2003年高考数学试题(北京文)及答案

合集下载

2003年高考数学真题及答案[全国卷I]

2003年高考数学真题及答案[全国卷I]

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。

2003年全国统一高考文科数学试卷(全国新课程卷)

2003年全国统一高考文科数学试卷(全国新课程卷)

2003年普通高等学校招生全国统一考试(全国新课程卷)数学(文史类)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (2003x <的解集是A.(0,2)B.(2,)+∞C.(2,4]D.(-∞,0)(2,)+∞2. (2003•全国新课程•文)抛物线2y a x =的准线方程是2y =,则a 的值为A.81B.18-C.8D.-83. (2003•全国新课程•文)=+-2)3(31i iA.i 4341+B.i 4341--C.i 2321+D.i 2321--4. (2003•全国新课程•文)已知(2x π∈-,0),54cos =x ,则tan 2x =A.247 B.724-C.724 D.247-5. (2003•全国新课程•文)等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为 A.48 B.49 C.50 D.516. (2003•全国新课程•文)双曲线虚轴的一个端点为M ,两个焦点为1F 、2F,12F M F ∠120=︒,则双曲线的离心率为B.2C.3D.37. (2003•全国新课程•文)设函数12210()0xx f x xx -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是A.(1-,1)B.(1-,)+∞C.(-∞,2)(0-,)+∞D.(-∞,1)(1-,)+∞8.(2003•全国新课程•文)O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足O P O A =+()([0||||A B A C A B A C λλ+∈,))∞+,则P 的轨迹一定通过A B C ∆的A.外心B.内心C.重心D.垂心9. (2003•全国新课程•文)函数1ln1x y x +=-,1(∈x ,)∞+的反函数为 A.11xx e y e -=+,0(∈x ,)∞+ B.11xx e y e +=-,0(∈x ,)∞+ C.11x x e y e -=+,-∞∈(x ,)0D.11x x e y e +=-,-∞∈(x ,)010. (2003•全国新课程•文)棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为A.33aB.43aC.63aD.123a11. (2003•全国新课程•文)已知长方形的四个项点(0A ,0),(2B ,0),(2C ,1)和(0D ,1).一质点从A B 的中点0P 沿与A B 夹角为θ的方向射到B C 上的点1P 后,依次反射到C D ,D A 和A B 上的点2P ,3P 和4P (入射角等于反射角),设4P 与0P 重合,则tan θ= A.13B.25C.12D.112. (2003则此球的表面积为A.3πB.4πC.D.6π 二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13. (2003•全国新课程•文)291()2x x-展开式中9x 的系数是_____________.14. (2003•全国新课程•文)某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______、_________、__________辆. 15. (2003•全国新课程•文)在平面几何里,有勾股定理:“设A B C ∆的两边A B 、A C 互相垂直,则22A B A C +2B C =.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A B C D -的三个侧面A B C 、A C D 、A D B 两两相互垂直,则_______________________________.” 16. (2003•全国新课程•文)将3种作物种植在如图5块试验田里,每块种植一种作物,种.(以数字作答)演算步骤.17. (2003•全国新课程•文)已知正四棱柱1111A B C D A B C D -,1A B =,12A A =,点E 为1C C 中点,点F 为1B D 中点.⑴证明:E F 为1B D 与1C C 的公垂线; ⑵求点1D 到面B D E 的距离.18. (2003•全国新课程•文)已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段.⑴a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程; ⑵若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.19. (2003•全国新课程•文)已知数列{}n a 满足11a =,113(2)n n n a a n --=+≥.⑴求2a ,3a ; ⑵证明:312nn a -=.20. (2003•全国新课程•文)有三种产品,合格率分别是0.90,0.95和0.95,现从三种产品中各抽取一件进行检验. ⑴求恰有一件不合格的概率;⑵求至少有两件不合格的概率.(精确到0.001)21. (2003•全国新课程•文)已知函数()sin ()(0f x x ωϕω=+>,0)ϕπ≤≤是R 上的偶函数,其图象关于点3(4M π,0)对称,且在区间[0,]2π上是单调函数.求ϕ和ω的值.22. (2003•全国新课程•文)已知常数0a >,向量(0c =,)a ,(1i =,0),经过原点O 以c i λ+为方向向量的直线与经过定点(0A ,)a 以2i c λ-为方向向量的直线相交于点P ,其中R λ∈.试问:是否存在两个定点E 、F ,使得||||P E P F +为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.2003年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1. (2003x <的解集是A.(0,2)B.(2,)+∞C.(2,4]D.(-∞,0)(2,)+∞【分析】由题意0x ≥且240x x -≥,可两边平方去根号,解可得答案. 【解答】解:由题意0x ≥且240x x -≥,解可得04x ≤≤,x <两边同时平方可得:224x x x -<,即2240x x ->, 解可得2x >或0x <,又由04x ≤≤,故其解集为24x <≤,即(2,4];故选:C .【点评】本题主要考查无理不等式的求解,解无理不等式关键是平方去根号,注意等价变形.还要注意选择题的特殊做法.2. (2003•全国新课程•文)抛物线2y a x =的准线方程是2y =,则a 的值为A.81 B.18-C.8D.-8【分析】首先把抛物线方程转化为标准方程2x m y =的形式,再根据其准线方程为4m y =-即可求之.【解答】解:抛物线2y a x =的标准方程是21x y a=,则其准线方程为124y a=-=,所以18a =-.故选:B .【点评】本题考查抛物线在标准方程下的准线方程形式. 3. (2003•全国新课程•文)=+-2)3(31i iA.i 4341+B.i 4341--C.i 2321+D.i 2321--【分析】化简复数的分母,然后复数的分子、分母同乘分母的共轭复数,即可求得结果.212122444--==⨯==--⨯,故选B .【点评】复数代数形式的混合运算,是基础题. 4. (2003•全国新课程•文)已知(2x π∈-,0),54cos =x ,则tan 2x =A.247B.724-C.724D.247-【分析】先根据c o s x ,求得sin x ,进而得到tan x 的值,最后根据二倍角公式求得tan 2x .【解答】解:∵4c o s 5x =,(2x π∈-,0),∴3sin 5x ==-∴s in 3ta n c o s 4x x x==-,∴232ta n 316242ta n 291ta n277116x x x -===-⨯=---. 故选D .【点评】本题主要考查了三角函数中的二倍角公式.属基础题. 5. (2003•全国新课程•文)等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为 A.48 B.49 C.50 D.51【分析】先由等差数列的通项公式和已知条件解出d ,进而写出n a 的表达式,然后令33n a =,解方程即可.【解答】解:设{}n a 的公差为d . ∵113a =,254a a +=,∴114433d d +++=,即2543d +=,解得23d =.∴1221(1)3333n a n n =+-=-,令33n a =,即213333n -=,解得50n =.故选:C .【点评】本题主要考查了等差数列的通项公式1(1)n a a n d =+-,注意方程思想的应用. 6. (2003•全国新课程•文)双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,12F M F ∠120=︒,则双曲线的离心率为233【分析】根据双曲线对称性可知260O M F ∠=︒,在直角三角形2M O F 中可得22ta n O F c O M F O Mb∠==,进而可得b 和c的关系式,进而根据a =a 和b的关系式,最后代入离心率公式即可求得答案.【解答】解:根据双曲线对称性可知260O M F ∠=︒,∴22ta n O F c O M F O Mb ∠===c =,∴a ==,∴2c e a ===,故选:B .【点评】本题主要考查了双曲线的简单性质.本题利用了双曲线的对称性.7.(5分)设函数若f(x0)>1,则x0的取值范围是()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣2)∪(0,+∞) D.(﹣∞,﹣1)∪(1,+∞)【分析】将变量x0按分段函数的范围分成两种情形,在此条件下分别进行求解,最后将满足的条件进行合并.【解答】解:当x0≤0时,,则x0<﹣1,当x0>0时,则x0>1,故x0的取值范围是(﹣∞,﹣1)∪(1,+∞),故选:D.【点评】本题考查了分段函数已知函数值求自变量的范围问题,以及指数不等式与对数不等式的解法,属于常规题.8.(5分)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【分析】先根据、分别表示向量、方向上的单位向量,确定+的方向与∠BAC的角平分线一致,再由可得到=λ(+),可得答案.【解答】解:∵、分别表示向量、方向上的单位向量∴+的方向与∠BAC的角平分线一致又∵,∴=λ(+)∴向量的方向与∠BAC的角平分线一致∴一定通过△ABC的内心故选:B.【点评】本题主要考查向量的线性运算和几何意义.属中档题.9.(5分)函数,x∈(1,+∞)的反函数为()A.,x∈(0,+∞)B.,x∈(0,+∞)C.,x∈(﹣∞,0)D.,x∈(﹣∞,0)【分析】本题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域等函数知识和方法;将,看做方程解出x,然后根据原函数的定义域x∈(1,+∞)求出原函数的值域,即为反函数的定义域.【解答】解:由已知,解x得,令,当x∈(1,+∞)时,m∈(1,+∞),则,∴函数,x∈(1,+∞)的反函数为,x∈(0,+∞)故选:B.【点评】这是一个基础性题,解题思路清晰,求解方向明确,所以容易解答;解答时注意两点,一是借助指数式和对数式的互化求x,二是函数,x∈(1,+∞)值域的确定,这里利用”常数分离法“和对数函数的性质推得.10.(5分)棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为()A.B.C.D.【分析】画出图形,根据题意求出八面体的中间平面面积,然后求出其体积.【解答】解:画出图就可以了,这个八面体是有两个四棱锥底面合在一起组成的.一个四棱锥的底面面积是正方体的一个面的一半,就是,高为,所以八面体的体积为:.故选:C.【点评】本题考查学生空间想象能力,逻辑思维能力,体积的计算公式,考查转化思想,是基础题.11.(5分)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=()A.B.C.D.1【分析】可以画草图帮助理解,由于若P4与P0重合,故P2、P3也都是所在边的中点,根据对称性可知P0P1的斜率是,得到结果.【解答】解:由于若P4与P0重合,故P2、P3也都是所在边的中点,因为ABCD是长方形,根据对称性可知P0P1的斜率是,则tgθ=.故选:C.【点评】本题考查直线的斜率和对称性知识,由于ABCD是长方形,降低了题目难度,可以采用观察法求得结论.是基本方法的训练题目.12.(5分)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.3D.6π【分析】本题考查的知识点是球的体积和表面积公式,由棱长都为的四面体的四个顶点在同一球面上,可求出内接该四面体的正方体棱长为1,又因为正方体的对角线即为球的直径,即球的半径R=,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的体对角线就是球的直径.则球的半径R=,∴球的表面积为3π,故选:A.【点评】棱长为a的正方体,内接正四面体的棱长为a,外接球直径等于长方体的对角线长a.二、填空题(共4小题,每小题4分,满分16分)13.(4分)在的展开式中,x3的系数是﹣(用数字作答)【分析】首先根据题意,写出的二项展开式,可得9﹣2r=3,解可得r=3,将其代入二项展开式,计算可得答案.【解答】解:根据题意,对于,有Tr+1=C99﹣r•x9﹣r•(﹣)r=(﹣)r•C99﹣r•x9﹣2r,令9﹣2r=3,可得r=3,当r=3时,有T4=﹣x3,故答案﹣.【点评】本题考查二项式定理的应用,注意系数与二项式系数的区别.14.(4分)某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 6 辆、30 辆、10 辆.【分析】由题意先求出抽样比例即为,再由此比例计算出在三种型号的轿车抽取的数目.【解答】解:因总轿车数为9200辆,而抽取46辆进行检验,抽样比例为=,而三种型号的轿车有显著区别,根据分层抽样分为三层按比例,故分别从这三种型号的轿车依次应抽取6辆、30辆、10辆.故答案为:6,30,10.【点评】本题的考点是分层抽样,即保证样本的结构和总体的结构保持一致,按照一定的比例样本容量和总体容量的比值,在各层中进行抽取.15.(4分)在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则S△ABC2+S△ACD2+S△ADB2=S△BCD2 .”【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S △ABC2+S △ACD2+S △ADB2=S △BCD2.故答案为:S △ABC2+S △ACD2+S △ADB2=S △BCD2.【点评】本题主要考查学生的知识量和知识的迁移类比等基本能力.7. (2003•全国新课程•文)将3种作物种植在如图5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种.(以数字作答)【分析】将3种作物种植在5块试验田里,且相邻的试验田不能种同一种作物,就是第一块可以种3种不同的植物,第二块与第一块不同,只能种2种,余下的几块都只能种2种,减去不合题意的,得到结果.【解答】解:将3种作物种植在5块试验田里每块种一种作物,且相邻的试验田不能种同一种作物,就是第一块可以种3种不同的植物,第二块与第一块不同,就只能种2种不同的植物,余下的几块都只能种2种不同的植物.这样会造成5块田只种2种植物的情况,∴共有3×2×2×2×2﹣22332222242C ⨯⨯⨯⨯-=故答案为:42【点评】本题考查排列组合的实际应用问题,这种问题在2003年的高考中考查过,是一个出现几率比较大的问题,注意题目条件中的限制条件. 三、解答题(共6小题,满分74分) 17.(12分)已知正四棱柱ABCD ﹣A1B1C1D1.AB=1,AA1=2,点E 为CC1中点,点F 为BD1中点.(1)证明EF 为BD1与CC1的公垂线; (2)求点D1到面BDE 的距离.【分析】(1)欲证明EF 为BD1与CC1的公垂线,只须证明EF 分别与为BD1与CC1垂直即可,可由四边形EFMC 是矩形→EF ⊥CC1.由EF ⊥面DBD1→EF ⊥BD1. (2)欲求点D1到面BDE 的距离,将距离看成是三棱锥的高,利用等体积法:VE ﹣DBD1=VD1﹣DBE .求解即得. 【解答】解:(1)取BD 中点M . 连接MC ,FM . ∵F 为BD1中点, ∴FM ∥D1D 且FM=D1D .又EC CC1且EC ⊥MC , ∴四边形EFMC 是矩形∴EF ⊥CC1.又FM ⊥面DBD1. ∴EF ⊥面DBD1.∵BD1⊂面DBD1.∴EF ⊥BD1. 故EF 为BD1与CC1的公垂线.(Ⅱ)解:连接ED1,有VE ﹣DBD1=VD1﹣DBE . 由(Ⅰ)知EF ⊥面DBD1, 设点D1到面BDE 的距离为d . 则.∵AA1=2,AB=1. ∴,, ∴.∴故点D1到平面DBE 的距离为.【点评】本小题主要考查线面关系和四棱柱等基础知识,考查空间想象能力和推理能力.8. (2003•全国新课标•文)已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段.⑴a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程; ⑵若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.【分析】⑴先分别求出各自在某点处的切线,然后根据是公切线建立等量关系,要使1C 和2C 有且仅有一条公切线,可利用判别式进行判定;⑵分别求出1C 和2C 有两条公切线段的中点坐标,发现两者相等,从而证明了相应的两条公切线段互相平分. 【解答】解:⑴函数22y x x =+的导数为22y x '=+,则曲线1C 在点1(P x ,2112)x x +的切线方程是:21111(2)(22)()y x x x x x -+=+- 即211(22)y x x x =+-①函数2y x a =-+的导数为2y x '=-,则曲线2C 在点2(Q x ,22)x a -+的切线方程是2222()2()y x a x x x --+=-- 即2222y x x x a =-++②如果直线l 是过P 和Q 的公切线, 则①式和②式都是l 的方程,故121x x +=-,2212x x a -=+.消去2x 得方程2112210x x a +++=.当判别式442(1)0a ∆=-⨯+=,即12a =-时解得112x =-,此时点P 与Q 重合.即当12a =-时1C 和2C 有且仅有一条公切线,由①得公切线方程为14y x =-.⑵证明:由⑴可知. 当0∆>即12a <-时1C 和2C 有两条公切线.设一条公切线上切点为:1(P x ,1)y ,2(Q x ,2)y . 其中P 在1C 上,Q 在2C 上,则有121x x +=-,2222121121112()2(1)1y y x x x a x x x a a +=++-+=+-++=-+线段P Q 的中点为1(2-,1)2a -+.同理,另一条公切线段P Q ''的中点也是1(2-,1)2a -+.所以公切线段P Q 和互相P Q ''平分.【点评】本小题主要考查导数、切线等知识及综合运用数学知识解决问题的能力,属于中档题.9. (2003•全国新课标•文)已知数列{}n a 满足11a =,113(2)n n n a a n --=+≥.⑴求2a ,3a ; ⑵证明:312nn a -=.【分析】⑴由11a =,113(2)n n n a a n --=+≥,当2n =时可求2a ,3n =时求得3a .⑵利用递推式构造113n n n a a ---=,然后通过累加可求出n a .【解答】解:⑴∵11a =,∴2314a =+=,233413a =+=; ⑵证明:由已知113(2)n n n a a n ---=≥故112()()n n n n n a a a a a ---=-+-+…211()a a a +-+1233n n --=++ (31312)n-++=,2n ≥当1n =时,也满足上式. ∴312nn a -=.【点评】本题是个基础题,主要考查由递推式求数列的项和累加法求数列的通项,注意验证1n =. 20.(12分)在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (Ⅰ)求恰有一件不合格的概率; (Ⅱ)求至少有两件不合格的概率.(精确到0.001) 【分析】(1)要求恰有一件不合格的概率,我们根据P=P (A •B •)+P (A ••C )+P (•B •C ),根据已知条件,算出式中各数据量的值,代入公式即可求解. (2)我们可以根据至少有两件不合格的概率公式P=P (A ••)+P (•B •)+P (••C )+P (••),根据已知条件,算出式中各数据量的值,代入公式即可求解.也可以从对立事件出发根据(1)的结论,利用P=1﹣P (A •B •C )+P (A •B •)+P (A ••C )+P (•B •C )进行求解.【解答】解:设三种产品各抽取一件, 抽到合格产品的事件分别为A 、B 和C .(Ⅰ)P (A )=0.90,P (B )=P (C )=0.95. P =0.10,P =P =0.05. 因为事件A ,B ,C 相互独立, 恰有一件不合格的概率为P (A •B •)+P (A ••C )+P (•B •C )=P (A )•P (B )•P ()+P (A )•P ()•P (C )+P ()•P (B )•P (C ) =2×0.90×0.95×0.05+0.10×0.95×0.95=0.176 答:恰有一件不合格的概率为0.176;(Ⅱ)解法一:至少有两件不合格的概率为P (A ••)+P (•B •)+P (••C )+P (••) =0.90×0.052+2×0.10×0.05×0.95+0.10×0.052 =0.012.答:至少有两件不合格的概率为0.012. 解法二:三件产品都合格的概率为 P (A •B •C )=P (A )•P (B )•P (C ) =0.90×0.952 =0.812.由(Ⅰ)知,恰有一件不合格的概率为0.176, 所以至少有两件不合格的概率为 1﹣P (A •B •C )+0.176 =1﹣(0.812+0.176) =0.012.答:至少有两件不合格的概率为0.012.【点评】本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.10. (2003•全国新课程•文)已知函数()sin ()(0f x x ωϕω=+>,0)ϕπ≤≤是R 上的偶函数,其图象关于点3(4M π,0)对称,且在区间[0,]2π上是单调函数.求ϕ和ω的值.【分析】由()f x 是偶函数可得ϕ的值,图象关于点3(4M π,0)对称可得34ωπϕ+=k π,k Z ∈,可得ω的可能取值,结合单调函数可确定ω的值.【解答】解:由()f x 是偶函数,得2k πϕπ=+,k Z ∈,由0ϕπ≤≤可得2πϕ=,从而()sin ()c o s 2f x x x πωω=+=由()f x 的图象关于点3(4M π,0)对称,得342k πωππ+=,k Z ∈又0ω>,∴2(21)3k ω=-,*k N ∈又函数()f x 在区间[0,]2π上是单调函数,则122T ππω≤=,即2ω≤∴2(21)23k -≤,解得2k ≤当1k =时,23ω=,2()c o s3f x x =在[0,]2π上是减函数,满足题意; 当2k =时,2ω=,()c o s 2f x x =在[0,]2π上是减函数,满足题意;所以,综合得23ω=或2.【点评】本题主要考查三角函数的图象、单调性、奇偶性等基本知识,以及分析问题和推理计算能力.22.(14分)已知常数a>0,向量=(0,a),=(1,0),经过原点O以+λ为方向向量的直线与经过定点A(0,a)以﹣2λ为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.【分析】根据和,求得+λ和﹣2λ进而可得直线OP和AP的方程,消去参数λ,得点P(x,y)的坐标满足方程,进而整理可得关于x和y的方程,进而看当时,方程为圆不符合题意;当时和当时,P的轨迹为椭圆符合两定点.【解答】解:∵=(0,a),=(1,0),∴+λ=(λ,a),﹣2λ=(1,﹣2λa).因此,直线OP和AP的方程分别为λy=ax和y﹣a=﹣2λax.消去参数λ,得点P(x,y)的坐标满足方程y(y﹣a)=﹣2a2x2.整理得.①因为a>0,所以得:(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;(ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;(iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.【点评】本题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.。

2003年全国统一高考文科数学试卷(全国1卷)

2003年全国统一高考文科数学试卷(全国1卷)

第1页(共15页)2003年全国统一高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分) 1.(5分)直线2y x =关于x 轴对称的直线方程为( ) A .12y x =-B .12y x =C .2y x =-D .2y x =2.(5分)已知(2x π∈-,0),4cos 5x =,则tan 2x 等于( ) A .724B .724-C .247D .247-3.(5分)抛物线2y ax =的准线方程是2y =,则a 的值为( ) A .18B .18-C .8D .8-4.(5分)等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为( )A .48B .49C .50D .515.(5分)双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,12120F MF ∠=︒,则双曲线的离心率为( ) ABCD6.(5分)设函数12210()0x x f x xx -⎧-⎪=⎨⎪>⎩…若0()1f x >,则0x 的取值范围是( )A .(1,1)-B .(1,)-+∞C .(-∞,2)(0-⋃,)+∞D .(-∞,1)(1-⋃,)+∞7.(5分)已知5()f x lgx =,则f (2)(= ) A .2lgB .32lgC .132lgD .125lg8.(5分)函数sin()(0)y x ϕϕπ=+剟是R 上的偶函数,则(ϕ= ) A .0B .4πC .2π D .π9.(5分)已知点(a ,2)(0)a >到直线:30l x y -+=的距离为1,则(a = ) AB.2C1D110.(5分)已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为( )。

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅ 周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232c o s -=α”是“Z k k ∈+=,1252ππα”的 ( ) A .必要非充分条件 B .充分非必要条件 C .充分必要条件 D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n ,则m//nB .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a n n n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b n n n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AB=a.(Ⅰ)求证:直线A1D⊥B1C1;(Ⅱ)求点D到平面ACC1的距离;(Ⅲ)判断A1B与平面ADC的位置关系,并证明你的结论.CBC B118.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上.19.(本小题满分14分)有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的 .|)()(|],1,1[,v u v f u f v u -=--∈都有若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高等学校招生全国统一考试 数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分.(Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:由,323n n n nn a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC ,又A 1A ⊥底面ABC ,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点, ∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E , ∵平面ACC 1⊥平面ABC ,∴DE ⊥平面ACC 1于E ,即DE 的长为点D 到平面ACC 1的 距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.43a AC AD CD DE =⋅=C 1解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACDC V V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a43.(Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F ,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B , 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B ,∴AD ∥平面A 1D 1B ,且C 1D ∥平面A 1D 1B ,∴平面ADC 1∥平面A 1D 1B ,∵A 1B ⊂平面A 1D 1B ,∴A 1B ∥平面ADC 1.图(2)图(1)C 11C18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分. (Ⅰ)解:由图可知,.3a b ,4,522=-===c c a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x(Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -, 其中,500<<x 则,1925202=+y x ……① 直线A 1P ,P 1A 的方程分别为: ),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③②式除以③式得,555500-+=-+x x x x 化简上式得,250x x=代入②式得,500x y y = 于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(00x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+y x .19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为.146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0( 解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当 由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC 所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2,这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M重合时,P 到三镇的最远距离最小.答:点P 的坐标是);24119,0( 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-= 即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==- 对任意的]1,1[,-∈v u ,当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时 当0,u <⋅v不妨设],1,0(),0,1[∈-∈v u 有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=-所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下:假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ① 由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。

2003年普通高等学校招生全国统一考试(北京卷)(附答案)

2003年普通高等学校招生全国统一考试(北京卷)(附答案)
3.考试结束,监考人将本试卷和答题卡一并收回.
参考公式:
三角函数的和差化积公式
正棱台、圆台的侧面积公式
其中c’、c分别表示上、下底面周长,l表示斜高或母线长
球体的体积公式
其中R表示球的半径
一、选择题:本大题共10小题,第小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合 ,则A∩B等于
(1)A(2)D(3)A(4)A(5)D
(6)B(7)C(8)B(9)B(10)C
二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.
(11)3(12)
(13) (14)
三、解答题:本大题共6小题,共84分,解答应写出文字说明,证明过程或演算步骤.
(15)本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识;考查运算能力.满分13分.
2003年普通高等学校招生全国统一考试(北京卷)
数学(文史类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至10页,共150分,考试时间120分钟.
第Ⅰ卷(选择题共50分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.
(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?
(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?
(20)(本小题满分14分)
设 是定义在区间[-1,1]上的函数,且满足条件:
(ⅰ) ;
(ⅱ)对任意的u,v∈[-1,1],都有 ≤ .

03北京高考数学(文)

03北京高考数学(文)
2
是偶函数.
13.以双曲线
x2 y2 1 右顶点为顶点,左焦点为焦点的抛物线的方程是 16 9
王新敞
奎屯
新疆
14.将长度为 1 的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方 形的周长应为
王新敞
奎屯 新疆
成都极致教育(数学教研组)
三、解答题:本大题共 6 小题,共 84 分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分 13 分)已知函数 f ( x) cos 2 x 2 sin x cos x sin 2 x. (Ⅰ)求 f ( x) 的最小正周期; (Ⅱ)求 f ( x) 的最大值、最小值.
C1 A1
B1
C
D A
B
成都极致教育(数学教研组)
18.(本小题满分 15 分)如图, A1,A 为椭圆的两个顶点 ,F1,F2 为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程; (Ⅱ) 过线段 OA 上异于 O,A 的任一点 K 作 OA 的垂线, 交椭圆于 P,P 直线 A1 P 与 AP 1 交于点 M . 1 两点, 求证:点 M 在双曲线
C.

1 24
B.
1 8
1 6
D.
1 2
9.从黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出 3 种,分别种在不同土质的三块土地上,其中黄瓜必须 种植,不同的种植方法共有( ) A. 24 种 B. 18 种 C. 12 种 D. 6 种
10. 某班试用电子投票系统选举班干部候选人.全班 k 名同学都有选举权和被选举权,他们的编号分别为
5.如图,直线 l : x 2 y 2 0 过椭圆的左焦点 F1 和一个顶点 B ,该椭圆的离心率为(

2003北京高考数学真题与标准答案

2003北京高考数学真题与标准答案

2003年普通高等学校招生全国统一考试(北京卷)数 学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.(1)设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于(A)}1|{>x x (B )}0|{>x x (C)}1|{-<x x (D )}11|{>-<x x x 或(2)设5.1344.029.01)21(,8,4-===y y y ,则ﻩ ﻩ(A)y 3>y 1>y 2(B)y 2>y 1>y3 (C)y 1>y 2>y3 (D )y 1>y 3>y2 (3)“232cos -=α”是“Z k k ∈+=,125ππα”的 ﻩ(A )必要非充分条件 (B )充分非必要条件(C)充分必要条件ﻩﻩ(D)既非充分又非必要条件(4)已知α,β是平面,m,n是直线.下列命题中不.正确的是 ﻩ(A)若m ∥n,m ⊥α,则n⊥α (B)若m ∥α,α∩β=n ,则m∥n ﻩ(C )若m⊥α,m ⊥β,则α∥βﻩ(D )若m ⊥α,β⊂m ,则α⊥β(5)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是ﻩ(A)圆ﻩ(B )椭圆 (C)抛物线 (D )双曲线 (6)若C z ∈且|22|,1|22|i z i z --=-+则的最小值是(A)2 (B)3ﻩ(C)4ﻩ(D )5(7)如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ﻩ(A)π2 (B)π23ﻩ(C )π332ﻩ(D)π21 (8)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有(A)24种ﻩ(B)18种ﻩ(C )12种ﻩ(D )6种(9)若数列{}n a 的通项公式是 ,2,1,2)23()1(23=--++=----n a n n n n n n ,则)(lim 21n n a a a +++∞→ 等于ﻩ(A)2411 (B )2417 (C )2419 (D )2425 (10)某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij , 其中i =1,2,…,k ,且j =1,2,…,k,则同时同意第1,2号同学当选的人数为ﻩ(A)k k a a a a a a 2222111211+++++++(B)2221212111k k a a a a a a +++++++ﻩ(C )2122211211k k a a a a a a +++ ﻩ(D)k k a a a a a a 2122122111+++第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(11)函数x tg x h x x x x x x g x x f 2)(.1,2.1||0.1,2)(),1lg()(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,是偶函数.(12)以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是(13)如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b ,那么圆柱被截后剩下部分的体积是 .(14)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)。

2003年高考.北京卷.理科数学试题及答案

2003年高考.北京卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式:正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于()A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则()A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232cos -=α”是“Z k k ∈+=,125ππα”的()A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是()A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是()A .圆B .椭圆C .抛物线D .双曲线6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是()A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为()A .π2B .π23C .π332D .π218.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A .24种B .18种C .12种D .6种9.若数列{}n a 的通项公式是 ,2,1,2)23()1(23=--++=----n a n n n n n n ,则)(lim 21n n a a a +++∞→ 等于()A .2411B .2417C .2419D .242510.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij 其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为()A .k k a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .kk a a a a a a 2122122111+++ 第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.函数x tg x h x x x x x x g x x f 2)(.1,2.1||0.1,2)(),1lg()(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,是偶函数.12.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是13.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是.14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为.三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --=(Ⅰ)求)(x f 的最小正周期;(Ⅱ)若2,0[π∈x ,求)(x f 的最大值、最小值..16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1的底面边长的3,侧棱AA 1=,233D 是CB 延长线上一点,且BD=BC.(Ⅰ)求证:直线BC 1//平面AB 1D ;(Ⅱ)求二面角B 1—AD —B 的大小;(Ⅲ)求三棱锥C 1—ABB 1的体积.18.(本小题满分15分)如图,椭圆的长轴A 1A 2与x 轴平行,短轴B 1B 2在y 轴上,中心为M (0,r )().0>>r b (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;(Ⅱ)直线x k y 1=交椭圆于两点);0)(,(),,(22211>y y x D y x C 直线x k y 2=交椭圆于两点).0)(,(),,(44433>y y x H y x G 求证:4343221211x x x x k x x x x k +=+;(Ⅲ)对于(Ⅱ)中的C ,D ,G ,H ,设CH 交x 轴于点P ,GD 交x 轴于点Q.求证:|OP|=|OQ|.(证明过程不考虑CH 或GD 垂直于x 轴的情形)19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件:(i );0)1()1(==-f f (ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有(Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有(Ⅱ)证明:对任意的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)在区间[-1,1]上是否存在满足题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当若存在,请举一例:若不存在,请说明理由.2003年普通高等学校招生全国统一考试数学试题(理工农医类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.1.A 2.D 3.A 4.B5.D 6.B7.C8.C9.C10.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.)();(x g x f 12.)4(362--=x y 13.)(212b a r +π14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分.(Ⅰ)解:因为xx x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x 所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分.(Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a 所以.2n a n=(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ①,2)22(42132++-+++=n n n nx x n x x xS ②当1≠x时,①式减去②式,得,21)1(22)(2)1(112++---=-++=-n nn n n nx xx x nx x x x S x 所以.12)1()1(212x nx x x x S n n n----=+当1=x 时,)1(242+=+++=n n n S n 综上可得当1=x 时,)1(+=n n S n 当1≠x时,.12)1()1(212x nx x x x Sn n n----=+17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力.满分15分.(Ⅰ)证明:CD//C 1B 1,又BD=BC=B 1C 1,∴四边形BDB 1C 1是平行四边形,∴BC 1//DB 1.又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ,∴直线BC 1//平面AB 1D.(Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1,∵B 1B ⊥平面ABD ,∴B 1E ⊥AD ,∴∠B 1EB 是二面角B 1—AD —B 的平面角,∵BD=BC=AB ,∴E 是AD 的中点,.2321==AC BE 在Rt △B 1BE 中,.32332311===∠BEB B BE B tg ∴∠B 1EB=60°。

2003高考数学全国卷及答案文

2003高考数学全国卷及答案文

2003年普通高等学校招生全国统一考试(全国卷)数学(文史类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示 )]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.直线2y x x =关于对称的直线方程为 ( ) (A )12y x =- (B )12y x = (C )2y x =- (D )2y x =2.已知,02x π⎛⎫∈- ⎪⎝⎭,54cos =x ,则2tg x = ( )(A )247 (B )247- (C )724 (D )724-3.抛物线2y ax =的准线方程是2,y a =则的值为 ( ) (A )18 (B )18- (C )8 (D )8-4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为( ) (A )48 (B )49 (C )50 (D )515.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F FMF ∠=︒,则双曲线的离心率为( )(A (B (C (D 6.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( )(A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 7.已知5()lg ,(2)f x x f ==则( )(A )lg 2 (B )lg 32 (C )1lg32(D )1lg 258.函数sin()(0)y x R ϕϕπϕ=+≤≤=是上的偶函数,则( ) (A )0 (B )4π (C )2π(D )π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( )(A (B )2 (C 1 (D 1 10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为( )(A )22R π (B )249R π (C )238R π (D )252R π11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合,则tg θ= ( )(A )31 (B )52 (C )21(D )112.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试数 学(文史类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13x <的解集是____________________.14.92)21(xx -的展开式中9x 系数是 ________ .15.在平面几何里,有勾股定理:“设22,,ABC AB AC AB AC BC += 的两边互相垂直则拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A BCD -的三个侧面ABC ACD ADB 、、两两互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种_______________________(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知正四棱柱111111112ABCD A BC D AB AA E CC F BD -==,,,点为中点,点为点中点(Ⅰ)证明11EF BD CC 为与的公垂线 (Ⅱ)求点1D BDE 到面的距离18.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z . 19.(本小题满分12分)已知数列{}n a 满足1111,3(2).n n n a a a n --==+≥ (Ⅰ)求23,a a ;EDBACBD CAFM(Ⅱ)证明2nna=20.(本小题满分12分)已知函数()2sin(sin cosf x x x x=+(Ⅰ)求函数()f x的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数()y f x=在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象21.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南(cosθθ=方向300km的海面P处,并以20km/h的速度向西偏北︒45方向移东Ox动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 22.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DA DC CD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一考试数学试题(文)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.]4,2( 14.221-15.2222BCD AD B ACD ABC S S S S ∆∆∆∆=++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC , ∴四边形EFMC 是矩形 ∴EF ⊥CC 1 又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1⊂面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线 (II )解:连结ED 1,有V由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF. ∵AA 1=2·AB=1.22,2====∴EF ED BE BD 23)2(2321,2222121=⋅⋅==⋅⋅=∴∆∆DBC DBD S S故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数+ 2,r z z r z z ==+∴由题设|2||||1|2-⋅=-z z z即||)1)(1(=--z z z 42122+-=+-r r r r r12120122--=-==-+r r r r 解得(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=∴=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.213133321-=++++--n n n所以213-=n n a20.解(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知故函数)(x f y =在区间]2,2[ππ-上的图象是21.解:如图建立坐标系:以O 为原点,正东方向为x 轴正向. 在时刻:t (h )台风中心),(y x P 的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是222)]([)()(t r y y x x ≤-+-,其中10)(=t r t+60, 若在t 时,该城市O 受到台风的侵袭,则有,)6010()0()0(222+≤-+-t y x即,)6010()22201027300()2220102300(222+≤⨯+⨯-+⨯-⨯t t t 即0288362≤+-t t , 解得2412≤≤t .答:12小时后该城市开始受到台风气侵袭22.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到定点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤===k k DADCCD CF BC BE , 由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ). 直线OF 的方程为:0)12(2=-+y k ax , ① 直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a , 整理得1)(21222=-+a a y x .当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长.当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2. 当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2.。

2003年高考数学试卷解析

2003年高考数学试卷解析

2003年高考数学试卷解析一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知x∈(-(π)/(2),0),cos x = (4)/(5),则tan2x = ( )A. (7)/(24)B. -(7)/(24)C. (24)/(7)D. -(24)/(7)2. 圆锥曲线ρ=(8sinθ)/(cos^2)θ的准线方程是( )A. ρcosθ = - 2B. ρcosθ = 2C. ρsinθ = - 2D. ρsinθ = 23. 设函数f(x)=2^-x-1,x≤slant0 x^(1)/(2),x > 0,若f(x_0)>1,则x_0的取值范围是( )A. ( - 1,1)B. ( - 1,+∞)C. (-∞,-2)∪(0,+∞)D. (-∞,-1)∪(1,+∞)4. 函数y = 2sin x(sin x+cos x)的最大值为( )B. √(2)-1C. √(2)D. 2.5. 已知圆C:(x - a)^2+(y - 2)^2 = 4(a > 0)及直线l:x - y + 3 = 0,当直线l被圆C截得的弦长为2√(2)时,则a = ( )A. √(2)B. 2-√(2)C. √(2)-1D. √(2)+16. 已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( )A. 2π R^2B. (9)/(4)π R^2C. (8)/(3)π R^2D. (3)/(2)π R^27. 已知方程(x^2-2x + m)(x^2-2x + n)=0的四个根组成一个首项为(1)/(4)的等差数列,则| m - n|=( )A. 1.B. (3)/(4)C. (1)/(2)8. 已知双曲线中心在原点且一个焦点为F(√(7),0),直线y = x - 1与其相交于M、N两点,MN中点的横坐标为-(2)/(3),则此双曲线的方程是( )A. frac{x^2}{3}-frac{y^2}{4}=1B. frac{x^2}{4}-frac{y^2}{3}=1C. frac{x^2}{5}-frac{y^2}{2}=1D. frac{x^2}{2}-frac{y^2}{5}=19. 函数f(x)=sin x,x∈[(π)/(2),(3π)/(2)]的反函数f^-1(x)=( )A. -arcsin x,x∈[-1,1]B. -π-arcsin x,x∈[-1,1]C. π+arcsin x,x∈[-1,1]D. π - arcsin x,x∈[-1,1]10. 已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P_0沿与AB夹角为θ的方向射到BC上的点P_1后,依次反射到CD、DA和AB 上的点P_2、P_3和P_4(入射角等于反射角),设P_4的坐标为(x_4,0),若1 <x_4<2,则tanθ的取值范围是( )A. ((1)/(3),1)B. ((1)/(3),(2)/(3))C. ((2)/(5),(1)/(2))D. ((2)/(5),(2)/(3))11. limlimits_n→∞frac{C_2n^n}{C_2n + 2^n+1}=( )A. 0.B. 2.C. (1)/(2)D. (1)/(4)12. 一个四面体的所有棱长都为√(2),四个顶点在同一球面上,则此球的表面积为( )A. 3πB. 4πC. 3√(3)πD. 6π二、填空题(本大题共4小题,每小题4分,共16分。

2003年高考试题——数学理(北京卷)及答案

2003年高考试题——数学理(北京卷)及答案

2003年普通高等学校招生全国统一考试(北京卷)数 学(理工农医类)第Ⅰ卷(选择题共50分)参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. (1)设集合}01|{2>-=x x A ,}0log |{2>=x x B ,则B A 等于(A )}1|{>x x (B )}0|{>x x (C )}1|{-<x x (D )1|{-<x x 或}1>x (2)设9.014=y ,48.028=y ,5.13)21(-=y ,则(A )213y y y >> (B )312y y y >> (C )321y y y >> (D )231y y y >> (3)“232cos -=α”是“Z k k ∈+=,125ππα”的 (A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分又非必要条件 4.已知βα,是平面,n m ,是直线,下列命题中不正确的是(A )若m ∥α,n =βα ,则m ∥n (B )若m ∥n ,α⊥m ,则α⊥n (C )若α⊥m ,β⊥m ,则α∥β (D )若α⊥m ,β⊂m ,则βα⊥. 5.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是(A )圆 (B )椭圆 (C )抛物线 (D )双曲线 6.若C z ∈,且1|22|=-+i z ,则|22|i z --的最小值是(A )2 (B )3 (C )4 (D )57.如果圆台的母线与底面成︒60角,那么这个圆台的侧面积与轴截面面积的比为 (A )π2 (B )23π (C )332π (D )π218.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有(A )24种 (B )18种 (C )12种 (D )6种9.若数列}{n a 的通项公式是2)23()1(23n n n n n n a ------++=, ,2,1=n ,则)(lim 21n n a a a +++∞→ 等于(A )2411 (B )2417 (C )2419 (D )242510.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为k ,,2,1 .规定:同意按“1”,不同意(含弃权)按“0”.令⎩⎨⎧=号同学当选号同学不同意第第 号同学当选号同学同意第第j i j i a ij 0 1 其中k i ,,2,1 =,且k j ,,2,1 =,则同时同意第1、2号同学当选的人数为(A )k k a a a a a a 2222111211+++++++ (B )2221212111k k a a a a a a +++++++ (C )2122211211k k a a a a a a +++ (D )k k a a a a a a 2122122111+++第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.)1lg()(2x x f +=,⎪⎩⎪⎨⎧>+-≤-<+=1 21||012)(x x x x x x g ,x tg x h 2)(=,其中 为偶函数.12.已知双曲线方程为191622=-y x ,则以双曲线左顶点为顶点,右焦点为焦点的抛物线方程为 .13.一底面半径为r 的圆柱,被一平面所截剩下部分母线最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积为 .14.一根长为1的铁丝,分成两段分别围成一个正方形和一个圆,当正方形和圆的面积之和最小时,正方形的周长为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数x x x x x f 44sin cos sin 2cos )(--=(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在区间]2,0[π上的最大值和最小值.16.(本小题满分13分)已知数列}{n a 是等差数列,且21=a ,12321=++a a a (1)求数列}{n a 的通项公式;(2)设数列nn n x a b ⋅=(R x ∈),求数列}{n b 的前n 项和公式.ba2rxy xOB C AP(-b,0)(b,0)17.(本小题满分15分)如图,已知正三棱柱111C B A ABC -底面边长为3,2331=AA ,D 为CB 延长线上一点,且BC BD =. (1)求证:直线1BC ∥面D AB 1; (2)求二面角B AD B --1的大小; (3)求三棱锥11ABB C -的体积.18.(本小题满分15分)如图,已知椭圆的长轴21A A 与x 轴平行,短轴21B B 在y 轴上,中心),0(r M (0>>r b (Ⅰ)写出椭圆方程并求出焦点坐标和离心率;(Ⅱ)设直线x k y 1=与椭圆交于),(11y x C ,,(2y x D ),(44y x H (04>y ).求证:4343121211x x x x k x x x x k +=+;(Ⅲ)对于(Ⅱ)中的在H G D C ,,,,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OQ OP =(证明过程不考虑CH 或GD 垂直于x 轴的情形) 19.(本小题满分14分)有三个新兴城镇分别位于A 、、三点处,且,,今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处(建立坐标系如图). (Ⅰ)若希望点P 到三镇距离的平方和最小,则P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小,则P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件,①0)1()1(==-f f ②对任意的u 、]1,1[-∈v ,都有|||)()(|v u v f u f -≤- (Ⅰ)证明:对任意]1,1[-∈x ,都有x x f x -≤≤-1)(1 (Ⅱ)证明:对任意的]1,1[,-∈v u 都有1|)()(|≤-v f u f(Ⅲ)在区间]1,1[-上是否存在满足题设条件的奇函数)(x f y =且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-]1,21[ |||)()(|]21,0[ |||)()(|uv v u v f u f uv v u v f u f若存在请举一例,若不存在,请说明理由.D12003年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.B 5.D 6.B 7.C 8.B 9.C 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.)();(x g x f 12.)4(362--=x y 13.)(212b a r +π 14.44+π 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分.(Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为20π≤≤x ,所以45424πππ≤+≤x 当442ππ=+x 时,)(x f 取最大值为22, 当ππ=+42x 时,)(x f 取最小值为-1 ∴)42cos(2)(π+=x x f 的最大值为1,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a所以.2n a n =(Ⅱ)解:由,2nn n n nx x a b ==得,2)22(4212n n n x n x n x x S ⋅+-+⋅+⋅=- ①.2)22(42132+⋅+⋅-++⋅+⋅=n n n x n x n x x xS ②当x ≠1时,将①式减去②式,得.21)1(22)(2)1(112++⋅---=⋅-++=-n nn n n x n xx x x n x x x S x∴x nx x x x S n n n ----=+12)1()1(212当x=1时,)1(242+=+++=n n n S n综上可知,当x=1时,)1(242+=+++=n n n S n当x ≠1时,x nx x x x S n n n ----=+12)1()1(21217.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证明:∵CD ∥C 1B 1 ,又BD=BC=B 1C 1,∴四边形BDB 1C 1是平行四边形∴BC 1∥DB 1又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ∴直线BC 1∥平面AB 1D(Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1,∵ BB 1⊥平面ABD ∴ B 1E ⊥AD∴ ∠B 1EB 是二面角B 1—AD —B 的平面角 ∵ BD=BC=AB ∴ E 是AD 的中点,∴ BE=21AC=23在Rt ∆B 1BE 中,tan ∠B 1EB=3233231==BEB B∴ ∠B 1EB=060即二面角B 1—AD —B 的大小为60(Ⅲ)解法一:过A 作AF ⊥BC 于F ,∵ BB 1⊥平面ABC , ∴ 平面ABC ⊥平面BB 1C 1C ,∴ AF ⊥平面BB 1C 1C 且AF=323323=⨯ ∴11ABB C V -=11C BB A V -=AF S C BB ⋅∆1131=31233)323321(⨯⨯⨯=827 即三棱锥C 1—ABB 18D1D1D118.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分.(Ⅰ)解:椭圆方程为1)(2222=-+b r y a x 焦点坐标为),(221r b a F --,),(222r b a F -离心率ab a e 22-=(Ⅱ)证明:证明:将直线CD 的方程x k y 1=代入椭圆方程1)(2222=-+br y a x ,得 2221222)(b a r x k a x b =-+整理得0)(2)(22222122122=-+-+b a r a rx a k x k a b根据韦达定理,得212221212k a b r a k x x +=+,2122222221k a b b a r a x x +-=,所以rk b r x x x x 12221212-=+ ①将直线GH 的方程x k y 2=代入椭圆方程1)(2222=-+br y a x ,同理可得rk b r x x x x 22243432-=+ ②由 ①、②得 rb r x x x x k 22221211-=+ =43432x x x x k +所以结论成立(Ⅲ)证明:设点P )0,(p ,点Q )0,(q由C 、P 、H 共线,得421141x k x k p x p x =--解得42114121)(x k x k x x k k p --=x由D 、Q 、G 共线,同理可得322132x k x k p x p x =--32213221)(x k x k x x k k q --=由21211x x x x k + = 43432x x x x k +变形得42114121)(x k x k x x k k ---=32213221)(x k x k x x k k --所以 q p = 即OQ OP =19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:由题设条件a>b>0,设P 的坐标为(0,y ),则P 至三镇距离的平方和为22222)()(2)(y b a y b y f --++= =2222223b a y b a y ++--所以,当322b a y -=时,函数)(y f 取得最小值. 答:点P 的坐标是)3,0(22b a - (Ⅱ)解:记22b a h -=P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|||,||,|,)(222222y h y b y h y h y b y b x g 当当由||22y h y b -≥+解得,222h b h y -≥记,222*hb h y -= 于是⎪⎩⎪⎨⎧<-≥+=.|,|,,)(**22y y y h y y y b x g 当当 当0222*≥-=hb h y ,即b h ≥时, 因为22y b +在[),*+∞y 上是增函数,而]y ,(-||*∞-在y h 上是减函数.y xOB C AP(-b,0)(b,0)所以*y y =时,函数)(y g 取得最小值. 点P 的坐标是)2,0(22hb h - 当0222*<-=hb h y ,即b h <时,因为22y b +在[),*+∞y 上当y=0函数)(y g 取得最小值b ,而]y ,(-||*∞-在y h 上是减函数,且 b ||>-y h ,所以0=y 时, 函数)(y g 取得最小值.答:当b h ≥时,点P 的坐标是)2,0(22hb h - 当b h <时,点P 的坐标是)0,0(,其中22b a h -=20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤- (Ⅱ)对任意的]1,1[,-∈v u ,当1|||)()(|,1|u |≤-≤-≤-v u v f u f v 有时当,1|u |时≤-v 0,u <⋅v 不妨设],1,0(),0,1[∈-∈v u 则1>-u v 从而有)1()()1()(|)()(|f v f f u f v f u f -+--≤-1)(2|1||1|<--=-++≤u v v u总上可知,对任意的]1,1[,-∈v u ,都有1|)()(|≤-v f u f(Ⅲ)答:这样满足所述条件的函数不存在.理由如下:假设存在函数)(x f 满足条件,则由.|||)()(|v u v f u f -=- ]1,21[,∈v u 得21|121||)1()21(|=-=-f f又0)1(=f ,所以21|)21(|=f ①又因为)(x f 为奇函数,所以0)0(=f , 由条件.|||)()(|v u v f u f -<- ]21,0[,∈v u 得21|021||)0()21(||)21(|=-<-=f f f所以 21|)21(|<f ②①与②矛盾,因此假设不成立,即这样的函数不存在.。

2003年高考北京卷数学-理试题与解答

2003年高考北京卷数学-理试题与解答

2003年普通高等学校招生全国统一考试(北京卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到11页。

共150分。

考试时间120分钟。

第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--++-=正棱台、圆台的侧面积公式l c c S )'(21+=台侧其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合}01|{2>-=x x A ,}0log |{2>=x x B ,则A ∩B 等于(A ){x|x>1} (B ){x|x>0} (C ){x|x<-1} (D ){x|x<-1或x>1}(2)设9.014=y ,48.028=y ,5.13)21(-=y ,则(A )213y y y >> (B )312y y y >> (C )321y y y >> (D )231y y y >>(3)“232c o s -=α”是“65ππα+=k ,k ∈Z ”的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(4)已知α,β是平面,m ,n 是直线。

2003年春季高考数学试题(北京文)及答案-2003年高考数学试题

2003年春季高考数学试题(北京文)及答案-2003年高考数学试题

2003年普通高等学校春季招生考试 数 学(文史类)(北京卷)第Ⅰ卷(选择题 共60分)参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.设d c b a R d c b a >>∈,.,,,且,且下列结论中正确的是( )A .d b c a +>+B .d b c a ->-C .bd ac >D .cb d a > 2.设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M+m 等于( )A .32 B .32- C .34- D .-23.若xx x f 1)(-=,则方程x x f =)4(的根是 ( )A .-2B .2C .-21 D .21 4.若集合=-====P M x y y P y y M x 则},1|{},2|{( )A .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y5.若A ,B ,C 是△ABC 的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的是( )A .tgC tgA <B .ctgC ctgA < C .C A sin sin <D . C A cos cos <6.在等差数列}{n a 中,已知2054321=++++a a a a a ,那么3a 等于( ) A .4B .5C .6D .7 7.设复数=+=+-=2121arg ,2321,1z z i z i z 则( )A .-π125B .π125 C .π127 D . π1213 8.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞9.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c '、c 分别表示上、下底面周长 l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径A BCD10.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为()A .6B .12C .15D .3011.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为 AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与 IJ 所成角的度数为( )A .90°B .60°C .45°D .0° 12.已知直线1)0(022=+≠=++y x abc c by ax 与圆相切,则三条边长分别为|a |,|b|,|c|的三角形 ( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.函数12sin +=x y 的最小正周期为14.如图,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则=rR15.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表. 观察表中数据的特点,用适当的数填入表中空白( )内16.如图,F 1,F 2分别为椭圆12222=+by a x 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是三、解答题:本题共6小题,共74分17.(本小题满分12分)解不等式:).22(log )2(log 222->--x x x 18.(本小题满分12分) 已知函数)(,2cos 1cos 5cos 6)(24x f xx x x f 求+-=的定义域,判断它的奇偶性,并求其值域.(1)(2)AC1A 119.(本小题满分12分)如图,ABCD —A 1B 1C 1D 1是正四棱柱,侧棱长为1,底面边长为2,E 是棱BC 的中点.(Ⅰ)求三棱锥D 1—DBC 的体积.;(Ⅱ)证明BD 1∥平面C 1DE ;(Ⅲ)求面C 1DE 与面CDE 所成二面角的正切值.20.(本小题满分12分)设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.21.(本小题满分13分)某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费200元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元? 22.(本小题满分13分)如图,在边长为l 的等边△ABC 中,圆O 1为△ABC 的内切圆,圆O 2与圆O 1外切,且与AB ,BC 相切,…,圆O n+1与圆O n 外切,且与AB ,BC 相切,如此无限继续下去. 记圆O n 的面积为)(N n a n ∈. (Ⅰ)证明}{n a 是等比数列; (Ⅱ)求)(lim 21n n a a a +++∞→ 的值.2003年普通高等学校春季招生考试 数学试题(文史类)(北京卷)参考答案一、选择题:本题主要考查基本知识和基本运算. 每小题5分,满分60分.1.A2.D3.D4.C5.C6.A7.B8.C9.A 10.D 11.B 12.B 二、填空题:本题主要考查基本知识和基本运算.每小题4分,满分16分.13.π 14.332 15.(140)(85) 16.32 . 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查不等式的解法、对数函数的性质等基本知识,考查运算能力和逻辑思维能力. 满分12分.解:原不等式330,203,01,0)1)(2(22201,02222>⇔⎩⎨⎧><>⇔⎪⎩⎪⎨⎧>->->+-⇔⎪⎩⎪⎨⎧->-->->--⇔x x x x x x x x x x x x x x x 或.故原不等式的解集是}3|{>x x .18.本小题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力. 满分12分.解:由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得. 所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(1)(cos 5)(cos 6)(24x x x x f -+---=-)(),(2cos 1cos 5cos 624x f x f xx x 所以=+-=是偶函数.又当xx x x f Z k k x 2cos 1cos 5cos 6)(,,4224+-=∈+≠时ππ1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或 19.本小题主要考查正四棱柱的基本知识,考查空间想象能力、逻辑思维能力和运算能力. 满分12分.(Ⅰ)解:3212221311=⋅⋅⋅⋅=-DBC D V . (Ⅱ)证明:记D 1C 与DC 1的交点为O ,连结OE. ∵O 是CD 1的中点,E 是BC 的中点,∴EO ∥BD 1.∵BD 1⊄平面C 1DE ,EO ⊂平面C 1DE , ∴BD 1∥平面C 1DE.(Ⅲ)解:过C 作CH ⊥DE 于H ,连结C 1H.在正四棱柱ABCD —A 1B 1C 1D 1中, C 1C ⊥平面ABCD ,∴∠C 1H ⊥DE , ∴∠C 1HC 是面C 1DE 与面CDE 所成二面角的平面角. ∵DC=2,CC 1=1,CE=1, ∴52121222=+⨯=⋅=DE CE CD CH ,AC 1A 1∴2552111===∠CH C C HC C tg 即面C 1DE 与面CDE 所成二面角的正切值为2520.本小题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.满分12分.解:设动点P 的坐标为(x ,y ). 由a yc x y c x a a PB PA =+-++>=2222)()()0(||||,得.化简得.0)1()1()1(2)1(2222222=-+-+++-y a a c x a c x a当01)1(2,122222=++-++≠y c x a a c x a 得时,整理得222222)12()11(-=+-+-a ac y c a a x . 当a =1时,化简得x =0.所以当1≠a 时,P 点的轨迹是以)0,11(22c a a -+为圆心,|12|2-a ac 为半径的圆; 当a =1时,P 点的轨迹为y 轴.21.本小题主要考查二次函数的基本知识,考查分析和解决问题的能力. 满分13分.解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元,则租赁公司的月收益为)200)(503000100()(---=x x x f , 整理得304200)4100(50132000164501)200)(8000(501)(22+--=-+-=--=x x x x x x f . 所以,当x =4100时,)(x f 最大,最大值为304200)4100(=f ,即当每辆车的月租金定为4100元时,租赁公司的月收益最大,最大月收益为元.22.本小题主要考查数列、数列极限、三角函数等基本知识,考查逻辑思维能力. 满分13分.(Ⅰ)证明:记r n 为圆O n 的半径,则,633021l tg l r =︒= .2130sin 11=︒=+---n n nn r r r r 所以,12),2(3122111l r a n r r n n ππ==≥=-于是91)(211==--n n n n r r a a 故}{n a 成等比数列. (Ⅱ)解:因为),()91(11N n a a n n ∈=-AC所以.323911)(lim 2121l a a a a nn π=-=+++∞→。

2003高考数学试题(北京文)及答案

2003高考数学试题(北京文)及答案

2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)第Ⅰ卷(选择题 共50分)参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅ 周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或 2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232c o s -=α”是“Z k k ∈+=,1252ππα”的 ( ) A .必要非充分条 B .充分非必要条件 C .充分必要条件 D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( ) A .若m ∥α,α∩β=n ,则m//n B .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23 C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a n n n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241B .81 C .61 D .21不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种 10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为 . 12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AB=a . (Ⅰ)求证:直线A 1D ⊥B 1C 1; (Ⅱ)求点D 到平面ACC 1的距离;(Ⅲ)判断A 1B 与平面ADC 的位置关系,并证明你的结论.18.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上.19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=13km ,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图) (Ⅰ)若希望点P 到三镇距离的平方和为最小, 点P 应位于何处? (Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处? 20.(本小题满分14分) 设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的.|)()(|],1,1[,v u v f u f v u -=--∈都有 若存在,请举一例:若不存在,请说明理由.2003年普通高等学校招生全国统一考试数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为xx x x x f 44sin cos sin 2cos )(--=2222(cos sin )(cos sin )sin 2cos 2sin 2)4x x x x x x x x π=+--=-=+所以)(x f 的最小正周期.22ππ==T(Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:由,323n n n nn a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC ,又A 1A ⊥底面ABC ,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E , ∵平面ACC 1⊥平面ABC ,∴DE ⊥平面ACC 1于E ,即DE 的长为点D 到平面ACC 1的 距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.3a AD CD DE =⋅=解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACDC V V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a43.(Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F ,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B , 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B ,∴AD ∥平面A 1D 1B ,且C 1D ∥平面A 1D 1B ,∴平面ADC 1∥平面A 1D 1B ,∵A 1B ⊂平面A 1D 1B ,∴A 1B ∥平面ADC 1.18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分.(Ⅰ)解:由图可知,.3a b ,4,522=-===c c a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x (Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -, 其中,500<<x 则,1925202=+y x ……① 直线A 1P ,P 1A 的方程分别为: ),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③②式除以③式得,555500-+=-+x x x x 化简上式得,250x x=代入②式得,500x y y = 于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(00x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+y x .19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分..146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当 由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0( 解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2, 这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M 重合时,P 到三镇的最远距离最小. 答:点P 的坐标是);24119,0( 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==-对任意的]1,1[,-∈v u , 当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时当0,u <⋅v 不妨设],1,0(),0,1[∈-∈v u有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=-所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下: 假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ①由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。

高中排列组合经典例题

高中排列组合经典例题

运用两个基本原理例1.n个人参加某项资格考试,能否通过,有多少种可能的结果?例2.同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。

其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。

下面介绍几种常用的解题方法和策略。

一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。

例1.用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。

A.24个 B.30个 C.40个 D.60个30。

例2.(1995年上海) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法()种.72例3.(2000年全国)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有()种.A33· A72=252例4.从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个?例5.8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?特殊优先,一般在后对于问题中的特殊元素、特殊位置要优先安排。

在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。

练习1(89年全国)由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有个(用数字作答)。

36三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。

2003年高考理科数学试题及答案

2003年高考理科数学试题及答案

密★启用前2003年普通高等学校招生全国统一考试数 学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅ 周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 3.“232cos -=α”是“Z k k ∈+=,125ππα”的( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是( )A .圆B .椭圆C .抛物线D .双曲线 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是 ( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( )A .24种B .18种C .12种D .6种9.若数列{}n a 的通项公式是 ,2,1,2)23()1(23=--++=----n a n n n n n n ,则 )(lim 21n n a a a +++∞→ 等于( )A .2411 B .2417 C .2419 D .2425 10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .k k a a a a a a 2222111211+++++++ B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.函数x tg x h x x x x x x g x x f 2)(.1,2.1||0.1,2)(),1lg()(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,是偶函数.12.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 13.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么 圆柱被截后剩下部分的体积是 . 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)若]2,0[π∈x ,求)(x f 的最大值、最小值.. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1的底面边长的3,侧棱AA 1=,233D 是CB 延长线上一点,且BD=BC.(Ⅰ)求证:直线BC 1//平面AB 1D ; (Ⅱ)求二面角B 1—AD —B 的大小; (Ⅲ)求三棱锥C 1—ABB 1的体积. 18.(本小题满分15分)如图,椭圆的长轴A 1A 2与x 轴平行,短轴B 1B 2在y 轴上,中心为M (0,r )().0>>r b (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;(Ⅱ)直线x k y 1=交椭圆于两点);0)(,(),,(22211>y y x D y x C 直线x k y 2=交椭圆于两点).0)(,(),,(44433>y y x H y x G 求证:4343221211x x x x k x x x x k +=+; (Ⅲ)对于(Ⅱ)中的C ,D ,G ,H ,设CH 交x 轴于点P ,GD 交x 轴于点Q. 求证:|OP|=|OQ|. (证明过程不考虑CH 或GD 垂直于x 轴的情形) 19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图) (Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小, 点P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)证明:对任意的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)在区间[-1,1]上是否存在满足题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高等学校招生全国统一考试数学试题(理工农医类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.B 5.D 6.B 7.C 8.C 9.C 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.)();(x g x f 12. )4(362--=x y 13.)(212b a r +π 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1. 所以)(x f 在]2,0[π上的最大值为1,最小值为-.2 16.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ① ,2)22(42132++-+++=n n n nx x n x x xS ② 当1≠x时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x所以.12)1()1(212x nx x x x S n n n----=+当1=x 时, )1(242+=+++=n n n S n 综上可得当1=x 时,)1(+=n n S n 当1≠x时,.12)1()1(212x nx x x x Sn n n----=+ 17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证明:CD//C 1B 1,又BD=BC=B 1C 1, ∴ 四边形BDB 1C 1是平行四边形, ∴BC 1//DB 1.又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ,∴直线BC 1//平面AB 1D.(Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1,∵B 1B ⊥平面ABD ,∴B 1E ⊥AD , ∴∠B 1EB 是二面角B 1—AD —B 的平面角, ∵BD=BC=AB ,∴E 是AD 的中点, .2321==AC BE在Rt △B 1BE 中,.32332311===∠BEB B BE B tg ∴∠B 1EB=60°。

2003年高考.北京卷.文科数学试题及答案

2003年高考.北京卷.文科数学试题及答案

其中 c 、 c 分别表示上、下底面
cos cos 1 [cos( ) cos( )] 2
周长, l 表示斜高或母线长.
sin sin 1 [cos( ) cos( )] 2
球体的体积公式:
V球
4 R3 ,其中 R 3
表示球的半径.
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一
皮擦干净后,再选涂其它答案,不能答在试题卷上.
3.考试结束,监考人将本试卷和答题卡一并收回.
参考公式:
三角函数的积化和差公式:
正棱台、圆台的侧面积公式
sin cos 1 [sin( ) sin( )] 2
S台侧
1 (c 2
c)l
cos sin 1 [sin( ) sin( )] 2
项是符合要求的.
1.设集合 A {x | x 2 1 0}, B {x | log 2 x 0 |},则A B 等于
()
A.{x | x 1}
C.{x | x 1}
2.设
y1
40.9 ,
y2
80.44 ,
y3
( 1 ) 1.5 ,则 2
B.{x | x 0} D.{x | x 1或x 1}
()
A.若 m∥α,α∩β=n,则 m//n
B.若 m∥n,α∩β=n,则 n⊥α
C.若 m⊥α,m⊥β,则α∥β
D.若 m⊥α, m ,则α⊥β
5.如图,直线 l : x 2 y 2 0 过椭圆的左焦点 F1 和
一个顶点 B,该椭圆的离心率为
A. 1 5
B. 2 5
()
5
C.
5
25
D.

03届,普通高等学校招生全国统一考试(北京卷)数学(文)及答案

03届,普通高等学校招生全国统一考试(北京卷)数学(文)及答案

《03届,普通高等学校招生全国统一考试(北京卷)数学(文)及答案》摘要:学(史类)(北京卷)试卷分Ⅰ卷(选择题)Ⅱ卷(非选择题)两部分共50分考试0分钟Ⅰ卷(选择题共50分)事项.答Ⅰ卷前考生必将己姓名、准考证、考试科目用铅笔涂写答题卡上.每题选出答案用铅笔把答题卡上对应题目答案标涂黑如改动用橡皮擦干净再选涂其它答案不能答试题卷上 3.考试结束监考人将试卷和答题卡并收回参考公式三角函数积化和差公式正棱台、圆台侧面积公式其、分别表示上、下底面周长表示斜高或母线长球体体积公式其R表示球半径、选择题题共0题每题5分共50分每题给出四选项只有项是合要.设集合等(). B....设则().3 B.3 .3 .3 3.“”是“” ().必要非充分条件 B.充分非必要条件.充分必要条件.既非充分又非必要条件.已知αβ是平面是直线下列命题不正确是().若∥αα∩β则 B.若∥α∩β则⊥α .若⊥α⊥β则α∥β .若⊥α则α⊥β 5.如图直线椭圆左焦和顶...003年普通高等学校招生全国统考试数学(史类)(北京卷)试卷分Ⅰ卷(选择题)Ⅱ卷(非选择题)两部分共50分考试0分钟Ⅰ卷(选择题共50分)事项.答Ⅰ卷前考生必将己姓名、准考证、考试科目用铅笔涂写答题卡上.每题选出答案用铅笔把答题卡上对应题目答案标涂黑如改动用橡皮擦干净再选涂其它答案不能答试题卷上 3.考试结束监考人将试卷和答题卡并收回参考公式三角函数积化和差公式正棱台、圆台侧面积公式其、分别表示上、下底面周长表示斜高或母线长球体体积公式其R表示球半径、选择题题共0题每题5分共50分每题给出四选项只有项是合要.设集合等(). B....设则().3 B.3 .3 .3 3.“”是“” ().必要非充分条件 B.充分非必要条件.充分必要条件.既非充分又非必要条件.已知αβ是平面是直线下列命题不正确是().若∥αα∩β则 B.若∥α∩β则⊥α .若⊥α⊥β则α∥β .若⊥α则α⊥β 5.如图直线椭圆左焦和顶B该椭圆离心率(). B... 6.若且值是(). B.3 ..5 7.如圆台母线与底面成60°角那么这圆台侧面积与轴截面面积比(). B... 8.若数列通项公式是则等(). B... 9.从黄瓜、白菜、油菜、扁豆种蔬菜品种选出3种分别种不土质三块土地上其黄瓜必须种植不种植方法共有().种 B.8种.种.6种 0.某班试用电子投票系统选举班干部候选人全班k名学都有选举权和被选举权他们编分别…k规定按“”不(含弃权)按“0”令其…k且…k则学当选人数(). B...Ⅱ卷(非选择题共00分)二、填空题题共题每题分共6分把答案填题横线上.已知某球体体积与其表面积数值相等则球体半径.函数是偶函数 3.以双曲线右顶顶左焦焦抛物线方程是.将长铁丝分成两段分别围成正方形和圆形要使正方形与圆面积和正方形周长应三、答题题共6题共8分答应写出说明证明程或演算步骤 5.(题满分3分)已知函数(Ⅰ)正周期;(Ⅱ)值、值 6.(题满分3分)已知数列是等差数列且(Ⅰ)数列通项公式;(Ⅱ)令数列前项和公式7.(题满分5分)如图正三棱柱B—B是BB (Ⅰ)证直线⊥B;(Ⅱ)到平面距离;(Ⅲ)判断B与平面位置关系并证明你结论 8.(题满分5分)如图椭圆两顶椭圆两焦(Ⅰ)写出椭圆方程及准线方程;(Ⅱ)线段上异任K作垂线交椭圆两直线与交证双曲线上 9.(题满分分)有三新兴城镇分别位B三处且B3kB0k今计划合建心医院方便三镇准备建B垂直平分线上处(建立坐标系如图)(Ⅰ)若希望到三镇距离平方和应位何处?(Ⅱ)若希望到三镇远距离应位何处?0.(题满分分)设是定义区上函数且满足条件()()对任(Ⅰ)证明对任(Ⅱ)判断函数是否满足题设条件;(Ⅲ)区[-]上是否存满足题设条件函数且使得对任若存请举例若不存请说明理由绝密★启用前 003年普通高等学校招生全国统考试数学试题(史类)(北京卷)参考答、选择题题考基知识和基运算每题5分满分50分.. 3.. 5. 6.B 7. 8.B 9.B 0.二、填空题题考基知识和基运算每题分,满分6分.3 . 3..三、答题题共6题共8分答应写出说明证明程或演算步骤5.题主要考三角函数倍角、和角公式以及三角函数性质等基知识考运算能力满分3分(Ⅰ)因所以正周期(Ⅱ)因所以值,值- 6.题主要考等差、等比数列等基知识考综合运用数学知识和方法问题能力满分3分(Ⅰ)设数列公差则又所以(Ⅱ)由得① ② 将①式减②式得所以 7.题主要考直线与平面位置关系正棱柱性质棱锥体积等基知识考空想象能力和逻辑推理能力满分5分(Ⅰ)证法∵是正△BB边∴⊥B 又⊥底面B∴⊥B ∵B∥B∴⊥B 证法二连结则B ∵是正△B底边B ∴⊥B ∵B∥B∴⊥B (Ⅱ)法作⊥ ∵平面⊥平面B ∴⊥平面即长到平面距离R△ ∴所距离法二设到平面距离∵体积即到平面距离(Ⅲ)答直线B平面证明如下证法如图连结交则∵是B∴∥B 又平面B平面∴B∥平面证法二如图,取B则∥∥B∴∥平面B且∥平面B ∴平面∥平面B∵B平面B∴B∥平面 8.主要考直线、椭圆和双曲线等基知识考分析问题和问题能力满分5分(Ⅰ)由图可知, 该椭圆方程准线方程(Ⅱ)证明设K坐标,、坐标分别记其则……① 直线方程分别……② ……③ ②式除以③式得化简上式得代入②式得是直线与交坐标因所以直线与交双曲线 9.题主要考函数不等式等基知识考运用数学知识分析问题和问题能力满分分(Ⅰ)设坐标(0)则至三镇距离平方和所以当函数取得值答坐标是(Ⅱ)法至三镇远距离由得记是因[上是增函数而上是减函数所以,函数取得值答坐标是法二至三镇远距离由得记是函数图象如图因当函数取得值答坐标是法三因△BB3,且所以△B外心线段上,其坐标, 且B 当射线上记;当射线反向延长线上记这到、B、三远距离和且≥≥所以与外心重合到三镇远距离答坐标是0.题考函数、不等式等基知识考综合运用数学知识分析问题和问题能力满分分(Ⅰ)证明由题设条件可知当有即(Ⅱ)答函数满足题设条件验证如下对任当当当不妨设有所以函数满足题设条件(Ⅲ)答这样满足函数不存理由如下假设存函数满足条件则由得① 由对任都有所以② ①与②矛盾因假设不成立即这样函数不存。

2003年春季高考数学试题(北京文)及答案-2003年高考数学试题

2003年春季高考数学试题(北京文)及答案-2003年高考数学试题

2003年普通高等学校春季招生考试 数 学(文史类)(北京卷)第Ⅰ卷(选择题 共60分)参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.设d c b a R d c b a >>∈,.,,,且,且下列结论中正确的是( )A .d b c a +>+B .d b c a ->-C .bd ac >D .cb d a > 2.设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M+m 等于( )A .32 B .32- C .34- D .-23.若xx x f 1)(-=,则方程x x f =)4(的根是 ( )A .-2B .2C .-21 D .21 4.若集合=-====P M x y y P y y M x 则},1|{},2|{( )A .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y5.若A ,B ,C 是△ABC 的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的是( )A .tgC tgA <B .ctgC ctgA < C .C A sin sin <D . C A cos cos <6.在等差数列}{n a 中,已知2054321=++++a a a a a ,那么3a 等于( ) A .4B .5C .6D .7 7.设复数=+=+-=2121arg ,2321,1z z i z i z 则( )A .-π125B .π125 C .π127 D . π1213 8.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞9.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c '、c 分别表示上、下底面周长 l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径A BCD10.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为()A .6B .12C .15D .3011.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为 AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与 IJ 所成角的度数为( )A .90°B .60°C .45°D .0° 12.已知直线1)0(022=+≠=++y x abc c by ax 与圆相切,则三条边长分别为|a |,|b|,|c|的三角形 ( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.函数12sin +=x y 的最小正周期为14.如图,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则=rR15.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表. 观察表中数据的特点,用适当的数填入表中空白( )内16.如图,F 1,F 2分别为椭圆12222=+by a x 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是三、解答题:本题共6小题,共74分17.(本小题满分12分)解不等式:).22(log )2(log 222->--x x x 18.(本小题满分12分) 已知函数)(,2cos 1cos 5cos 6)(24x f xx x x f 求+-=的定义域,判断它的奇偶性,并求其值域.(1)(2)AC1A 119.(本小题满分12分)如图,ABCD —A 1B 1C 1D 1是正四棱柱,侧棱长为1,底面边长为2,E 是棱BC 的中点.(Ⅰ)求三棱锥D 1—DBC 的体积.;(Ⅱ)证明BD 1∥平面C 1DE ;(Ⅲ)求面C 1DE 与面CDE 所成二面角的正切值.20.(本小题满分12分)设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.21.(本小题满分13分)某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费200元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元? 22.(本小题满分13分)如图,在边长为l 的等边△ABC 中,圆O 1为△ABC 的内切圆,圆O 2与圆O 1外切,且与AB ,BC 相切,…,圆O n+1与圆O n 外切,且与AB ,BC 相切,如此无限继续下去. 记圆O n 的面积为)(N n a n ∈. (Ⅰ)证明}{n a 是等比数列; (Ⅱ)求)(lim 21n n a a a +++∞→ 的值.2003年普通高等学校春季招生考试 数学试题(文史类)(北京卷)参考答案一、选择题:本题主要考查基本知识和基本运算. 每小题5分,满分60分.1.A2.D3.D4.C5.C6.A7.B8.C9.A 10.D 11.B 12.B 二、填空题:本题主要考查基本知识和基本运算.每小题4分,满分16分.13.π 14.332 15.(140)(85) 16.32 . 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查不等式的解法、对数函数的性质等基本知识,考查运算能力和逻辑思维能力. 满分12分.解:原不等式330,203,01,0)1)(2(22201,02222>⇔⎩⎨⎧><>⇔⎪⎩⎪⎨⎧>->->+-⇔⎪⎩⎪⎨⎧->-->->--⇔x x x x x x x x x x x x x x x 或.故原不等式的解集是}3|{>x x .18.本小题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力. 满分12分.解:由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得. 所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(1)(cos 5)(cos 6)(24x x x x f -+---=-)(),(2cos 1cos 5cos 624x f x f xx x 所以=+-=是偶函数.又当xx x x f Z k k x 2cos 1cos 5cos 6)(,,4224+-=∈+≠时ππ1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或 19.本小题主要考查正四棱柱的基本知识,考查空间想象能力、逻辑思维能力和运算能力. 满分12分.(Ⅰ)解:3212221311=⋅⋅⋅⋅=-DBC D V . (Ⅱ)证明:记D 1C 与DC 1的交点为O ,连结OE. ∵O 是CD 1的中点,E 是BC 的中点,∴EO ∥BD 1.∵BD 1⊄平面C 1DE ,EO ⊂平面C 1DE , ∴BD 1∥平面C 1DE.(Ⅲ)解:过C 作CH ⊥DE 于H ,连结C 1H.在正四棱柱ABCD —A 1B 1C 1D 1中, C 1C ⊥平面ABCD ,∴∠C 1H ⊥DE , ∴∠C 1HC 是面C 1DE 与面CDE 所成二面角的平面角. ∵DC=2,CC 1=1,CE=1, ∴52121222=+⨯=⋅=DE CE CD CH ,AC 1A 1∴2552111===∠CH C C HC C tg 即面C 1DE 与面CDE 所成二面角的正切值为2520.本小题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.满分12分.解:设动点P 的坐标为(x ,y ). 由a yc x y c x a a PB PA =+-++>=2222)()()0(||||,得.化简得.0)1()1()1(2)1(2222222=-+-+++-y a a c x a c x a当01)1(2,122222=++-++≠y c x a a c x a 得时,整理得222222)12()11(-=+-+-a ac y c a a x . 当a =1时,化简得x =0.所以当1≠a 时,P 点的轨迹是以)0,11(22c a a -+为圆心,|12|2-a ac 为半径的圆; 当a =1时,P 点的轨迹为y 轴.21.本小题主要考查二次函数的基本知识,考查分析和解决问题的能力. 满分13分.解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元,则租赁公司的月收益为)200)(503000100()(---=x x x f , 整理得304200)4100(50132000164501)200)(8000(501)(22+--=-+-=--=x x x x x x f . 所以,当x =4100时,)(x f 最大,最大值为304200)4100(=f ,即当每辆车的月租金定为4100元时,租赁公司的月收益最大,最大月收益为元.22.本小题主要考查数列、数列极限、三角函数等基本知识,考查逻辑思维能力. 满分13分.(Ⅰ)证明:记r n 为圆O n 的半径,则,633021l tg l r =︒= .2130sin 11=︒=+---n n nn r r r r 所以,12),2(3122111l r a n r r n n ππ==≥=-于是91)(211==--n n n n r r a a 故}{n a 成等比数列. (Ⅱ)解:因为),()91(11N n a a n n ∈=-AC所以.323911)(lim 2121l a a a a nn π=-=+++∞→。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)第Ⅰ卷(选择题 共50分)参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面 )]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>xxB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或 2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 3.“232co s -=α”是“Z k k ∈+=,1252ππα”的( ) A .必要非充分条 B .充分非必要条件 C .充分必要条件 D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( ) A .若m ∥α,α∩β=n ,则m//n B .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为 ( )A .51 B .52 C .55 D .5526.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是 ( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是,2,1,23)1(3=-+=--n a nnnn,则)(lim 21n n a a a +++∞→ 等于( )A .241 B .81 C .61 D .219.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为 . 12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-yx右顶点为顶点,左焦点为焦点的抛物线的方程是14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 . 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --=(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AB=a . (Ⅰ)求证:直线A 1D ⊥B 1C 1;(Ⅱ)求点D 到平面ACC 1的距离;(Ⅲ)判断A 1B 与平面ADC 的位置关系,并证明你的结论.18.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点.(Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M. 求证:点M 在双曲线192522=-yx上.19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=13km ,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图) (Ⅰ)若希望点P 到三镇距离的平方和为最小, 点P 应位于何处? (Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处? 20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有(Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的.|)()(|],1,1[,v u v f u f v u -=--∈都有 若存在,请举一例:若不存在,请说明理由.2003年普通高等学校招生全国统一考试数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为xx x x x f 44sincos sin 2cos)(--=2222(cos sin )(cos sin )sin 2cos 2sin 2)4x x x x x x x x π=+--=-=+所以)(x f 的最小正周期.22ππ==T(Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a所以.2n a n =(Ⅱ)解:由,323nnn n n a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n nn n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC ,又A 1A ⊥底面ABC ,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E , ∵平面ACC 1⊥平面ABC ,∴DE ⊥平面ACC 1于E ,即DE 的长为点D 到平面ACC 1的 距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.43a ACAD CD DE =⋅=解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACDCV V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a 43.(Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F ,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B , 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B ,∴AD ∥平面A 1D 1B ,且C 1D ∥平面A 1D 1B ,∴平面ADC 1∥平面A 1D 1B ,∵A 1B ⊂平面A 1D 1B ,∴A 1B ∥平面ADC 1.18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分.(Ⅰ)解:由图可知,.3a b ,4,522=-===cc a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x(Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -,其中,500<<x 则,19252020=+y x ……① 直线A 1P ,P 1A 的方程分别为:),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③②式除以③式得,555500-+=-+x x x x 化简上式得,250x x =代入②式得,500x y y = 于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(0x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+yx.19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为.146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y-≥+解得,24119≥y 记,24119*=y 于是⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y+在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0(解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y-≥+解得,24119≥y 记,24119*=y 于是⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OCAC所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(,且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2, 这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M 重合时,P 到三镇的最远距离最小. 答:点P 的坐标是);24119,0(20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==-对任意的]1,1[,-∈v u ,当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时 当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时 当0,u <⋅v 不妨设],1,0(),0,1[∈-∈v u有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=- 所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下:假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ①由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。

相关文档
最新文档