高考数学中的恒成立问题与存在性问题
高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)
函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。
考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。
(完整版)恒成立存在性问题
专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
高中数学x恒成立、存在性问题解决办法
恒成立、存在性问题解决办法总结1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若 ,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m i n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m ax ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、简单型1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤; 方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、更换主元法1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
恒成立与存在性问题的解题策略
“恒成立问题"与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题"的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f (x)在区间[a ,b ]上的值域为A ,g (x )在区间[c,d]上的值域为B ,则A ⊂B 。
高考数学复习专题19 恒成立与存在性问题(解析版)
专题19恒成立与存在性问题专题知识梳理恒成立问题①∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A;③∀x∈D,均有f(x)>g(x)恒成立,则F(x)=f(x)-g(x)>0,∴F(x)min>0;④∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)-g(x)<0,∴F(x)ma x<0;⑤∀x1∈D,∀x2∈E,均有f(x1)>g(x2)恒成立,则f(x)min>g(x)ma x;⑥∀x1∈D,∀x2∈E,均有f(x1)<g(x2)恒成立,则f(x)ma x<g(x)min.存在性问题①∃x0∈D,使得f(x0)>A成立,则f(x)ma x>A;②∃x0∈D,使得f(x0)﹤A成立,则f(x)min<A;③∃x0∈D,使得f(x0)>g(x0)成立,设F(x)=f(x)-g(x),∴F(x)ma x>0;④∃x0∈D,使得f(x0)<g(x0)成立,设F(x)=f(x)-g(x),∴F(x)min<0;⑤∃x1∈D,∃x2∈E,使得f(x1)>g(x2)成立,则f(x)ma x>g(x)min;⑥∃x1∈D,∃x2∈E,均使得f(x1)<g(x2)成立,则f(x)min<g(x)ma x.考点探究【例1】(2018·徐州模拟)若关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,则实数a的取值范围是.【解析】关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,可得x3﹣3x2+ax<﹣b的最小值,即为x3﹣3x2+ax<﹣4,可得a<3x﹣x2﹣的最小值,设f (x )=3x ﹣x 2﹣,x ∈[1,3],导数为f′(x )=3﹣2x+,可得1<x <2时,f′(x )>0,f (x )递增;2<x <3时,f′(x )<0,f (x )递减,又f (1)=﹣2,f (3)=﹣,可得f (x )在[1,3]的最小值为﹣2,可得a <﹣2.即有a 的范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【例2】已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==.若对任意x R ∈,不等式(2)()6f x mf x ≥-恒成立,求实数m 的最大值;【解析】由条件知2222(2)22(22)2(())2x x x x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x R ∈恒成立.而2(())44()4()()f x f x f x f x +=+≥=,且2((0))44(0)f f +=,所以4m ≤,故实数m 的最大值为4.【例3】已知=)(x f x x +221,=)(x g a x -+)1ln(,(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(2)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=.(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,则min max )()(x g x f >,即4>a -,所以4->a .(2)若存在21,x x 使得)()(21x g x f =,则A B ≠∅ ,∴4a -≤且ln 30a -≥,∴实数a 的取值围是[]4,ln 3-.题组训练1.已知函数()()32ln 3,a f x x x g x x x x =++=-,若()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦,则实数a 的取值范围为_________________.【解析】由题意()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦得()()min max f x g x ≥()32g x x x =-,()´232g x x x =-所以()g x 在1233⎡⎤⎢⎥⎣⎦,单调递减,在223⎡⎤⎢⎥⎣⎦单调递增,所以()()()12243max g x max g g g ⎧⎫⎛⎫===⎨⎬ ⎪⎝⎭⎩⎭,,则()ln 34a f x x x x =++>得2a x x lnx ≥-令()2h x x x lnx =-,()´12h x xlnx x =--,()¨23h x lnx =--,在1,23⎡⎤⎢⎥⎣⎦上()¨0h x <,则()´h x 单调递减,又()10h =,所以()h x 在113⎡⎤⎢⎥⎣⎦,单调递增,在[]12,单调递减,()()max 11h x h ==,所以1a ≥,故填[)1,+∞.2.已知函数f(x)=22e 1+x x ,g(x)=2e ex x ,对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立,则正数k的取值范围是.【解析】因为k 为正数,所以对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立⇒max()⎡⎤⎢⎥⎣⎦g x k ≤min ()1⎡⎤⎢⎥+⎣⎦f x k .令g'(x)=0,即2e (1-)e xx =0,得x=1,当x∈(0,1)时,g'(x)>0,当x∈(1,+∞)时,g'(x)<0,所以max ()⎡⎤⎢⎥⎣⎦g x k =(1)g k =e k .同理,令f'(x)=0,即222e -1x x =0,得x=1e ,当x∈10,e ⎛⎫ ⎪⎝⎭时,f'(x)<0,当x∈1,e ∞⎛⎫+ ⎪⎝⎭时,f'(x)>0,所以min ()1⎡⎤⎢⎥+⎣⎦f x k =1e 1⎛⎫ ⎪⎝⎭+f k =2e 1+k ,所以e k ≤2e 1+k ,又k>0,所以k≥1.3.已知()1()2,11f x x x x =-->-+,若2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,求实数t 的取值范围.【解析】2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,即()f x 的最大值都小于等于221t at -+;即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,即可解出实数t 的取值范围.容易得出11()23132111f x x x x x ⎛⎫=--=-++≤-= ⎪++⎝⎭,即()f x 的最大值为1,则2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立⇔2121t at ≤-+对于所有的[]1,1a ∈-恒成立,即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,∴2t ≤-或2t ≥或0t =.4.已知函数()()1522>+-=a ax x x f .若()x f 在区间(]2,∞-上是减函数,且对任意的[]1,1,21+∈a x x ,总有()()421≤-x f x f ,求实数a 的取值范围;【解析】条件12()()4f x f x -≤表示的含义是函数f (x )在[1,1]a +上的最大值与最小值的差小于或等于4.若2a ≥.又[1,1]x a a =∈+,且(1)1a a a +-≤-.所以max ()(1)62f x f a ==-.2min ()()5f x f a a ==-.因为对任意的12,[1,1]x x a ∈+.总有12()()4f x f x -≤.所以max min ()()4f x f x -≤.即2(62)(5)4a a ---≤.解得13a -≤≤.又2a ≥.所以23a ≤≤.若12a <<.2max ()(1)6f x f a a =+=-.2min ()()5f x f a a ==-.max min ()()4f x f x -≤显然成立.综上13a <≤.5.函数()()m mx x g x x x f 25,342-+=+-=,若对任意的[]4,11∈x ,总存在[]4,12∈x ,使()()21x g x f =成立,求实数m 的取值范围.【解析】由题可知函数()f x 的值域为函数()g x 的值域的子集[][]2()43,1,4,()1,3f x x x x f x =-+∈∴∈-,以下求函数()52g x mx m =+-的值域:①0m =时,()52g x m =-为常函数,不符合题意;②0m >,[]()52,52g x m m ∈-+,∴521,523,m m -≤-⎧⎨+≥⎩解得6m ≥;③0m <,[]()52,52g x m m ∈+-,∴521,523,m m +≤-⎧⎨-≥⎩解得3m ≤-.综上所述,m 的取值范围为(][),36,-∞-+∞ .6.已知函数()()1ln f x x x ax a =+-+(a 为正常数).(1)若()f x 在()0,+∞上单调递增,求a 的取值范围;(2)若不等式()()10≥-x f x 恒成立,求a 的取值范围.【解析】(1)()()1ln f x x x ax a =+-+,1()ln 0x f x x a x +'=+-≥,1ln 1≤++a x x 恒成立令1()ln 1g x x x =++,21()x g x x-'=列表略min ()(1)2g x g ==,02a <≤.(2)当0a <≤2时,由(1)知,若()f x 在()0,+∞上单调递增,又()10f =,当(0,1),()0x f x ∈<;当(1,),()0x f x ∈+∞>,故不等式()()10x f x -≥恒成立当2a >,ln (1)1()x x a x f x x+-+'=,令()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则21a x e -=>,当2(1,)a x e -∈时,()0p x '<,则()(1)20p x p a <=-<,当2(1,)a x e -∈,()0f x '<,则()f x 单调递减,()(1)0f x f <=,矛盾,因此02≤<a .法二:1()()ln 1g x f x x a x '==++-,22111()x g x x x x-'=-=,讨论单调性可得min ()(1)2g x g a ==-.当02a <<时,()()0g x f x '=>,()f x 在(0,)+∞单调递增,又(1)0f =,符合题意;当2a >时,(1)20g a =-<,1()10a a g e e=+>,因为()g x 在(0,)+∞不间断,所以()g x 在(1,)a e 上存在零点1x ,1(1,),()∈x x f x 单调减,1(,),()∈a x x e f x 单调增,所以当11<<x x 时,()(1)0<=f x f 不合题意;当2a =时,符合题意;综上02≤<a .。
高三数学专题——恒成立与存在性问题
高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。
2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。
3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。
高考数学《恒成立和存在性问题》
高考数学 恒成立和存在性问题
2. 已知 e 为自然对数的底数,函数 f(x)=ex-ax2 的图象恒在直线 y=32ax 上方,求 实数 a 的取值范围.
高考数学 恒成立和存在性问题
解析:由题意得不等式 ex-ax2>32ax 在 x∈(-∞,+∞)上恒成立,即 ex>ax2+32ax 恒成立,根据图象可得当 a>0 时不等式不恒成立;当 a=0 时,不等式恒成立;当 a<0 时,令 g(x)=ex,h(x)=ax2+32ax,设函数 g(x)与 h(x)图象的公切线为 l,切点 P(t,et),且 t<0.因为 g′(x)=ex,h′(x)=2ax+32a,所以 l 的斜率 k=et=2at+32at ①.因为点 P 在函数 h(x)的图象上,所以 et=at2+32at ②.由①②可得 t=32(舍去)或 t=-1,则 a=-2e,所以-2e<a≤0.
例 1 已知函数 f(x)=ax2-lnx(a 为常数). (1) 当 a=12时,求 f(x)的单调减区间; (2) 若 a<0,且对任意的 x∈[1,e],f(x)≥(a-2)x 恒成立,求实数 a 的取值范围.
高考数学 恒成立和存在性问题
解析:(1) f(x)的定义域为(0,+∞),f′(x)=2ax-1x=2axx2-1.当 a=12时,f′(x)= x2-1
解析:(1) f′(x)=mx -12=2m2-x x(x>0).
当 m≤0 时,f′(x)<0.所以 f(x)的单调减区间为(0,+∞).
当 m>0 时,由 f′(x)=0 得 x=2m,列表如下:
x (0,2m) 2m (2m,+∞)
f′(x) +
0
-
恒成立与存在性问题的解题策略
恒成立问题”与 存在性问题”的基本解题策略一、 恒成立问题”与 存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、 恒成立问题的转化: a f x 恒成立=a . f x 咧;a _ f x 恒成立=a _ f x min2、 能成立问题的转化: a . f x 能成立=a . f x min ; a 辽f x 能成立=a 辽f x max3、 恰成立问题的转化:a f x 在 M 上恰成立二 a ■ f x 的解集为l a f x 在M 上恒成立Mu一、a (x 在C R M 上恒成立另一转化方法:若 X • D, f (x) _ A 在D 上恰成立,等价于f (x)在D 上的最小值f min (x)二A , 若X ,D,f(x)乞B 在D 上恰成立,则等价于 f (x)在D 上的最大值f max (X )二B .4、设函数f x 、g x ,对任意的X"-a , b 1,存在X 2 • C , d 丨,使得f x i _ g X 2,则f min X -g m in X5、设函数f x 、g x ,对任意的X 1 a,bi , 存在X 2 E fc, d 】,使得代人)兰g(x 2 ),则g X ,存在 x< a , b 1,存在 X 2 • C, d 1,使得 f X 1 - g X 2 ,则 f m ax X —g m i n xg x ,存在x< a , b 1,存在X 2 • C , d 1,使得f 治 -g X 2 ,则f m i n X —g m a x X&设函数f x 、g x ,对任意的x 1 存在X 2乏C , d 】,使得f(x 1 )= gg ),设f(x)在区间[a,b ]上的值域为A ,g(x)在区间[c,d ]上的值域为B,则A=B. 9、若不等式f xx 在区间D 上恒成立,则等价于在区间 D 上函数y = f x 和图象在函数y 二g x 图象上方;10、若不等式f x : g x 在区间D 上恒成立,则等价于在区间 D 上函数y = f x 和图象在函数y 二g x 图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论 恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数 R;某不等式的解为一切实数;某表达式的值恒大于 a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函m axX- g m ax X6、设函数f x 、7、设函数f X 、数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
恒成立与存在性问题
2.设函数 f(x)=x2-1,对任意 x∈[32,+∞),f(mx )-4m2f(x)≤f(x -1)+4f(m)恒成立,求实数 m 的取值范围
[解析] ∵f(x)=x2-1,x∈[32,+∞), f(mx )-4m2f(x)≤f(x-1)+4f(m)对 x∈[32,+∞)恒成立. 即(mx )2-1-4m2(x2-1)≤(x-1)2-1+4(m2-1)恒成立. 即(m12-4m2-1)x2+2x+3≤0 恒成立.即m12-4m2-1≤-2xx2-3恒成立. g(x)=-2xx2-3=-x32-x2=-3(x12+32x)=-3(1x+31)2+31. ∵x≥32,∴0<1x≤32,∴当1x=23时,g(x)min=-38. ∴m12-4m2-1≤-83.整理得 12m4-5m2-3≥0,(3m2+1)(4m2-3)≥0. ∵3m2+1>0,∴4m2-3≥0.即:m≥ 23或 m≤- 23.
2x 1
步转化为(ln 2xx11)max (3m成a 立4 . m2 )min
(2)①F(x)=ln(x+2)- 2x
x 1
定义域为:
(-2,-1)∪(-1,+∞).
F′(x)=
x
1
2
2(x 1) 2x (x 1)2
x
1
2
(x
2 1)2
=(x 1)2 2(x 2)
(x 2)(x 1)2
(x
x2 3 2)(x 1)2
,
令F′(x)>0,得单调增区间为 (2,和 3) ( 3,) 令F′(x)<0,得单调减区间为 ( 和3,1) (1, 3)
②不等式f(x+1)≤f(2x+1)-m2+3am+4化为:
高考数学《不等式的恒成立与存在性问题》
恒成立与存在性问题【基础知识整合】1、恒成立问题①.x D ∀∈,()a f x >恒成立,则max ()a f x >②.x D ∀∈,()a f x <恒成立,则min()a f x <③.x D ∀∈,()()f x g x >恒成立,记()() (0)F x f x g x =->,则min 0() F x >④.x D ∀∈,()()f x g x <恒成立,记()() (0)F x f x g x =-<,则max 0() F x <⑤.1122,x D x D ∀∈∈,12()()f x g x >恒成立,则min max ()()f x g x >⑥.1122,x D x D ∀∈∈,12()()f x g x <恒成立,则max min ()()f x g x <2、存在性问题①.x D ∃∈,()a f x >成立,则min ()a f x >②.x D ∃∈,()a f x <成立,则max()a f x <③.x D ∃∈,()()f x g x >成立,记()() (0)F x f x g x =->,则max 0() F x >④.x D ∃∈,()()f x g x <成立,记()() (0)F x f x g x =-<,则min 0() F x <⑤.1122,x D x D ∃∈∈,12()()f x g x >成立,则max min ()()f x g x >⑥.1122,x D x D ∃∈∈,12()()f x g x <成立,则min max ()()f x g x <3、恒成立与存在性混合不等问题①.1122,x D x D ∀∈∃∈,12()()f x g x >成立,则min min ()()f x g x >②.1122,x D x D ∀∈∃∈,12()()f x g x <成立,则max max ()()f x g x <4、恒成立与存在性混合相等问题若()f x ,()g x 的值域分别为,A B ,则①.1122,x D x D ∀∈∃∈,12()()f x g x =成立,则A B ⊆②.1122,x D x D ∃∈∃∈,12()()f x g x =成立,则A B ≠∅ 5、解决高中数学函数的存在性与恒成立问题常用以下几种方法①函数性质法;②分离参数法;③主参换位法;④数形结合法等.6、一次函数)0()(≠+=k b kx x f 若[]n m x f y ,)(在=内恒有0)(>x f ,则根据函数的图像可得⎩⎨⎧><⎩⎨⎧>>0)(00)(0n f a m f a 或可合并成⎩⎨⎧>>0)(0)(n f m f ,同理若[]n m x f y ,)(在=内恒有0)(<x f 则有⎩⎨⎧<<0)(0)(n f m f 例1:对于满足||2p ≤的所有实数p ,求使不等式212x px p x ++>+恒成立的x 的取值范围.例2:若不等式)1(122->-x m x 的所有22≤≤-m 都成立,则x 的取值范围__________7、二次函数——利用判别式、韦达定理及根的分布求解有以下几种基本类型:类型1:设2()(0).f x ax bx c a =++≠R x x f ∈>在0)(上恒成立00<∆>⇔且a ;R x x f ∈<在0)(上恒成立00<∆<⇔且a 类型2:设2()(0).f x ax bx c a =++≠(用函数图象解决,不太适用)(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立,222()00()0.bb b a aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或],[0)(βα∈<x x f 在上恒成立()0,()0.f f αβ<⎧⇔⎨<⎩(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在上恒成立,222()00()0.b b b a a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或【基础典例分析】例1:已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈.(Ⅰ)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值;(Ⅱ)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围.例2:已知=)(x f x x +221,=)(x g a x -+)1ln(,(Ⅰ)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(Ⅱ)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.例3:设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0.若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围.例4:已知函数()133x x af x b+-+=+(Ⅰ)当1a b ==时,求满足()3x f x =的x 的取值;(Ⅱ)若函数()f x 是定义在R 上的奇函数;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若()g x 满足()()()12333x x f x g x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值.例5:已知=)(x f x x +221,=)(x g a x -+)1ln(,⑴若存在]2,0[∈x ,使得)()(x g x f =,求实数a 的取值范围;⑵若存在]2,0[∈x ,使得)()(x g x f >,求实数a 的取值范围;⑶若对任意]2,0[∈x ,恒有)()(x g x f >,求实数a 的取值范围;⑷若对任意]2,0[,21∈x x ,恒有)()(21x g x f >,求实数a 的取值范围;⑸若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f >,求实数a 的取值范围;⑹若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f =,求实数a 的取值范围;⑺若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;⑻若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【高考真题研究】(2017天津卷理8)已知函数()23,12,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()2xf x a + 在R 上恒成立,则a 的取值范围是()(A)47,216⎡⎤-⎢⎥⎣⎦(B)4739,1616⎡⎤-⎢⎥⎣⎦(C)23,2⎡⎤-⎣⎦(D)3923,16⎡⎤-⎢⎥⎣⎦(2015全国卷Ⅰ理12)设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是()(A)[32e-,1)(B)[32e -,34)(C)[32e ,34)(D)[32e,1)(2014全国卷Ⅰ理11)已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为()(A)(2,)+∞(B)(,2)-∞-(C)(1,)+∞(D)(,1)-∞-(2015全国卷Ⅱ理21(2))设函数()2emxf x x mx =+-.若对于任意[]12,1,1x x ∈-,都有()()121e f x f x -- ,求m 的取值范围.(2015山东卷理21(2))设函数()()()2ln 1f x x a x x =++-,其中a R ∈,若0x ∀>,()0f x 成立,求a 的取值范围.【名题精选,提升能力】1、函数2()3f x x ax =++,当[]2,2x ∈-时,()f x a ≥恒成立,则a 的取值范围是2、已知函数()f x =(,1]-∞上有意义,则a 的取值范围是3、若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,则x 的取值范围是4、若=)(x f x x +221,=)(x g a x -+)1ln(,对∀123,,[0,2]x x x ∈,恒有()()()123f x f x g x +>,则实数a 的取值范围是5、已知数列{}n a 是各项均不为零的等差数列,n S 为其前n项和,且n a =(n *∈Ν).若不等式8nn a n λ+≤对任意n *∈Ν恒成立,则实数λ的最大值为5、设函数x x e x f 1)(22+=,x ex e x g 2)(=,对),0(,21+∞∈∀x x ,不等式1)()(21+≤k x f k x g 恒成立,则正数k 的取值范围为7、已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩,()|||1|g x x k x =-+-,若对任意的12,x x R ∈,都有12()()f x g x ≤成立,则实数k 的取值范围为8、当210≤<x 时,x a x log 4<,则a 的取值范围是()(A)(0,22)(B)(22,1)(C)(1,2)(D)(2,2)9、已知函数()931x x f x m m =-⋅++对()0 x ∈+∞,的图象恒在x 轴上方,则m 的取值范围是()(A)22m -<<+(B)2m<(C)2m<+(D)2m ≥+10、设函数3()f x x x =+,x R ∈.若当02πθ<<时,不等式0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是()(A)1(,1]2(B)1(,1)2(C)[1,)+∞(D)(,1]-∞11、定义在R 上的偶函数()f x 在[)0,+∞上递减,若()()()ln 1ln 121f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为()(A)()2,e (B)1,e⎡⎫+∞⎪⎢⎣⎭(C)1,e e ⎡⎤⎢⎥⎣⎦(D)12ln3,3e+⎡⎤⎢⎥⎣⎦12、不等式2220x axy y -+≥对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是()(A)a ≤22(B)a ≥22(C)a ≤311(D)a ≤2913、已知函数()()2ln 1f x a x x =+-,若对(),0,1p q ∀∈,且p q ≠,有()()112f p f q p q+-+>-恒成立,则实数a 的取值范围为()(A)(),18-∞(B)(],18-∞(C)[)18,+∞(D)()18,+∞14、若对[),0,x y ∀∈+∞,不等式2242x y x y ax ee +---≤++,恒成立,则实数a 的最大值是()(A)14(B)1(C)2(D)1215、已知函数2ln ()()()x x b f x b R x+-=∈,若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则实数b的取值范围是()(A)(-∞(B)3(,2-∞(C)9(,)4-∞(D)(,3)-∞16、设曲线()e x f x x =--上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为()(A)[]1,2-(B)()3,+∞(C)21,33⎡⎤-⎢⎥⎣⎦(D)12,33⎡⎤-⎢⎥⎣⎦17、若曲线21:C y x =与曲线2:x C y ae =(0)a >存在公共切线,则a 的取值范围为()(A)28[,)e+∞(B)28(0,e(C)24[,)e+∞(D)24(0,]e18、若存在两个正实数,x y ,使得等式()()324ln ln 0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是()(A)(),0-∞(B)30,2e ⎛⎤ ⎥⎝⎦(C)3,2e⎡⎫+∞⎪⎢⎣⎭(D)()3,0,2e⎡⎫-∞+∞⎪⎢⎣⎭ 19、已知函数321()3f x x x ax =++.若1()x g x e =,对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f x g x ≤成立,则实数a 的取值范围是()(A)(,8]e-∞-(B)[8,)e-+∞(C))e (D)3(,]32e -20、设函数()3269f x x x x =-+,()32111(1)323a g x x x ax a +=-+->,若对任意的[]20,4x ∈,总存在[]10,4x ∈,使得()()12f x g x =,则实数a 的取值范围为()(A)91,4⎛⎤ ⎥⎝⎦(B)[)9,+∞(C)][91,9,4⎛⎫⋃+∞ ⎪⎝⎭(D)][39,9,24⎡⎫⋃+∞⎪⎢⎣⎭21、设函数()()()21ln 31f x g x ax x =-=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为()(A)94(B)2(C)92(D)422、已知()()2cos ,43f x x x g x x x =+=-+-,对于[],1a m m ∀∈+,若,03b π⎡⎤∃∈-⎢⎥⎣⎦,满足()()g a f b =,则m 的取值范围是()(A)22⎡-+⎣(B)1⎡+⎣(C)2⎡+⎣(D)12⎡+⎣23、已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,,则实数a 的取值范围为()(A)[)1,0-(B)[]1,0-(C)3,2⎡⎫-+∞⎪⎢⎣⎭(D)3,2⎛⎤-∞- ⎥⎝⎦。
恒成立与存在性问题的解题策略
“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A ?B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:✍在给定区间上某关系恒成立;✍某函数的定义域为全体实数R;✍某不等式的解为一切实数;✍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
高三数学专题恒成立与存在性问题
高三复习专题——恒成立与存在性问题知识点总结:(1)恒成立问题1. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2. ∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A.3. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)=f(x)- g(x) >0,∴F(x)min >04. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)- g(x) ﹤0,∴F(x) ma x﹤05. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x6. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min(2)存在性问题1. ∃x0∈D,使得f(x0)>A成立,则f(x) ma x >A;2. ∃x0∈D,使得f(x0)﹤A成立,则f(x) min <A3. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)=f(x)- g(x),∴F(x) ma x >04. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)=f(x)- g(x),∴F(x) min <05. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min6. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x(3)相等问题1. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则{ f(x)}{g(x)}(4)恒成立与存在性的综合性问题1. ∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in>g(x)m in2. ∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max <g(x)max(5)恰成立问题1. 若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;2.若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.► 探究点一 ∀x ∈D ,f (x )>g (x )的研究例1、已知函数12)(2+-=ax x x f ,xa x g =)(,其中0>a ,0≠x . 对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;【思路分析】等价转化为函数0)()(>-x g x f 恒成立,通过分离变量,创设新函数求最值解决. 简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .► 探究点二 ∃x ∈D ,f (x )>g (x )的研究对于∃x ∈D ,f (x )>g (x )的研究,先设h (x )=f (x )-g (x ),再等价为∃x ∈D ,h (x )max >0,其中若g (x )=c ,则等价为∃x ∈D ,f (x )max >c .例 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14,曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,所以曲线y =f (x )在点(2,f (x ))处的切线方程为8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数,故f (x )m in =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾.当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0,所以x =23a 时,f (x )取最小值,因此有f ⎝⎛⎭⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾; 当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )m in =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数.g (x )m in =g (2),所以a >92.【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论.► 探究点三 ∀x 1∈D ,∀x 2∈D ,f (x 1)>g (x 2)的研究 例、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.思路分析:解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xa b +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a 简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(x a x a x x a x h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者. ⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .► 探究点四 ∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究,第一步先转化为∃x 2∈D ,f (x 1)m in >g (x 2),再将该问题按照探究点一转化为f (x 1)m in >g (x 2)m in .例、已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8.(1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞),使得f (x 1)>g (x 2)成立,求实数m 的取值范围.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解,得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解.当x -m =m 时,得x =2m ,则2m =0或2m <-4,即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎪⎨⎪⎧ 2x -m x ≥m ,2m -x x <m ,原命题等价为f (x 1)m in >g (x 2)m in .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎡⎦⎤4,m 2单调递增,⎣⎡⎦⎤m 2,m 上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎫72,5∪(6,+∞). 【点评】 因为对于∀x ∈D ,f (x )>c ,可以转化为f (x )m in >c ;∃x ∈D ,c >g (x ),可以转化为c >g (x )m in ,所以本问题类型可以分两步处理,转化为f (x )m in >g (x )m in .► 探究点五 ∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究,若函数f (x )的值域为C 1,函数g (x )的值域为C 2,则该问题等价为C 1⊆C 2.例、设函数f (x )=-13x 3-13x 2+53x -4.(1)求f (x )的单调区间;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a .若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立,求a 的取值范围.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝⎛⎭⎫-53,1;单调减区间为⎝⎛⎭⎫-∞,-53和(1,+∞). (2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a , 解得1≤a ≤32.恒成立与存在有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。
恒成立与存在性问题的解题策略
“恒成立问题”与“存在性问题”得基本解题策略一、“恒成立问题”与“存在性问题”得基本类型恒成立、能成立、恰成立问题得基本类型1、恒成立问题得转化:恒成立;2、能成立问题得转化:能成立;3、恰成立问题得转化:在M上恰成立得解集为M另一转化方法:若在D上恰成立,等价于在D上得最小值,若在D上恰成立,则等价于在D上得最大值、4、设函数、,对任意得,存在,使得,则5、设函数、,对任意得,存在,使得,则6、设函数、,存在,存在,使得,则7、设函数、,存在,存在,使得,则8、设函数、,对任意得,存在,使得,设f(x)在区间[a,b]上得值域为A,g(x)在区间[c,d]上得值域为B,则A B、9、若不等式在区间D上恒成立,则等价于在区间D上函数与图象在函数图象上方;10、若不等式在区间D上恒成立,则等价于在区间D上函数与图象在函数图象下方;恒成立问题得基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立得命题、函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数得定义域为全体实数R;●某不等式得解为一切实数;❍某表达式得值恒大于a等等…恒成立问题,涉及到一次函数、二次函数得性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生得综合解题能力,在培养思维得灵活性、创造性等方面起到了积极得作用。
因此也成为历年高考得一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数得奇偶性、周期性等性质;⑤直接根据函数得图象。
二、恒成立问题解决得基本策略大家知道,恒成立问题分等式中得恒成立问题与不等式中得恒成立问题。
等式中得恒成立问题,特别就是多项式恒成立问题,常简化为对应次数得系数相等从而建立一个方程组来解决问题得。
(一)两个基本思想解决“恒成立问题”思路1、思路2、如何在区间D上求函数f(x)得最大值或者最小值问题,我们可以通过习题得实际,采取合理有效得方法进行求解,通常可以考虑利用函数得单调性、函数得图像、二次函数得配方法、三角函数得有界性、均值定理、函数求导等等方法求函数f(x)得最值。
恒成立和存在性问题的解题策略
“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f mi n mi n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m a x≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m i n≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A ⊂B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
高考数学冲刺专题3.12 恒成立、存在性问题(新高考)(解析版)
专题3.12 恒成立、存在性问题1.恒成立、存在性问题的求解思路:(1)转化为基本函数(曲线)问题:数形结合,利用函数图象或曲线性质求解,如一次函数端点法,二次函数判别式、指对函数切线法、根式平方联想圆等等; (2)分离参数法:转化为函数最值问题求解;(3)变换主元法:参数与变量角色转化,以参数为自变量,构建函数再求解. 2.不等式恒成立问题的求解策略:(1)分离参数()a f x ≥恒成立(()max a f x ≥)或()a f x ≤恒成立(()min a f x ≤); (2)数形结合(()y f x = 图象在()y g x = 上方即可); (3)讨论最值()min 0f x ≥或()max 0f x ≤恒成立. 3.不等式能恒成立求参数值(取值范围)的求解策略: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 4.对于已知函数()y f x =的单调性求参数问题:(1)已知可导函数()f x 在区间D 上单调递增,转化为区间D 上()0f x '≥恒成立; (2)已知可导函数()f x 在区间D 上单调递减,转化为区间D 上()0f x '≤恒成立; (3)已知可导函数()f x 在区间D 上存在增区间,转化为()0f x '>在区间D 上有解; (4)已知可导函数()f x 在区间D 上存在减区间,转化为()0f x '<在区间D 上有解.【预测题1】已知函数()ln xf x x-=.(1)设()()1x g x f x f x ⎛⎫=+⎪-⎝⎭,求函数()g x 的最小值; (2)设()1h x f x ⎛⎫=⎪⎝⎭,对任意1x ,()20,x ∈+∞,()()()()121212h x h x h x x k x x ++++≥恒成立,求k 的最大值.【答案】(1)ln 2-;(2)ln 2-. 【解析】(1)因为()11ln x f x x =,()()1111ln 1ln 11x g x f x f x x x x x ⎛⎫⎛⎫⎛⎫=+=+-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 令1t x=,则()()()ln 1ln 1F t t t t t =+--,()0,1t ∈. ()()ln 1ln 11ln1tF t t t t'=+--+=⎡⎤⎣⎦-, 当10,2t ⎛⎫∈ ⎪⎝⎭,()0F t '<,()F t 单调递减;当1,12t ⎛⎫∈ ⎪⎝⎭,()0F t '>,()F t 单调递增. 所以()F t )的最小值为1ln 22F ⎛⎫=-⎪⎝⎭.即函数()g x 的最小值是ln 2-. (2)()ln h x x x =,()()()1212h x h x h x x +-+()()11221212ln ln ln x x x x x x x x =+-++12121212lnln x x x x x x x x =+++=()11221212121212ln ln x x x x x x x x x x x x x x ⎡⎤++⎢⎥++++⎣⎦()12121212x x x x h h x x x x ⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦.由(1)知121121212ln 2x x x h h F x x x x x x ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≥, 所以()()()()121212ln 2h x h x h x x x x +-+-+⋅≥. 所以ln 2k -≤,k 的最大值是ln 2-. 【名师点睛】本题关键是将函数转化为()11ln x f xx =,利用换元法而得解.【预测题2】已知函数22()ln (1)1x f x x x =+-+.(1)求()f x 的单调区间;(2)若不等式1(1)e n an++≤对任意*n N ∈恒成立,求a 的取值范围.【答案】(1)单调递增区间为(10)-,,单调递减区间为(0)+∞,;(2)1(1]ln 2-∞-,. 【解析】(1)()f x 的定义域(1)-+∞,,22222ln(1)22(1)ln(1)2()1(1)(1)x x x x x x x f x x x x ++++--'=-=+++,令2()2(1)ln(1)2g x x x x x =++--,(1)x ∈-+∞,,()2ln(1)2g x x x '=+-,令()2ln(1)2h x x x =+-,(1)x ∈-+∞,,2()21h x x '=-+,当10x -<<时,()0h x '>,当0x >时,()0h x '<, 所以()h x 在(10)-,单调递增,在(0)+∞,单调递减, 又(0)0h =,故()0≤h x ,即当1x >-时,()0g x '≤,所以()g x 在(1)-+∞,单调递减,于是当10x -<<时,()(0)0g x g >=,当0x >时,()(0)0g x g <=, 所以当10x -<<时,()0f x '>,当0x >时,()0f x '<, 所以()f x 的单调递增区间为(10)-,,单调递减区间为(0)+∞,.(2)不等式1(1)n ae n++≤*()n N ∈等价于1()ln(1)1n a n++≤,又111n+>,故11ln(1)a nn≤-+, 设11()ln(1)x x x ϕ=-+,(01]x ∈,,222222(1)ln (1)()()(1)ln (1)ln (1)x x x f x x x x x x x ϕ++-'==+++,又()(0)0f x f ,故当(01]x ∈,时,()0x ϕ'<,所以()ϕx 在(01],单调递减,于是1()(1)1ln 2x ϕϕ≥=-,故11ln 2a ≤-,所以a 的取值范围为1(1]ln 2-∞-,. 【预测题3】已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程; (2)讨论()f x 的单调性;(3)证明:当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【答案】(1)()21y x =-;(2)见解析;(3)证明见解析. 【解析】当2a =时,()()2212ln f x x x =--,0x >,()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x >当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得x a >,令()0f x '<,解得0x a<<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭, 综上可知0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. (3)要证明不等式当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立, 即证明()()2112ln 1a x x ax a x--≥+-+在区间(1,)+∞上恒成立, 即证212ln 10ax x ax x ---+≥恒成立,令()212ln 1g x ax x ax x=---+,()3222212212ax ax x g x ax a x x x --+'=--+=()()()()22222112121x ax ax x x x x-----==,1,1a x ≥>,2210,10x ax ∴->->,即()0g x '>,()g x ∴在区间()1,+∞单调递增,即()()1g x g >,而()()2110g ax ax ax x =-=->,()0g x ∴>,∴ 1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【预测题4】已知函数1()x f x e -=.(1)设函数()()h x xf x =,求()h x 的单调区间;(2)判断函数()y f x =与()ln g x x =的图象是否存在公切线,若存在,这样的切线有几条,为什么?若不存在,请说明理由.【答案】(1)单调减区间为(),1-∞-,单调增区间为()1,-+∞;(2)两曲线有两条公切线,理由见解析.【解析】(1)1()()x h x xf x xe-==,()()1111x x x h x xee x e ---=+=+',当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以()h x 的单调减区间为(),1-∞-,单调增区间为()1,-+∞.(2)设两曲线的公切线为l ,与曲线1()x f x e -=切于点()1,a a e-,则切线方程为()11a a y e e x a ---=-,即111a a a y e x e ae ---=+-,又与曲线()ln g x x =切于点(),ln b b ,则切线方程为()1ln y b x b b-=-, 即1ln 1y x b b =+-.所以有1111ln 1a a a e be ae b ---⎧=⎪⎨⎪-=-⎩. 消元整理得110a a e ae a ---+=,所以方程根的个数即为两曲线的公切线条数.设11()x x x exe x ϕ--=-+,()11x x xeϕ-=-'.当0x <时,()0x ϕ'>,当01x <<时,由(1)知,()x ϕ'单调递减,()()10x ϕϕ''>=,当1x >时,由(1)知,()x ϕ'单调递减,()0x ϕ'<,当且仅当1x =时,()0x ϕ'=;所以()ϕx 在(),1-∞单调递增,在()1,+∞单调递减. 而()110ϕ=>,()220e ϕ=-<,22(1)10e ϕ-=-<,1(0)0eϕ=>, 又函数()ϕx 在R 上连续,所以函数11()x x x e xe x ϕ--=-+有两个零点,分别位于区间()1,0-和区间()1,2内.所以方程110a a e ae a ---+=有两个不同的根,即两曲线有两条公切线.【名师点睛】公切线问题需分别求得函数的切线方程,使斜率,截距分别相等,从而得到切线方程参数之间的关系,转化为函数问题,借助导数解决方程根的问题.【预测题5】已知函数()()1ln 22f x x x x =+-+,()()2ln 0g x x ax x a =-+>.(1)当1x >时,求函数()f x 的值域;(2)若函数()g x 有两个零点1x ,()212x x x <,当102λ≤≤时,不等式()()12110g x x a λλ'+-+-<恒成立,求实数a 的取值范围.【答案】(1)()0,∞+;(2)()0,1.【解析】(1)()()1ln 22f x x x x =+-+,定义域为()0,∞+,()1ln 2x f x x x+'=+-,所以()22111x f x x x x -''=-=,所以当1x >时,()0f x ''>,所以函数()y f x '=在[)1,+∞单调递增,又()10f '=,所以当1x >时,()0f x '>,所以函数()y f x =在[)1,+∞单调递增, 又()10f =,所以当1x >时,()0f x >,x →+∞时,()f x →+∞, 即所求的值域是()0,∞+.(2)因为()g x 有两个零点1x ,()212x x x <,所以由()0g x =得2ln x xa x+=,记2ln x x y+=,则312ln x xy --'=,令0y '=得1x =,列表得 分析得max 1y =,且当0x →时,y →-∞;当x →+∞时,0y +→; 因为()g x 有两个零点1x ,()212x x x <,即2ln x xa x +=有两个零点, 所以必有01a <<.又由(1)知当1x >时,()()1ln 220f x x x x =+-+>,即()22ln 11x x x x ->>+ (*) 又()()1210g x ax a x '=-+>,()2120g x a x''=--<,所以()g x '在()0,∞+单调递减.又令211x x x =>代入(*)式得,()2212121211222ln 1x x x x x x x x x x -->=++,即121212ln ln 2x x x x x x -+<-,又由题意函数()g x 有两个零点1x ,()212x x x <,得()()2111122222ln 0ln 0g x x ax x g x x ax x ⎧=-+=⎪⎨=-+=⎪⎩, 两式相减得()1212121210ln ln 12x x x x x x a x x -+<=<-+-,所以()1212210a x x x x -++<+,因为120x x <<,102λ≤≤, 所以()()121212121122122x x x x x x x x λλλλ++--=+---⎡⎤⎡⎤⎣⎦⎣⎦ ()()1212102x x λ=--≥,所以()121212x x x x λλ++-≥, 所以()()()1212121221102x x g x x g a x x x x λλ+⎛⎫''+-≤=-++<⎪+⎝⎭, 又()1211g x x a λλ'+-<-⎡⎤⎣⎦,所以只要10a -≥, 因为0a >,所以01a <≤.综上所述,实数a 的取值范围是()0,1.【预测题6】已知函数21()(ln )2f x a x x x x=++-. (1)若02a <<,求函数()f x 的单调区间;(2)若存在实数[1,)a ∈+∞,使得()()2f x f x '+≤对于任意的x m ≥恒成立,求实数m 的取值范围.【答案】(1)增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞;(2)m 1≥. 【解析】(1)()f x 定义域为(0,)x ∈+∞,()222(1)211()22x x a f x a x x x x --⎛⎫'=-+-=-⎪⎝⎭22(1)x x x x ⎛- ⎝⎭⎝⎭=-,当02a <<时,令()0f x '>1x <, 所以()f x的增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞ (2)()()2f x f x '+≤,即222ln 0a aa x x x x+--≤ 即存在[1,)a ∈+∞,使得221211ln x x x x a⎛⎫+-≤ ⎪⎝⎭, 故22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤, 令2221()ln g x x x x x=+--,即()0g x ≤对于任意的x m ≥恒成立,244233222222()x x x x x x g x x x -+--+-'==-, 设42()222h x x x x =-+-,3()82(1)h x x x '=--,当01x <<时,()0h x '>,42()222h x x x x =-+-在(0,1)单调递增,又(0)0h <,(1)0h >,所以存在唯一的0(0,1)x ∈,使得()00h x =, 当()0,1x x ∈时,()0h x >,则()0g x '<,()g x 是减函数, 所以()(1)0g x g >=,不符合题意,所以1m ≥, 下证当1≥x 时,()0g x ≤恒成立,()4222222212(1)0x x x x x x -+-=-+->, 所以423222()0x x x g x x-+-'=-<, 即()g x 在[1,)+∞上单调递减,()g(1)0g x ≤=, 综上,m 1≥.【名师点睛】此题考查导数的应用,考查利用导数求函数的单调区间,利用导数解决不等式恒成立问题,解题的关键是将问题转化为22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤,然后构造函数,利用导数解决,考查数学转化思想和计算能力,属于中档题【预测题7】已知()ln f x x x =,()()212xg x x e e=--(1)求函数()g x 的单调区间;(2)已知1≥x 时,不等式()()2245ax x x f x -≤-+恒成立,求实数a 的取值范围.【答案】(1)在(),0-∞递增,在()0,2递减,在()2,+∞递增;(2)(],1ln 2-∞+. 【解析】(1)()g x 的定义域是R ,又()()2xg x x x e '=-,令()0g x '=,解得0x =或2x =,x ,()g x ',()g x 的变化如下:故()g x 在(),0-∞递增,在()0,2递减,在()2,+∞递增; (2)()y f x =的定义域是()0,∞+,当1≥x 时,由()()2245ax x x f x -≤-+可知()2245ln a x x x x≤-++, 令()()2245ln h x x x x x=-++,(1≥x ), 则()()2245222ln x x h x x x x x-+'=-+-()()222222ln x x x x x x -+-=-+()()22222ln 1x x x x x⎡⎤-+-⎣⎦=, 令()0h x '=,则1x =或2x =,故()h x 在()1,2递减,在()2,+∞递增, 故()h x 在[)1,+∞上的最小值是()21ln 2h =+, 故1ln2a ≤+,即a 的取值范围是(],1ln 2-∞+.【名师点睛】对于不等式恒成立可以采用常变量分离法构造函数,利用导数的性质进行求解. 【预测题8】已知函数()22ln kx f x x x +-=(1)当1k =时,求在1x =处的切线方程;(2)若()f x 在定义域上存在极大值,求实数k 的取值范围. 【答案】(1)3y x =;(2)1,02⎛⎫-⎪⎝⎭. 【解析】(1)1k =时,()22ln f x x x x =+-定义域是()0,∞+,()122f x x x'=+-(0x >) 所以()13f =,()13f '=,切线方程为()331y x -=-即3y x =(2)()f x 的定义域是()0,∞+,求导得()2122122kx x f x kx x x+-'=+-=(0x >) 记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减, 当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()()00g x f x f x >⇒'>⇒单调递增;()f x 有极小值没有极大值.②当0k >时,480k ∆=+>,()21042g x x k k-=⇒==(负根舍去),当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x >⇒'<⇒单调递增;()f x 有极小值没有极大值.③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减,没有极大值. 令480k ∆=+>得1,02k ⎛⎫∈-⎪⎝⎭,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减.所以()f x在2x =综上所述,()f x 在定义域上存在极大值时,实数k 的取值范围是1,02⎛⎫-⎪⎝⎭. 【名师点睛】本题考查导数的几何意义,考查用导数研究函数的最值.解题关键是掌握导数与单调性的关系,掌握极值的定义.解题方法是利用分类讨论思想讨论()0f x '=的根的分布,()'f x 0>或()0f x '<的解的情况,确定单调性得极值情况.【预测题9】已知函数()f x x =,()sin cos g x x x =+.(1)当4x π≥-时,求证:()()f x g x ≥;(2)若不等式()()2f x g x ax +≤+在[0,)+∞上恒成立,求实数a 的取值范围. 【答案】(1)证明见解析;(2)[2,)+∞. 【解析】(1)令()()()sin cos h x f x g x x x x =-=--,4x π≥-,①当44x ππ-≤<时,则()1cos sin h x x x '=+-+,设1()()h x h x =',)1321()04h x x π⎛⎫'=++> ⎪⎝⎭, ()h x '∴在,44ππ⎡⎫-⎪⎢⎣⎭上单调递增,且()00h '=,当04x π-≤<时,()0h x '<;当04x π≤<时,()0h x '≥,()h x ∴在,04π⎡⎫-⎪⎢⎣⎭上递减,在0,4π⎡⎫⎪⎢⎣⎭上递增, ()()00h x h ∴≥=,()()f x g x ∴≥;②当4x π≥时,则()4h x x x x π⎛⎫=+≥- ⎪⎝⎭1044ππ≥>+->,()()f x g x ∴≥;综上所述,当4x π≥-时,()()f x g x ≥;(2)令()()()2sin cos 2t x f x g x ax x x x ax =+--=++--,0x ≥,则()1cos sin t x x x a '=+--,由题意得()0t x ≤在[0,)+∞上恒成立,()00t =,()020t a '∴=-≤,2a ∴≥;下证当2a ≥时,()0t x ≤在[0,)+∞上成立,()sin cos 2sin cos 22t x x x x x ax x xx x =++--≤++--,令()sin cos 2x x x x ϕ++-,只需证明()0xϕ≤在[0,)+∞上成立, (1)当04x π≤≤时,()1cos sin x x x ϕ'=-+-,设1()()x x ϕϕ=',1321()4x x πϕ⎛⎫'=-+ ⎪⎝⎭, ()1x ϕ'在0,4⎡⎤⎢⎥⎣⎦π上单调递减,11()(0)0x ϕϕ∴'≤'=,()x ϕ'∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00x ϕϕ''∴≤=,()x ϕ∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00xϕϕ∴≤=;(2)当4x π>时,()24x xx πϕ⎛⎫=++- ⎪⎝⎭2x ≤-+204π≤+<;综上所述,实数a 的取值范围是[2,)+∞.【名师点睛】本题考查了利用导数证明不等式,利用导数研究不等式恒成立,解题的关键是由题意确定2a ≥,将不等式恒成立转化为()sin cos 22t x x x x x ≤++--,进而证明()sin cos 220x x x x x ϕ=++--≤,考查了转化思想以及运算能力.【预测题10】已知函数()()ln 10f x m x kx m =++> (1)讨论()f x 的单调性;(2)若存在实数k ,使得()mxxf x e '≤恒成立的m 值有且只有一个,求k m +的值.【答案】(1)答案见解析;(2)2e k m +=. 【解析】(1)函数()f x 的定义域为()0,∞+,()m m kxf x k x x+'=+=. 当0k ≥时,()0f x '>,()f x 在(0,)+∞上单调递增; 当0k <时,令()0f x '=,解得mx k=-, 当0,m x k ∈-⎛⎫ ⎪⎝⎭时,()0f x '>,当,m x k ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<.()f x ∴在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减. 综上所述,当0k ≥,()f x 在(0,)+∞上单调递增; 当0k <时,()f x 在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)()mxxf x e '≤恒成立,即0mx e kx m --≥恒成立 令()mxg x ekx m =--,则()mx g x me k '=-.①当0k ≤时,()0g x '>,()g x 单调递增,要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;②当0k m <≤时,令()0g x '=,解得ln ln 0k mx m-=≤,()g x 在()0,∞+上单调递增. 要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;③当k m >时,令()0g x '=,解得ln ln 0k mx m-=>,当ln ln 0,k m x m -⎛⎫∈ ⎪⎝⎭时,()0g x '<,()g x 单调递减, 当ln ln ,k m x m -⎛⎫∈+∞⎪⎝⎭时,()0g x '>,()g x 单调递增, ()()ln ln min ln ln ln ln k m k m kg x g ek m m m m --⎛⎫∴==--- ⎪⎝⎭, 要使()0g x ≥在()0,∞+上恒成立,且m 值唯一,只需ln ln 0k m g m -⎛⎫=⎪⎝⎭, 整理得2ln ln 10m m k k-+-=,令()2ln ln 1m h m m k k =-+-,则()22k m h m mk-'=,令()0h m '=,解得m =.当m ⎛∈ ⎝时,0h m,()h m 单调递增,当m ⎫∈+∞⎪⎪⎭时,0h m,()h m 单调递减.()max 1ln 2h m h ∴==,要使m 值唯一,只需()max 102h m ==,解得2e k =,m =,k m ∴+= 【名师点睛】本题考查利用函数不等式恒成立,关键就是将问题转化为()min 0g x ≥,并利用导数分析函数的单调性,进而求解.【预测题11】已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性.(2)若对任意的[]1,2a ∈,总存在1x ,2x ,使得()()120f x f x +=,证明:124x x +≥.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)2222'()2x ax f x x a x x-+=-+=.当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得216a a x ±-=.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+-⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+- ⎪⎝⎭,上单调递减.(2)因为()()120f x f x +=,所以221112222ln 32ln 30x ax x x ax x -+-+-+-=,整理得()221212122ln 2ln 60x x a x x x x +-+++-=,即()()()212121212622ln x x a x x x x x x +-+-=-. 令()22ln g x x x =-,则22(1)'()2x g x x x-=-=, 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()12g x g ≥=,即()121222ln 2x x x x -≥.因为()()2121262x x a x x +-+-≥,所以()()2121280x x a x x +-+-≥. 因为()()21212()8h a x x a x x =+-+-在[]1,2a ∈上单调递减, 所以()()21212(2)280h x x x x =+-+-≥,即()()1212420x x x x +-++≥. 因为12,0x x >,所以124x x +≥. 【预测题12】已知函数3231()3(0)2f x x a x x a a ⎛⎫=-++> ⎪⎝⎭. (1)讨论()f x 的单调性. (2)若1a >,且1,x a ⎛⎫∀∈+∞⎪⎝⎭,31()2f x a >,求a 的取值范围.(3)是否存在正数a ,使得()21f x x >-对()2,3x ∈恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)答案见解析;(2)1,2⎛ ⎝⎭;(3)不存在,理由见解析. 【解析】(1)21'()333f x x a a ⎛⎫=-++ ⎪⎝⎭,令'()0f x =,解得x a =或1x a=, 当1a =时,'()0f x ≥,()f x 在R 单调递增, 当01a <<时,1a a>, 由'()0f x <,得1,x a a ⎛⎫∈ ⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增, 当1a >时,1a a<, 由'()0f x <,得1,x a a ⎛⎫∈⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增,综上:当1a =时,()f x 在R 单调递增, 当01a <<时,()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增,当1a >时,()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增;(2)因为1a >,所以()f x 在1,a a ⎛⎫⎪⎝⎭单调递减,在(),a +∞单调递增,故()3min 1()2f x f a a =>,整理得332a a <,又1a >,故12a <<,故a 的取值范围是⎛ ⎝⎭; (3)()21f x x >-,323112x x a a x ++⎛⎫+< ⎪⎝⎭在()2,3x ∈上恒成立,设211()g x x x x =++,3233122'()1x x g x x x x--=--=, 设3()2k x x x =--,则2'()31k x x =-,当()2,3x ∈时,'()0k x >,故()k x 在()2,3上单调递增,()()240k x k >=>, 故'()0g x >在()2,3恒成立,()g x 在()2,3单调递增,则11()(2)4g x g >=,又12a a +≥=,(当且仅当1a =时“=”成立), 故3111324a a ⎛⎫+≥> ⎪⎝⎭,故不存在正数a ,使得()21f x x >-对()2,3x ∈恒成立. 【名师点睛】本题的关键是由()21f x x >-变形为323112x x a a x++⎛⎫+< ⎪⎝⎭,构造新函数,利用导数的性质和基本不等式进行求解.【预测题13】已知函数()()ln 11f x x kx =+--. (1)讨论函数()f x 的单调性;(2)若关于x 的不等式()01xef x x ++≥对任意0x ≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析;(2)1k ≤.【解析】(1)()()ln 11f x x kx =+--,0x ≥,()1111k kxf x k x x --'=-=++. ①若0k ≤,则()0f x >′恒成立,故()f x 在[)0,+∞上单调递增. ②若01k <<,令()0f x '=,得110x=->.③若1k,则()0f x '≤恒成立,故()f x 在[)0,+∞上单调递减.综上所述,若0k ≤,()f x 在[)0,+∞上单调递增;若01k <<,()f x 在10,1k ⎛⎫- ⎪⎝⎭上单调递增,在11,k ⎛⎫-+∞⎪⎝⎭上单调递减;若1k ,()f x 在[)0,+∞上单调递减.(2)令()()1x e g x f x x =++,故()()ln 111xe g x x kx x =+-+-+,0x ≥所以()()2111x x g x k x x '=-+++,令()()()2111xxe h x g x k x x ='=-+++, ()()()()()()()222331111111xx x e x e x h x x x x ++-+'=-+=+++,下面证明1x e x ≥+,其中0x ≥. 令()1xx e x ϕ=--,0x ≥,则()10x x eϕ-'=≥.所以()x ϕ在[)0,+∞上单调递增,故()()00x ϕϕ≥=, 所以当0x ≥时,1x e x ≥+. 所以()()()()()()()()()222333111110111x x e x x x x x h x x x x +-+++-+'==+++≥≥,所以()g x '在[)0,+∞上单调递增,故()()01g x g k ''=-≥.①若10k -≥,即1k ≤,则()()010g x g k ''=-≥≥,所以()g x 在[)0,+∞上单调递增, 所以()()00g x g ≥=对0x ∀>恒成立,所以1k ≤符合题意. ②若10k -<,即1k >,此时()010g k '=-<,()()()4442222214441411414122k k kke ke e g k k k k k k k k k ⎡⎤⎢⎥⎢⎥'=-+>-=⋅-=⎢⎥+⎛⎫+++⎢⎥⎪⎝⎭⎣⎦221122k e k ⎡⎤⎛⎫⎢⎥ ⎪⎢⎥- ⎪⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦,且据1k >及1xe x ≥+可得212122k e k k +>+≥,故221122ke k ⎛⎫⎪> ⎪ ⎪+⎝⎭,所以()40g k '>. 又()g x '的图象在[)0,+∞上不间断,所以存在()00,4x k ∈,使得()0g x '=, 且当()00,x x ∈时,()0g x '<,()g x 在()00,x 上单调递减, 所以()()000g x g <=,其中()00,4x k ∈,与题意矛盾, 所以1k >不符题意,舍去.综上所述,实数k 的取值范围是1k ≤.【名师点睛】利用导数研究含参函数的单调性,注意讨论的不重不漏;根据不等式恒成立求参数的取值范围,注意先猜后证、反证法的综合应用. 【预测题14】已知函数()2(23)xf x e m x x =+-.(1)若曲线()y f x =在点0(1,)P y 处的切线为:(1)0l e x y n +-+=,求,m n ; (2)当1m =时,若关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立,试求实数a 的取值范围.【答案】(1)1,2m n ==-;(2)32a e ≤-. 【解析】(1)因为函数()2(23)x f x e m x x =+-的导数()(43)xf x e m x '=+-,所以由题意可得(1)1f e m e '=+=+,即1m =.则2()23xf x e x x =+-,点P 坐标为()1,1e -,因为点P 在直线:(1)0l e x y n +-+=上,所以2n =-, 故1,2m n ==-;(2)当1m =时,2()23x f x e x x =+-因为关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立, 所以12x e x a x x≤--,在[)1,+∞上恒成立,设()12x e x g x x x =--,则()()()22211111122x x e x e x g x x x x --+'=-+=-, 由1xy e x =--的导数为1xy e '=-,当0x >时,0y '>,函数1xy e x =--递增,当0x <时,函数1xy e x =--递减,则10x e x --≥,即10x e x ≥+>,所以当1≥x 时,()()()22111111110222x e x x x x x -++-+-≥-=>, 则()12x e x g x x x=--在[)1,+∞递增,所以()()min 312g x g e ==-,则32a e ≤-. 【名师点睛】若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为()a f x >(或()a f x <),则(1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<. 【预测题15】已知函数()()xf x e ax a R =+∈.(1)讨论()f x 在()0,∞+上的单调性; (2)若对任意()0,x ∈+∞,()22ln 0x xe ax x a ++-≥恒成立,求a 的取值范围.【答案】(1)答案见解析;(2)[)(),00,e -+∞.【解析】(1)()x f x e a '=+,当1a ≥-时,因为0x >,所以e 1x >,所以()0xf x e a '=+>,所以()f x 在()0,∞+上的单调递增当1a <-时,()ln 0a ->,所以()ln x a >-时,()0f x '>;()ln x a <-时,()0f x '< 所以()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 综上可得当1a ≥-时,()f x 在()0,∞+上的单调递增,当1a <-时,()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增; (2)当1a ≥-且0a ≠时,由(1)可知()f x 在()0,∞+上的单调递增, 所以()()01f x f >=,所以0x >时,()22ln 0x xe ax x a++-≥恒成立,2ln 2ln 0xa e ax x a x ⇔+++-≥恒成立,当1a <-时,令()2ln 2ln xau x e ax x a x=+++-,因为2ln 2ln a y x a x=+-,由22ln 10a y x'=->得()ln x a >-,由22ln 10a y x'=-<得()0ln x a <<-,所以在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 由(1)可知()xf x e ax =+,在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()u x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()()()()()()()()()2ln min ln ln ln ln 2ln ln a a u x u a ea a a a a --=-=+-+-+---()()()()()ln ln ln ln 1a ea a a a a a a -=+-=-+-=--,所以()()ln 10a a --≥,解得1e a -≤<-, 综上可得a 的取值范围是[)(),00,e -+∞.【预测题16】已知函数2()2xf x e ax =--.(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积;(2)若()0xf x e -+≥恒成立,求实数a 的取值范围.【答案】(1)222e e+-;(2)(,1]-∞. 【解析】(1)因为2()2x f x e ex =--,所以)'(2xf x e ex =-,故'(1)k f e ==-.又(1)2f =-,所以切点坐标为(1,2)-,故函数()f x 在点(1,(1))f 处的切线方程为2(1)y e x +=--,即2y ex e =-+-,所以切线与坐标轴交点坐标分别为(0,2)e -,2,0e e -⎛⎫⎪⎝⎭, 故所求三角形面积为2212(2)442(2)22222e e e e e e e e e e ---+⎛⎫⨯-⨯===+- ⎪⎝⎭. (2)由()0xf x e -+≥,得220x x e e ax -+--≥恒成立,令2()2xxg x e eax -=+--,则()()g x g x -=,所以()g x 为偶函数.故只要求当0x ≥时,()0g x ≥恒成立即可.'()2x x g x e e ax -=--,设()2(0)xxh x e eax x -=--≥,故 '()2(0)x x h x e e a x -=+-≥, 设()2(0)xx H x e ea x -=+-≥,则'()(0)x x H x e e x -=-≥,显然'()H x 为(0,)+∞的増函数,故'()'(0)0H x H ≥=,即()H x 在(0,)+∞上单调递增,(0)22H a =-.当1a ≤时,(0)220H a =-≥,则有()h x 在(0,)+∞上单调递增,故()(0)0h x h ≥=, 则()g x 在(0,)+∞上单调递增,故()(0)0g x g ≥=,符合题意; 当1a >时,(0)220H a =-<,又1(ln 2)02H a a=>,故存在0(0,ln 2)x a ∈,使得()00H x =, 故()h x 在()00,x 上单调递减,在()0,x +∞上单调递增.当()00,x x ∈时,()(0)0h x h <=,故()g x 在()00,x 上单调递减, 故()(0)0g x g <=,与()0g x ≥矛盾. 综上,实数a 的取值范围为(,1]-∞.【名师点睛】解题的关键第一是构造函数,利用函数的奇偶性进行转化问题求解;第二是三次求导,利用导数的性质进行求解. 【预测题17】已知函数()()1ln f x a x a R x =+∈,()21g x x x x=--. (1)讨论()f x 的单调性;(2)若函数()()()F x f x g x =+存在两个极值点1x ,2x ,且曲线()y F x =在x 处的切线方程为()y G x =,求使不等式()()F x G x <成立的x 的取值范围.【答案】(1)答案见解析;(2)⎛ ⎝. 【解析】(1)()21-='ax f x x , 当0a ≤时,()0f x '<恒成立,函数()f x 在()0,∞+上单调递减, 当0a >时,易得当1x a >时,()0f x '>,当10x a<<时,()0f x '<, 故()f x 在1,a ⎛⎫+∞⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减, (2)()()()2ln F x f x g x a x x x =+=+-,所以()2221a x x aF x x x x-+'=+-=,0x >,因为()()()F x f x g x =+存在两个极值点1x ,2x ,所以()220x x aF x x-+'==有两个不等正实数解,即220x x a -+=有两个不等式正根,所以18002a a∆=->⎧⎪⎨>⎪⎩,解得108a <<, 因为122a x x =,x ==所以1F '=-,ln 222a a a F =+所以曲线()y F x =在x =()ln 1222a a a y x ⎛⎛-+=- ⎝⎝, 即()()31ln 222a a a G x y x ==-+-, 令()()()23ln ln 222a a a h x F x G x x a x =-=+-+-, ()2220x ah x xx-+'==>,故()h x 在()0,∞+上单调递增,且0h =,故当0x <<时,()0h x <,即()()F x G x <,故x的范围⎛ ⎝. 【名师点睛】解不等式比较常用的方法是构造新函数,研究函数的单调性,明确函数的零点,即可明确不等式何时成立.【预测题18】已知函数()cos 2xf x e a x =+-,()f x '为()f x 的导函数.(1)讨论()f x '在区间π0,2⎛⎫⎪⎝⎭内极值点的个数;(2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,求实数a 的取值范围. 【答案】(1)分类讨论,答案见解析;(2)[)1,+∞.【解析】(1)由()cos 2xf x e a x =+-,得()sin xf x e a x '=-.令()sin xg x e a x =-()cos xg x e a x '=-.因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以e 1x>,0cos 1x <<. 当1a ≤时,()0g x '>,()g x 单调递增,即()f x '在区间π0,2⎛⎫⎪⎝⎭内无极值点;当1a >时,()sin xg x e a x ''=+,π0,2x ⎛⎫∈ ⎪⎝⎭, 所以()0g x ''>,所以()cos xg x e a x '=-在π0,2⎛⎫ ⎪⎝⎭单调递增.又()00cos010g e a a '=-=-<,ππ22ππcos 022g e a e ⎛⎫'=-=> ⎪⎝⎭,故存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=且()00,x x ∈时,()0g x '<,()g x 单调递减; 0π,2x x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,所以0x x =为()g x 的极小值点,此时()f x '在区间π0,2⎛⎫⎪⎝⎭内存在一个极小值点,无极大值点.综上所述,当1a ≤时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内无极值点;当1a >时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内存在一个极小值点,无极大值点. (2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则()0120f a =+-≥,所以1a ≥.下面证明当1a ≥时,()0f x ≥在π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立. 因为π,02x ⎡⎤∈-⎢⎥⎣⎦时,0cos 1x ≤≤,所以1a ≥时,()cos 2cos 2xxf x e a x e x =+-≥+-.令()cos 2xh x e x =+-,π,02x ⎡⎤∈-⎢⎥⎣⎦,所以()sin xh x e x '=-令()sin xx e x ϕ=-()cos xx e x ϕ'=-.()sin x x e x ϕ''=+在区间π,02⎡⎤-⎢⎥⎣⎦单调递增.又ππ331ππsin 03322e e e ϕ---⎛⎫⎛⎫''-=+-=-<-< ⎪ ⎪⎝⎭⎝⎭, 所以()cos xx e x ϕ'=-在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.又ππ22ππcos 022e e ϕ--⎛⎫⎛⎫'-=--=> ⎪ ⎪⎝⎭⎝⎭, ππ331ππ11cos 03322e e e ϕ---⎛⎫⎛⎫'-=--=-<-< ⎪ ⎪⎝⎭⎝⎭,所以存在1ππ,23x ⎛⎫∈-- ⎪⎝⎭,使()10x ϕ'=,且1π,2x x ⎛⎫∈-⎪⎝⎭时,()0x ϕ'>,()h x '单调递增; ()1,0x x ∈时,()0x ϕ'<,()h x '单调递减,所以1x x =时,()h x '取得最大值,且()()1max h x h x ''=. 因为()10x ϕ'=,所以11cos xe x =,所以()h x 单调递减,所以π,02x ⎡⎤∈-⎢⎥⎣⎦时,()()00h x h ≥=,即()0f x ≥成立. 综上,若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则a 的取值范围为[)1,+∞.【名师点睛】含参数分类讨论函数的单调性、极值,需要根据导函数的结构,对参数进行分类讨论.【预测题19】函数()sin (1cos )f x x x =⋅+,()(1)xg x a e =-(1)当0a <时,函数()()()F x f x g x =+在(0,)2x π∈有极值点,求实数a 的取值范围;(2)对任意实数[0,)x ∈+∞,都有()()f x g x ≤恒成立,求实数a 的取值范围. 【答案】(1)20a -<<;(2)2a ≥.【解析】(1)()sin (1cos )(1)xF x x x a e =++-,2()cos (1cos )sin (sin )2cos cos 1x x F x x x x x ae x x ae =++=-'-+++, ()4cos sin )sin sin (4cos 1)x x F x x x x ae x x ae =-'-+'+=-+(,因为(0,)2x π∈,所以sin 0,cos 0x x >>,又0a <,所以()F x ''<0,所以'()F x 在(0,)2π上递减,(0)20F a =+>',2()102F ae ππ'=-+<,所以20a -<<,(2)()()()G x g x f x =-=(1)sin (1cos )0xa e x x --+≥.因为()02F π≥,所以2(1)10a e π--≥,所以0a >,当[0,]2x π∈时,()()()G x g x f x '''=-=2(2cos cos 1)x ae x x -+-,()()()G x g x f x ''''''=-sin (4cos 1)x ae x x =++>0,所以'()G x 在[0,]2π上递增,(0)2G a '=-,2()102G ae ππ'=+>,①当(0)20G a =-<'即2a <时,0(0,)2x π∃∈使得0()0G x '=,所以当0(0,)x x ∈时'()0G x <,函数()G x 在区间0(0,)x 递减, 因为(0)0G =,所以当0(0,)x x ∈时,()0<G x 与条件()0G x ≥矛盾,②(0)20G a =-≥'时,即2a ≥时,22()(2cos cos 1)2(2cos cos 1)x x G x ae x x e x x =-+-≥-+-',因为22cos cos 1x x +-=2192[cos ]48x +-,cos [1,1]x ∈-, 所以22cos cos 1x x +-9[,2]8∈-, 而0x ,≥时22x e ≥,所以()G x '0≥,所以函数()G x 在区间[0,)+∞单调递增,因为(0)0G =,所以()0G x ≥, 综上:2a ≥.【预测题20】已知函数()x f x e ax =+,()()()()g x f x f x a R =--∈. (1)若直线y kx =与曲线()f x 相切,求k a -的值; (2)若()g x 存在两个极值点1x ,2x ,且()()12122g x g x x x e->--,求a 的取值范围.【答案】(1)k a e -=; (2)1,12e e -⎛⎫+-- ⎪⎝⎭.【解析】(1)设切点为()00,x y ,()xf x e a '=+,因为直线y kx =与曲线()f x 相切,所以0x e a k +=,000xe ax kx +=,所以()()010x a k --=,解得01x =,a k =(不成立,舍去), 所以k a e -=;(2)()2x x g x e e ax -=-+,()2x xg x e e a -'=++,①当1a ≥-时,()220g x a '≥+≥,所以()g x 在R 上单调递增,函数()g x 无极值,不符合题意,舍去. ②当1a <-时,()20xxg x e ea -'=++=,不妨设12x x <,解得(1ln x a =-,(2ln x a =-,可得函数()g x 在()1,x -∞单调递增,在()12,x x 单调递减,在()2,x +∞单调递增,符合题意.。
恒成立与存在性问题
01
总结词
一次函数性质简单,常用于基础问 题。
总结词
一次函数在定义域内单调,不存在 极值点。
03
02
总结词
一次函数图像为直线,单调性明显。
总结词
一次函数在定义域内单调,恒成立 与存在性问题较易解决。
04
二次函数的恒成立与存在性问题实例
总结词
二次函数开口方向由二次项系数决定。
总结词
二次函数在区间$[-infty, frac{b}{2a}]$上单调递增,在区间$[-
利用三角函数的周期性、对称性、数形结合 等方法,判断三角函数在某个区间内是否存 在极值点或零点。
三角函数存在性问题的应 用
在解决实际问题中,如物理、工程等领域, 常常需要判断某个三角函数是否满足某些条
件,如是否存在最优解或可行解。
03
恒成立与存在性问题的解 法
分离参数法
总结词
分离参数法是一种通过将参数分离到不等式的两边,从而简化问题的方法。
判别式法
总结词
判别式法是一种通过引入判别式来解决 问题的方法。
VS
详细描述
判别式法的基本思想是通过引入判别式来 简化方程的解的求解过程。这种方法在处 理一元二次方程和二元二次方程组时非常 有效。通过判别式,我们可以更容易地找 到方程的解,并且可以更好地理解解的性 质和分布。
04
实例分析
一次函数的恒成立与存在性问题实例
详细描述
分离参数法的基本思想是将参数从不等式中分离出来,单独放在不等式的另一 边,这样可以更容易地找到参数的取值范围,从而解决问题。这种方法在处理 包含参数的不等式问题时非常有效。
数形结合法
总结词
数形结合法是一种通过将问题转化为 图形问题,从而直观地理解问题的方 法。
恒成立和存在性问题
恒成⽴和存在性问题⾼⼀函数专题同步拔⾼,难度4颗星!模块导图知识剖析恒成⽴和存在性问题类型(1) 单变量的恒成⽴问题①∀x ∈D ,f (x )<a 恒成⽴,则f (x )max <a②∀x ∈D ,f (x )>a 恒成⽴,则f (x )min >a③∀x ∈D ,f (x )<g (x )恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )max <0④∀x ∈D ,f (x )>g (x )恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )min >0(2) 单变量的存在性问题①∃x 0∈D ,使得f (x 0)<a 成⽴,则f (x )min <a②∃x 0∈D ,使得f (x 0)>a 成⽴,则f (x )max >a③∃x 0∈D ,使得f (x 0)<g (x 0)恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )min <0④∃x 0∈D ,使得f (x 0)>g (x 0)恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )max >0(3) 双变量的恒成⽴与存在性问题①∀x 1∈D ,∃x 2∈E ,使得f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )max ;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)>g (x 2)恒成⽴,则f (x )min >g (x )min ;③∀x 1∈D ,∀x 2∈E ,f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )min ;④∃x 1∈D ,∃x 2∈E , 使得f (x 1)<g (x 2)恒成⽴,则f (x )min <g (x )max ;(4) 相等问题①∃x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则两个函数的值域的交集不为空集;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则f (x )的值域⊆g (x )的值域解题⽅法恒成⽴和存在性问题最终可转化为最值问题,具体的⽅法有直接最值法分类参数法变换主元法数形结合法经典例题【题型⼀】恒成⽴和存在性问题的解题⽅法直接构造函数最值法【典题1】 设函数f (x )=3|x |x 2+9的最⼤值是a ,若对于任意的x ∈[0,2),a >x 2−x +b 恒成⽴,则b 的取值范围是_.【解析】 当x =0时,f (x )=0;当x ≠0时,f (x )=3|x |x 2+9=3|x |+9|x |≤32√9=12,则f (x )max=12,即a =12.由题意知x 2−x+b <12在x ∈[0,2)上恒成⽴,即x 2−x +b −12<0在x ∈[0,2)上恒成⽴(∗),(把不等式中移到右边,使得右边为,从⽽构造函数y =g (x )求最值)令g (x )=x 2−x +b −12,则问题(∗)等价于在x ∈[0,2)上g (x )<0恒成⽴,在x ∈[0,2)上,g (x )<g (2)=4−2+b −12=32+b∴32+b ≤0即b ≤−32.【点拨】① 直接构造函数最值法:遇到类似不等式f (x )<g (x )恒成⽴问题,可把不等式变形为f (x )−g (x )<0,从⽽构造函数h (x )=f (x )−g (x )求其最值解决恒成⽴问题;② 在求函数的最值时,⼀定要优先考虑函数的定义域;③ 题⽬中y =g (x )在x ∈[0,2)上是取不到最⼤值,g (x )<g (2)=32+b ,⽽要使得g (x )<0恒成⽴,32+b 可等于0,即32+b ≤0,⽽不是32+b <0分离参数法【典题1】 已知函数f (x )=3x +8x +a 关于点(0,−12)对称,若对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,则实数k 的取值范围为_.【解析】 由y =3x +8x 为奇函数,可得其图象关于(0,0)对称,可得f (x )的图象关于(0,a )对称,函数f (x )=3x +8x +a 关于点(0,−12)对称,可得a =−12,对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,⇔∀x ∈[−1,1],k ⋅2x −3⋅2x +82x −12≥0恒成⽴,【思考:此时若利⽤直接构造函数最值法,求函数f (x )=k ⋅2x −3⋅2x +82x −12,x ∈[−1,1]的最⼩值,第⼀函数较复杂,第⼆函数含参要分即k ⋅2x ≥3⋅2x +82x −12在x ∈[−1,1]恒成⽴,所以k ≥82x 2−122x +3,(使得不等式⼀边是参数k ,另⼀边不含k 关于x 的式⼦,达到分离参数的⽬的)令t =12x ,由x ∈[−1,1],可得t ∈12,2,设h (t )=8t 2−12t +3=8t −342−32,当t =2时,h (t )取得最⼤值11,则k 的取值范围是k ≥11.【点拨】①分离参数法:遇到类似k ⋅f (x )≥g (x )或k +f (x )≥g (x )等不等式恒成⽴问题,可把不等式化简为k >h (x )或k <h (x )的形式,达到分离参数的⽬的,再求解y =h (x )的最值处理恒成⽴问题;② 恒成⽴问题最终转化为最值问题,⽽分离参数法,最好之处就是转化后的函数不含参,避免了⿇烦的分离讨论.【典题2】 已知f (x )=log 21−a ⋅2x +4x ,其中a 为常数(1)当f (1)−f (0)=2时,求a 的值;(2)当x ∈[1,+∞)时,关于x 的不等式f (x )≥x −1恒成⽴,试求a 的取值范围;【解析】 (1)f (1)−f (0)=2⇒log 2(1−2a +4)−log 2(1−a +1)=log 24⇒log 2(5−2a )=log 24(2−a )⇒5−2a =8−4a ⇒a =32;(2)log 21−a ⋅2x +4x ≥x −1=log 22x −1⇒1−a ⋅2x +4x ≥2x −1⇒a ≤2x +12x −12,令t =2x ,∵x ∈[1,+∞)∴t ∈[2,+∞),设h (t )=t +1t −12,则a ≤h (t )min ,∵h (t )在[2,+∞)上为增函数⇒t =2时,h (t )=t +1t −12有最⼩值为2,∴a ≤2.【点拨】 在整个解题的过程中不断的利⽤等价转化,把问题慢慢变得更简单些.变换主元法【典题1】 对任意a ∈[−1,1],不等式x 2+(a −4)x −2a >0恒成⽴,求x 的取值范围.思考痕迹 见到本题中“x 2+(a −4)x −2a >0恒成⽴”潜意识中认为x 是变量,a 是参数,这样会构造函数f (x )=x 2+(a −4)x −2a ,⽽已知条件是a ∈[−1,1],觉得怪怪的做不下去;此时若把a 看成变量,x 看成参数呢?【解析】因为不等式x 2+(a −4)x −2a >0恒成⽴⇔不等式(x −2)a +x 2−4x >0恒成⽴...①,令f (a )=(x −2)a +x 2−4x ,若要使得①成⽴,只需要f (−1)>0f (1)>0⇔x 2−5x +2>0x 2−3x −2>0解得x >5+√172或x <3−√172,故x 的取值范围x ∣x >5+√172 或 x <3−√172.【点拨】 变换主元法,就是要分辨好谁做函数的⾃变量,谁做参数,⽅法是以已知范围的字母为⾃变量.数形结合法【典题1】 已知a >0,f (x )=x 2−a x , 当x∈(−1,1)时,有f (x )<12恒成⽴,求a 的取值范围.思考痕迹本题若⽤直接最值法,求函数f (x )=x 2−a x ,x ∈(−1,1)的最⼤值,就算⽤⾼⼆学到的导数求解也是难度很⼤的事情;⽤分离参数法呢?试试也觉得⼀个硬⾻头.看看简单些的想法吧!【解析】 不等式x 2−a x <12(x ∈(−1,1))恒成⽴等价于x 2−12<a x (x ∈(−1,1))恒成⽴...①,令f (x )=x 2−12,g (x )=a x ,若①成⽴,则当x ∈(−1,1)时,f (x )=x 2−12的图像恒在g (x )=a x 图像的下⽅,则需要g (1)>f (1)g (−1)>f (−1)⇔a >121a >12或a =1(不要漏了a =1,因为a >0,g (x )=a x 不⼀定是指数函数)⼜a >0,所以12<a <2,即实数a 的取值范围为12,2.【点拨】① 数形结合法:∀x ∈D ,f (x )<g (x )恒成⽴⇒在x ∈D 上,函数y =f (x )的图像在函数y =g (x )图像的下⽅.② 遇到h (x )<0不等式恒成⽴,可以把不等式化为f (x )<g (x )⽤数形结合法,⽽函数y =f (x )与y =g (x )最好是熟悉的函数类型,⽐如本题中构造出f (x )=x 2−12,g (x )=a x 两个常见的基本初级函数.【题型⼆】 恒成⽴与存在性问题混合题型【典题1】 已知函数f (x )=x 3+1,g (x )=2−x −m +1.(1)若对任意x 1∈[−1,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,求实数m 的取值范围.()[]()()(){{{}{{[](2)若对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,求实数m的取值范围.【解析】(1)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_1∈[-1 ,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,知:f\left(x_{1}\right)_{\min } \geq g\left(x_{2}\right)_{\max },∵f(x)在[-1 ,3]上递增,\therefore f\left(x_{1}\right)_{\min }=f(-1)=0⼜∵g(x)在[0 ,2]上递减,\therefore g\left(x_{2}\right)_{\max }=g(0)=2-m∴有0≥2-m,∴m的范围为[2 ,+∞)(2)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,知f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },∴有f(3)≥g(0),即28≥2-m,∴M的范围为[-26 ,+∞).【点拨】对于双变量的恒成⽴--存在性问题,⽐如第⼆问中怎么确定f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },即到底是函数最⼤值还是最⼩值呢?具体如下思考如下,⼀先把g\left(x_{2}\right)看成定值m,那\exists x_{1} \in[-1,3],都有f\left(x_{1}\right) \geq m,当然是要f(x)_{\max } \geq m;⼆再把f\left(x_{1}\right)看成定值n,那\forall x_{2} \in[0,2],都有n \geq g\left(x_{2}\right),当然是n \geq g(x)_{\max };故问题转化为f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max }.其他形式的双变量成⽴问题同理,要理解切记不要死背.【典题2】设f(x)=\dfrac{x^{2}}{x+1},g(x)=ax+3-2a(a>0),若对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,则a的取值范围是\underline{\quad \quad }.【解析】\because f(x)=\dfrac{x^{2}}{x+1},当x=0时,f(x)=0,当x≠0时,f(x)=\dfrac{1}{\dfrac{1}{x^{2}}+\dfrac{1}{x}}=\dfrac{1}{\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4}},由0<x≤1,即\dfrac{1}{x} \geq 1,\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4} \geq 2,\therefore 0<f(x) \leq \dfrac{1}{2},故0 \leq f(x) \leq \dfrac{1}{2},⼜因为g(x)=ax+3-2a(a>0),且g(0)=3-2a,g(1)=3-a.由g(x)递增,可得3-2a≤g(x)≤3-a,对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,可得\left[0, \dfrac{1}{2}\right] \subseteq[3-2 a, 3-a],可得\left\{\begin{array}{l} 3-2 a \leq 0 \\ 3-a \geq \dfrac{1}{2} \end{array}\right.,\therefore \dfrac{3}{2} \leq a \leq \dfrac{5}{2}.巩固练习1(★★) 已知1+2^x+a\cdot 4^x>0对⼀切x∈(-∞ ,1]上恒成⽴,则实数a的取值范围是\underline{\quad \quad }.2 (★★) 若不等式2x-1>m(x^2-1)对满⾜|m|≤2的所有m都成⽴,求x的取值范围.3 (★★) 若不等式3x^2-\log_a x<0在x\in\left(0, \dfrac{1}{3}\right)内恒成⽴,实数a的取值范围.4 (★★★) 已知函数f(x)=x^2-3x,g(x)=x^2-2mx+m,若对任意x_1∈[-1 ,1],总存在x_2∈[-1 ,1]使得f(x_1)≥g(x_2 ),则实数m的取值范围.5 (★★★) 已知a>0且a≠1,函数f(x)=a^x+a^{-x}(x∈[-1 ,1]),g(x)=ax^2-2ax+4-a(x∈[-1 ,1]).(1)求f(x)的单调区间和值域;(2)若对于任意x_1∈[-1 ,1],总存在x_0∈[-1 ,1],使得g(x_0)=f(x_1)成⽴,求a的取值范围;(3)若对于任意x_0∈[-1 ,1],任意x_1∈[-1 ,1],都有g(x_0)≥f(x_1)恒成⽴,求a的取值范围.答案1.\left(-\dfrac{3}{4},+\infty\right)2.\dfrac{\sqrt{7}-1}{2}<x<\dfrac{\sqrt{3}+1}{2}3.\dfrac{1}{27} \leq a<14.m≤-1或m≥3Processing math: 64%5.(1) \left[2, a+\dfrac{1}{a}\right](2) a>1(3) \left[\dfrac{1}{3}, 1\right)。
高考数学恒成立问题和存在性问题的类型及方法处理
高考数学恒成立问题和存在性问题的类型及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点 问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法1. 构造一次函数利用一次函数的图象或单调性来解决对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立例1 若不等式221x mx m ->-对满足22m -≤≤的所有m 都成立,求x 的范围。
解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g 原命题等价于对满足22m -≤≤的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得1122x -+<<x的范围是11(22x -+∈。
小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。
(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。
(答案:或)2. 构造二次函数利用二次函数的图像与性质及二次方程根的分布来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“恒成立问题”的解法
常用方法:①函数性质法;②主参换位法;③分离参数法;④数形结合法。
一、函数性质法
1.一次函数型:给定一次函数()(0)f x ax b a =+≠,若()y f x =在[m,n]内恒有()0f x >,则根据函数
的图象(直线)可得上述结论等价于⎩⎨⎧>>0)(0)(n f m f ;同理,若在[m,n]内恒有()0f x <,则有⎩
⎨⎧<<0)(0
)(n f m f .
例1.对满足2p ≤的所有实数p ,求使不等式2
12x px px x ++>+恒成立的x 的取值范围。
略解:不等式即为2(1)210x p x x -+-+>,设2
()(1)21f p x p x x =-+-+,则()f p 在[2,2]-上恒大于
0,故有:⎩⎨⎧>>-)2(0)2(f f ,即⎪⎩⎪
⎨⎧>->+-0
10342
2x x x 3111x x x x ><⎧⇒⎨><-⎩或或13x x ⇒<->或.
2.二次函数:
①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >⎧⎨∆<⎩(或00
a <⎧⎨
∆<⎩); ②.若二次函数2
()(0)0f x ax bx c a
=++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。
例2.
已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少
有一个为正数,则实数m 的取值范围是( )
A .(0,2)
B .(0,8)
C .(2,8)
D .(-∞,0)
选B 。
例3.设2
()22f x x ax =-+,当[1,)x ∈-+∞时,都有()f x a ≥恒成立,求a 的取值范围。
解:设2
()()22F x f x a x ax a =-=-+-,
(1)当4(1)(2)0a a ∆=-+≤时,即21a -≤≤时,对一切[1,)x ∈-+∞,()0F x ≥恒成立; (2)当4(1)(2)0a a ∆=-+>时,由图可得以下充要条件:
0(1)021,2
f a
⎧⎪∆>⎪-≥⎨⎪-⎪-≤-⎩即(1)(2)0
30
1,a a a a -+>⎧⎪
+≥⎨⎪≤-⎩32a ⇒-≤<-;综合得a 的取值范围为[-3,1]。
例4.关于x 的方程9(4)340x
x
a +++=恒有解,求a 的范围。
解法:设3x
t =,则0t >.则原方程有解即方程2
(4)40t a t +++=有正根。
1212
(4)040
x x a x x ∆≥⎧⎪
∴+=-+>⎨⎪=>⎩2(4)1604a a ⎧+-≥⇒⎨<-⎩8a ⇒≤-.
3.其它函数:
()0f x >恒成立⇔min ()0f x >(若()f x 的最小值不存在,则()0f x >恒成立⇔()f x 的下界≥0)
; ()0f x <恒成立⇔max ()0f x <(若()f x 的最大值不存在,则()0f x <恒成立⇔()f x 的上界≤0).
例5.设函数3
21()(1)4243
f x x a x ax a =
-+++,其中常数1a >, (1)讨论()f x 的单调性;
(2)若当0x ≥时,()0f x >恒成立,求a 的取值范围。
解:(2)由(I )知,当0≥x 时,)(x f 在a x 2=或0=x 处取得最小值。
a a a a a a a f 2424)2)(1()2(3
1)2(23+⋅++-=a a a 24434
23++-=;a f 24)0(=
-1 o x
y
则由题意得⎪⎩
⎪
⎨⎧>>>,0)0(,0)2(1
f a f a 即1,4(3)(6)03240.
a a a a a >⎧⎪⎪-+->⎨⎪>⎪⎩16a ⇒<<∴(1,6)a ∈。
二、主参换位法:某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。
例6.已知函数32
3()(1)132
a f x x x a x =
-+++,其中a 为实数. (1)已知函数()f x 在1x =处取得极值,求a 的值;
(2)已知不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围.
解:由题设知“2
2
3(1)1ax x a x x a -++>--+对∀(0)a ∈+∞,都成立,
即2
2
(2)20a x x x +-->对∀(0)a ∈+∞,
都成立。
设22()(2)2g a x a x x =+--(a R ∈),则()g a 是一个以a 为自变量的一次函数。
220x +>恒成立,则对∀x R ∈,()g a 为R 上的单调递增函数。
所以对∀(0)a ∈+∞,,
()0g a >恒成立的充分必要条件是(0)0g ≥,220x x --≥,∴20x -≤≤,于是x 的取值范围是{|20}x x -≤≤。
三、分离参数法:利用分离参数法来确定不等式(),0f x λ≥(D x ∈,λ为实参数)恒成立时参数λ的取值范围的基本步骤:
(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值;
(3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,求得λ的取值范围。
适用题型:(1)参数与变量能分离;(2)函数的最值易求出。
例7.当(1,2)x ∈时,2
40x
mx ++<恒成立,则m 的取值范围是.
解: 当(1,2)x ∈时,由2
40x mx ++<得24x m x +<-.令244
()x f x x x x
+==+,则易知()f x 在(1,2)
上是减函数,所以4()5f x <<,所以24
5x x
+->-,∴5m ≤-. 例8.已知x R ∈
时,不等式cos 254sin a x x +<-+恒成立,求实数a 的取值范围。
解:原不等式即为:2
14sin 2sin 5x x a +-<-+45-a -a+5大于
214sin 2sin x x +-的最大值,因为214sin 2sin 3x x +-≤,
∴53a ->
2a >+220
54054(2)a a a a ⎧-≥⎪
⇔-≥⎨
⎪->-⎩
或⎩⎨⎧≥-<-0
4502a a ,解得≤54a<8.
四、数形结合(对于()()f x g x ≥型问题,利用数形结合思想转化为函数图象的关系再处理):若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判
断得出结果。
尤其对于选择题、填空题这种方法更显方便、快捷。
例9.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是( )
(A)1a <-(B)||1a ≤ (C)||1a < (D )1a ≥ 选B 。
例10.当|(1,2)x ∈)时,2
(1)log a x x -<恒成立,求a 的取值范围。
答案:12a <≤.
例11.已知关于x 的方程2
lg(20)lg(863)0x x x a +---=有唯一解,求实数a
的取值范围。
解:原问题即为:方程2
208630x x x a +=-->有唯一解。
令2
120y x x =+,2863y x a =--,则如图所示,要使1y 和2y 在x 轴上有 唯一交点,则直线必须位于1l 和2l 之间。
(包括1l 但不包括2l )。
当直线为1l 时,1636a =-
;当直线为2l 时,1
2a =-, ∴a 的范围为1631
[,)62
--。
另解:方程2
1263x x a +=--在方程(,20)(0,)x ∈-∞-+∞上有唯一解有唯一解。
五。
根据函数的奇偶性、周期性等性质:函数是奇偶性、单调性、周期性都在给定区间上恒成立。
例12.若()sin()cos()f x x x αα=++-为偶函数,求α的值。
|
ax
=y x
解:由题得:()()f x f x -=对一切x R ∈恒成立,
∴sin()cos()sin()cos()x x x x αααα-++--=++- sin()sin()cos()cos()
x x x x αααα⇔++-=+--sin cos sin sin x x αα
⇔=-sin (cos sin )0x αα⇔+=
对一切x ∈R 恒成立...,∴只需也必须cos sin 0αα+= ∴4
k π
απ=-
.(k Z ∈)。