(x=1)==,P(x=2)==,随机变量X的分布列为:(Ⅱ)若a=90,则第三组前7件产品质量得分的平均数为,∴当b=90时,第三组产品质量得分得方差最小;(Ⅲ)当a=b=90时,这24件产品中有三等品6件,频率为,则整批产品中三等品的概率为P=.从该批产品中任取3件,三等品的个数Y的所有可能取值为0,1,2,3,则P(x=0)=,P(x=1)=,P(x=2)=,P(x=3)=.∴随机变量Y的分布列为:数学期望E(Y)=3×.19.【解答】解:(Ⅰ)函数f(x)=(x﹣1)sinx+2cosx+x的导数为f′(x)=sinx+(x﹣1)cosx﹣2sinx+1=1﹣sinx+(x﹣1)cosx,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=1﹣0﹣1=0,切点为(0,2),可得切线的方程为y=2;(Ⅱ)由f′(x)=1﹣sinx+(x﹣1)cosx,令g(x)=1﹣sinx +(x﹣1)cosx,可得g′(x)=﹣cosx+cosx﹣(x﹣1)sinx=(1﹣x)sinx,由0<x<1可得g(x)递增;1<x<π可得g(x)递减,则g(1)=1﹣sin1>0,g(0)=0,g(π)=2﹣π,g()=0,则f′(x)在[0,π]的零点为0,,由f(0)=2,f()=π﹣1,f(π)=π﹣2,可得f(x)的最大值为π﹣1,最小值为π﹣2.第11页(共11页)。
2016年-2017年普通高等学校招生全国统一考试数学理试题(北京卷,参考版解析)
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,yR,且xyo,则(A)- (B)(C) (-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t= ,s的最小值为(B)t= ,s的最小值为(C)t= ,s的最小值为(D)t= ,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设aR ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
2016-2017学年下学期期中考高二数学理科参考答案 精品
2016-2017学年下学期期中考 高二理科数学 参考答案13.514.-10 15.1416.3 三、解答题(共6题,共70分) 17.【解析】(1)没有抓到白球,即取到的全是红球,∴没有抓到白球的概率是304236C C 1C 5=;…3分 (2)X的所有可能取值为1,2,3………………………………………………………4分()124236C C 1P X 1,C 5===()214236C C P X 2C ===35,()304236C C 1P X 3C 5===,………7分∴X 8分8()5E X =。
………………………………………………………10分18.【解析】(1)连接AC 交BD 于点O ,连接OE ;在△CPA 中,E ,O 分别是边CP ,CA 的中点,∴OE ∥PA ,而OE ⊂平面BDE ,PA ⊄平面BDE ,∴PA ∥平面BDE . ……………………4分(2)如图建立空间直角坐标系,设PD =DC =2.则A (2,0,0),P (0,0,2),E (0,1,1),B (2,2,0),∴ DE =(0,1,1),DB=(2,2,0),……………………5分设n =(x ,y ,z )是平面BDE 的一个法向量,则由00n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩得0220y z x y ⎧⎨⎩+=,+=取y =-1,得n =(1,-1,1), 又DA=(2,0,0)是平面DEC 的一个法向量.……………………9分∴cos 〈n ,DA 〉=n DA n DA⋅⋅3=.……………………11分 故结合图形知二面角B-DE-C的余弦值为3……………………12分 19.【解析】(1)平均值为11万元,中位数为7万元. ……………………2分(2)年薪高于7万的有5人,低于或等于7万的有5人;ξ取值为0,1,2.()25210209C P C ξ===,()1155210519C C P C ξ===,()25210229C P C ξ===,………6分∴ξ的分布列为数学期望为0121999E ξ=⨯+⨯+⨯=.……………………8分(3)设(),1,2,3,4i i x y i =分别表示工作年限及相应年薪,则 2.5,6x y ==,()()()1217 1.45ˆni i i n i i x x y y b x x ==--===-∑∑6 1.4 2.5ˆ 2.5ˆa y bx =-=-⨯=, 得线性回归方程: 1.4 2.5y x =+.………………………………11分 可预测该员工第5年的年薪收入为9.5万元. …………………12分20将22⨯列联表中的数据代入计算,得2K 的观测值:()2100301045151003.030, 3.030 3.8414555752533K ⨯⨯-⨯==≈<⨯⨯⨯ , ∴在犯错误概率不超过0.05前提下,不能认为赞成“自助游”与性别有关系.………6分(2)X 的所有可能取值为0,1,2,3,依题意()()i 3ii 33313,,i ?·,i 0,1,2,3444X B P X C -⎛⎫⎛⎫⎛⎫~=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴X 的分布列为:()94E X np ==.………………………………………………………………………12分 21.(Ⅰ)当2,a =212()2ln ,'(),2f x x x f x x x =-=- 1'(1)1,(1),2f f =-=()fx 在(1,(1))f 处的切线方程为()112y x -=--,即2230.x y +-=……………4分(Ⅱ)由2'().a x af x x x x-=-=由0a >及定义域为(0,)+∞,令'()0,fx x ==得1,01,a <≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1(1)2f =. ②若21e,1e ,a<<<<即在(上,'()0f x <,)(x f 单调递减;在上,'()0f x >,)(x f 单调递增,因此()f x 在区间[1,e]上的最小值为1(1ln ).2f a a =- 2e,e ,a ≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减, 因此,在()f x 区间[1,e]上的最小值为21(e)e 2f a =-. 综上,()2min221,01,21()1ln ,1,21,.2a f x a a a e e a a e ⎧<≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩………………………………………8分 (Ⅲ)由(Ⅱ)可知当01a <≤或2e a ≥时,)(xf 在(1,e)上是单调递增或递减函数,不可能存在两个零点.当21e a <<时,要使()f x 在区间(1,e)上恰有两个零点,则∴21(1ln )0,21(1)0,21(e)e 0,2a a f f a ⎧-<⎪⎪⎪=>⎨⎪⎪=->⎪⎩即2e1e 2a a >⎧⎪⎨<⎪⎩,此时,21e e 2a <<.所以,a 的取值范围为21(e,e ).2…12分 22.【解析】(I )椭圆的长轴长为a =又与椭圆22124x y +=有相同的离心率2e =,故2, 2.c b == 所以椭圆M 的方程为22184x y +=………………………………………………4分 (II)若l 的斜率存在,设:l ,y kx m =+因l 与C 相切,故r =, 即()2221m r k =+. ①……………………………………5分又将直线l 方程代入椭圆M 的方程得()222124280,k x kmx m +++-=…………6分设()()1122,,,,A x y B x y 由韦达定理得1x +2x =24,12kmk -+12x x =222812m k -+,由0OA OB ⋅= 得到12x x +12y y =()21k +222812m k-++km 2412km k -++2m =0 化简得22388m k =+,② ……………………………………………………8分联立①②得283r =。
北京市朝阳区2016-2017学年度高三年级第一学期期中考试数学理试题Word版含答案.doc
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U A B = ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0,||2||OA AB =,则CA BC ⋅ 等于A .154-B. C .154 D7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是 A .4 B .3 C .2 D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则t a n A = ,tan()4A π+= .13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数DCA列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证:1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos BDC ∠=. (Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-. (Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,nc 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A . (Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅. 即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =. 又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分 (Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f a π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤ 所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2;当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.-所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos BDC ∠=,所以sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =14DC BDC DBC BC ⋅∠∠=…………5分 (Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,24127DB DB =+-⋅⋅.所以230DB DB -=. 解得DB =DB =. 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=214214-⋅+=-14.在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(2714+-⨯-=,所以AD = …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分(Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2xg x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >.由()0g x '<,即1cos 02x -<,解得π03x <<.由()0g x '>,即1cos 02x ->,解得ππ32x <<.所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减,所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-. (Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0x f x x x a '=+-≤恒成立. 即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减, 当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增. 所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”, 等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0x f x x x a '=+-=得220x x a +-=,解得1211x x =-=- 随着x 变化时,()f x 和()f x '的变化情况如下:当x ∈( , 1-∞-时,22( 12x a ≥-=++.所以220x a -≥+. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10.设0x =->,则1x -=设()e x h x x =-,则()e (1)x h x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},max{21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},max{12212, 且k k k k k k d d d c c c =≤≤++},max{},max{21222. 所以k k k k d c c d ≤=+++},max{12221,当且仅当122-=k k c c 时等号成立.………9分 (Ⅲ)由(Ⅱ)知,当3≥n 时,有},max{21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的.所以集合A是有限集.a,的最大公约数.……………14分集合A中的最小数是b。
2016-2017学年北京101中高二下学期期中数学理试题(解析版)
北京101中学2016-2017学年下学期高二年级期中考试数学试卷(理科)一、选择题:本大题共8小题,共40分.1. 在复平面内,复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】,对应的点位于第一象限.本题选择A选项.2. 设的导函数为,则的值为A. B. C. D.【答案】C【解析】本题选择C选项.3. 用反证法...证明命题“设为实数,则方程至少有一个实根”时,要做的假设是A. 方程没有实根B. 方程至多有一个实根C. 方程至多有两个实根D. 方程恰好有两个实根【答案】A【解析】因为方程至少有一实根等价于方程的实根个数大于或等于,因此要做的假设是方程没有实根,故选A.4. 若,则的解集为A. B.C. D.【答案】B又因为的定义域为,所以,即得则的解集为.本题选择B选项.5. 把10个相同的小球分成三堆,要求每一堆至少有1个,至多5个,则不同的方法共有A. 6种B. 5种C. 4种D. 3种【答案】C【解析】分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆至少1个,只有2种分法,即1和4,2和3个有两种方法. 三堆中“最多”的一堆为4个,其他两堆总和为6,每堆至少1个,只有2种分法.即2和4;3和3两种方法.三堆中“最多”的一堆为3个,那是不可能的.所以不同的分法共有2+2=4.本题选择C选项.6. 甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为A. 80B. 72C. 60D. 40【答案】A【解析】根据题意,分2种情况讨论:①甲和乙都排在丙的左侧,将甲乙安排在丙的左侧,考虑甲乙之间的顺序,有2种情况,排好后有4个空位,在4个空位中选一个安排丁,有4种情况,排好后有5个空位,在5个空位中选一个安排戊,有5种情况,则甲和乙都排在丙的左侧的情况有2×4×5=40种,②甲和乙都排在丙的右侧,同理有40种不同的排法;故甲和乙都排在丙的同一侧的排法种数为40+40=80种;本题选择A选项.点睛:解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).7. 某校高一新生中的五名同学打算参加“动漫乐园”“学生公司”“篮球之家”“相声社”四个社团. 若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“相声社”,则不同的参加方法的种数为A. 216B. 180C. 108D. 72【答案】B【解析】根据题意,分析可得,必有2人参加同一个社团,首先分析甲,甲不参加“相声社”,则其有3种情况,再分析其他4人,若甲与另外1人参加同一个社团,则有种情况,若甲是1个人参加一个社团,则有种情况,则除甲外的4人有24+36=60种情况;故不同的参加方法的种数为3×60=180种.本题选择B选项.8. 设函数,若函数的图象与函数的图象在区间内有交点,则的取值范围是A. B.C. D.【答案】A【解析】满足题意时,方程在区间内存在实数解,即:在区间内存在实数解,令,则函数与函数的图像在区间内有交点,由函数的解析式可得:,,由指数函数的性质可知,在区间上单调递减,在区间上单调递增,的最小值为,据此可得函数是定义在区间上的单调递增函数,函数的最小值为,最大值为,则的取值范围是.本题选择A选项.二、填空题:本大题共6小题,共30分.9. 已知⊙O上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为____________. 【答案】120【解析】圆上10个点,任意3点都不共线,故从10个中任选3个都可以构成一个三角形,故一共可以画的三角形个数为.10. 如图,阴影区域是由函数的一段图象与轴围成的封闭图形,则该阴影区域的面积是_____________.【答案】2【解析】试题分析:由题意,阴影区域的面积是.考点:定积分.11. 若复数是纯虚数,则实数___________.【答案】【解析】∵复数是纯虚数,解得.12. 已知展开式的二项式系数之和为128,则其展开式中含项的系数是____.【答案】-560【解析】展开式的二项式系数之和为128,,解得;∴展开式的通项公式为,令,解得;∴展开式中含项的系数是点睛:二项式定理揭示二项展开式的规律,一定牢记通项公式T r+1=a n-r b r是展开式的第r+1项,不是第r 项.13. 若函数在处取得极大值10,则的值为__________.【答案】【解析】∵f(x)=x3+ax2+bx﹣a2﹣7a,∴f′(x)=3x2+2ax+b,又f(x)=x3+ax2+bx﹣a2﹣7a在x=1处取得极小值10,∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,∴a2+8a+12=0,∴a=﹣2,b=1或a=﹣6,b=9.当a=﹣2,b=1时,f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),当<x<1时,f′(x)<0,当x>1时,f′(x)>0,∴f(x)在x=1处取得极小值,与题意符合;当a=﹣6,b=9时,f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)当x<1时,f′(x)>0,当1<x<3时,f′(x)<0,∴f(x)在x=1处取得极大值,与题意不符;∴=﹣2,故答案为:﹣2.14. 如图,在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b1,点(1,-1)处标b2,点(0,-1)处标b3,点(-1,-1)处标b4,点(-1,0)处标b5,点(-1,1)处标b6,点(0,1)处标b7,…,以此类推,则b2017处的格点的坐标为________.【答案】(15,22 )【解析】逐圈考查所给数的性质,第一圈为:,共有个数,且坐标为,第二圈为:,共有个数,且坐标为,第三圈为:,共有个数,且坐标为,据此归纳可知,第圈共有个数,且最后一个数的坐标为,考查数列求和:,当时,,当时,,且坐标为,而,,据此可知b2017处的格点的坐标为.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.三、解答题:本大题共5小题,共50分.15. 将甲、乙、丙、丁四名同学按一定顺序排成一行,要求自左向右,且甲不排在第一,乙不排在第二,丙不排在第三,丁不排在第四,比如:“乙甲丁丙”是满足要求的一种排法,试写出他们四个人所有不同的排法.【答案】答案见解析【解析】试题分析:由题意可知:第一只能排乙、丙、丁中的一个,据此可分为三类,然后写出所有可能的结果即可.试题解析:由于甲不排在第一,所以第一只能排乙、丙、丁中的一个,据此可分为三类:乙甲丁丙丙甲丁乙丁甲乙丙乙丙丁甲丙丁甲乙丁丙甲乙乙丁甲丙丙丁乙甲丁丙乙甲所以他们四个人共有9种不同的排法.16. 设,,令,,.(1)写出,,的值,并猜想数列的通项公式;(2)用数学归纳法证明你的结论.【答案】(1)a1=1,a2=,a3=;a4=,猜想a n=(n∈N+);(2)证明见解析. 【解析】试题分析:(1)由题意结合函数的解析式计算可得a2=f(a1)=,a3=f(a2)=;a4=f(a3)=,猜想a n=(n∈N+);(2)首先证明n=1时,猜想正确. 然后假设n=k时猜想正确,即a k=,证明n=k+1时猜想正确即可证得题中的结论.试题解析:(1)∵a1=1,∴a2=f(a1)=f(1)=,a3=f(a2)=;a4=f(a3)=,猜想a n=(n∈N+);(2)证明:①易知,n=1时,猜想正确.②假设n=k时猜想正确,即a k=,则a k+1=f(a k)==.这说明n=k+1时猜想正确.由①②知,对于任何n∈N+,都有a n=.点睛:数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.17. 设.(1)求的单调区间;(2)求在[-5,]的最大值与最小值.【答案】(1)单调增区间为(-2,),单调减区间为(-∞,-2)和(,+∞);(2)f (x)取最小值是0,f (x)取最大值是63.【解析】试题分析:(1)求导可得f ′(x)= -(x+2)(3x-2),利用导函数研究函数的单调性可得单调增区间为(-2,),单调减区间为(-∞,-2)和(,+∞);(2)由题意结合(1)的结论考查极值和端点处的函数值可得x= -2时,f (x)取最小值0,x= -5时,f (x)取最大值63.试题解析:(1)f ′(x)= -(x+2)(3x-2),令f ′(x)>0得-2<x<,令f ′(x)<0得x<-2或x>,∴单调增区间为(-2,),单调减区间为(-∞,-2)和(,+∞);(2)由单调性可知,当x= -2时,f (x)有极小值f (-2)=0,当x=时,f (x)有极大值f ()=;又f (-5)=63,f ()=,∴x= -2时,f (x)取最小值0,x= -5时,f (x)取最大值63.18. 设函数,.(1)当时,求曲线在点处的切线方程;(2)如果不等式对于一切的恒成立,求的取值范围;(3)证明:不等式对于一切的恒成立.【答案】(1);(2);(3)证明见解析.【解析】试题分析:(1)当时,,利用导函数研究函数的切线方程可得在点处的切线方程为;(2)原问题等价于恒成立.构造函数,,则,结合函数的单调性可得,故的取值范围是;(3)原问题等价于.构造函数,则.结合(2)的结论可知.故,从而有对于一切的恒成立.试题解析:(1)当时,,则,故,切线方程为:;(2)因为,所以恒成立,等价于恒成立.设,,得,当时,,所以在上单调递减,所以时,.因为恒成立,所以;(3)当时,,等价于.设,.求导,得.由(2)可知,时,恒成立.所以时,,有,所以.所以在上单调递增,当时,.因此当时,.19. 已知函数,(1)若,求函数的极值;(2)设函数,求函数的单调区间;(3)若对内任意一个,都有成立,求的取值范围.【答案】(1)的极小值是,没有极大值;(2)答案见解析;(3).【解析】试题分析:(1)的定义域为,且,结合导函数的解析式研究函数的极值可得的极小值是,没有极大值;(2),则,分类讨论可得:①当时,在上单调递减,在上单调递增;②当时,函数在上单调递增;(3)原问题等价于“函数在上的最小值大于零”结合(2)的结论分类讨论:①;②;③;④四种情况可得的范围是:.试题解析:(1)的定义域为,当时,,,所以的极小值是,没有极大值;(2),,①当时,即时,在上,在上,所以在上单调递减,在上单调递增;②当,即时,在上,所以,函数在上单调递增;(3)“对内任意一个,都有成立”等价于“函数在上的最小值大于零”由(2)可知①当时,在上单调递增,所以,解得;②当,即时,在上单调递减,所以的最小值为可得,因为,所以;③当,即时,在上单调递增,所以最小值为,由可得,所以;④当,即时,可得最小值为,因为,,所以,故,恒成立.综上讨论可得所求的范围是:.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.11。
2016-2017北京朝阳三里屯高二下期中【理】数学真题卷
北京市三里屯一中 2016—2017学年第二学期一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列求导①(sin )cos x x '=-;②211x x '⎛⎫= ⎪⎝⎭;③22(e )2e x x '=;④2ln 1ln x xx x '+⎛⎫= ⎪⎝⎭,正确的有( ). A .0个 B .1个 C .2个 D .3个【答案】B【解析】解:(sin )cos x x '=,故①错误; 211x x '⎛⎫=- ⎪⎝⎭,故②错误;22(e )2e x x '=,故③正确;2221ln ln (ln )ln 1ln x x x x x x x x xx x x x ⋅-'''⋅-⋅-⎛⎫=== ⎪⎝⎭,故④错误. 正确的有一个.故选D .2.下列推理过程是演绎推理的是( ). A .由平面三角形的性质推测空间三棱锥的性质B .某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人C .两条直线平行,同位角相等,若A ∠与B ∠是两条平行直线的同位角,则A B ∠=∠D .在数列{}n a 中,12a =,121(2)n n a a n -=+≥,由此归纳出{}n a 的通项公式 【答案】C 【解析】解:A 项、由平面三角形的性质,推测空间四棱锥的性质,属于类比推理;B 项、由高二1班有55人,2班有52人,得高二所有班人数超过50人,属于归纳推理;C 项、大前提为“两直线平行,同位角相等两直线平行,同位角相等”,小前提是“A ∠与B ∠是两条平行直线的同位角”,结论是“A B ∠=∠”,属于演绎推理;D 项、由12a =,121n n a a -=+归纳出{}n a 的通项公式,属于归纳推理.故选D .3.用反证法证明命题:“若整系数一元二次方程20ax bx c ++=有有理根,那么a ,b ,c 中至少有一个是偶数”时,下列假设中正确的是( ). A .假设a ,b ,c 都是偶数 B .假设a ,b ,c 都不是偶数 C .假设a ,b ,c 至多有一个是偶数 D .假设a ,b ,c 至多有两个是偶数 【答案】B【解析】解:用反证法证明数学命题时,应先假设要证的命题的否定成立,“至少有一个”的否定为“都不是”,所以先假设a ,b ,c 都不是偶数.故选B .4.若复数z 满足i =2+4i z ,则在复平面内z 对应的点的坐标是( ). A .(2,4)B .(2,4)-C .(4,2)D .(4,2)-【答案】D【解析】解:由i =2+4i z ,可得224i i(24i)42i i i z ++===-, ∴复平面内,z 对应的点的坐标是(4,2)-. 故选D .5.6个人排成一行,其中甲、乙两人不相邻的不同排法共有( )种. A .480 B .624 C .600 D .240【答案】A【解析】解:6个人排成一排,要求甲、乙两人不相邻,先安排其他4人,有44A 种不同的排法,排好后,有5个空位,在5个空位中,任选2个,安排甲、乙,有25A 种不同的方法,因此,6个人排成一排,其中甲、乙两人不相邻的不同排法共有4245A A 2420480=⨯=种.故选A .6.函数()2x sin f x x =+的部分图像可能是( ).A .B .C .D .【答案】D【解析】解:∵2cos 0y x '=+>, ∴函数在R 上单调递增.故选D . 7.若命题()(*)A n n ∈N 在(*)n k k =∈N 时命题成立,则有1n k =+时命题成立,现知命题对00(*)n n n =∈N 时命题成立,则有( ). A .命题对所有正整数都成立B .命题对小于0n 的正整数不成立,对大于或等于0n 的正整数都成立C .命题对小于0n 的正整数成立与否不能确定,对大于或等于0n 的正整数都成立D .以上说法都不正确【答案】C【解析】解:由已知可得00(*)n n n =∈N 时命题成立,则有01n n =+时命题成立,在01n n =+时命题成立的前提下,可推得0(1)1n n =++时命题也成立,以此类推可知命题对大于或等于0n 的正整数都成立但命题对小于0n 的正整数成立与否不能确定.故选C .8.用5,6,7,8,9组成没有重复数字的五位数,其中两个偶数数字之间恰有一个奇数数字的五位数的个数是( ). A .36 B .18 C .72 D .54【答案】A【解析】解:把两个偶数进行全排列有22A 种方法,从三个奇数中选取一个插入两个偶数之间,共有13C 种方法,把选取好的三个数捆绑在一起与其它两个奇数全排列,共有33A 种方法,由分步计数原理可知,满足条件的五位数共有213233A C A 23636=⨯⨯=个.故选A .9.直线l 过抛物线2:4C x y =的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ).A .43B .2C .83D【答案】C 【解析】解:抛物线2:4C x y =的焦点坐标为(0,1),又由于直线l 与y 轴垂直, 所以直线l 的方程为1y =,联立214y x y =⎧⎨=⎩,解得交点坐标为(2,1)-,(2,1),所以直线l 与C 所围成的图形的面积222322181d 4123x S x x x --⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.故选C .10.已知函数2()e ()x f x x ax a =+-,其中a 是常数,若存在实数k ,使得关于x 的方程()f x k =在[0,)+∞上有两个不相等的实数根,则k 的取值范围是( ). A .24e a a a k ++-<< B .24e a a a k ++-<≤C .24e a a k a ++<<- D .24e a a k a ++<-≤ 【答案】D【解析】解:由2()e ()x f x x ax a =+-得2()e (2)x f x x ax x '=++, 令()0f x '=,得0x =或(2)x a =-+,当(2)0a -+≤,即2a ≥-时,在区间[0,)+∞上,()0f x '≥, ∴()f x 是[0,)+∞上的增函数,∴方程()f x k =在[0,)+∞上不可能有两个不相等的实数根,当(2)0a -+>,即2a <-时,令()0f x '>得(2)x a >-+,令()0f x '<,得0(2)x a <<-+,∴()f x 在区间(0,(2)]a -+上是减函数,在((2))a -+上是增函数, ∴()f x 在[0,)+∞上的最小值为24((2))e a a f a ++-+=, 又(0)f a =-,且当x a -≥时,有()e ()a f x a a -->-≥, ∴要使方程()f x k =在[0,)+∞上有两个不相等的实数根,则24e a a k a ++<-≤. 故选D .二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)11.计算112d e x x x ⎛⎫+ ⎪⎝⎭⎰__________.【答案】2e【解析】解:2221112d (ln )|ln (1ln1)e ex x x x e e e x ⎛⎫+=+=+-+= ⎪⎝⎭⎰.12.曲线2()(1)x f x e x x =+-在点(1,(1))f 处的切线方程是__________. 【答案】430ex y e --=【解析】解:由2()(1)x f x e x x =+-得2()(3)x f x e x x '=+, ∴(1)f e =,(1)4f e '=,∴曲线在点(1,(1))f 处的切线方程为4(1)y e e x -=-, 即430ex y e --=.13.函数21ln 2y x x =-的单调减区间是__________.【答案】(0,1)【解析】解:由函数21ln 2y x x =-得函数定义域是(0,)+∞,且211x y x x x-'=-=,令0y '=,解得1x =,当(0,1)x ∈时,0y '<,当(1,)x ∈+∞时,0y '>,∴函数21ln 2y x x =-的单调减区间是(0,1).14.从3名骨科、4名脑外科和5名内科医生中选派4人组成一个抗震救灾小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________.(用数字作答) 【答案】590【解析】解:从12名医生中选出5名,选法由512C 792=种,其中只不选骨科医生的有5595C C 125-=种,只不选脑外科医生的有5585C C 55-=种,只不选内科医生的有57C 21=种,同时不选骨科和脑外科的选法有1种,故各科至少有1人的选法种数为792(12555211)590-+++=.15.设方程33x x k -=有3个不等的实根,则实数k 的取值范围是__________. 【答案】(2,2)-【解析】解:设3()3f x x x =-,对函数求导,2()333(1)(1)f x x x x '=-=+-, 令()0f x '>,即3(1)(1)0x x +->,得1x <-或1x >,令()0f x '<,得11x -<<, ∴函数()f x 在(,1)-∞-和(1,)+∞上是增函数,在(1,1)-上是减函数, 且(1)2f -=,(1)2f =-,∴可作出()f x 的大致图像,如图所示:要使方程33x x k -=有3个不等的实根,则y k =与()f x 的图像有3个交点,∴22k -<<,即常数k 的取值范围是(2,2)-.16.回文数是指从左到右与从右到左读都一样的正整数,如22,11,3443,94249等,显然2位回文数有9个:11,22,33,,99,3位回文数有90个:101,111,121,,191,202,,999.(1)4位回文数有__________个.(2)21()n n ++∈N 位回文数有__________个. 【答案】(1)90. (2)910n ⨯.【解析】(1)4位回文数的特点为中间两位相同,千位和个位数字相同但不能为零, 第一步,选千位和个位数字,共有9种选法, 第二步,选中间两位数字,有10种选法, 故4位回文数有91090⨯=个.(2)第一步,选左边第一个数字,有9种选法, 第二步,分别选左边第2、3、4、、n 、1n +个数字,共有1010101010n ⨯⨯⨯⨯=种选法,故21()n n ++∈N 位回文数有910n ⨯个,三、解答题(本大题共3小题,共38分.解答题应写出文字说明、证明过程或演算步骤) 17.已知数列{}n a 满足112a =,且1(*)2n n n a a n n +⋅=∈+N . (1)求2a ,3a ,4a ,并猜想数列{}n a 的通项公式. (2)用数学归纳法证明你的猜想. 【答案】见解析.【解析】解:(1)∵数列{}n a 满足112a =,且12n n n a a n +⋅=+, ∴112n nn a n a +=⋅+, ∴212233a =⨯=,3233424a =⨯=,4344535a =⨯=,猜想1n na n =+. (2)证明:当1n =时,112a =,等式显然成立,假设当n k =时,等式成立,即1k k a k =+, 则当1n k =+时,11111222(1)1k k k k k k k a k a k k k k ++++=⋅=⋅==+++++, 即当1n k =+时,等式成立, 故对任意*n ∈N ,有1n na n =+.18.已知函数()()e x f x x a =+,其中a 为常数.(1)若函数()f x 是区间[3,)-+∞上的增函数,求实数a 的取值范围. (2)若2()e f x ≥在[0,2]x ∈时恒成立,求实数a 的取值范围. 【答案】见解析.【解析】解:(1)由函数()()e x f x x a =+,得()(1)e x f x x a '=++, ∵函数()f x 是区间[3,)-+∞上的增函数,∴()(1)e 0x f x x a '=++≥,即1a x --≥在区间[3,)-+∞上恒成立, ∴当[3,)x ∈-+∞时,1(,2)x --∈-∞, ∴2a ≥.(2)2()e f x ≥在[0,2]x ∈时恒成立等价于2e x a x --≥在[0,2]x ∈时恒成立, 令2()e x g x x -=-,则max ()a g x ≥, ∵2()e 10x g x -'=--<, ∴()g x 在[0,2]上单调递减,∵()g x 在区间[0,2]上的最大值2max ()(0)e g x g ==, ∴2e a ≥,即实数a 的取值范围是2[e ,)+∞.19.已知函数1()ln(1)1xf x ax x-=+++,0x ≥,其中0a >. (1)若()f x 在1x =处取得极值,求a 的值. (2)求()f x 的单调区间. 【答案】见解析.【解析】解:(1)22222()1(1)(1)(1)a ax a f x ax x ax x +-'=-=++++, ∵()f x '在1x =处取得极值,∴(1)0f '=,即20a a +-=,解得1a =, 经检验,1a =符合题意, ∴1a =. (2)222()(1)(1)ax a f x ax x +-'=++,∵0x ≥,0a >, ∴10ax +>,①当2a ≥时,在区间(0,)+∞上,()0f x '>, ∴()f x 的单调增区间为(0,)+∞.②当02a <<时,由()0f x '>解得x ()0f x '<,解得x <综上,当a ≥2时,()f x 的单调增区间为(0,)+∞,当02a <<时,()f x 的单调减区间为⎛ ⎝,单调增区间为⎫+∞⎪⎪⎭. (3)由(2)可知,当2a ≥时,()f x 的最小值为(0)1f =,当02a <<时,()f x 在x =min ()(0)1f x f f =<=, 故若()f x 的最小值为1,则a 的取值范围是[2,)+∞.。
北京市重点中学年高二下期中数学试题(理)及答案
北京市 第二学期期中考试高 二数学(理)试卷(考试时间:100分钟 总分:100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.) 1.已知复数z 满足:i zi +=2(i 是虚数单位),则z 的虚部为( ) A .i 2- B .i 2 C .2 D .2-2.图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有( )种不同的取法。
A.120B.16C.64D.393.已知曲线23ln 14x y x =-+的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .124.由直线12y =,2y =,曲线1y x=及y 轴所围成的封闭图形的面积是( ) A .2ln2 B .2ln 21- C .1ln 22 D .545.以下说法正确的是( )A.在用综合法证明的过程中,每一个分步结论都是结论成立的必要条件B.在用综合法证明的过程中,每一个分步结论都是条件成立的必要条件C.在用分析法证明的过程中,每一个分步结论都是条件成立的充分条件D.在用分析法证明的过程中,每一个分步结论都是结论成立的必要条件 6.设函数()ln =f x x x ,则()f x 的极小值点为( ) A.=x e B.ln 2=x C.2=x e D.1=x e7.已知1212⨯=,221334⨯⨯=⨯,32135456⨯⨯⨯=⨯⨯,...,以此类推,第5个等式为( )A .4213575678⨯⨯⨯⨯=⨯⨯⨯B .521357956789⨯⨯⨯⨯⨯=⨯⨯⨯⨯C .4213579678910⨯⨯⨯⨯⨯=⨯⨯⨯⨯D .5213579678910⨯⨯⨯⨯⨯=⨯⨯⨯⨯8.在复平面内,复数34i -,()2i i +对应的点分别为A ,B ,则线段AB 的中点C 对应的复数为( )A .22i -+B .22i -C .1i -+D .1i - 9.已知函数()()21cos ,4f x x x f x '=+是函数()f x 的导函数,则()f x '的图象大致是( )10.设函数()y f x =在区间(),a b 上的导函数为()f x ',()f x '在区间(),a b 上的导函数为()f x '',若区间(),a b 上()0f x ''>,则称函数()f x 在区间(),a b 上为“凹函数”,已知()54112012f x x mx =-22x -在()1,3上为“凹函数”,则实数m 的取值范围是( ) A .31(,)9-∞ B .31[,5]9C .(,3]-∞D .(),5-∞ 二、填空题(本大题共6小题,每小题4分,共24分.)11.函数3()2f x x ax =+-在(1,)+∞上是增函数,则实数a 的取值范围是12.设集合{}A b a A ∈=,,5,4,3,2,1,则方程122=+by a x 表示焦点位于y 轴上的椭圆有 个.13.设sin ,0,2()1,,22x x f x x ππ⎧⎡⎫∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,则2()f x dx ⎰为 。
2016-2017北京朝阳工大附中高二下期中【理】数学真题卷
2016-2017 学年度第二学期期中考试高二年级 数学学科试卷(理)一、选择题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.函数32e x y x -=,则导数y '=().A .2236e x x x-+- B .22312e 3x x x -++ C .22316e 3x x x -++ D .22316e 3x x x -+- 【答案】D 【解析】根据函数的导数和公式可知,222233116e (1)6e 33x x y x x x x ----'=++⨯-=+-. 故选D .2.对于命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是(). A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角【答案】B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角. 故选B .3.函数21()ln 2f x x x =-的图象大致是(). A . B . C . D .【答案】B 【解析】由函数21()ln 2f x x x =-得211()x f x x x x-'=-=,定义域为(0,)+∞, 由()0f x '>,得01x <<;由()0f x '<,得1x >,∴函数()f x 在区间(0,1)上单调递增,在(1,)+∞上单调递减,且()f x 在(0,)+∞上的最小值为1(1)02f =-<. 故选B .4.如图是函数()y f x =的导函数()y f x '=的图象,给出下列命题:①3-是函数()y f x =的极值点;②1-是函数()y f x =的最小值点;③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(3,1)-上的单调递增.则正确命题的序号是().A .①②B .①④C .②③D .③④【答案】B 【解析】①项,由导函数图象可知,(,3)x ∈-∞-时,()0f x '<,(3,1)x ∈--时,()0f x '>, ∴3-是函数()y f x =的极小值点,故①正确; ②项,当(3,1)x ∈--时,()0f x '>,当(1,)x ∈-+∞时,()0f x '>, ∴1-不是函数()y f x =的最小值点,故②错误; ③项,由导函数的图象可知,(0)0f '>,∴()y f x =在0x =处切线的斜率小于零,故③错误; ④项,∵(3,1)x ∈--时,()0f x '>,∴()y f x =在区间(3,1)--上的单调递增,故④正确. 综上所述,正确命题的序号是①④.故选B .5.设函数e ,10()1x x f x x ⎧-⎪=<≤≤≤,计算11()d f x x -⎰的值为(). A .1e πe 4-+ B .e 1πe 4-+ C.e 1e - D .e 1πe 2-+ 【答案】B【解析】由于函数e ,10()1x x f x x ⎧-⎪=<≤≤≤,则1011()d e d x f x x x x --=+⎰⎰⎰, 其中001101e 1e d e e e 11e e x x x ---==-=-=-⎰,x ⎰表示圆221x y +=在第一象限的面积,即π4x =⎰,所以11e 1π()d e 4f x x --=+⎰. 故选B .6.已知32()f x x bx cx d =+++与x 轴有3个交点(0,0),1(,0)x ,2(,0)x ,且()f x 在1x =,2x =时取极值,则12x x ⋅的值为().A .4B .5C .6D .不确定 【答案】C【解析】∵(0)0f =,∴0d =,∴322()()f x x bx cx x x bx c =++=++,∴1x ,2x 是方程20x bx c ++=的两根,。
北京市高二数学下学期期中试题 理
2016-2017学年下学期高二年级期中考试数学试卷(理科)试卷分为两卷,卷(I )100分,卷(II )50分,共计150分,考试时间120分钟卷(I )一、选择题:本大题共10小题,每小题5分,共50分. 1. 复数i-12= A. 2+2i B . 22+22i C. 1-iD. 1+i2. 下列求导正确的是A. (3x 2-2)'=3xB. (log 2x ) '=2ln 1⋅xC. (cosx ) '=sinxD. (xln 1)'=x 3. 曲线y=x ·e x在x=1处切线的斜率等于 A. 2eB. eC. 2D. 14.⎰421dx x等于 A. -21n 2 B. 21n 2 C. -ln 2 D. ln 2 5. 函数f (x )=3+x lnx 的单调递增区间为 A. (0,e 1) B. (e ,+∞) C. (e 1,+∞) D. (e1,e] 6. 在复平面内,复数ii+-12(i 是虚数单位)的共轭复数对应的点位于 A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限7. 函数f (x )=216xx+在区间[0,3]的最大值为 A. 3B. 4C. 2D. 58. 已知f (x )=1+(1+x )+(1+x )2+(1+x )3+…+(1+x )n,则f '0)= A. nB. n-1C.2)1(-n n D. 21n (n+1) 9. 函数f (x )=x 3+ax 2+(a+6)x+1有极大值和极小值,则实数a 的取值范围是 A. (-1,2)B. (-3,6)C. (-∞,-3)∪(6,+∞)D. (-∞,-1)∪(2,+∞)10. 方程x 2=xsinx+cosx 的实数解个数是A. 3B. 0C. 2D. 1二、填空题:本大题共6小题,每小题5分,共30分. 11. 复数(2+i )·i 的模为__________.12. 由曲线y=x 2,y=x 3围成的封闭图形的面积为__________.13. 若曲线y=x 3+x-2上的在点P 0处的切线平行于直线y=4x-1,则P 0坐标为__________. 14. 如下图,由函数f (x )=x 2-x 的图象与x 轴、直线x=2围成的阴影部分的面积为__________.15. 已知S n =11+n +21+n +…+n 21,n ∈N*,利用数学归纳法证明不等式S n >2413的过程中,从n=k 到n=k+l (k ∈N*)时,不等式的左边S k+1=S k +__________.16. 对于函数y=f (x ),x ∈D ,若对于任意x 1∈D ,存在唯一的x 2∈D ,使得))((21x x f =M ,则称函数f (x )在D 上的几何平均数为M. 那么函数f (x )=x 3-x 2+1,在x ∈[1,2]上的几何平均数M=____________. f(x)=x 2-x三、解答题:本大题共2小题,共20分. 17. 设函数f (x )=lnx-x 2+x. (I )求f (x )的单调区间; (II )求f (x )在区间[21,e]上的最大值. 18. 已知函数f (x )=11222+-+x a ax ,其中a ∈R . (I )当a=1时,求曲线y=f (x )在原点处的切线方程; (II )求f (x )的极值.卷(II )一、选择题:本大题共3小题,每小题5分,共15分1. 若f (x )=-21x 2+bln (x+2)在(-1,+∞)上是减函数,则实数b 的取值范围是 A. [-1,+∞) B. (-1,+∞) C. (-∞,-1] D. (-∞,-1) 2. 观察(x 1)'=-21x,(x 3)'=3x 2,(sinx )'=cosx ,由归纳推理可得:若函数f (x )在其定义域上满足f (-x )=-f (x ),记g (x )为f (x )的导函数,则g (-x )=A. -f (x )B. f (x )C. g (x )D. -g (x )3. 若i 为虚数单位,设复数z 满足| z |=1,则|z-1+i|的最大值为 A. 2-1 B. 2-2 C. 2+1 D. 2+2二、填空题:本大题共3小题,每小题5分,共15分.4. 曲线y=x n在x=2处的导数为12,则正整数n=__________.5. 设函数y=-x 2+l 的切线l 与x 轴,y 轴的交点分别为A ,B ,O 为坐标原点,则△OAB 的面积的最小值为__________.6. 对于函数①f (x )=4x+x 1-5,②f (x )=|log 2 x|-(21)x,③f (x )=cos (x+2)-cosx ,判断如下两个命题的真假:命题甲:f (x )在区间(1,2)上是增函数;命题乙:f (x )在区间(0,+∞)上恰有两个零点x 1,x 2,且x 1x 2<1. 能使命题甲、乙均为真的函数的序号是_____________.三、解答题:本大题共2小题,共20分 7. 已知函数f (x )=x 3+ax 2+bx+a 2.(I )若f (x )在x=1处有极值10,求a ,b 的值;(II )若当a=-1时,f (x )<0在x ∈[1,2]恒成立,求b 的取值范围 8. 已知函数f (x )=x 3-3ax+e ,g (x )=1-lnx ,其中e 为自然对数的底数.(I )若曲线y=f (x )在点(1,f (1))处的切线与直线l :x+2y=0垂直,求实数a 的值; (II )设函数F (x )=-x[g (x )+21x-2],若F (x )在区间(m,m+1)(m ∈Z )内存在唯一的极值点,求m 的值;(III )用max{m ,n}表示m ,n 中的较大者,记函数h (x )=max{f (x ),g (x )}(x>0). 若函数h (x )在(0,+∞)上恰有2个零点,求实数a 的取值范围.参考答案 卷(I )一、选择题:本大题共10小题,每小题5分,共50分 题号 1 2 3 4 5 6 7 8 9 10 答案 DBADCDADCC二、填空题:本大题共6小题,每小题5分,共30分 11 512 121 13 (1,0)或(-1,-4)14115221121+-+k k 165三、解答题:本大题共2小题,共20分. 17. (本小题满分8分)解:(I )因为f (x )=lnx-x 2+x 其中x>0 所以f '(x )=x1-2x+1=x x x )12)(1(+-所以f (x )的增区间为(0,1),减区间为(1,+∞). (II )由(I )f (x )在[21,1]单调递增,在[1,e]上单调递减, ∴f (x )max =f (1)=0 f (x )max =f (1)=a-1 18. (本小题满分12分) (I )解:当a=1时,f (x )=122+x x,f '(x )=-222)1()1)(1(+-+x x x …………2分 由f '(0)=2,得曲线y=f (x )在原点处的切线方程是2x-y=0. …………4分 (II )解:f '(x )=-21)1)((2+-+x ax a x . ……………6分 ①当a=0时,f '(x )=122+x x. 所以f (x )在(0,+∞)单调递增,在(-∞,0)单调递减. ………………7分当a ≠0,f '(x )=-2a1)1)((2+-+x a x a x . ②当a>0时,令f '(x )=0,得x 1=-a ,x 2=a1,f (x )与f '(x )的情况如下:x (-∞,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞) f '(x ) - 0 + 0 - f (x )↘f (x 1)↗f (x 2)↘故f (x )的单调减区间是(-∞,-a ),(a 1,+∞);单调增区间是(-a ,a 1). f (x )有极小值f (-a )=-1,有极大值f (a1)=a 2………10分 ③当a<0时,f (x )与f '(x )的情况如下: x (-∞,x 2) x 2 (x 2,x 1) x 1 (x 1,+∞) f '(x ) + 0 - 0 + f (x )↗f (x 2)↘f (x 1)↗所以f (x )的单调增区间是(-∞,a 1);单调减区间是(-a1,-a ),(-a,+ ∞). f (x )有极小值f (-a )=-1,有极大值f (a1)=a 2………………12分 综上,a>0时,f (x )在(-∞,-a ),(a 1,+∞)单调递减;在(-a,a1)单调递增. a=0时,f (x )在(0,+∞)单调递增,在(-∞,0)单调递减,f (x )有极小值f (-a )=-1,有极大值f (a 1)=a 2;a<0时,f (x )在(-∞,a 1),(-a,+∞)单调递增;在(a1,-a )单调递减,f (x )有极小值f (-a )=-1,有极大值f (a1)=a 2. 卷(II )一、选择题:本大题共3小题,每小题5分,共15分. 题号 1 2 3 答案 CCC二、填空题:本大题共3小题,每小题5分,共15分. 题号 4 56 答案3934 ①②三、解答题:本大题共2小题,共20分. 7. (本小题满分8分)解:(I )f '(x )=3x 2+2ax+b ,由题设有f '(1)=0,f (1)=10即⎩⎨⎧=+++=++1010232a b a b a 解得⎩⎨⎧=-=33b a 或⎩⎨⎧-==114b a经验证,若⎩⎨⎧=-=33b a 则f '(x )=3x 2-6x+3=3(x-1)2当x>1或x<1时,均有f '(x )>0,可知 此时x=1不是f (x )的极值点,故⎩⎨⎧=-=33b a 舍去⎩⎨⎧-==114b a 符合题意,故⎩⎨⎧-==114b a . (II )当a=-1时,f (x )=x 3-x 2+bx+l 若f (x )<0在x ∈[1,2]恒成立,即 x 3-x 2+bx+1<0在x ∈[1,2]恒成立即b<x x x 123-+-在x ∈[1,2]恒成立令g (x )=xx x 123-+-,则g '(x )=2232)1()23(x x x x x x -+--+-=22312xx x ++- (法一:由g '(x )=0解得x=1…)(法二)由-2x 3+x 2+1=1-x 3+x 2(1-x ) 可知x ∈[1,2]时g '(x )<0即g (x )=xx x 123-+-在x ∈[1,2]单调递减(g (x ))max =g (2)=-25∴b<-25时,f (x )<0在x ∈[1,2]恒成立 8. (本小题满分12分)解:(I )易得,f '(x )=3x 2-3a ,所以f '(1)=3-3a , 依题意,(3-3a )(-21)=-1,解得a=31; ………3分(II )因为F (x )=-x[g (x )+21x-2]=-x[(1-lnx )+21x-2]=xlnx-21x 2+x, 则F'(x )=lnx+l-x+l=lnx-x+2. 设t (x )=lnx-x+2, 则t '(x )=x1-1=x x -1.令t '(x )=0,得x=1.则由t '(x )>0,得0<x<1,F '(x )为增函数; 由t '(x )<0,得x>1,F '(x )为减函数; 而F '(21e )=-2-21e +2=-21e<0,F '(1)=1>0. 则F '(x )在(0,1)上有且只有一个零点x 1, 且在(0,x 1)上F '(x )<0,F (x )为减函数; 在(x 1,1)上F '(x )>0,F (x )为增函数. 所以x 1为极值点,此时m=0.又F '(3)=ln3-1>0,F '(4)=21n2-2<0, 则F '(x )在(3,4)上有且只有一个零点x 2, 且在(3,x 2)上F '(x )>0,F (x )为增函数; 在(x 2,4)上F '(x )<0,F (x )为减函数. 所以x 2为极值点,此时m=3.综上m=0或m=3. …………………9分(III )(1)当x ∈(0,e )时,g (x )>0,依题意,h (x )≥g(x )>0,不满足条件; (2)当x=e 时,g (e )=0,f (e )=e 3-3ae+e ,①若f (e )=e 3-3ae+e≤0,即a≥312+e ,则e 是h (x )的一个零点;②若f (e )=e 3-3ae+e>0,即a<312+e ,则e 不是h (x )的零点;(3)当x ∈(e ,+∞)时,g (x )<0,所以此时只需考虑函数f (x )在(e,+∞)上零点的情况.因为f '(x )=3x 2-3a>3e 2-3a ,所以①当a≤e 2时,f '(x )>0,f (x )在(e ,+∞)上单调递增. 又f (e )=e 3-3ae+e ,所以(i )当a≤312+e 时,f (e )≥0,f (x )在(e ,+∞)上无零点;(ii )当312+e <a≤e 2时,f (e )<0,又f (2e )=8e 3-6ae+e≥8e 3-6e 3+e>0,所以此时f (x )在(e ,+∞)上恰有一个零点;②当a>e 2时,令f '(x )=0,得x=±a .由f '(x )<0,得e<x<a ;由f '(x)>0,得x>a;所以f(x)在(e,a)上单调递减,在(a,+∞)上单调递增. 因为f(e)=e3-3ae+e<e3-3e3+e<0,f(2a)=8a3-6a2+e>8a2-6a2+e=2a2+e>0,所以此时f(x)在(e,+∞)上恰有一个零点;综上,a>312e. …………12分。
北京市朝阳区2016届高三下学期第二次综合练习数学(理)试题 含答案
数学试卷(理工类)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
已知集合{|124}xA x =<<,{|10}B x x =-≥,则A B =( )A .{|12}x x ≤<B .{|01}x x <≤C .{|01}x x <<D .{|12}x x <<2.复数1iz i=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.执行如图所示的程序框图,输出S 的值为( ) A .6 B .10 C .14 D .154。
已知非零向量,a b ,“//a b ”是“//()a a b +”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件5。
同时具有性质:“①最小正周期是π;②图象关于直线3x π=对称;③在区间5[,]6ππ上是单调递增函数”的一个函数可以是( )A .cos()26x y π=+B .5sin(2)6y x π=+C .cos(2)3y x π=-D .sin(2)6y x π=-6.已知函数1,2()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1a ≠)的最大值为1,则a 的取值范围是( )A .1[,1)2B .(0,1)C .1(0,]2D .(1,)+∞7.某学校高三年级有两个文科班,四个理科班,现从每个班指定1名同学,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )A .48B .72C .84D .1688。
已知正方体1111ABCD A BC D -的棱长为2,E 是棱11D C 的中点,动点F 在正方体内部或正方体的表面上,且//EF 平面11A BC ,则动点F 的轨迹所形成的区域面积是( )A .92B. C. D.第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.双曲线22:13x C y -=的渐近线方程是;若抛物线22(0)ypx p =>的焦点与双曲线C 的一个焦点重合,则p = .10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 0个 【答案】 B
B. 1个
C. 2 个
D. 3个
【解析】解: (sin x) cos x ,故①错误;
1 x
2x
(e )
1 x2
,故②错误;
2
2e
x
ቤተ መጻሕፍቲ ባይዱ,故③正确;
ln x (ln x) x ln x x
x
x2
正确的有一个. 故选 D .
1 x ln x
x x2
1 ln x x 2 ,故④错误.
B. 2
C. 8 3
D . 16 2 3
C : x2 4 y 的焦点坐标为 (0,1) ,又由于直线 l 与 y 轴垂直,
所以直线 l 的方程为 y 1 ,
y1
联立
,解得交点坐标为 ( 2,1) , (2,1) ,
x2 4y
所以直线 l 与 C 所围成的图形的面积 S
2
x2
1
dx
2
4
故选 C .
2
x 1 x3
”,小前提是 “ A 与 B 是两条平
D 项、由 a1 2 , an 2an 1 1 归纳出 an 的通项公式,属于归纳推理.
故选 D .
3.用反证法证明命题: “若整系数一元二次方程
个是偶数 ”时,下列假设中正确的是(
).
ax2 bx c 0 有有理根,那么 a , b , c 中至少有一
A .假设 a , b , c 都是偶数
故选 C .
8.用 5 , 6 , 7 , 8 , 9 组成没有重复数字的五位数,其中两个偶数数字之间恰有一个奇数数字的五位
数的个数是(
).
A . 36
B . 18
C. 72
D . 54
【答案】 A
【解析】 解: 把两个偶数进行全排列有
A
2 2
种方法,
从三个奇数中选取一个插入两个偶数之间,
共有 C13
【答案】 C
【解析】解:
A 项、由平面三角形的性质,推测空间四棱锥的性质,属于类比推理;
B 项、由高二 1班有 55 人, 2 班有 52 人,得高二所有班人数超过 50 人,属于归纳推理;
C 项、大前提为 “两直线平行,同位角相等两直线平行,同位角相等 行直线的同位角 ”,结论是 “ A B ”,属于演绎推理;
n0 的正整数都成立
D .以上说法都不正确
【答案】 C
【解析】解:由已知可得 n n0(n0 N*) 时命题成立,则有 n n0 1时命题成立,在 n n0 1 时命题成
立的前提下,可推得 n (n0 1) 1 时命题也成立,以此类推可知命题对大于或等于
n0 的正整数都成立
但命题对小于 n0 的正整数成立与否不能确定.
4.若复数 z 满足 i z=2+4i ,则在复平面内 z 对应的点的坐标是(
A . (2,4)
B . (2, 4)
C. (4,2)
【答案】 D
【解析】解:由 iz=2+4i ,可得 z
2 4i i
i(2 4i) i2
∴复平面内, z 对应的点的坐标是 (4, 2) .
4 2i ,
故选 D .
). D . (4, 2)
当 (a 2) 0 ,即 a 2 时,令 f (x ) 0 得 x (a 2) ,令 f (x) 0 ,得 0 x (a 2) ,
一、选择题(本大题共 合题目要求的)
北京市三里屯一中 2016—2017 学年第二学期
10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符
1.下列求导① (sin x)
1 cos x;②
x
1 x2
;③ (e2x )
2e2x ;④ ln x x
1
ln x2
x
,正确的有
(
).
B.假设 a , b , c 都不是偶数 C.假设 a , b , c 至多有一个是偶数 D.假设 a , b , c 至多有两个是偶数 【答案】 B
【解析】解:用反证法证明数学命题时,应先假设要证的命题的否定成立,
“至少有一个 ”的否定为 “都
不是 ”,
所以先假设 a, b , c 都不是偶数.
故选 B .
种方法,把选取好的三个数捆绑在一起与其它两个奇数全排列,
共有
A
3 3
种方法,由分步计数原理可知,
满足条件的五位数共有
A
2 2
C13
A
3 3
236
36 个.
故选 A .
9.直线 l 过抛物线 C : x2 4 y 的焦点且与 y 轴垂直,则 l 与 C 所围成的图形的面积等于(
).
A. 4 3
【答案】 C 【解析】解:抛物线
2 5
种不同的方法,因此,
6 个人排成一
排,其中甲、乙两人不相邻的不同排法共有
42
A 4A 5 24 20 480 种.
故选 A .
6.函数 f (x) 2x sin x 的部分图像可能是(
).
A.
B.
C.
D.
【答案】 D
【解析】解:∵ y 2 cos x 0 , ∴函数在 R 上单调递增. 故选 D .
12
2
8. 3
10.已知函数 f ( x) ex ( x2 ax a ) ,其中 a 是常数, 若存在实数 k ,使得关于 x 的方程 f ( x) k 在 [0, )
上有两个不相等的实数根,则 k 的取值范围是(
).
a4 A. a k a 2
e 【答案】 D
a4 B. a k ≤ a 2
e
a4 C. a 2 k a
e
a4 D. a 2 k ≤ a
e
【解析】解:由
f ( x)
ex( x2
ax
a) 得 f ( x)
x2
e (x
ax
2x) ,
令 f ( x) 0 ,得 x 0 或 x (a 2) ,
当 (a 2) ≤ 0 ,即 a ≥ - 2 时,在区间 [0, ) 上, f (x) ≥ 0 , ∴ f (x) 是 [0, ) 上的增函数, ∴方程 f ( x) k 在 [0, ) 上不可能有两个不相等的实数根,
2.下列推理过程是演绎推理的是(
).
A .由平面三角形的性质推测空间三棱锥的性质
B.某校高二 1 班有 55 人, 2班有 52 人,由此得高二所有班人数都超过 50 人
C.两条直线平行,同位角相等,若
A 与 B 是两条平行直线的同位角,则
AB
D.在数列 an 中, a1 2 , an 2an 1 1(n≥ 2) ,由此归纳出 an 的通项公式
7.若命题 A(n)( n N*) 在 n k (k N*) 时命题成立, 则有 n k 1 时命题成立, 现知命题对 n n0 (n0 N*)
时命题成立,则有(
).
A .命题对所有正整数都成立
B.命题对小于 n0 的正整数不成立,对大于或等于 n0 的正整数都成立
C.命题对小于 n0 的正整数成立与否不能确定,对大于或等于
5. 6 个人排成一行,其中甲、乙两人不相邻的不同排法共有(
)种.
A . 480
B . 624
C. 600
D . 240
【答案】 A
【解析】解: 6 个人排成一排,要求甲、乙两人不相邻,先安排其他
4 人,有
A
4 4
种不同的排法,排好
后,有 5 个空位,在 5 个空位中,任选 2 个,安排甲、乙,有
A