第二章管流力学基础
流体力学第二章
p z z hp g
hp p g
§2-3 重力场中流体的平衡
几何意义
在重力作用下,静止的 不可压缩流体的静水头 线和计示静水头线均为 水平线
§2-3 重力场中流体的平衡
帕斯卡原理
p p z z h 0 g g
p p0 gh
——静力学基本方程形式之二。
§2-2 流体平衡微分方程式
一、方程式的建立 它是流体在平衡条件下,质量力与表面力所满足的关系式。
l 根据流体平衡的充要条件,静止流体受的所有力在各个坐标轴 方向的投影和都为零,可建立方程。
fi 0
l
方法:微元分析法。在流场中取微小六面体,其边长为 dx、dy、dz,然后进行受力分析,列平衡方程。
1、 流体静压强:静止流体作用在单位面积上的力。
设微小面积上的总压力为
P
平均静压强:
,则
P p A
ΔP
点静压强:
p lim
A0
P A
ΔA
即流体单位面积上所受的垂直于该表面上的力。单位:N/m2 (Pa) 1、 ( 牛) 2、总压力:作用于某一面上的总的静压力。P 单位:N
3、流体静压强单位:
2
n
略去二阶以上无穷小量,得到A1、A2处的压强分别为:
p dx p1 p x 2
则表面力在x方向的合力为:
p dx p 2 p+ x 2
p dx p dx p p1 p2 dy dz p p dy dz dx dy dz x 2 x 2 x
代入Ⅱ式得
dp dU
所以
p U C
令 p=p0时,U=U0 , 则 C=p0-ρU0
第二章--计算流体力学的基本知识
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
流体力学基础知识
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
流体力学2章讲稿
第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。
§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。
理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。
(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。
易实验研究,流体力学的主要研究方法。
两种研究方法得到的结论形式不同,但结论的物理相同。
可通过一定公式转换。
1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。
(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。
简称为质点导数。
例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。
流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。
[工学]第2章 流体力学基础
Q S1S2 2gh /(S12 S22 )
15
4、体位对血压的影响 血流在静脉和动脉中的速度近似不变
当v不变时有: P gh 恒量, h P
举例
直立
平卧
动脉 头
静脉
6.8kPa -5.2kPa
12.67kPa 0.67kPa
直立减小5.87kPa
动脉 脚
静脉
24.4kPa 12.4kPa
头打开时管内水的速度和压强。
解:将一楼至二楼的水管看作一流管,在一楼流管
取一截面A,在二搂流管取一截面B将水视为理想流体,
由连续性方程可得:
vB
S AvA SB
(1102 )2 4 (0.5102 )2
16m s1
又由伯努利方程 P 1 v2 gh 恒量 有:
2
2021/8/26
11
PA
2、柏努利方程中,当P不变时有: 1 v2 gh 恒量
2 当h不变时有: P 1 v2 恒量
2
当v不变时有: P gh 恒量
2021/8/26
9
3、方程的适用条件为:理想流体(无内摩擦,不可压
缩);稳定流动(v不随时间变化)。实际流体只
是具有近似性,对于粘性比较小的水和酒精等可较 好的符合,而对于甘油和血液等粘性较大的流体只 能粗略解释;对于气体,若不受压,可适用。
r v
r+r
5、实验表明:摩擦力 f 与 dv/dr 和接触
v+v
面积A成正比,即:
f
A dv
dr
(牛顿黏滞定律)
2021/8/26
20
f A dv
dr 其中 为黏滞系数或黏度,表示流体间速度梯度为1
《流体力学》流体力学基本方程
2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0
流体力学-第二章 基本方程
h
0
xy
z
经流体柱后侧流入的流体质量应为:
流入质量=
h
0
uy
z
同时,经流体柱前侧流出的质量为:
z
流出质量=
h
0
uy
z
x
h
0
uy
z
x
O
x u u x
x
y
u
h y
x
Chen Haishan NIM NUIST
流出质量减去流入质量 =柱体内质量的减少。
柱体内的净流出量
(流入质量减去流出质量 =柱体内质量的增加)
pnx nx pxx ny pyx nz pzx
pny nx pxy ny pyy nz pzy
pnz
nx pxz
ny pyz
nz pzz
Chen Haishan
NIM NUIST
z
pzz
z
pzx
pz pzy
pxz
px
pxx
pxy
pyy
pyx
py
P Pnz n
Pny
y Pnx o
Chen Haishan NIM NUIST
通过体积分,作用于体积为 的流体块上的质量力:
Fd =作用于流体的质量力
Chen Haishan NIM NUIST
② 表面力
表面力:是指流体内部之间或者流体与其他物体之 间的接触面上所受到的相互作用力。
如流体内部的粘性应力和压力、流体与固体接触面 上的摩擦力等。
x y
n n
cosn, cosn,
x y
nxn n y n
z n cosn, z nzn
Chen Haishan NIM NUIST
第二章 流体力学的基本方程1-2
(v⋅ ∇) b = 0
→
→
→
v⋅ ∇ϕ = 0
21
一维、 三.一维、二维、三维流动 一维 二维、
在设定的坐标系中, 在设定的坐标系中,根据有关物理 量依赖于一个坐标、 量依赖于一个坐标、两个坐标和三个坐 流体运动可分为一维运动、 标,流体运动可分为一维运动、二维运 动和三维运动。 动和三维运动。
14
运 中 流 质 所 有 物 量 (例 v, p, ρ,T等 动 的 体 点 具 的 理 N 如 ) 对 间 变 率: 时 的 化 ∆N ∂N → dN = lim = + (V⋅ ∇)N ∆t→ ∆ 0 ∂t dt t 称 物 量 的 点 数或 体 数 为 理 N 质 导 ( 随 导 ) dN −全 数 随 导 导 或 体 数 dt ∂N −局 导 或 变 数 部 数 时 导 ∂t (V⋅ ∇)N − 位 导 变 数
9
流体速度v、压力 、密度ρ和温度 等的对应表达式为: 和温度T等的对应表达式为 流体速度 、压力p、密度 和温度 等的对应表达式为:
vx = vx(x, y, z, t) = vx[x(t ), y(t ),z(t ),t ] vy = vy(x, y, z, t) = vy[x(t ), y(t ),z(t ),t ] vz = vz(x, y, z, t) = vz[x(t ), y(t ),z(t ),t ] v = v(x, y, z, t) = v[x(t ), y(t ),z(t ),t ] 及 p = p(x, y, z, t) = p[x(t ), y(t ),z(t ),t ] ρ = ρ(x, y, z, t) = ρ[x(t ), y(t ),z(t ),t ] T = T(x, y, z, t) = T [x(t ), y(t ),z(t ),t ] x, y, z, t —欧 变 拉 数
工程流体力学课后答案带题目
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0m N m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?M P aPa E E VVVV p p 6.191096.101.07=⨯==∆=∆=∆β1-4. 容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p βPa E p89104105.211⨯=⨯==-β1-5.用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp p V dT T V dV ∂∂+∂∂=00V T V T V V T T ββ=∂∂⇒∂∂= 00V p V p V V p pββ-=∂∂⇒∂∂-=所以,dpV dT V dp p VdT T V dV p T 00ββ-=∂∂+∂∂=从初始状态积分到最终状态得:L L L V p p EV T T V V dpV dT V dV T p pp T T T VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kgV V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2)V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()c S tSt s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少?解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/sμ=νρ=0.4×10-4×890=3.56×10-2 Pa·s1-8. 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa·s,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μi. 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhgh hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C绝=p a + p C表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。
流体力学(第二章)
三、压力对固体壁面的总作用力
1、压力作用在平面上的总作用力
当承受压力作用的面是平面时,作用在该面上 的压力的方向是互相平行的。故总作用力F等于油 液压力p与承压面积A的乘积。即 F=p.A 。 对于图中所示的液压缸,油液压力作用在活塞上 的总作用力为: F=p.A=p.D2/4 式中 p-油液的压力; D-活塞的直径。
1、静压力基本方程
上式即为静压力基本方程式,它说明了: (1)静止液体中任意点的静压力是液体表面上的 压力和液柱重力所产生的压力之和。当液面接触 大气时,p0为大气压力pa,故有 p=pa+γh 。 (2)同一容器同一液体中的静压力随深度的增加 线性地增加。 (3)连通器内,同一液体中深度相同的各点压力 都相等。
帕斯卡原理应用实例
图中是运用帕斯卡原理寻找推力和负载间关 系的实例。图中垂直、水平液压缸截面积为A1、 A2;活塞上负载为F1、F2。两缸互相连通,构成 一个密闭容器,则按帕斯卡原理,缸内压力到处 相等,p1=p2,于是F2=F1 . A2/A1,如果垂直液 缸活塞上没负载,则在略 去活塞重量及其它阻力 时,不论怎样推动水平 液压缸活塞,不能在液 体中形成压力。
以上两式即为理想液体的伯努利方程,式中每一 项的量纲都是长度单位,分别称为水头、位置水 头和速度水头。 伯努利方程的物理意义为:在管内作稳定流动 的理想液体具有压力能、位能和动能三种形式的 能量。在任意截面上这三种能量都可以相互转换, 但其总和保持不变。而静压力基本方程则是伯努 利方程(在速度为零时)的特例。
如果在与A点等高的容器上,接一根上端封闭 并抽去空气的玻璃管,可以看到在静压力作用下, 液体将沿玻璃管上升hp,根据上式对A点有: p/γ+z=z+hp,故 p/γ=hp 这说明了A处液体质点由于受到静压力作用而 具有mghp的势能,单位重量液体具有的势能为hp。 因为hp=p/γ,故p/γ为A点单位重量液体的压力能。 静压力基本方程式说明:静止液体中单位重 量液体的压力能和位能可以相互转换,但各点的 总能量保持不变,即能量守恒。
流体力学-第二章-流体静力学ppt课件
1.等加速直线运动容器内液体的相对平衡
由 dp fxdx f ydy fzdz
重力(-g) 惯性力(-a)
fx a (惯性力) f y 0, Z g 边界条件: x 0, z 0, p p0
p dp
x
adx
z gdz
p0
0
0
p p0 ax gz
在自由面: p p0
流体静力学:研究平衡流体的力学规律及其应用
平衡流体互相之间没有相对运动 粘性无从显示
■ 平衡流体上的作用力 ■ 流体的平衡微分方程 ■ 重力场中流体的平衡 ■ 静压强的计算与测量 ■ 平衡流体对壁面的作用力 ■ 液压机械的工作原理 ■ 液体的相对平衡
2.1 平衡流体上的作用力
作用在微团△V上的力可分为两种:质量力 表面力 1.质量力:作用在所研究的流体质量中心,与质量成正比
平行轴定理
I x IC yC2 A
yD
IC
yC2 yC A
A
yC
IC yC A
yC
常见图形的yC和IC
图形名称
yC
h
矩形
2
IC
b h3 12
三角形 半圆
h a 2b 3 a b
h3 36
a2
4ab ab
b2
d
d4
2
64
2d
9 2 64 d 4
3
1152
Fx
Ax
大小、作用点与作用 在平面上的压力相同
(2)垂直方向的作用力
dFz dF sin ghdAsin ghdAz
Fz dFz g Az hdAz gVF
VF——压力体体 ρgVF——压力体重量
Az Ax
Az Ax
流体力学第二章 基本方程
一、拉格朗日观点下的连续方程
d ( m) 0
dt
d ( )
dt
1 d 1 d ( ) 0 dt dt d V 0
dt
(2.1.1) (2.1.2) (2.1.3) (2.1.4)
V 称为速度散度,表示体膨涨速度。 V 0表示流体微团在运动过程中发生体积
沿变深度矩形截面河道水面上有波动运动,求 此波动应满足的连续方程
解:设x轴取在河道方向静止水面上
自静止水面起的深度为H(x),自由表面离静 止 水面为(x,t) ,河截面水流速度为 u(x,t) , 河宽b不变,水密度为常数 。
取一长为δx的控制体,体积为 (H )b x
单位时间流入质量:(H )bu
在 δt 时间内沿x方向净流出控制体(流出质量 减去流入质量)的质量为
(2.1.7)
按质量守恒定律,在 时间内沿三个方向净流 出控制体的总质量应等于控制体内减少的质量:
(2.1.8)
取极限后可得
即:
(V ) 0
t
(2.1.9) (2.1.10)
( 2.1.10)式为欧拉形式的连续性方程。
单位时间流出质量:
(H
)bu
x
( H
)bux
净流出质量为:
(H )bux
x
单位时间控制体质量减少为: (H )b x
由质量守恒:
t
b (H ) x b (H )u x
t
x
(H )u 0
t x
(2.1.16)
§2. 作用于流体的力、应力张量
一、质量力和表面力: 1. 质量力 质量力为穿越空间作用在所有流体元上的非 接触力,如重力、万有引力、电磁力等。
第二章 流体力学基础(1-6)知识讲解
34
2.2 液体静力学
2.2.3 压力表示方法和单位
压力有两种表示方法:绝对压力和相对压力。
以绝对真空为基准度量的压力叫做绝对 压力; 以大气压为基准度量的压力叫做相对压 力或表压。
这是因为大多数测量仪表都受大气 压作用,这些仪表指示的压力是相对压 力。
在液压与气压传动系统中,如不特别 说明,提到的压力均指相对压力。
液压油的粘度等级就是以其40ºC时运动粘度的某一平均 值来表示,
如L-HM32液压油(32号液压油)的粘度等级为32,则 40ºC时其运动粘度的平均值为32mm2/s 。
12
2.1 液压油
相对粘度 雷氏粘度〞R——英国、欧洲 赛氏粘度SSU——美国 恩氏粘度oE——俄国、德国、中国
oE=
t1
t2
单位:无量纲
(2)润滑性能好 (3)质地纯净,杂质少。 (4)具有良好的相容性。
(5)具有良好的稳定性。(氧化) (6)抗乳化性、抗泡沫性、防锈性、腐蚀性小。
(7)膨胀系数低、比热容高。 (8)流动点和凝固点低,闪点和燃点高。 (9)对人体无害,成本低。
18
2.1 液压油
2.1.4 液压油的选择
正确合理地选择液压油液,对保证液压传动系统正常工作、延 长液压传动系统和液压元件的使用寿命以及提高液压传动系统的工 作可靠性等都有重要影响。
流体力学第二章一压强规律及平面压力
作用在平面上的总水压力 是平行分布力的合力
P dp hdA
A
y sindA sin ydA
A
A
1.静水总压力的大小
ydA 受压面A对OX轴的静矩
A
ydA yc A(面积距定理)
A
P dp hdA y sindA sin ydA
A
A
A
P sinyc A hc A pc A
的大小与作用面的方位无关。
➢ 静压强 p 与作用方向无关,仅
取决于作用点的空间位置;流体是 连续介质 ,因此:p= p(x,y,z)。
➢ 静止流体的静压强 p = p(x, y, z),是空间点的连续函数。
2.2 流体平衡微分方程
在静止流体内部任取一点O’,该点的压强为p=p(x,y,z)
两个受压面abcd和a’b’c’d’中心点M,N 的压强:
解:pabs p0 γwh 78 9.81.5
92.7kN/m2
p0
pr pabs pat 92.7 98
5.3kN/m2
h
pv pr 5.3kN/m2
c
hv
pv
w
0.54m水柱
情 况 同 上 例 , 试 问 当点C 相 对 压 强 p为 8.k4N/m2时 , C点 在 自 由 面 下 的 淹 没 深 度 h为 多 少 ?
p po gh
(p p0 h)
2.3.2 帕斯卡原理(巴斯加原理)
根据流体静力学基本方程 p p0 h 可知,液面压强p0与液 柱所具有的重量 h 无关,如果液面压强p0增大(或减小) △p,则液体内任意点的压强都将同时增大(或减小)同样 大小的△p。
因此可得出结论:静止流体内任一点的压强变化,会等值 传递到流体的其他各点。这就是帕斯卡原理,或称静压传 递原理。
流体力学第二章 流体运动学基础
整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章
大学物理
第二章 流体力学基础2.1 如右图所示的装置中,液体在水平管道中流动,截面B 与大气相通。
试求盆中液体能够被吸上时h 的表达式(设s A ,s B 分别为水平管道A 、B 出的界面积,Q 为秒流量,C 与大气相通,P c =P 0) 根据水平管道中的伯努利方程以及连续性原理222121B B A A v P v P ρρ+=+Q v s v s B B A A ==,0P P B =可以求得截面A 处液体的压强)11(212220AB A S S Q P P -+=ρ 当gh P P A ρ-≤0即)1(212122BS AS Q g h -≤时,盆中的液体能够被吸上来。
2.2变截面水平管宽部分面积S 1=0.08cm 2,窄部分的面积S 2=0.04cm 2,两部分的压强降落时25Pa ,求管中宽部流体的流动的速度。
已知液体的密度为1059.5Kg/m -3解:应用连续性原理和水平流管的伯努利方程sm v m Kg Pa P P v S v S v P v P /125.0/5.1059 25212113212211222211=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==-=+=+-ρρρ 2.3如右图所示,水管的横截面积在粗处为40cm 2,细处为10cm 2,水的流量为133103--⨯s m 求:(1)水在粗处和细处的流速。
(2)两处的压强差。
(3)U 型管中水银的高度差。
解:1代表粗处,2代表细处 根据连续性原理:2211v S v S Q ==得s m S Q v /75.011==,s m S Q v /0.322== 应用水平管道中的伯努利方程知 Pa v v P 422021212122=-=∆ρρ 水银柱的高度差cm g P h 1.38.9106.1342203=⨯⨯=∆=∆汞ρ 2.4半径为0.02m 的水管以0.01m 3s -1的流量输送水,水温为20℃。
问(1)水的平均流速是多少?(2)流动是层流还是湍流?(3)要确定管中流体的最大速度,这些数据是否足够? 解:平均流速s m SQv /96.7==该体系的雷诺数26001017.35>⨯==ηρvdR 为湍流 )(92.1502.014.3201.02284)(4)2(122max 2max 42max 22-⋅=⨯⨯==⇒=⇒∆=∆=⇒-∆=S m R Q v R Q v R l P Q RlP v r R l P v πππηηη 2.5由于飞机机翼的关系,在机翼上面的气流速度大于下面的速度,在机翼上下面间形成压强差,因而产生使机翼上升的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 流体运动描述
二、拉格朗日法
1.方法概要 1.方法概要
着眼于流体各质点的运动情况,研究各质点的运动历程, 着眼于流体各质点的运动情况,研究各质点的运动历程, 通过综合所有被研究流体质点的运动情况来获得整个流体运动 的规律。 的规律。
2. 研究对象
流体质点
§2.1 流体运动描述
二、拉格朗日法(续) 拉格朗日法(
§2.2.2 多相管流
一、气液两相流的基本概念
体积(质量)流量Q 单位时间内流过断面的流体体积(质量)。 体积(质量)流量Q:单位时间内流过断面的流体体积(质量)。 平均速度Vm :单位时间内流过流断面的总体积与过流断面面积 平均速度Vm 之比。 之比。 V = Q A 表观速度:假设断面上只被两相混合物中的一相占据时 表观速度: 的流动速度 V = Q = V Y A
∂v x ∂v x ax = + ∂t ∂x ∂v y ∂v y + a y = ∂t ∂x ∂v z ∂v z + a z = ∂t ∂x
或
r r ∂v r r a = + (v ⋅ ∇ )v ∂t
§2.1 流体运动描述
一、欧拉法(续) 欧拉法(
4.加速度及其他物理量的时间变化率( 4.加速度及其他物理量的时间变化率(续) 加速度及其他物理量的时间变化率
§2.1 流体运动描述
伯努利方程( 一、伯努利方程(续)
b 总水头线 b'
2 v2 / 2 g
v2 p + gz + = 常数 = H 2 ρ
v12 / 2 g
c
p1 / ρg
静水头线
c' H
速 度 水 头
位 置 水 头
压 强 水 头
总 水 头
1
p2 / ρg
z1
2 a
不可压缩理想流体在重力场中作定常流 动时, 动时,沿流线单位重力流体的总水头线 为一平行于基准线的水平线。 为一平行于基准线的水平线。
§2.1 流体运动描述
一、欧拉法(续) 欧拉法(
4.加速度及其他物理量的时间变化率( 4.加速度及其他物理量的时间变化率(续) 加速度及其他物理量的时间变化率
(2)其他物理量的时间变化率
r d ∂ = + v ⋅∇ dt ∂t r dρ ∂ρ = + v ⋅∇) ρ ( dt ∂t
密度: 密度:
dρ ∂ρ ∂ρ ∂ρ ∂ρ = + vx + vy + vy dt ∂t ∂x ∂y ∂z
α α α
sα
α
α α
两相混合速度:两相混合物在单位时间流过断面的总体积与断面 两相混合速度:
面积之比
Vm = Qα + Qβ A = Vsα + Vsβ
两相混合速度:两相混合物在单位时间流过断面的总体积与断面 面积之比 Vsα Vsβ
Vs = Vα − Vβ = Yα − Yβ
§2.2 垂直管流
A
有效截面: 有效截面: qv = ∫∫ vdA
A
平均流速: 平均流速:流经有效截面的体积流量除以有效截面积而得到的商
v a = qv A
§2.1 流体运动描述
连续方程(积分形式) 一、连续方程(积分形式)
本质: 本质:质量守恒定律
单位质量
η =1
N = ∫∫∫ ρdV = m
V
dm =0 dt
系统的质量
折点
v2
s
§2.1 流体运动描述
三、 流管 流束 有效截面 流量 平均流速
1. 流管 流束
流管:在流场内任意作一封闭曲线(不是流线),通过封闭曲线 流管:在流场内任意作一封闭曲线(不是流线),通过封闭曲线 ), 上所有各点作流线,所形成的一个封闭的管状曲面称为流管。 上所有各点作流线,所形成的一个封闭的管状曲面称为流管。
一维定常流: 一维定常流:
∫∫ ρv
A1
n1
dA = ∫∫ ρvn 2 dA
A2
ρv1a A1 = ρv2 a A2 = 常数
不可压缩一 维定常流: 维定常流:
在定常流动条件下, 在定常流动条件下,通过 流管的任意有效截面的质 流管的任意有效截面的质 量流量是常量 是常量。 量流量是常量
va A = 常数
压强场: 压强场: 密度场: 密度场:
p = p ( x, y , z , t )
ρ = ρ ( x, y , z , t )
N = N ( x, y , z , t )
§2.1 流体运动描述
一、欧拉法(续) 欧拉法(
4.加速度及其他物理量的时间变化率 4.加速度及其他物理量的时间变化率
(1)加速度
流束:流管内部的流体称为流束。封闭曲线无限小时所形成的流管 流束:流管内部的流体称为流束。封闭曲线无限小时所形成的流管 无限小
§2.1 流体运动描述
2. 有效截面 流量 平均流速
有效截面: 有效截面:处处与流线相垂直的流束的截面 流量: 流量:单位时间内流经某一规定表面的流体量
r qv = ∫∫ v cos(v , x)dA
流型图
§2.2 垂直管流
§2.2.2 多相管流(续) 多相管流(
§2.2 垂直管流
§2.2.2 多相管流(续) 多相管流(
2.物理模型 2.物理模型
均流模型:将两相流动视为一种均匀介质流动 均流模型: 分流模型:将两相流动视为各自分开的流动 分流模型: 流型分析: 流型分析:对流型描述并按流型建立关系式 漂流模型: 漂流模型:考虑流型结合单独测试建立关系式 滑动模型: 滑动模型:考虑各相流体之间的滑动
不可压缩理想流体在重力场中的定常流动; 应用范围: 应用范围:(1) 不可压缩理想流体在重力场中的定常流动; (2) 同一条流线上的不同的点;沿不同的流线 同一条流线上的不同的点; 时,积分常数的值一般不相同。 积分常数的值一般不相同。 物理意义: 不可压缩理想流体在重力场中作定常流动时, 物理意义: 不可压缩理想流体在重力场中作定常流动时,沿 流线单位质量流体的动能、 流线单位质量流体的动能、位势能和压强势能之 和是常数。 和是常数。
§2.2 垂直管流
§2.2.1 单相流动(续) 单相流动(
②层流、紊流判断准则 层流、
ρν D ρν 2 惯性力 = = = 雷诺数 Re = µν µ 粘性力
D
< 2100(层流) 过渡 >4000(紊流)
流体密度, ρ-流体密度,Kg/m3,g/cm3 D-管径,m,cm 管径, 流体的平均速度m/s,cm/s ν-流体的平均速度m/s,cm/s 流体的粘度Pa S,g/cm·s Pa·S,g/cm μ-流体的粘度Pa S,g/cm s
ax = dv x ∂v x ∂ v x dx ∂ v x dy ∂ v x dz = + + + dt ∂t ∂ x dt ∂ y dt ∂ z dt
∂ v x dy ∂ v x dz dx + + dt ∂ y dt ∂ z dt ∂ v y dy ∂ v y dz dx + + dt ∂ y dt ∂ z dt ∂ v z dy ∂ v z dz dx + + dt ∂ y dt ∂ z dt
在定常流动条件下, 在定常流动条件下,通过 流管的任意有效截面的体 流管的任意有效截面的体 积流量是常量 是常量。 积流量是常量
§2.1 流体运动描述
一、伯努利方程
不可压缩理想流体在重力场中的一维定常流动的能量方程。 不可压缩理想流体在重力场中的一维定常流动的能量方程。
v2 p v2 p ρv(u + + gz + )dA − ∫∫ ρv(u + + gz + )dA = 0 ∫∫ 2 ρ 2 ρ A2 A1
v p v p u2 + 2 + gz 2 + 2 = u1 + 1 + gz1 + 1 2 ρ2 2 ρ1
2
⇓ 沿流线积分
2
u+
v p + gz + = 常数 2 ρ
2
⇓Hale Waihona Puke ⇓v2 p + gz + = 常数 2 ρ
§2.1 流体运动描述
伯努利方程( 一、伯努利方程(续)
v2 p + gz + = 常数 2 ρ
2. 研究对象
流场
§2.1 流体运动描述
一、欧拉法(续) 欧拉法(
3.运动描述 3.运动描述
流速场: 流速场:
u x = u x ( x, y, z , t ) u y = u y ( x, y, z , t ) u = u ( x, y, z , t ) z z
⇒
其他物理量( 其他物理量(N)场:
§2.2.2 多相管流(续) 多相管流(
持率: 持率:某相流体所占过流断面积与总过流断面积 之比。 之比。Yg=Ag/A,YL=AL/A 含率:某相流体体积流量与总体积流量之比。 含率:某相流体体积流量与总体积流量之比。 Cg=Qg/Q,CL=QL/Q
二、气液两相物理模型(流动模型) 气液两相物理模型(流动模型)
流线
u3
6 u 5 5 u4
§2.1 流体运动描述
u6
二、流线(续) 流线(
2. 流线微分方程
r r v × ds = 0
r v dx cos(v , x) = x = v ds v y dy r cos(v , y ) = = v ds r v d cos(v , z ) = z = v ds
3.运动描述 3.运动描述
流体质点坐标: 流体质点坐标:
x = x ( a , b, c , t ) y = y ( a , b, c , t ) z = z ( a , b, c , t )