2017-2018学年北师大版七年级数学下册期中数学试卷含答案解析
北师大版七年级下册数学第一次月考测试题 (4)
2017-2018学年深圳市七年级(下)第一次月考数学试卷一.选择题(共12小题)1.下列计算正确的是()A.b3•b3=2b3B.(a+b)2=a2+b2C.(a5)2=a10D.a﹣(b+c)=a﹣b+c 2.计算a•5ab=()A.5ab B.6a2b C.5a2b D.10ab3003.计算()﹣1所得结果是()A.﹣2 B.C.D.24.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±205.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.16.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;127.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b88.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054 B.255064 C.250554 D.2550249.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.10.已知,则x的值为()A.±1 B.﹣1和2 C.1和2 D.0和﹣111.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a12.当时,多项式(4x3﹣1997x﹣1994)2001的值为()A.1 B.﹣1 C.22001 D.﹣22001二.填空题(共4小题)13.计算:(﹣mn3)2=.14.计算:(﹣ab)2÷a2b=.15.若a m=3,a n=4,则a m+n=.16.已知,那么=.三.解答题(共7小题)17.计算:(1)(15x2y﹣10xy2)÷5xy;(2)(x+2y﹣3)(x﹣2y+3).18.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.19.已知5m=2,5n=4,求52m﹣n和25m+n的值.20.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.S乙=(用含a、b的代数式分别表示);(1)S甲=,(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.21.如图,大小两个正方形边长分别为a、b.(1)用含a、b的代数式阴影部分的面积S;(2)如果a+b=9,ab=6,求阴影部分的面积.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案与试题解析一.选择题(共12小题)1.下列计算正确的是()A.b3•b3=2b3B.(a+b)2=a2+b2C.(a5)2=a10D.a﹣(b+c)=a﹣b+c 【解答】解:A、b3•b3=b6,错误;B、(a+b)2=a2+2ab+b2,错误;C、(a5)2=a10,正确;D、a﹣(b+c)=a﹣b﹣c,错误;故选C2.计算a•5ab=()A.5ab B.6a2b C.5a2b D.10ab300【解答】解:a•5ab=5a1+1b=5a2b.故选:C.3.计算()﹣1所得结果是()A.﹣2 B.C.D.2【解答】解:()﹣1==2,故选:D.4.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选B.5.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.6.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.7.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选B.8.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054 B.255064 C.250554 D.255024【解答】解:由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,则在不超过2017的正整数中,所有的“和谐数”之和为32﹣12+52﹣32+ (5052)5032=5052﹣12=255024.故选:D.9.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.【解答】解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选B.10.已知,则x的值为()A.±1 B.﹣1和2 C.1和2 D.0和﹣1【解答】解:由题意得,(1),解得x=﹣1;(2)x﹣1=1,解得x=2;(3),此方程组无解.所以x=﹣1或2.故选B.11.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【解答】解:a=(﹣)﹣2==;b=(﹣1)﹣1==﹣1;c=(﹣)0=1;∵1>>﹣1,∴即c>a>b.故选C.12.当时,多项式(4x3﹣1997x﹣1994)2001的值为()A.1 B.﹣1 C.22001 D.﹣22001【解答】解:∵x=,可得(2x﹣1)2=1994,原式可化为:[x(4x2﹣4x﹣1993)+(4x2﹣4x﹣1993)﹣1]2001,代入4x2﹣4x﹣1993=0可得:原式=(﹣1)2001=﹣1.故选B.二.填空题(共4小题)13.计算:(﹣mn3)2=m2n6.【解答】解:原式=m2n6故答案为:m2n614.计算:(﹣ab)2÷a2b=b.【解答】解:原式=a2b2÷a2b=b故答案为:b15.若a m=3,a n=4,则a m+n=12.【解答】解:∵a m=3,a n=4,∴a m+n=a m•a n=3×4=12.故答案为:12.16.已知,那么=34.【解答】解:∵x+=6,∴=x2+=(x+)2﹣2=36﹣2=34.故答案为:34.三.解答题(共7小题)17.计算:(1)(15x2y﹣10xy2)÷5xy;(2)(x+2y﹣3)(x﹣2y+3).【解答】解:(1)原式=3x﹣2y(2)原式=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣918.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:∵x=3,y=﹣2,∴原式=x2+6xy+9y2﹣(x2﹣9y2)=6xy+18y2=6×3×(﹣2)+18×(﹣2)2=﹣36+18×4=3619.已知5m=2,5n=4,求52m﹣n和25m+n的值.【解答】解:∵5m=2,5n=4,∴52m﹣n=(5m)2÷5n=22÷4=1;25m+n=52(m+n)=(5m)2×(5n)2=22×42=64.20.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.a+b)(a﹣b),S乙=a2﹣b2(用含a、b的代数式分别表示);(1)S甲=((2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.a+b)(a﹣b);【解答】解:(1)由题可得,S甲=(S乙=a2﹣b2;故答案为:(a+b)(a﹣b);a2﹣b2;(2)∵S甲=S乙;∴a2、b2、(a+b)(a﹣b)的等量关系为:(a+b)(a﹣b)=a2﹣b2;(3)如图①所示,将图丙分成四个长为a,宽为b的小长方形,再拼成如图②所示的正方形.根据图②可得:S大正方形=(a+b)2,S大正方形=(a﹣b)2+4a b,∴(a+b)2=(a﹣b)2+4ab.21.如图,大小两个正方形边长分别为a、b.(1)用含a、b的代数式阴影部分的面积S;(2)如果a+b=9,ab=6,求阴影部分的面积.【解答】解:(1)∵大小两个正方形边长分别为a、b,∴阴影部分的面积为:S=a2+b2﹣a2﹣(a+b)b=a2+b2﹣ab;(2)∵a+b=9,ab=6,∴a2+b2﹣ab=(a+b)2﹣ab=×92﹣×6=.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.【解答】证明:∵∠3=∠4,∴CF∥BD,∴∠5=∠FAB.∵∠5=∠6,∴∠6=∠FAB,∴AB∥CD,∴∠2=∠EGA.∵∠1=∠2,∴∠1=∠EGA,∴ED∥FB.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达A N之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【解答】解:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,∴a﹣3b=0,且a+b﹣4=0,∴a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(20+t)×1,解得t=10;②当60<t<120时,3t﹣3×60+(20+t)×1=180°,解得t=85;③当120<t <160时, 3t ﹣360=t +20, 解得t=190>160,(不合题意) 综上所述,当t=10秒或85秒时,两灯的光束互相平行; (3)设A 灯转动时间为t 秒, ∵∠CAN=180°﹣3t , ∴∠BAC=45°﹣(180°﹣3t )=3t ﹣135°, 又∵PQ ∥MN , ∴∠BCA=∠CBD +∠CAN=t +180°﹣3t=180°﹣2t , 而∠ACD=90°, ∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t )=2t ﹣90°, ∴∠BAC :∠BCD=3:2, 即2∠BAC=3∠BCD . 北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获 胜.问他们两人谁获胜的概率大?请分析说明 19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
2017-2018学年北京市北京师大附中七年级下学期期中考试数学试卷(含答案)
北京师大附中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题:(本题共16分,每小题2分)1.下列各数中无理数有()3.141, 鼠-心,0,0.1010010001A. 2个B. 3个C. 4个D. 5个2.如图所示,四幅汽车标志设计中,能通过平移得到的是A. AB. BC. CD. D3.若小b,则下列不等式中,不一定成立的是()A. B 3 f b-3B. 4 + bC. 23 2bD. Jwly4.如图,直线AB与直线CD相交于点O, EOJLAB, L E OD-<5,则々lOC5.已知点A (a,b)在第三象限,则点B(-a+1 , 3b-1)在A.第一象限B.第二象限C.第三象限D.第四象限6.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③,-5;④的的平方根是土W;⑤『定是负数A. 1个B. 2 个C. 3 个D. 4 个7.如图,直线a,b被直线c所截,-Z4,若々・4行,则匕工等于()A.Q|B.卜费C.D.飘X8.在平面上,过一定点。
作两条斜交的轴x和y,它们的交角是s (切于兜。
),以定点。
为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中仍叫做坐标角,对于平面内任意一点P, 过P作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x和y,于是点P的坐标就是(x,y),如图,辨-60°|,且y轴平分£MOx, OM=2则点M的坐标是( )A. (2, -2)B. (-1, 2)C. (-2, 2)D. (-2, 1)二、填空题:(本题共16分,每小题2分)9. ____ ___~\________10.点P (-2, 1)向上平移2个单位后的点的坐标为11.不等式2\-3三收*5的解集是12.已知实数x,y满足& 1+肉;6| 0,贝U x-y=13.已知点怙,3:i+6.a 1),若点P在x轴上,则点P的坐标为14.如图,AB//CD,若司则二的度数是.15.下列各命题中:①对顶角相等;②若则x=2;③入叵c/;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是 (填序号)16.图a中,四边形ABC虚细长的长方形纸条,士”PD-《沿眄\将纸条的右半部分做第一次折叠,得到图b和交点p』;再沿pP:将纸条的右半部分做第二次折叠,得到图c和交点巴;再沿PP§将纸条的右半部分做第三次折叠,得到图d和交点I\.P a-------- K~5-(1)如果Q- 1T,那么-(2) ZPF4B -三、计算题(每小题6分,共24分)17.计算:屈+ 1手18.化简:||i£5i4成-科+球斗19. 解不等式20.已知a是1的算术平方根,b是8的立方根,求b-a的平方根四、几何解答:(每小题8分,共16分)21.已知:如图,AB//CD, , |^1 - 75°,解:卜.COTAB, kB-35Z二£"乙(,而£ 1 - 75°,MACD -小A —°,v CD //W,“ 4A '+= 1 孵.(,22.如图,AB//CD, £ 1 ・上二AM^MN,求证:求乙人的度数. DN1NINfl五、平面直角坐标系的应用(8分)23 .如图所示的象棋盘上,若 ,位于点(1, 0)上,。
北师大版中学七年级数学下册期中测试题及答案
数学试卷(七年级)
本试卷2张6页;共三个大题;考试时间120分钟;满分150分
题 号
一
二
三
总分
得 分
总分人
评卷人
得分
一、精心选一选,相信你一定能选对!(每题4分,共40分)
1.计算 的结果是(B)
A. B.
C. D.
2.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是(A)
∴∠B=∠GFC(等角的余角相等)……………8分
∴AB∥GF. (同位角相等,两直线平行)…10分
10.如图,在△ABC中,∠ABC、∠ACB的平分线交于点O.若∠BOC=140°,则∠A=(D)
A.70°B.80°C.90°D.100°
评卷人
得分
二、细心填一填,相信你填得又快又好!(每小题4分,共24分)
11.单项式 的系数是 ,次数是4;
多项式 是3次3项式.
12.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是 .
A.有3个有效数字,精确到百分位B.有2个有效数字,精确到个位
C.有3个有效数字,精确到百位D.有2个有效数字,精确到万位
7.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是(A)
A.∠3=∠4B.∠B=∠DCE
C.∠1=∠2.D.∠D+∠DAB=180°
8.一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球不是绿球的概率是(D)
A. B.
C. D.
3.下列各式中,不能用平方差公式计算的是(D)
A. B.
C. D.
4.若 , , ,则 . . 的大小关系是(B)
北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)
北师版七年级数学期中模拟试卷题号一二三总分得分第I卷(选择题)评卷人得分一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15 2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠1 3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a 4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.14.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=13πr2h)15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.16.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)评卷人得分三、解答题(共8小题,共62分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.参考答案第I卷(选择题)一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15【答案】B.【解析】试题解析:a5•a3=a5+3=a8.故选:B.2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1C.x≠0D.x≠1【答案】D【解析】试题解析:由题意可知:x﹣1≠0,x≠1故选:D.3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【答案】C【解析】试题解析:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x【答案】B【解析】试题解析:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+74xy2.故选:B.5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角【答案】C6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对【答案】B【解析】试题解析:如图所示,∠1与∠2,∠3与∠4都是对顶角,故两条直线相交于一点,则共有对顶角的对数为2对.故选:B.#网7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】C【解析】试题解析:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.21世纪教育网故选:C.8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行【答案】C9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【答案】B【解析】试题解析:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米【答案】C第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.【答案】b【解析】试题解析:原式=a2b2÷a2b=b故答案为:b12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.【答案】±4【解析】试题解析:∵(x﹣ay)(x+ay)=x2﹣(ay)2(x﹣ay)(x+ay)=x2﹣16y2,∴a2=16,∴a=±4.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.【答案】18014.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=πr2h)【答案】V、h.【解析】试题解析:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.故答案为:V,h.点睛:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.【答案】y=2x+10【解析】试题解析:一个长方形的长为5c m,宽为xcm,周长为ycm,则y与x之间的函数表达式为y=2x+10;故答案为:y=2x+1016.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)【答案】③①②评卷人得分三、解答题(共8小题,共72分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)【答案】(1) 17a6b3;(2)a2﹣4b2+4bc﹣c2;21世纪教育网18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【答案】(1)5;21. (2)(2n+1)2﹣4n2=4n+1.【解析】试题分析:(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.试题解析:(1)112﹣4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,证明:(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案】63.点睛:本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.【答案】(1)65°.【解析】试题分析:(1)根据平角为180度可得∠3=180°﹣∠1﹣∠FOC(2)根据对顶角相等可得∠AOD的度数,然后再根据角平分线定义进行计算即可试题解析:(1)∵∠AOB=180°,∴∠1+∠3+∠COF=180°,∵∠FOC=90°,∠1=40°,∴∠3=180°﹣∠1﹣∠FOC=50°,(2)∠BOC=∠1+∠FOC=130°,∴∠AOD=∠BOC=130°,∵OE平分∠AOD,∴∠2=12∠AOD=65°.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.【答案】(1)对顶角相等,140°.(2)150°.故答案为:(1)对顶角相等,140°.(2)150°.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.【答案】(1)20,(2)2,80;(3)6.7.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.【答案】∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.【答案】4D:完全平方公式的几何背景.21世纪教育网【解析】试题分析:(1)运用几何直观理解、通过不同的方法计算图形的面积可以得到一个数等式然后再通过化简可得.(2)可利用(1)所得的结果进行等式变换直接带入求得结果.%网试题解析:(1)由图2可得正方形的面积为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac【点评】本题主要是在完全平方公式的几何背景图形的基础上,利用其解题思路求得结果.。
北师大版七年级下册数学作一个角等于已知角专项训练(原创)
【分析】
先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所作.
【详解】
如图,先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所求作.
【点睛】
考查了复杂作图,解题关键是掌握作一个角等于已知角的方法.
16.见解析
【来源】广东省茂名市九校联考2018-2019学年七年级下学期期中数学试题
【解析】
【分析】
根据平行线的判定:同位角相等,两条直线平行,即可作图.
【详解】
过点M作∠AMF=∠AOB,延长FM,如图:
∴EF就是所求作的与OB平行的直线.
【点睛】
本题主要考查尺规作图,掌握同位角相等,两条直线平行,是解题的关键.
15.见解析
【来源】山东省东营市垦利区2019-2020学年七年级上学期期中数学试题
10.已知∠α和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α,作法的合理顺序为________.(填序号即可)
①在射线BD上截取线段BA=n;②作一条线段BC=m;③以B为顶点,以BC为一边,作∠DBC=∠α;④连接AC,△ABC就是所求作的三角形.
11.完成作图步骤:已知∠ ,∠ (∠ >∠ ),求作一个角,使它等于∠ -∠ .作法:(1)作∠AOB=_______;(2)以OA为一边,在∠AOB的内部作∠AOC=___,则∠BOC就是所求作的角(如图).
则∠ABD=∠CBD=25°,
∴∠BDC的度数为:∠A+∠ABD=105°.
故选D.
【点睛】
此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.
4.D
2018-2019学年北师大版广东省深圳市罗湖区七年级第二学期期中数学试卷 含解析
2018-2019学年七年级第二学期期中数学试卷一、选择题1.计算23x x g 结果是( ) A .52xB .5xC .6xD .8x2.下面的四个图形中,1∠与2∠是对顶角的是( )A .B .C .D .3.一本笔记本5元,买x 本共付y 元,则5和y 分别是( ) A .常量,常量B .变量,变量C .常量,变量D .变量,常量4.某种植物细胞的直径约为0.00012mm ,用科学记数法表示这个数为( )mm . A .41.210⨯B .31210-⨯C .31.210-⨯D .41.210-⨯5.下列运算正确的是( )A .22423m m m +=B .224()mn mn = C .22248m m m =g D .532m m m ÷= 6.下列运算中正确的是( ) A .222()a b a b +=+ B .22()()4a b a b ab +=-+C .(1)(2)2a b ab +-=-D .22()()a b b a a b +-=-7.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条C .在同一平面内,若直线//a b ,//a c ,则//b cD .若两条线段不相交,则它们互相平行8.如图,测量运动员跳远成绩选取的是AB 的长度,其依据是( )A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短9.小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对10.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1 B.2 C.3 D.411.已知直线//a b ,将一块含45︒角的直角三角板(90)C ∠=︒按如图所示的位置摆放,若160∠=︒,则2∠的度数是( )A .70︒B .75︒C .80︒D .85︒12.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到222()2a b a ab b +=++,那么利用图2所得到的数学等式是( )A .2222()a b c a b c ++=++B .2222()222a b c a b c ab ac bc ++=+++++C .2222()a b c a b b ab ac bc ++=+++++D .2()222a b c a b c ++=++二、填空题(本题共4小题,每小题3分,共12分) 13.若226x x m ++是一个完全平方式,则m 的值是 .14.如果一个角的补角是150︒,那么这个角的余角的度数是 度.15.如果每盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 . 16.若2(3)()15x x n x mx ++=+-,则m n 的值为 .三、解答题(本题共7小题,其中第17题8分,第18题6分,第19题6分,第20题8分,第21题8分,第22题7分,第23题9分) 17.计算:(1)01(2)2|2|--+--(2)2201820172019-⨯(要求用公式简便计算)18.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中2a =-,12b =. 19.在方格纸上过C 作线段CE AB ⊥,过D 作线段//DF AB ,且E 、F 在格点上.20.如图1,直线//a b ,100P ∠=︒,155∠=︒,求2∠的度数.现提供下面的解法,请填空,括号里标注理由.解:如图2,过点P 作直线c 平行于直线a , //a c Q (已知)1∴∠=又//a b Q (已知) //c b ∴2∴∠=1234∴∠+∠=∠+∠而34100APB ∠+∠=∠=︒(已知) 12100∴∠+∠=︒(等量代换) 155∠=︒Q2∴∠= ︒- ︒= ︒21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度()y cm与白纸的张数x(张)的关系可以用下表表示:白纸张数x(张)1 2 3 4 5 ⋯纸条长度()y cm20 a54 71 b⋯(1)表格中:a=,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?23.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a、()b a b>,斜边长为7cm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2正方形的面积.(用含a,b,)c S=.(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是8a=,6b=,求斜边c的值、参考答案一、选择题1.计算23x x g结果是()A.52x B.5x C.6x D.8x【分析】直接利用同底数幂的乘法运算法则计算得出答案.解:235=g.x x x故选:B.2.下面的四个图形中,1∠是对顶角的是()∠与2A.B.C.D.【分析】根据对顶角的定义作出判断即可.解:根据对顶角的定义可知:只有C图中的1∠与2∠是对顶角,其它都不是.故选:C.3.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5和y分别是常量,变量,据此判断即可.解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.4.某种植物细胞的直径约为0.00012mm,用科学记数法表示这个数为()mm.A.4⨯D.4⨯1.210-1.210-⨯C.31.210⨯B.31210-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n⨯,与较大数a-的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:4=⨯,0.00012 1.210-故选:D .5.下列运算正确的是( )A .22423m m m +=B .224()mn mn = C .22248m m m =g D .532m m m ÷= 【分析】直接利用合并同类项法则以及积的乘方运算法则、 整式的乘除运算分别计算得出答案 .解:A 、22223m m m +=,故此选项错误;B 、2224()mn m n =,故此选项错误;C 、23248m m m =g ,故此选项错误;D 、532m m m ÷=,正确 .故选:D .6.下列运算中正确的是( ) A .222()a b a b +=+ B .22()()4a b a b ab +=-+C .(1)(2)2a b ab +-=-D .22()()a b b a a b +-=-【分析】根据整式的混合运算顺序和运算法则计算可得. 解:A .222()2a b a ab b +=++,此选项错误; B .22()()4a b a b ab +=-+,此选项正确; C .(1)(2)22a b ab a b +-=-+-,此选项错误;D .22()()a b b a a b +-=-+,此选项错误;故选:B .7.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条C .在同一平面内,若直线//a b ,//a c ,则//b cD .若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.解:A 、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.8.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.解:该运动员跳远成绩的依据是:垂线段最短;故选:D.9.小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对【分析】根据题意可以写出各段中距离随时间的变化如何变化,从而可以解答本题.解:由题意可得,小芳从离开家到发现作业本忘在家里这段中,距离随着时间的增加而增大,小芳发现作业本忘在家里到回到家中这段中,距离随着时间的增大而减小,小芳回到家里到找到作业本这段中,距离随着时间的增加不变,小芳找到作业本到继续去学校这段中,距离随着时间的增加而增大,故选:C.10.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s (米)和小明所用时间t (分钟)的关系图.则下列说法中正确的个数是( ) ①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分; ③小明跑步的平均速度是100米/分; ④小华到学校的时间是7:05.A .1B .2C .3D .4【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.解:由图象可得,小明吃早晨用时1385-=分钟,故①正确,小华到学校的平均速度是:1200(138)240⨯-=米/分,故②正确, 小明跑步的平均速度是:(1200500)(2013)100-÷-=米/分,故③正确, 小华到学校的时间是7:13,故④错误, 故选:C .11.已知直线//a b ,将一块含45︒角的直角三角板(90)C ∠=︒按如图所示的位置摆放,若160∠=︒,则2∠的度数是( )A .70︒B .75︒C .80︒D .85︒【分析】给图中各角标上序号,由三角形外角的性质及对顶角相等可求出5∠的度数,由5∠的度数结合邻补角互补可求出3∠的度数,由直线//a b 利用“两直线平行,同位角相等”可得出2375∠=∠=︒,此题得解.解:给图中各角标上序号,如图所示.54B ∠=∠+∠Q ,4160∠=∠=︒,45B ∠=︒,54560105∴∠=︒+︒=︒.35180∠+∠=︒Q ,375∴∠=︒.Q 直线//a b ,2375∴∠=∠=︒,故选:B .12.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到222()2a b a ab b +=++,那么利用图2所得到的数学等式是( )A .2222()a b c a b c ++=++B .2222()222a b c a b c ab ac bc ++=+++++C .2222()a b c a b b ab ac bc ++=+++++D .2()222a b c a b c ++=++【分析】依据正方形的面积2()a b c =++;正方形的面积222222a b c ab ac bc =+++++,可得等式.解:Q 正方形的面积2()a b c =++;正方形的面积222222a b c ab ac bc =+++++. 2222()222a b c a b c ab ac bc ∴++=+++++.故选:B .二、填空题(本题共4小题,每小题3分,共12分)13.若226x x m ++是一个完全平方式,则m 的值是 3± .【分析】利用完全平方公式的结构特征判断即可m 的值即可.解:226x x m ++Q 是一个完全平方式,29m ∴=,解得:3m =±,则m 的值是3±,故答案为:3±14.如果一个角的补角是150︒,那么这个角的余角的度数是 60 度.【分析】首先求得这个角的度数,然后再求这个角的余角.解:18015030︒-︒=︒,903060︒-︒=︒.故答案为:60︒.15.如果每盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 32y x = . 【分析】首先求出每支平均售价,即可得出y 与x 之间的关系.解:Q 每盒圆珠笔有12支,售价18元,∴每只平均售价为:18 1.512=(元), y ∴与x 之间的关系是:32y x =. 故答案为:32y x =. 16.若2(3)()15x x n x mx ++=+-,则m n 的值为25 . 【分析】先计算2(3)()(3)3x x n x n x n ++=+++,然后根据22(3)3)15x n x n x mx +++=+-,利用待定系数法求出m 、n 的值.解:2(3)()(3)3x x n x n x n ++=+++Q ,22(3)3)15x n x n x mx ∴+++=+-,3n m ∴+=,315n =-,2m ∴=-,5n =-,21(5)25m n -∴=-=, 故答案为125. 三、解答题(本题共7小题,其中第17题8分,第18题6分,第19题6分,第20题8分,第21题8分,第22题7分,第23题9分)17.计算:(1)01(2)2|2|--+--(2)2201820172019-⨯(要求用公式简便计算)【分析】(1)先根据零指数幂、负整数指数幂、绝对值分别计算求出即可;(2)根据平方差公式即可求出答案.解:(1)原式111222=+-=-; (2)2201820172019-⨯22018(20181)(20181)=--+222201820181=-+1=.18.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中2a =-,12b =. 【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.解:原式2222244484a b a ab b b ab =--+-+=,当2a =-,12b =时,原式4=-. 19.在方格纸上过C 作线段CE AB ⊥,过D 作线段//DF AB ,且E 、F 在格点上.【分析】直接利用网格结合垂线的定义以及平行线的关系得出答案.解:如图所示:CE,DF即为所求.20.如图1,直线//∠的度数.现提供下面的解法,请填P∠=︒,求2a b,100∠=︒,155空,括号里标注理由.解:如图2,过点P作直线c平行于直线a,Q(已知)//a c∴∠=31∠又//Q(已知)a b∴c b//∴∠=21234∴∠+∠=∠+∠而34100∠+∠=∠=︒(已知)APB∴∠+∠=︒(等量代换)12100∠=︒Q155∴∠=︒-︒=︒2【分析】利用平行线的判定和性质解决问题即可.解:如图2,过点P作直线c平行于直线a,Q(已知)a c//∴∠=∠13又//Q(已知)a bc b∴(平行于同一条直线的两条直线平行)//∴∠=∠,24∴∠+∠=∠+∠(等式性质)1234而34100APB∠+∠=∠=︒(已知)∴∠+∠=︒(等量代换)12100Q∠=︒155∴∠=︒-︒=︒21005545故答案为:3∠,平行于同一条直线的两条直线平行,等式性质,100,55,45.21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是 4 分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.【分析】(1)根据函数图象可以得到洗衣机的进水时间和清洗时洗衣机中的水量;(2)根据函数图象中的数据可以得到进水时y与x之间的关系式;(3)根据题意,可以得到排水结束时洗衣机中的水量.解:(1)由图象可得,洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升,故答案为:4,40;(2)设进水时y与x之间的关系式是y kx=,440k=,得10k=,即进水时y与x之间的关系式是10y x=,故答案为:10y x=;(3)排水结束时洗衣机中剩下的水量是:4018240364-⨯=-=(升),故答案为:4.22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度()y cm与白纸的张数x(张)的关系可以用下表表示:白纸张数x(张)1 2 3 4 5 ⋯纸条长度()y cm20 a54 71 b⋯(1)表格中:a=37 ,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?【分析】(1)根据图形可知每增加一张白纸,长度就增加17cm可求a、b的值;(2)x张白纸粘合起来时,纸条长度()y cm在20cm的基础上增加了(1)x-个17cm的长度,依此可得y与x的关系式;(3)依据长方形的周长公式,可得粘合起来总长度为2028(8)2cm-,将1006y=代入(2)中所求的关系式,列方程求得x的值即可.解:(1)白纸张数为2时,纸条长度201737a=+=;白纸张数为5时,纸条长度2041788b=+⨯=;故答案为:37;88.(2)由题意知y与x的关系式为:2017(1)y x=+-,化简,得173y x=+;(3)粘合后的长方形周长为2028cm 时,2028810062y =-=, 当1006y =时,1731006x +=,解得:59x =,所以,需要用59张这样的白纸. 23.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a 、()b a b >,斜边长为7cm ,请解答:(1)图2中间小正方形的周长 4c ,大正方形的边长为 .(2)用两种方法表示图2正方形的面积.(用含a ,b ,)c S = .(3)利用(2)小题的结果写出a 、b 、c 三者之间的一个等式 .(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是8a =,6b =,求斜边c 的值、【分析】(1)根据正方形周长公式即可解答;(2)根据正方形的面积公式以及三角形的面积公式即可解答;(3)根据完全平方公式可得222a b c +=;(4)根据(3)的结论计算即可.解:(1)图2中间小正方形的周长4c ,大正方形的边长为44a b +, 故答案为:4c ;44a b +;(2)图2正方形的面积2()S a b =+或22S ab c =+, 故答案为:2()a b +或22ab c +;(3)222()2a b a ab b +=++Q ,222∴+=.a b c故答案为:222+=a b c(4)2222286100=+=+=Q,c a b∴=(负值不合题意,舍去).10c。
北师大版七年级下册数学试卷【含答案】
北师大版七年级下册数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 有理数中,绝对值最小的数是?A. -1B. 0C. 1D. 23. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 三角形4. 一个等差数列的首项是3,公差是2,第5项是?A. 9B. 11C. 13D. 155. 下列哪个比例是正确的?A. 1:2 = 2:4B. 1:2 = 3:6C. 1:2 = 4:8D. 1:2 = 5:10二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 平方根的定义是一个数的平方等于另一个数。
()3. 任何两个奇数相加的结果是偶数。
()4. 0是等差数列的一部分。
()5. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)1. 2的平方根是______。
2. 一个等差数列的通项公式是______。
3. 两个平行线之间的距离是______。
4. 1千米等于______米。
5. 两个有理数的和是______。
四、简答题(每题2分,共10分)1. 解释等差数列的定义。
2. 描述平行线的性质。
3. 解释比例的概念。
4. 解释有理数的乘法法则。
5. 解释等式的性质。
五、应用题(每题2分,共10分)1. 计算下列等差数列的第10项:2, 5, 8, 11,2. 解方程:3x + 5 = 14。
3. 计算下列比例的未知数:1/2 = x/6。
4. 计算下列等比数列的第6项:2, 4, 8, 16,5. 计算下列分数的和:1/3 + 1/4。
六、分析题(每题5分,共10分)1. 分析下列数列的规律,并找出下一个数:2, 4, 8, 16,2. 分析下列图形的性质,并解释为什么:矩形、正方形、平行四边形。
七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标注其性质。
2. 用尺子和圆规画出一个正方形,并标注其性质。
北师大版七年级数学下册用尺规作图测试题
北师大版七年级数学测试卷(考试题)2017-2018学年北师大版七年级下册数学2.4 用尺规作图同步测试一、单选题(共10题;共20分)1.如图所示的尺规作图的痕迹表示的是()A. 尺规作线段的垂直平分线B. 尺规作一条线段等于已知线段C. 尺规作一个角等于已知角D. 尺规作角的平分线2.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC3.已知三边作三角形,用到的基本作图是()A. 作一个角等于已知角B. 平分一个已知角C. 在射线上截取一线段等于已知线段D. 作一条直线的垂线4.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A. 3cmB. 7cmC. 3cm或7cmD. 5cm或2cm5.用直尺和圆规作线段的垂直平分线,下列作法正确的是()A. B. C. D.6.作已知角的平分线是根据三角形的全等判定()作的.A. AASB. ASAC. SASD. SSS7.作一个角等于已知角用到下面选项的哪个基本事实()A. SSSB. SASC. ASAD. AAS8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A. 以点E为圆心,线段AP为半径的弧B. 以点E为圆心,线段QP为半径的弧C. 以点G为圆心,线段AP为半径的弧D. 以点G为圆心,线段QP为半径的弧9.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A. 100°B. 65°C. 75°D. 105°10.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法错误的是()A. ∠BAD=∠CADB. 点D到AB边的距离就等于线段CD的长C. S△ABD=S△ACDD. AD垂直平分MN二、填空题(共5题;共5分)11.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,CD.其中AB=4,CD=5,则四边形ABCD的面积为________ .12.在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________ .13.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________ .14.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .15.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有________三、解答题(共2题;共20分)16.综合题。
北师大版七年级下册数学试卷分析
2017—2018学年度第二学期七年级期末检测数学试卷分析为了总结经验,吸取教训,取长补短,改进教学,提升教学质量,提高学生成绩,现对 2017—2018学年度第二学期期末质量检测七年级数学试卷做出如下总结分析。
一、基本情况1、题型与题量全卷共有三种题型,分别为选择题、填空题和解答题。
其中选择题有10个小题,每小题3分,共30分。
填空题有6个小题,每小题4分,共24分。
解答题有7个大题,共66分,全卷合计27题,满分120分,考试用时90分。
2、内容与范围全卷试题题量适宜,难度中等偏高,全面涉及到本学期教学的全部内容,重点考察整式的乘除(完全平方公式、平方差公式)、平行线的性质、用图像表示的变量之间的关系、轴对称图形的性质、三角形内角和定理、三角形全等的条件等。
试卷内容比较灵活多样,对基础知识、生活实践、看图做题等都有考察,尤其是把课本知识融入生活实践中的这类题型,最能体现素质教育,同时也强调了数学教学与现实生活的紧密联系。
3、试题特点试卷表面上看比较容易,偏向基础知识的考察,实际上学生在做题时,却发现有一定的难度。
对学生的基本计算能力、逻辑思维能力,运用知识能力等水平要求较高。
试题的综合运算性增强,一道试题不只考查一两个知识点,而是前后章节综合在一起考查。
要求考生必须上下融会贯通,全面分析。
二、考情及存在问题分析(一)考情分析第一大题是选择题,前四个较为简单,学生多半能拿到分数。
往后的六个小题就拉开差距了。
第二大题是填空题,得分不太理想。
第11小题的负指数幂由于对公式掌握不牢固,只有少数计算出来。
第12小题较为简单,但学生分析问题的能力较差,导致答案不正确。
第13小题对所学公式不会活学活用。
第三大题是解答题,第 17题计算题是复习的重点,一些计算能力强的学生基本上做出来了,粗心大意或者根本不会的也有很多,比预料中的要差。
第18题也是在化简这一步出现了很多问题。
第19题对平行线的性质掌握较好,基本上能条理清楚的计算出角的度数。
【精品】数学七年级下北师大版3.2用关系式表示的变量间关系同步练习1
用关系式表示的变量间关系一、选择题1.【18-19学年度上学期期中考试初二(数学)】已知长方形的周长为16cm,其中一边长为x cm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2 B.y=(8-x)2C.y=x(8-x)D.y=2(8-x)2.【17-18学年广东揭阳揭西县七下期末数学】有一辆汽车储油45升,从某地出发后,每行驶1千米耗油0.1升,如果设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为()A.y=45-0.1xB.y=45+0.1xC.y=45-xD.y=45+x3.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm4.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为( )A .y =10xB .y =25xC .y = 52xD .y = 25x 5.某种签字笔的单价为2元,购买这种签字笔x 支的总价为y 元.则y 与x 之间的函数关系式为( )A .y =﹣21x B .y = 21x C .y =﹣2x D .y =2x 6.函数2-=x y ,自变量x 的取值范围是( )A .x >2B .x <2C .x ≥2D .x ≤27.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y =x +2B .y = x 2+2C .y =2+xD .y =21+x 8.已知函数y =⎩⎨⎧<≥+)0(4)0(12x x x x ,当x =2时,函数值y 为( )A .5B .6C .7D .8 9.如图,根据流程图中的程序,当输出数值y =5时,输入数值x 是( )A .71B .﹣31C .71或﹣31D .71或﹣71 10.已知x =3﹣k ,y =2+k ,则y 与x 的关系是( )A .y =x ﹣5B .x +y =1C .x ﹣y =1D .x +y =511.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t 小时,则汽车离开甲站所走的路程s (千米)与时间t (小时)之间的关系式是( ) A .s =10+60t B .s =60t C .s =60t ﹣10 D .s =10﹣60t12.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y = -21x +12B .y =﹣2x +24C .y =2x ﹣24D .y = 21x ﹣12 二、填空题13.【中原领航实验学校2018-2019学年上学期八年级周测(10.14)(数学)】一根长为20cm 的蜡烛,每分钟燃烧2cm ,蜡烛剩余长度厘米与燃烧时间分之间的关系式为______不必写出自变量的取值范围14.【2017年甘肃省白银市平川四中中考数学一模试卷】如图,AB=4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE=DB ,作EF ⊥DE ,并截取EF=DE ,连接AF 并延长交射线BM 于点C ,设BE=x ,BC=y ,则y 关于x 的函数解析式为 ______ .15.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为.三、解答题16.【2017-2018学年山东省菏泽市郓城县七年级(下)期中数学试卷】如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.17.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少?③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远?18.已知矩形周长为20,其中一条边长为x,设矩形面积为y①写出y与x的函数关系式;②求自变量x的取值范围.参考答案1.解:∵长方形的周长为16cm,其中一边长为xcm,∴另一边长为:(8-x)cm,故y=(8-x)x.故选:C.直接利用长方形面积求法得出答案.此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.2.解:设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为:y=45-0.1x.故选:A.直接利用余油量=总油量-消耗的油量进而得出答案.此题主要考查了函数关系式,正确表示出余油量是解题关键.4.答案:D解析:5(元)解答:25÷10=2所以购买钢笔的总钱数y(元)与支数x之间的关系式为:5x.y=2故选:D.分析:首先根据单价=总价÷数量,用每盒钢笔的售价除以每盒钢笔的数量,求出每支钢笔的价格是多少;然后根据购买钢笔的总钱数=每支钢笔的价格×购买钢笔的支数,求出购买钢笔的总钱数y(元)与支数x之间的关系式即可.5.答案:D解析:解答:依题意有:y =2x , 故选D .分析:根据总价=单价×数量得出y 与x 之间的函数关系式即可. 6. 答案:C 解析:解答:由题意得,x ﹣2≥0, 解得x ≥2. 故选:C .分析:根据被开方数大于等于0列式计算即可得解. 7.答案:C 解析:解答:A .y =x +2,x 为任意实数,故错误;B .y =x 2+2,x 为任意实数,故错误;C .y=2+x ,x +2≥0,即x ≥﹣2,故正确;D .y =21+x ,x +2≠0,即x ≠﹣2,故错误; 故选:C .分析:分别求出个解析式的取值范围,对应数轴,即可解答. 8. 答案:A解析:解答:∵x ≥0时,y =2x +1, ∴当x =2时,y =2×2+1=5. 故选:A .分析:利用已知函数关系式结合x 的取值范围,进而将x =2代入求出即可. 9.答案:C 解析:解答:x >0时,x1﹣2=5, 解得x =71,x <0时,﹣x1+2=5,解得x =﹣31,所以,输入数值x 是71或﹣31. 故选C .分析:把函数值分别代入函数关系式进行计算即可得解. 10.答案:D 解析:解答:∵x =3﹣k ,y =2+k , ∴x +y =3﹣k +2+k =5.故选:D.分析:利用x=3﹣k,y=k+2,直接将两式左右相加得出即可.11.答案:A解析:解答:s=10+60t,故选:A.分析:根据路程与时间的关系,可得函数解析式.12.答案:A解析:解答:由题意得:2y+x=24,1x+12(0<x<24).故可得:y=﹣2故选:A.分析:根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.13.解:由题意得:y=20-2t,故答案为:y=20-2t.根据题意可得燃烧的长度为2tcm,根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度,根据等量关系再列出函数关系式即可.此题主要考查了根据实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.14.解:作FM⊥BC于M.∵∠DBE=∠DEF=∠EMF=90°,∴∠DEB+∠BDE=90°,∠DEB+∠FEM=90°,∴∠BDE=∠FEM.在△DBE和△EMF中,,∴△DBE≌△EMF,∴FM=BE=x,EM=BD=2BE=2x,∵FM∥AB,∴=,∴=,∴y=(0<x≤2).作FM⊥BC于M.由△DBE≌△EMF,推出FM=BE=x,EM=BD=2BE=2x,由FM∥AB,推出=,即=,由此即可解决问题.本题考查全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.15.答案:y=200000(x+1)2解析:解答:y与x之间的关系应表示为y=200000(x+1)2.故答案为:y=200000(x+1)2.分析:根据平均增长问题,可得答案.◆解答题16.解:(1)∵梯形ABCD上底的长是4,下底的长是x,高是6,∴梯形ABCD的面积y与下底长x之间的关系式为:y=(4+x)×6=12+3x;(2)x 10 11 12 13 14 15 16y 42 45 48 51 54 57 60(3)由上表可得:x每增加1时,y增加3,理由:y1=12+3x,y2=12+3(x+1)=12+3x+3=15+3x,y2-y1=15+3x-(12+3x)=3,即x每增加1时,y增加3.17.①答案:解答:Q=50﹣8t;②答案:解答:当t=5时,Q=50﹣8×5=10,答:汽车行驶5h后,油箱中的剩余油量是10L;③答案:解答:当Q=0时,0=50﹣8t8t=50,解得:t =425, 100×425=625km . 答:该车最多能行驶625km.解析:分析:①由表格可知,开始油箱中的油为50L ,每行驶1小时,油量减少8L ,据此可得t 与Q 的关系式;②求汽车行驶5h 后,油箱中的剩余油量即是求当t =5时,Q 的值;③贮满50L 汽油的汽车,理论上最多能行驶几小时即是求当Q =0时,t 的值.18.①答案:解答:∵长方形的周长为20cm ,若矩形的长为x (其中x >0),则矩形的长为10﹣x ,∴y =x (10﹣x )②答案:解答:∵x 与10﹣x 表示矩形的长和宽,∴⎩⎨⎧>->0100x x 解得:0<x <10.解析:分析:①先根据周长表示出长方形的另一边长,再根据面积=长×宽列出函数关系式; ②根据矩形的长宽均为正数列出不等式求解即可.。
北师大版七年级(下)期中数学试卷(含解析)
北师大版七年级数学(下)期中试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100°D.130°2.(3分)甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米3.(3分)下列长度的3条线段,能首尾依次相接组成三角形的是()A.1,3,5B.3,4,6C.5,6,11D.8,5,24.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.a3﹣a2=a C.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a65.(3分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(x+a)(﹣a+x)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)6.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短7.(3分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.9.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个10.(3分)如图,△ABC中,∠A=α°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD 的平分线相交于点A2,依此类推,∠A n﹣1BC与∠A n﹣1CD的平分线相交于点A n,则∠A n的度数为()A.B.C.D.二.填空题(本大题共4个小题,每小题4分,共16分)11.(4分)三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为.12.(4分)若a+b=2,a2﹣b2=6,则a﹣b=.13.(4分)将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.(4分)如果4x2+mx+9是一个完全平方式,则m的值为.三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.(10分)计算:①;②(﹣ab2)3•(﹣9a3b)÷(﹣3a3b5).16.(8分)先化简,在求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x),其中x=2,y=﹣1.17.(6分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()18.(8分)如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.19.(10分)如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(12分)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.一.填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知a﹣b=4,则a2﹣b2﹣8b的值为.22.(4分)如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠CFC′=150°,则∠AED′=.23.(4分)已知代数式x2+2x+5可以利用完全平方公式变形为(x+1)2+4,进而可知x2+2x+5的最小值是4.依此方法,代数式y2﹣y+5的最小值是.24.(4分)在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC周长等于AB的长.正确结论的序号是.25.(4分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是;(2)式子(n﹣1)n(n+1)(n+2)+1=.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.(8分)已知x2+y2+4x﹣6y+13=0,求代数式[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)的值,要求先化简后求值.27.(10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA =∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.28.(12分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与边CD平行;在第秒时,直线MN恰好与直线CD垂直.(直接写出结果)试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.2.解:0.00 000 008=8×10﹣8,故选:B.3.解:A、3+1<5,不能构成三角形;B、3+4=7>6,能构成三角形;C、5+6=11,不能构成三角形;D、5+2=7<8,不能构成三角形.故选:B.4.解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选:D.5.解:A答案(x+a)(x﹣a)=x2﹣a2,能用平方差公式;B答案(x+a)(﹣a+x)=(x+a)(x﹣a)=x2﹣a2,能用平方差公式;C答案(﹣x﹣b)(x﹣b)=﹣(x+b)(x﹣b)=﹣(x2﹣b2)=b2﹣x2,能用平方差公式;D答案(a+b)(﹣a﹣b)=﹣(a+b)2,不能用平方差公式.故选:D.6.解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:A.7.解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选:D.8.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.9.解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选:A.10.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠A=22∠A2=α°,∴∠A2=α°,∴∠A=2n∠A n,∴∠A n=α°•()n=()°.故选:C.二.填空题(本大题共4个小题,每小题4分,共16分)11.解:设三角形三个角的度数分别为x,3x,5x,所以x+3x+5x=180°,解得x=20°,所以5x=100°.故答案为100°.12.解:∵(a+b)(a﹣b)=a2﹣b2,∴2×(a﹣b)=6,∴a﹣b=3.故答案为:3.13.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.14.解:如果4x2+mx+9是一个完全平方式,则m的值为±12,故答案为:±12三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.解:①原式=1﹣1+9=9;②原式=(﹣a3b6)•(﹣9a3b)÷(﹣3a3b5)=9a6b7÷(﹣3a3b5)=﹣3a3b2.16.解:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x)=[4x2+4xy+y2﹣y2﹣4xy﹣8xy]÷(2x)=(4x2﹣8xy)÷(2x)=2x﹣4y,当x=2,y=﹣1时,原式=2×2﹣4×(﹣1)=4+4=8.17.证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.18.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°∴∠A=90°﹣∠B=60°,∵在△ADC中,∠A=60°,∠ADC=80°∴∠C=180°﹣60°﹣80°=40°,答:∠C的度数为40°.19.解:(1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30﹣15=15(千米).故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15﹣13)=15(千米/时).故:他由离家最远的地方返回时的平均速度是15千米/时.20.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.一.填空题(本大题共5个小题,每小题4分,共20分)21.解:∵a﹣b=4,∴a=b+4,∴a2=(b+4)2=b2+8b+16,∴a2﹣b2﹣8b=b2+8b+16﹣b2﹣8b=16.故答案为16.22.解:∵∠CFC′=150°,∴∠EFC′==105°.∵ED′∥FC′,∴∠D′EF=180°﹣105°=75°,∴∠AED′=180°﹣2×75°=180°﹣150°=30°.故答案为:30°.23.解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.24.解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,无法证得AB=BC,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故答案为①③④.25.解:(1)通过观察分析可得,每列的连续四个做积的自然数中第一个数乘以第四个自然数的积再加上1得到的和,就等于每列中间做平方的底数,所以9×10×11×12+1=(9×12+1)2=(109)2,每列中的最后一组式子括号里的数为四个做乘积的自然中的第一个自然数的平方然后加上3乘以这个自然数再加上1得到和,所以9×10×11×12+1=(109)2=(92+3×9+1)2.(2)根据(1)分析的规律可得,(n﹣1)n(n+1)(n+2)+1=[(n﹣1)(n+2)+1]2=(n2+n﹣1)2.故答案为:(1)9×10×11×12+1=(109)2=(92+3×9+1)2,(2)(n2+n﹣1)2.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷(2x)=(﹣2x2+2xy)÷(2x)=﹣x+y,∵x2+y2+4x﹣6y+13=0,∴(x2+4x+4)+(y2﹣6y+9)=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,当x=﹣2,y=3时,原式=﹣(﹣2)+3=2+3=5.27.(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC=BC•h=12,S△ACF=CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.28.解:(1)∵∠BON=∠N=30°,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(2)如图,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷15°=5秒,或t=255°÷15°=17秒;MN⊥CD时,旋转角为90°+(180°﹣60°﹣45°)=165°,或360°﹣(60°﹣45°)=345°,所以,t=165°÷15°=11秒,或t=345°÷15°=23秒.故答案为:5或17;11或23.。
中考数学复习:专题4-9 全等三角形在生活中的应用
专题09 全等三角形在生活中的应用【专题综述】学习了三角形全等的有关知识后,同学们会发现它可以解决许多生活中的实际问题,并且有利于考查同学们识别图形、动手操作的能力,更注重考查大家抽象、转化的思维能力以及运用几何知识解决实际问题的能力。
因此,同学们在学习过程中应该注意观察身边的实际问题,善于用数学的头脑去发现、分析、解决问题。
【方法解读】一、用于产品检验例1 如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?【举一反三】如图,由两根钢丝固定的高压电线杆,按要求当两根钢丝与电线杆的夹角相同时,固定效果最好.现已知钢丝触地点到电线杆的距离相等,那么请你判断图中两根钢丝的固定是否合乎要求,并说明理由.(电线杆的粗细忽略不计)【来源】北师大版七年级数学下4.5 利用三角形全等测距离同步练习二、用于图形复原例2 如图是举世闻名的三星堆考古中挖掘出的一个三角形残缺玉片,工作人员想制作该玉片模型,则测量图中哪些数据,就可制成符合规格的三角形玉片模型?并说明其中的道理.【举一反三】小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【来源】2014-2015学年江苏省南苑中学八年级上学期第一次单元考试数学试卷(带解析)三、用于测量距离例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.图3【举一反三】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?【来源】北师大版七年级数学下册习题:4.5《利用三角形全等测距离》(详细答案)【强化训练】1.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的()A. SSSB. ASAC. AASD. SAS【来源】北师大版数学七年级下册第四章4.5利用全等三角形全等测距离课时练习2.山脚下有A、B两点,要测出A、B两点间的距离。
2017-2018学年北师大版三年级(上)期中数学试卷(1)(解析版)
2017-2018学年北师大版三年级(上)期中数学试卷(1)一、填空.1.(3分)一个数的6倍是780,这个数的5倍是.2.(3分)240除以一个数的商是40,720除以这个数商是.3.(3分)280加上一个整十数,得到的和除以这个整十数,商是5,这个整十数是4.(3分)乘数是5,积比被乘数多360,被乘数是5.(3分)王刚在计算没有余数的除法时,把被除数432错写成342,结果商比原来的商少5,除数是二、判断.6.(3分)四位数除以两位数,商一定是两位数..(判断对错)7.(3分)验算有余数的除法,可以用商同除数相乘,再加上余数,看结果是不是等于被除数.(判断对错)8.(3分)一个数除以10,就是把这个数缩小10倍.(判断对错)9.(3分)一个数减去60,得到的差再除以60,商是7,这个数是420.(判断对错)10.(3分)小兰在计算24除一个数时,把被除数十位上的“8“看成“3“,结果得到的商是267,余数是22,正确的商应是270.(判断对错)三、选择.11.(3分)要使□48÷3的商是两位数,方框里可填的数字有()A.2个B.3个C.4个D.5个12.(3分)一道除法算式的商和余数都是18,被除数最小应是()A.342B.360C.378D.39613.(3分)479除以19,被除数增加(),余数最大.A.14B.15C.23D.2514.(3分)479除以19,被除数减少(),余数最大.A.24B.20C.7D.5四、计算.15.用竖式计算并验算.2438÷53=7070÷68=9936÷92=8288÷18=16.用递等式计算.3456÷48+7021000﹣5760÷32(520+2080)÷251248÷(351﹣335)17.列式计算.(1)275除以一个数,商是18,余数是5,求这个数.(2)被除数除以除数,商是24被除数与除数的和是250,除数是多少五、应用题.18.王师傅原计划12天加工420个零件,实际每天比原计划多加工7个,实际每天加工多少个零件?19.学校买4把椅子共用去180元,买一张写字台用去220元,一张写字台比一把椅子贵多少元?20.一堆煤,运走一些后,还剩3200千克,运走的煤正好是剩下煤的一半.这堆煤原来有多少千克?21.粮店有7吨大米,卖了12天后还剩520千克,平均每天卖出大米多少千克?22.甲桶油重15千克,乙桶油重25千克,要使两桶油同样多,乙桶要倒多少千克油给甲桶?23.老师买来4本练习本和3支铅笔,共付8角4分,后来退还3支铅笔,换回3本练习本,又付出2角1分,每本练习本多少钱?24.爸爸比小洁大28岁,爸爸的年龄正好是小洁的3倍,爸爸和小洁各多少岁?2017-2018学年北师大版三年级(上)期中数学试卷(1)参考答案与试题解析一、填空.1.(3分)一个数的6倍是780,这个数的5倍是650.【解答】解:780÷6×5=130×5=650答:这个数的5倍是650.故答案为:650.2.(3分)240除以一个数的商是40,720除以这个数商是120.【解答】解:240÷40=6,720÷6=120;答:720除以这个数商是120;故答案为:120.3.(3分)280加上一个整十数,得到的和除以这个整十数,商是5,这个整十数是70【解答】解:设这个整十数为x,根据题意得:280+x=5x280+x﹣x=5x﹣x280=4x4x=2804x÷4=280÷4x=70答:这个整十数是70.故答案为:70.4.(3分)乘数是5,积比被乘数多360,被乘数是90【解答】解:设被乘数为x,则积是360+x,根据题意可得方程:5x=360+x4x=360x=90答:被乘数是90.故答案为:905.(3分)王刚在计算没有余数的除法时,把被除数432错写成342,结果商比原来的商少5,除数是18【解答】解:(432﹣342)÷5=90÷5=18答:除数是18.故答案为:18.二、判断.6.(3分)四位数除以两位数,商一定是两位数.×.(判断对错)【解答】解:根据分析,可知四位数除以两位数,商可能是两位数,也可能是三位数.故答案为:×.7.(3分)验算有余数的除法,可以用商同除数相乘,再加上余数,看结果是不是等于被除数.√(判断对错)【解答】解:有余数除法的验算方法是“商×除数+余数”,看得到的结果是否与被除数相等,所以本题说法正确;故答案为:√.8.(3分)一个数除以10,就是把这个数缩小10倍.√(判断对错)【解答】解:一个数除以10,就是把这个数缩小10倍.说法正确.故答案为:√.9.(3分)一个数减去60,得到的差再除以60,商是7,这个数是420.×(判断对错)【解答】解:设这个数为x,(x﹣60)÷60=7(x﹣60)÷60×60=7×60x﹣60=420x﹣60+60=420+60x=480解得这个数为480,480≠420,所以原题目结论错误.故答案为:×.10.(3分)小兰在计算24除一个数时,把被除数十位上的“8“看成“3“,结果得到的商是267,余数是22,正确的商应是270.√(判断对错)【解答】解:267×24+22=6408+22=6430正确的被除数是64806480÷24=270正确的商是270,原题说法正确.故答案为:√.三、选择.11.(3分)要使□48÷3的商是两位数,方框里可填的数字有()A.2个B.3个C.4个D.5个【解答】解:要使□48÷3的商是两位数,那么□<3,且□≠0,所以□里面可以填1,2;有2个.故选:A.12.(3分)一道除法算式的商和余数都是18,被除数最小应是()A.342B.360C.378D.396【解答】解:除数最小为:18+1=1918×19+18=342+18=360答:被除数最小是360.故选:B.13.(3分)479除以19,被除数增加(),余数最大.A.14B.15C.23D.25【解答】解:479÷19=25 (4)因为除数是19,所以余数最大为18,这时增加18﹣4=14故选:A.14.(3分)479除以19,被除数减少(),余数最大.A.24B.20C.7D.5【解答】解:479÷19=25 (4)余数最大是19﹣1=18商为:此时被除数是:19×24+18=456+18=474479﹣474=5答:被除数减少5,余数最大.故选:D.四、计算.15.用竖式计算并验算.2438÷53=7070÷68=9936÷92=8288÷18=【解答】解:(1)2438÷53=46验算:(2)7070÷68=103 (66)验算:(3)9936÷92=108验算:(4)8288÷18=460 (8)验算:16.用递等式计算.3456÷48+7021000﹣5760÷32(520+2080)÷25 1248÷(351﹣335)【解答】解:(1)3456÷48+702=72+702=774;(2)1000﹣5760÷32=1000﹣180=820;(3)(520+2080)÷25=2600÷25=104;(4)1248÷(351﹣335)=1248÷16=78.17.列式计算.(1)275除以一个数,商是18,余数是5,求这个数.(2)被除数除以除数,商是24被除数与除数的和是250,除数是多少【解答】解:(1)(275﹣5)÷18=270÷18=15答:这个数是15;(2)250÷(24+1)=250÷25=10答:除数是10.五、应用题.18.王师傅原计划12天加工420个零件,实际每天比原计划多加工7个,实际每天加工多少个零件?【解答】解:420÷12+7=35+7=42(个),答:实际每天加工42个零件.19.学校买4把椅子共用去180元,买一张写字台用去220元,一张写字台比一把椅子贵多少元?【解答】解:220﹣180÷4=220﹣45=175(元)答:一张写字台比一把椅子贵175元.20.一堆煤,运走一些后,还剩3200千克,运走的煤正好是剩下煤的一半.这堆煤原来有多少千克?【解答】解:3200÷2+3200=1600+3200=4800(千克)答;这堆煤原来有4800千克.21.粮店有7吨大米,卖了12天后还剩520千克,平均每天卖出大米多少千克?【解答】解:7吨=7000千克(7000﹣520)÷12=6480÷12=540(千克)答:平均每天卖出大米540千克.22.甲桶油重15千克,乙桶油重25千克,要使两桶油同样多,乙桶要倒多少千克油给甲桶?【解答】解:(25﹣15)÷2=10÷2=5(千克)答:乙桶要倒5千克油给甲桶.23.老师买来4本练习本和3支铅笔,共付8角4分,后来退还3支铅笔,换回3本练习本,又付出2角1分,每本练习本多少钱?【解答】解:8角4分=0.84元,2角1分化=0.21元(0.84+0.21)÷(4+3)=1.05÷7=0.15(元)(或0.15元=1角5分)答:每本练习本0.15元(或1角5分)钱.24.爸爸比小洁大28岁,爸爸的年龄正好是小洁的3倍,爸爸和小洁各多少岁?【解答】解:28÷(3﹣1)=28÷2=14(岁);爸爸:14×3=42(岁);答:小洁14岁,爸爸42岁.。
【期中卷】北师大版七年级数学下册期中质量检测卷(六)含答案与解析
北师大版七年级下册期中质量检测卷(六)数学(考试时间:100分钟试卷满分: 120分)班级___________ 姓名___________ 学号____________ 分数____________注意事项:1.本试卷满分120分,试题共25题,选择10道、填空8道、解答7道,答在本试卷上无效。
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位置答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a62.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣93.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b29.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣310.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是.15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为千米.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=(度).18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:=;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别判断得出答案.【解析】A、a3+a2,无法合并,故此选项错误;B、x(x m)3=x3m+1,故此选项错误;C、a8÷a2=a6,故此选项错误;D、(﹣2a3)2=4a6,正确.故选:D.2.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解析】0.000000014=1.4×10﹣8.故选:B.3.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角【分析】根据同位角定义可得答案.【解析】直线b、c被直线a所截,则∠1与∠2是同位角,故选:B.4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD【分析】根据平行线的性质和判定逐个判断即可.【解析】A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能推出AD∥BC,故本选项符合题意;D、根据∠C=∠A不能推出AB∥CD,故本选项不符合题意.故选:C.5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°【分析】根据折叠的性质和平角的定义,可以得到∠3的度数,再根据平行线的性质,即可得到∠AEF 的度数.【解析】由折叠的性质可得,∠2=∠3,∵∠1=44°,∴∠2=∠3=68°,∵AD∥BC,∴∠AEF+∠3=180°,∴∠AEF=112°,故选:D.6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.【分析】根据容器的粗细变化情况,可得答案.【解析】因为容器内容积的横截面先变大,再变小,而水滴的速度是相同的,所以容器下面大,上升速度慢,上面较小,上升速度变快,故选:D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【分析】这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a2﹣b2;因为拼成的长方形的长为(a+b),宽为(a﹣b),根据“长方形的面积=长×宽”代入为:(a+b)×(a﹣b),因为面积相等,进而得出结论.【解析】由图可知,大正方形减小正方形剩下的部分面积为a2﹣b2;拼成的长方形的面积:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:A.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b2【分析】利用完全平方公式的结构特征判断即可.【解析】根据题意得:9a2+12ab+(),其中被染黑的这一项应是4b2,故选:C.9.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣3【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【解析】(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64【分析】根据正方形的面积可以求出其边长,即可得到a+b,a﹣b,进而又可以求出a、b的值,再逐个判断即可.【解析】∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.【分析】先根据同底数幂的除法和幂的乘方的性质的逆用,把23m﹣2n转化为用已知条件表示,然后代入数据计算即可.【解析】∵2m=3,2n=4,∴23m﹣2n=(2m)3÷(2n)2,=27÷16,.故应填:.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=4.【分析】原式利用平方差公式分解,把各自的值代入计算即可求出值.【解析】∵m+2n=2,m﹣2n=2,∴m2﹣4n2=(m+2n)(m﹣2n)=2×2=4.故答案为:4.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是35°.【分析】根据平行线的性质和三角形内角和,可以求得∠B的度数,本题得以解决.【解析】∵∠DEC=100°,∠DEC=∠BEA,∴∠BEA=100°,∵AB∥CD,∠C=45°,∴∠C=∠A=45°,∴∠B=180°﹣∠A﹣∠BEA=35°,故答案为:35°.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是y=8+0.2x(x>0).【分析】根据水位高度随着时间x的变化关系,得出y与x之间的函数关系式.【解析】由题意得,y=8+0.2x(x>0),故答案为:y=8+0.2x(x>0).15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为75千米.【分析】根据函数图象中的数据,可以计算出货车的速度已经轿车返回时的速度,然后即可计算出相遇处到甲地的距离.【解析】由图象可得,货车的速度为:90÷2=45(千米/小时),轿车返回时的速度为:90÷(2.5﹣1.5)=90(千米/小时),设当轿车从乙地返回甲地的途中与货车相遇时,货车行驶的时间为a小时,45a+90(a﹣1.5)=90,解得,a,4575(千米),即相遇处到甲地的距离是75千米.故答案为:75.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是a>b>c.【分析】直接利用积的乘方运算法则以及乘法公式进而计算得出答案.【解析】∵a=20170=1,b=2105×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1﹣20162=﹣1,c=()2016×()2017=[()×()]2016×(),∴a>b>c.故答案为:a>b>c.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=142(度).【分析】根据平行线的性质和角平分线的定义解答即可.【解析】∵BD平分∠ABC,∴∠ABD=∠DBC,设∠ABD=x°,DE与BC交于点M,∵∠AGB=∠DGE,∵∠AGB=180°﹣∠A﹣∠ABD,∠DGE=180°﹣∠D﹣∠AED,∴∠AED=x+2°,∵∠DGE=2∠AED,∴∠DEF=2x+4°,∵BC∥EF,∴∠DMC=∠DEF=2x+4°,∵∠DMC=∠D+∠DBC,∴2x+4°=20°+x,解得:x=16°,∴∠AGB=180°﹣∠A﹣∠ABD=180°﹣22°﹣16°=142°,故答案为:142.18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=x2020﹣1.【分析】根据已知算式得出规律,再根据所得的规律得出答案即可.【解析】∵(x﹣1)(x+1)=x2﹣1=x1+1﹣1,(x﹣1)(x2+x+1)=x3﹣1=x2+1﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1=x3+1﹣1,…∴(x﹣1)(x2019+x2018+…+x+1)=x2019+1﹣1=x2020﹣1,故答案为:x2020﹣1.三.解答题(共7小题)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)【分析】(1)先计算单项式的乘方,再计算单项式乘单项式即可得.(2)根据平方差公式解答.【解析】(1)原式=(x6y3)•(﹣3xy2)=()×(﹣3)•x2×3+1y3+2x7y5;(2)原式=z2﹣x2y2.20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解析】原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当,时,原式.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.【分析】(1)根据角平分线的性质可得∠1=∠2∠GHD,再根据平行线的性质可得∠2=∠3=35°,进而可得∠1的度数;(2)根据两直线平行同位角相等可得∠EGB=∠GHD,进而可得答案.【解析】(1)∵HM平分∠EHD,∴∠1=∠2∠GHD,∵GB∥HD,∴∠2=∠3=35°,∴∠1=35°;(2)∵∠1=∠2=35°,∴∠GHD=70°,∵GB∥HD,∴∠EGB=∠GHD=70°.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.【分析】(1)直接利用垂线的定义结合平角的性质得出答案;(2)设∠AOD为x°,则∠EOF为5x°利用周角的性质得出答案.【解析】(1)∵EO⊥AB,∴∠AOE=90°.∵∠AOD=40°,∴∠EOC=180°﹣∠AOD﹣∠AOE=180°﹣40°﹣90°=50°.(2)∵∠AOD:∠EOF=1:5,设∠AOD为x°,则∠EOF为5x°∵DO⊥FO,∴∠DOF=90°.∵∠AOD+∠AOE+∠EOF+∠DOF=360°,∴x+90°+5x+90°=360°.解得x=30°,即∠AOD=30°.又∴∠BOC=∠AOD=30°(对顶角相等),∵OP是∠BOC的平分线,∴∠POB∠BOC30°=15°.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为s =2t.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?【分析】(1)根据函数的定义可得出自变量为时间t,因变量为函数:路程s;(2)根据表格可知,每分钟行2千米,由公式t,再得出行驶路程s为20km时,所花的时间t即可;(3)从表中得出随着t逐渐变大,s逐渐变大;(4)路程、速度、时间之间的关系式为s=vt,再把v=2代入即可;(5)把t=300代入s=2t即可得出答案.【解析】(1)自变量是时间,因变量是路程;(2)∵当t=1时,s=2,∴v2,∴t10分钟;(3)由表得,随着t逐渐变大,s逐渐变大(或者时间每增加1分钟,路程增加2千米);(4)由(2)得v=2,∴路程s与时间t之间的关系式为s=2t,故答案为s=2t;(5)把t=300代入s=2t,得s=600.24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)【分析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37代入(1)中得到的关系式,然后进行计算即可;(3)根据所拼图形写出m的值即可.【解析】(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(2)∵a=7k﹣5,b=﹣4k+2,c=﹣3k+4,a2+b2+c2=37,∴(7k﹣5﹣4k+2﹣3k+4)2=37+2(ab+bc+ac),∴ab+bc+ac=﹣18;(3)如图所示:2a2+7ab+3b2=(a+3b)(2a+b).∴m=7.25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【解析】(1)过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴,,∴∠BED=∠BEF+∠DEF=30°+35°=65°.故答案为:∠DAC.。
北师大版2018-2019学年七年级数学下册期中测试题及答案答案
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个4.二元一次方程组的是()A.B.C.D.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣118.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.10.方程组的解是,则方程组的解为()A.B.C.D.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第象限.12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为.14.已知+|3x+2y﹣15|=0,则的算术平方根为.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.三、解答题(共66分19.解二元一次方程组:.20.21.25(x﹣1)2﹣9=0.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)26.(8分)河大附中初一年级有350名同学去春游,已知2辆A 型车和1辆B 型车可以载学生100人;1辆A 型车和2辆B 型车可以载学生110人. (1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 需要100元,一辆B 需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD . (1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)【分析】根据x轴上点的纵坐标为0列方程求出a,再求解即可.【解答】解:∵P点坐标为(2﹣a,3a+6),且点P在x轴上,∴3a+6=0,解得a=﹣2,2﹣a=2﹣(﹣2)=4,故点P的坐标为(4,0).故选:D.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有π,﹣,0.1010010001…,共3个,故选:B.【点评】本题考查了算术平方根、立方根、无理数等知识点,能熟记无理数的定义是解此题的关键.4.二元一次方程组的是()A.B.C.D.【分析】二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.依此即可求解.【解答】解:A、有3个未知数,不是二元一次方程组,故选项错误;B、是二次方程组,故选项错误;C、是二次方程组,故选项错误;D、是二元一次方程组,故选项正确.故选:D.【点评】考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【分析】直接利用x的取值范围,进而比较各数大小.【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.【点评】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11【分析】由x与y互为相反数,得到y=﹣x,代入方程组计算即可求出m的值.【解答】解:由题意得:y=﹣x,代入方程组得:,消去x得:=,即3m+9=4m﹣2,解得:m=11,故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】根据非负整数的定义分别代入求出答案.【解答】解:当x=0时,y=10;当x=1时,y=8.5(不合题意);当x=2时,y=7;当x=3时,y=5.5(不合题意);当x=4时,y=4;当x=5时,y=2.5(不合题意);当x=6时,y=1;当x=7时,y=﹣0.5(不合题意);故方程3x+2y=20的非负整数解的个数为4个.故选:D.【点评】此题主要考查了二元一次方程的解,正确把握非负整数的定义是解题关键.9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.【分析】根据题意和表格可以列出相应的方程组,从而可以的打哪个选项是正确的.【解答】解:由题意可得,,化简,得,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10.方程组的解是,则方程组的解为()A.B.C.D.【分析】将方程组变形为,根据已知方程组的解得出,解之可得.【解答】解:由方程组,得:,由题意可得,解得:,故选:D.【点评】本题主要考察二元一次方程组的解,解题的关键是掌握整体思想的运用.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第二、四象限.【分析】根据有理数的乘法,可得横坐标与纵坐标异号,根据点的坐标特征,可得答案.【解答】解:由题意,得横坐标与纵坐标异号,点N在第二、四象限,故答案为:二、四.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=3,b=4.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为(4,2)或(﹣2,2).【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x﹣1|=3,解得:x=4或﹣2,∴点B的坐标为(4,2)或(﹣2,2).故本题答案为:(4,2)或(﹣2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.14.已知+|3x+2y﹣15|=0,则的算术平方根为.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是2﹣.【分析】设A点表示x,再根据数轴上两点间距离的定义即可得出结论.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.【点评】本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为15°或115°.【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠A比∠B的3倍小20°和∠A与∠B相等或互补,可列方程组求解.【解答】解:根据题意,得或解方程组得∠A=∠B=15°或∠A=115°,∠B=65°.故答案为:15°或115°.【点评】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的两边互相平行,那么这两个角相等或互补.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2);(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=2,b=﹣2.【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a、b的方程,通过解方程求得它们的值即可.【解答】解:(1)依题意得:f(﹣2,4)=(×(﹣2)+0,×4﹣0)=(﹣1,2).故答案是:(﹣1,2);(2)依题意得:f(4,﹣4)=(×4+a,×(﹣4)+b)=(4,﹣4).所以×4+a=4,×(﹣4)﹣b=﹣4所以a=2,b=2.故答案是:2;2.【点评】考查了坐标与图形性质.关键是掌握对有序数对(m,n)定义“f运算”法则.三、解答题(共66分19.解二元一次方程组:.【分析】直接利用加减消元法解方程得出答案.【解答】解:由①×6得:3x﹣2y=8,③由②+③得:x=3,将x=3代入到②得:y=,故原方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,正确掌握解方程的是解题关键.20.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程组化为∴3x+4y=4x+3y即x=y∴3x+4y=3x+4x=7x=84解得:x=12∴y=12∴方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.21.25(x﹣1)2﹣9=0.【分析】25(x﹣1)2﹣9=0中每个数同时除以25,得到(x﹣1)2﹣=0,利用平方差公式求出x的值.【解答】解:∵25(x﹣1)2﹣9=0∴(x﹣1)2﹣=0(x﹣1﹣)(x﹣1+)=0解得x1=x2=【点评】本题主要考查了利用平方差公式解一元二次方程,熟练掌握平方差公式是解题的关键.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.【分析】(1)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(2)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB∵AE∥CF,AD∥BC∴∠FDA=∠A=∠CBE,∠ADB=∠CBD∴∠EBC=∠CBD.∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.【分析】(1)先根据点的坐标求出AB长和点C到AB的距离,根据三角形的面积公式求出即可;(2)设P点到直线AB的距离为h,根据三角形的面积公式求出h,即可得出P点的坐标.【解答】解:(1)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB∥x轴,AB=4﹣(﹣2)=6,C到AB的距离是3﹣(﹣3)=6,∴△ABC的面积为:=18;(2)设P点到直线AB的距离为h,∵△ABP的面积为6,AB=6,∴=6,解得:h=2,∵3+2=5,3﹣2=1,∴P点的坐标为(0,5)或(0,﹣1).【点评】本题考查了三角形的面积、坐标与图形性质等知识点,能求出AB的长和分别求出点C、P到直线AB的距离是解此题的关键.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.【分析】首先估算出的范围,然后可求得m、n的值,最后即可求得(m+n)2018的值.【解答】解:∵1<3<4,∴1<<2.∴m=2+﹣3=﹣1,n=2﹣﹣0=2﹣,∴(m+n)2018=12018=1.【点评】本题主要考查的是估算无理数的大小、求得m、n的值是解题的关键.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)【分析】设小长方形的长为x厘米,宽为y厘米,根据题意和图示,列出关于x和y的二元一次方程组,解出x和y的值,即可求出矩形的AD的长度,从而求出矩形ABCD的面积,根据阴影部分的面积=矩形ABCD的面积﹣六个小长方形的面积,即可求得答案.【解答】解:设小长方形的长为x厘米,宽为y厘米,根据题意得:,解得:,即小长方形的长为8厘米,宽为2厘米,矩形ABCD的宽AD=6+2×2=10(厘米),矩形ABCD的面积为:14×10=140(平方厘米),阴影部分的面积为:140﹣6×8×2=44(平方厘米),答:图中阴影部分的总面积为44平方厘米.【点评】本题考查二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.26.(8分)河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.【分析】(1)根据载客量,可得方程组,根据解方程组,可得答案;(2)根据题意列出方程,可得答案.【解答】解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.【点评】本题考查了二元一次方程组的应用,解(1)的关键是解方程组;解(2)的关键是解方程.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得解得(6分)②当x >200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD .(1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点M 在x 轴和y 轴上两种情况,设出坐标,根据S △ACM =S 四边形ABDC 列出方程求解可得;(3)作PE ∥AB ,则PE ∥CD ,可得∠DCP =∠CPE 、∠BOP =∠OPE ,继而知∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,即可得答案.【解答】解:(1)由a =.得:a =﹣1,b =3.所以A (﹣1,0),B (3,0),C (0,2),D (4,2),∵AB =4,CO =2,∴S=AB•CO=4×2=8;四边形ABDC(2)①M在y轴上,设M坐标为(0,m),∴,∴CM=16,∴m=2+16=18或m=2﹣16=﹣14,∴M点的坐标为(0,18)或(0,﹣14);②M在x轴上,设点m的坐标为(m,0),∴,∴AM=8,∴m=﹣1+8=7或m=﹣1﹣8=﹣9,所以点M的坐标为(7,0)或(﹣9,0).综上所述M点的坐标为(0,18)或(0,﹣14)或(7,0)或(﹣9,0);(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO;当点P在线段BD的延长线上时,如图2,∠BOP﹣∠DCP=∠CPO,同理可得当点P在线段DB的延长线上时,如图3:∠DCP﹣∠BOP=∠CPO,【点评】本题主要考查非负数的性质、平行四边形的性质及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.。
-2018 北师大版七年级数学下册 第三章 变量之间的关系 单元测试题 含答案
2017-2018 北师大版七年级数学下册 第三章 变量之间的关系 单元测试题(检测时间:120分钟 满分:120分)一、选择题(3分×10=30分)1.某超市某种商品的单价为70元/件,若买x 件该商品的总价为y 元,则其中的常量是( ) A .70 B .x C .yD .不确定2.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( ) A .太阳光强弱 B .水的温度 C .所晒时间 D .热水器 3.变量x 与y 之间的关系是y =2x -3,当因变量y =6时,自变量x 的值是( )A .9B .15C .D . 4.某种签字笔的单价为2元,购买这种签字笔x 支的总价为y 元.则y 与x 之间的关系式为( ) A .y =-12xB .y =12xC .y =-2xD .y =2x 5.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )6.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为( ) A .-2 B .2 C .-1D .0 7.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:y 是自变量;③y =50+3x ;④y =47+3x ,其中正确的结论有( ) A .1个 B .2个 C .3个D .4个8.李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的长方形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的关系式是( )A .y =-2x +24(0<x <12)B .y =-12x +12(0<x <24)C .y =2x -24(0<x <12)D .y =12x -12(0<x <24)9.在关系式y =5x +3中,有下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是变量,它的值与x 的值无关;④用关系式表示的,不能用图象表示;⑤y 与x 的关系还可以用列表如图象法表示.其中,正确的是( ) A .①②③ B .①②④ C .①②⑤D .①④⑤10.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s (千米)与行驶时间t (小时)的关系如图所示,则下列结论中错误的是( )A .甲、乙两地的路程是400千米B .慢车行驶速度为60千米/小时C .相遇时快车行驶了150千米D .快车出发后4小时到达乙地二、填空题(3分×8=24分)11.在求补角的计算公式y =180°-x 中,变量是 ,常量是 .12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中, 随 变化而变化,其中自变量是 ,因变量是 .13.若一个长方体底面积为60cm 2,高为h cm ,则体积V (cm 3)与h (cm)的关系式为 ,若h 从1cm 变化到10cm 时,长方体的体积由 cm 3变化到 cm 3.14.李老师带领x 名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y 元,则y = .15.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在 点追上兔子.16.某种储蓄的月利率是%,存入100元本金后,不扣除利息税,本息和y (元)与所存月数x (x 为正整数)之间的关系为 ,4个月的本息和为 .17.如图是小明从学校到家里行进的路程s (米)与时间t (分)的图象,观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有 (填序号).18.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止.设点P 运动的路程为x ,三角形ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则三角形BCD 的面积是 .三、解答题(共66分)19.(8分)某商场经营一批进价为a元/台的小商品,经调查得如下数据:(1)(2)用语言描述日销售量y和日销售额t随销售价x变化而变化的情况.20.(8分)温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.(1)这一天的最高温度是多少是在几时到达的最低温度呢(2)这一天的温差是多少从最低温度到最高温度经过多长时间(3)在什么时间范围内温度在上升在什么时间范围内温度在下降21.(8分)科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关:当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系哪个是自变量哪个是因变量(3)当气温是35℃时,估计音速y可能是多少(4)能否用一个式子来表示两个变量之间的关系22.(10分)汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快乐,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶时速分别是多少(2)汽车遇到了几个上坡路段几个下坡路段在哪个下坡路段上所花时间最长(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.23.(10分)某机动车出发前油箱内有油42L.行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答问题.(1)机动车行驶几小时后加油(2)中途加油________L;(3)如果加油站距目的地还有240km,车速为40km/h,要到达目的地,油箱中的油是否够用并说明原因.24.(10分)如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层…第n层,第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写上表:(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少25.(12分)从有关方面获悉,在我市农村已经实行了农村新型合作医疗保险制度.享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准:报销、15000元按40%报销、余下的10000元按50%报销;题中涉及的医疗费均指允许报销的(1)某农民2016年在门诊看病共报销医疗费180元,则他在这一年中门诊医疗费用共________元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20000),按标准报销的金额为y元,试求出y与x的关系式;(3)若某农民一年内本人自付住院医疗费17000元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费用共多少元答案:一、1---10 ABCDA BBBCC二、11. x和y 180°12. 温度时间时间温度13. V=60h 60 60014. 10x+2015. 1816. y=100+元17. ①②④18. 3三、19. 解:(1)42,12,1995,1215(从上到下);(2)y随x的增大而减小,t随x的增大而减小.20. 解:(1)37℃,15时,23℃;(2)14℃,12小时;(3)从0时到3时气温在下降,从3时到15时气温在上升,15时以后气温下降.21. 解:(1)(2)(3)352米/秒;(4)y=331+3 5 x.22. 解:(1)汽车在~,~,及~1h三个时间段保持匀速行驶,速度分别是70km/h,80km/h 和70km/h;(2)汽车遇到CD、FG两个上坡路段,AB、DE、GH三个下坡路段,在AB下坡路段上所花时间(3)汽车下坡行驶后转入平路行驶至,转入上坡行驶至,接着转入下坡行驶至,转入平路行驶至后又上坡行驶至,紧接着转入下坡行驶至,最后平路行驶至1h 结束. 23. 解:(1)5小时 (2)24(3)机动车每小时耗油42-125=6(L ),∴24040×6=36(L ),∴油箱中的油刚好够用. 24. 解:(1)6,10 (2)S =n n +12;当n =10时,S =n n +12=55.25. 解:(1)600 (2)y =-500(3)依题意得,17000+5000×30%+15000×40%+50%(x -20000)=x ,解得x =29000(元).。
北师大版七年级下期中模拟考试数学试卷及答案
七年级下期中考试数学试卷 (考试时间100分钟,总分120分)一、 选择题(每小题3分,共30分) 1、下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =- 2、下列说法错误的是( )A .两直线平行,内错角相等B .两直线平行,同旁内角相等C .同位角相等,两直线平行D .平行于同一条直线的两直线平行3、下列关系式中,正确..的是( ) A. ()222b 2ab a b a +-=+ B. ()222b a b a -=-C. ()222b a b a +=+ D. ()()22b a b a b a -=-+4、等腰三角形的两边长分别为4和9,则它的周长 ( )A 、17B 、22C 、17或22D 、215、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )(A )带①去 (B )带②去 (C )带③去 (D )带①和②去6、如图,AB ∥ED ,则∠A +∠C +∠D =( )ABCDE第5题第6题A .180°B .270°C .360°D .540°7、下列各式中不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+ 8、23,24m n ==,则322m n -等于( )A 、1B 、98C 、278D 、27169、如果一个角的补角是150°,那么这个角的余角的度数是( ) A 、30° B 、60° C 、90°D 、120°10、不能判定两个三角形全等的条件是 ( )A 、三条边对应相等B 、两角及一边对应相等C 、两边及夹角对应相等D 、两边及一边的对角相等二、填空题(每小题3分,共30分)11、等腰三角形的三边长分别为:x+1、 2x+3 、9 ,则x= 12、一个角的补角是它的余角的4倍,则这个角是_________度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年七年级(下)期中数学试卷一、选择题1.下列各组数是方程组的解的是()A.B.C.D.2.在式子:2x﹣y=3中,把它改写成用含x的代数式表示y,正确的是()A.y=2x+3 B.y=2x﹣3 C.x=D.x=3.在解方程组中,①﹣②所得的方程是()A.x=1 B.5x=﹣1 C.x=3 D.5x=34.一个两位数,个位上的数字为x,十位上的数字为y,则这个两位数可表示为()A.xy B.x+y C.10x+y D.x+10y5.下列式子中,正确的是()A.x3•x5=x15B.(﹣x3)2=x9C.(3x2y)2=3x4y D.(﹣2x2y)2=4x4y26.计算:(﹣3x2y)•(﹣2x2y)的结果是()A.6x2y B.﹣6x2y C.6x4y2 D.﹣6x4y27.式子(2x+y)(﹣2x+y)的运算结果是()A.2x2﹣y2B.y2﹣4x2C.4x2﹣y2D.y2﹣2x28.计算:(2x﹣)2的结果是()A.4x2﹣2x+B.4x2﹣C.2x2﹣x+D.4x2﹣x﹣9.下列各式从左边到右边的变形,属于因式分解的是()A.(x+y)2=x2+2xy+y2B.2x2﹣8=2(x+2)(x﹣2)C.2x2﹣2x+1=2x(x﹣1)+1 D.(x+1)(x﹣1)=x2﹣110.下列因式分解正确的是()A.4m2﹣4m+1=4m(m﹣1)B.a3b2﹣a2b+a2=a2(ab2﹣b)C.x2﹣7x﹣10=(x﹣2)(x﹣5)D.10x2y﹣5xy2=5xy(2x﹣y)11.把式子:﹣6x2+12x﹣6因式分解,正确的是()A.﹣6(x﹣1)2B.﹣6(x+1)2C.﹣6x(x﹣2) D.﹣6x(x+2)12.下列多项式:4a2b(a﹣b)﹣6ab2(b﹣a)中,各项的公因式是()A.4ab B.2ab C.ab(a﹣b)D.2ab(a﹣b)二、填空题13.请你写出方程:2x﹣3y=5的一个解是.14.一条船顺流航行,每小时行24km;逆流航行,每小时行18km.如果设轮船在静水中的速度为每小时xkm,水流速度为每小时ykm,则所列的方程组是.15.分解因式:2a3﹣8a= .16.在解方程组:中,①+②,得到的方程是.17.计算:(4x n+2y3)•(﹣x n﹣1y)= .18.计算:(a﹣b)2﹣(a+b)2= .三、解答题19.解下列方程组:(1)(2)(3)(4).20.计算:(1)3x2(﹣2x2y)2﹣x3(8x3y2﹣2);(2)(4a+3b)(a﹣2b)﹣(2a﹣b)(2a+b);(3)(x+y﹣1)(x﹣y+1)21.把下列各式因式分解:(1)x2(x﹣y)+2xy(y﹣x)+y2(x﹣y);(2)(a+b+1)2﹣(a﹣b+1)2.22.先化简,再求值:(a+b)2﹣2(a+b)(a﹣b)+(a﹣b)2,其中a=,b=﹣.23.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.24.一个正方形的边长增加4cm,它的面积就增加32cm2,求这个正方形原来的边长.25.某市的出租车是这样收费的:起步价所包含路程为0~3km,超过3km的部分按每km另行收费.小刘说:“我乘出租车从家到汽车站走了4.5km,付车费5.25元.”小李说:“我从我家乘出租车到汽车站走了6km,付车费7.5元.”(1)出租车的起步价是多少元?超过3公里后每km收费多少元?(2)小明乘出租车从学校到汽车站走了8.5km,应付车费多少元?参考答案与试题解析一、选择题1.下列各组数是方程组的解的是()A.B.C.D.【考点】二元一次方程组的解.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.【解答】解:①+②得:3x=6,解得:x=2,把x=2代入①得:2+y=5,解得:y=3,故方程组的解为:.故选:A.【点评】本题考查了二元一次方程组的解,解决本题的关键是解二元一次方程组.2.在式子:2x﹣y=3中,把它改写成用含x的代数式表示y,正确的是()A.y=2x+3 B.y=2x﹣3 C.x=D.x=【考点】解二元一次方程.【专题】计算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=3,解得:y=2x﹣3,故选B【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数表示出y.3.在解方程组中,①﹣②所得的方程是()A.x=1 B.5x=﹣1 C.x=3 D.5x=3【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组中两方程相减得到结果,即可作出判断.【解答】解:在解方程组中,①﹣②所得的方程是x=3,故选C【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.一个两位数,个位上的数字为x,十位上的数字为y,则这个两位数可表示为()A.xy B.x+y C.10x+y D.x+10y【考点】列代数式.【分析】根据两位数字的表示方法=十位数字×10+个位数字.【解答】解:根据题意,这个两位数可表示为10y+x,故选:D.【点评】本题主要考查了两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.5.下列式子中,正确的是()A.x3•x5=x15 B.(﹣x3)2=x9C.(3x2y)2=3x4y D.(﹣2x2y)2=4x4y2【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】直接利用积的乘方运算法则和同底数幂的乘方运算法则求出答案.【解答】解:A、x3•x5=x8,故此选项错误;B、(﹣x3)2=x6,故此选项错误;C、(3x2y)2=9x4y2,故此选项错误;D、(﹣2x2y)2=4x4y2,正确.故选:D.【点评】此题主要考查了积的乘方运算法则和同底数幂的乘方运算法则,正确化简各式是解题关键.6.计算:(﹣3x2y)•(﹣2x2y)的结果是()A.6x2y B.﹣6x2y C.6x4y2 D.﹣6x4y2【考点】同底数幂的乘法.【专题】计算题.【分析】根据同底数幂的乘法可以解答本题.【解答】解:(﹣3x2y)•(﹣2x2y)=6x4y2,故选C.【点评】本题考查同底数幂的乘法,解题的关键是明确同底数幂的乘法的计算方法.7.式子(2x+y)(﹣2x+y)的运算结果是()A.2x2﹣y2B.y2﹣4x2C.4x2﹣y2D.y2﹣2x2【考点】平方差公式.【专题】计算题;整式.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=y2﹣4x2,故选B.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.计算:(2x﹣)2的结果是()A.4x2﹣2x+B.4x2﹣C.2x2﹣x+D.4x2﹣x﹣【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:﹣2x+,故选:A.【点评】考查了完全平方公式,完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.9.下列各式从左边到右边的变形,属于因式分解的是()A.(x+y)2=x2+2xy+y2B.2x2﹣8=2(x+2)(x﹣2)C.2x2﹣2x+1=2x(x﹣1)+1 D.(x+1)(x﹣1)=x2﹣1【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积,故B正确;C、没把一个多项式转化成几个整式积,故C错误;D、是整式的乘法,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.10.下列因式分解正确的是()A.4m2﹣4m+1=4m(m﹣1)B.a3b2﹣a2b+a2=a2(ab2﹣b)C.x2﹣7x﹣10=(x﹣2)(x﹣5)D.10x2y﹣5xy2=5xy(2x﹣y)【考点】因式分解-十字相乘法等;提公因式法与公式法的综合运用.【分析】A、利用完全平方公式分解;B、利用提取公因式a2进行因式分解;C、利用十字相乘法进行因式分解;D、利用提取公因式5xy进行因式分解.【解答】解:A、4m2﹣4m+1=(2m﹣1)2,故本选项错误;B、a3b2﹣a2b+a2=a2(ab2﹣b+1),故本选项错误;C、(x﹣2)(x﹣5)=x2﹣7x+10,故本选项错误;D、10x2y﹣5xy2=xy(10x﹣5y)=5xy(2x﹣y),故本选项正确;故选D.【点评】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.11.把式子:﹣6x2+12x﹣6因式分解,正确的是()A.﹣6(x﹣1)2B.﹣6(x+1)2C.﹣6x(x﹣2) D.﹣6x(x+2)【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取﹣6,再利用完全平方公式分解即可.【解答】解:原式=﹣6(x2﹣2x+1)=﹣6(x﹣1)2,故选A【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.下列多项式:4a2b(a﹣b)﹣6ab2(b﹣a)中,各项的公因式是()A.4ab B.2ab C.ab(a﹣b)D.2ab(a﹣b)【考点】公因式.【分析】根据公因式定义,对各选项整理,即可选出有公因式的项.【解答】解:4a2b(a﹣b)﹣6ab2(b﹣a)=2ab(a﹣b)(2a+3b),公因式是2ab(a﹣b),故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:公因式的系数是多项式各项系数的最大公约数;字母取各项都含有的相同字母;相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.二、填空题13.请你写出方程:2x﹣3y=5的一个解是x=1,y=﹣1 .【考点】解二元一次方程.【分析】令x=1,求出y的值即可.【解答】解:令x=1,则2﹣3y=5,解得y=﹣1.故答案为:x=1,y=﹣1.【点评】本题考查的是解二元一次方程,求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.14.一条船顺流航行,每小时行24km;逆流航行,每小时行18km.如果设轮船在静水中的速度为每小时xkm,水流速度为每小时ykm,则所列的方程组是.【考点】由实际问题抽象出二元一次方程组.【分析】根据顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度列出方程组即可.【解答】解:设轮船在静水中的速度为每小时xkm,水流速度为每小时ykm,根据题意,得.故答案为.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,掌握公式:顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度.15.分解因式:2a3﹣8a= 2a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2a,再利用平方差公式分解即可.【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方程是解本题的关键.16.在解方程组:中,①+②,得到的方程是9x=27 .【考点】解二元一次方程组.【分析】根据加减法解二元一次方程组,方程的对应项相加即可.【解答】解:①+②,得到的方程是9x=27.故答案为:9x=27.【点评】本题考查了解二元一次方程组,未知数的系数相等或互为相反数时用加减消元法较简单.17.计算:(4x n+2y3)•(﹣x n﹣1y)= ﹣x2n+1y4.【考点】单项式乘单项式.【分析】利用单项式乘以单项式运算法则求出答案.【解答】解:(4x n+2y3)•(﹣x n﹣1y)=﹣x2n+1y4.故答案为:﹣ x2n+1y4.【点评】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.18.计算:(a﹣b)2﹣(a+b)2= ﹣4ab .【考点】完全平方公式.【分析】根据完全平方公式展开整理即可.【解答】解:(a﹣b)2﹣(a+b)2,=a2﹣2ab+b2﹣a2﹣2ab﹣b2,=﹣4ab.【点评】本题主要考查完全平方公式,熟记公式结构是解题的关键.三、解答题19.解下列方程组:(1)(2)(3)(4).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可;(4)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),由②得:y=﹣2x﹣1③,把③代入①得:3x﹣4x﹣2=5,即x=﹣7,把x=﹣7代入③得:y=13,则方程组的解为;(2),①×2+②得:11x=22,即x=2,把x=2代入①得:y=﹣,则方程组的解为;(3)方程组整理得:,①×2﹣②得:x=﹣22,把x=﹣22代入①得:y=﹣43,则方程组的解为;(4)方程组整理得:,②﹣①得:5y=10,即y=2,把y=2代入①得:x=6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.计算:(1)3x2(﹣2x2y)2﹣x3(8x3y2﹣2);(2)(4a+3b)(a﹣2b)﹣(2a﹣b)(2a+b);(3)(x+y﹣1)(x﹣y+1)【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以多项式法则计算,去括号合并即可得到结果;(2)原式利用多项式乘以多项式,以及平方差公式化简,去括号合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=3x2(4x4y2)﹣8x6y2+2x3=12x6y2﹣8x6y2+2x3=4x6y2+2x3;(2)原式=4a2﹣8ab+3ab﹣6b2﹣4a2+b2=﹣5ab﹣5b2;(3)原式=x2﹣(y﹣1)2=x2﹣y2+2y﹣1.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.21.把下列各式因式分解:(1)x2(x﹣y)+2xy(y﹣x)+y2(x﹣y);(2)(a+b+1)2﹣(a﹣b+1)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式(x﹣y),进而利用完全平方公式分解因式得出答案;(2)首先利用平方差公式分解因式,进而化简得出答案.【解答】解:(1)x2(x﹣y)+2xy(y﹣x)+y2(x﹣y)=(x﹣y)(x2﹣2xy+y2)=(x﹣y)(x﹣y)2=(x﹣y)3;(2)(a+b+1)2﹣(a﹣b+1)2=(a+b+1﹣a+b﹣1)(a+b+1+a﹣b+1)=2b(2a+2)=4b(a+1).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键.22.先化简,再求值:(a+b)2﹣2(a+b)(a﹣b)+(a﹣b)2,其中a=,b=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2+2ab+b2﹣2a2+2b2+a2﹣2ab+b2=4b2,当b=﹣时,原式=1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.23.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.【考点】完全平方公式.【分析】根据完全平方公式把(x+y)2和(x﹣y)2展开,然后相加即可求出x2+y2的值,相减即可求出xy的值.【解答】解:由题意知:(x+y)2=x2+y2+2xy=49①,(x﹣y)2=x2+y2﹣2xy=1②,①+②得:(x+y)2+(x﹣y)2,=x2+y2+2xy+x2+y2﹣2xy,=2(x2+y2),=49+1,=50,∴x2+y2=25;①﹣②得:4xy=(x+y)2﹣(x﹣y)2=49﹣1=48,∴xy=12.【点评】本题考查了完全平方公式,灵活运用完全平方公式,熟记公式是解题的关键.24.一个正方形的边长增加4cm,它的面积就增加32cm2,求这个正方形原来的边长.【考点】完全平方公式的几何背景.【分析】直接根据题意表示出原来正方形的边长以及边长增加后的长度,进而利用面积变化得出答案.【解答】解:设这个正方形原来的边长为xcm,则增加后正方形的边长为:(x+4)cm,依据题意可得:(x+4)2﹣x2=32,解得:x=2,答:这个正方形原来的边长为2cm.【点评】此题主要考查了完全平方公式的几何背景,正确表示出正方形变化后面积是解题关键.25.某市的出租车是这样收费的:起步价所包含路程为0~3km,超过3km的部分按每km另行收费.小刘说:“我乘出租车从家到汽车站走了4.5km,付车费5.25元.”小李说:“我从我家乘出租车到汽车站走了6km,付车费7.5元.”(1)出租车的起步价是多少元?超过3公里后每km收费多少元?(2)小明乘出租车从学校到汽车站走了8.5km,应付车费多少元?【考点】二元一次方程组的应用.【分析】(1)设出租车的起步价是x元,超过3千米后每千米收费y元.根据他们的对话列出方程组并解答;(2)8.5千米分两段收费:3千米、(8.5﹣3)千米.根据(1)中的单价进行计算.【解答】解:(1)设出租车的起步价是x元,超过3千米后每千米收费y元.依题意得,,解得.答:出租车的起步价是3元,超过3千米后每千米收费1.5元;(2)3+(8.5﹣3)×1.5=11.25(元).答:小明乘出租车从学校到汽车站走了8.5km,应付车费11.25元.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。