四川省2017—2018学年高二下学期期末模拟考试卷(三)

合集下载

四川省德阳市高中2017-2018学年高二下学期期末考试物理试题 含答案

四川省德阳市高中2017-2018学年高二下学期期末考试物理试题 含答案

说明:1.本试卷分第I卷和第Ⅱ卷,共6页。

考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效。

考试结束后,将答题卡交回。

2.本试卷满分100分,90分钟完卷。

第I卷(选择题共44分)一、选择题(本题共11小题,每小题4分,共44分在每小题给出的四个选项中,第1-8小题只有一项符合题目要求,第9-11题有多项符合题目要求全部选对的得4分,选对但不全的得2分,有选错的或不答的得0分)1.物体受到三个力的作用而做匀速直线运动,如果只撤掉其中的一个力,其余力保持不变,它不可能做()A.匀速直线运动B.匀加速直线运动C.匀减速直线运动D.曲线运动2.假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,则下列说法正确的是()A.地球公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度3.在空中某点,将两个相同小球以相同的速率(不为零)分别水平抛出和竖直上抛,最后都落在同一水平地面上,则下列说法正确的是()A.从抛出到落地,重力做功相同B.从抛出到落地,重力的平均功率相同C.落地时小球的动量相同D.落地时重力的瞬时功率相同4.一物体质量为1kg,以4m/s的速度在光滑水平面上向左滑行,从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,下列()A.水平力的冲量为0B.滑块的速度改变量为4m/sC.水平力做功为0D.滑块的位移为8m5.一辆汽车正在以020m/sυ=的速度匀速行驶,突然司机看见车的正前方x处有一只静止的小狗,司机立即采取制动措施从司机看见小开始计时,整个过程中汽车的运动规律如图所示,则下列说法中正确的是()A.汽车一直做反向匀减速运动B.汽车做匀变速运动的加速度为24.44m/sC.从图中得到司机在其反应时间内前进的距离为10mD. x大于10m时,小狗就一定是安全的6.物块m在静止的传送带上匀速下滑时,传送带突然转动,传送带转动的方向如图中箭头所示则传送带转动后,下列说法中正确的是()A.重力对物块做功的功率将变大B.摩擦力对物块做功的功率不变C.物块与传送带系统的热功率不变D.摩擦力对传送带做功的功率不变7.如图所示,某河流中水流的速度是2m/s,一小船要从河岸的A点沿直线匀速到达河对岸的B点,B点在河对岸下游某处,且A B、间的距离为100m,河宽为50m,则小船的速度至少为()A. 0.5m/sB. 1m/sC. 1.5m/sD. 2m/s8.假设地球可视为质量均匀分布的球体已知地球表面重力加速度在两极的大小为0g ;在赤道的大小为g ;地球自转的周期为T ,引力常量为G .则地球的密度为( )A.23GTπB.23g GT gπ C.023()g g GT g π-⋅ D.203()g GT g g π⋅- 9.如图所示为一皮带传动装置,右轮半径为,r a 为它边缘上一点;左侧是一轮轴,大轮半径为4r ,小轮半径为2,r b 点在小轮上,到小轮中心的距离为,r c 点和d 点分别位于小轮和大轮的边缘上若传动过程中皮带不打滑,则下列说法正确的是( )A. a 点和b 点的线速度大小相等B. a 点和b 点的角速度大小相等C. a 点和c 点的线速度大小相等D. a 点和d 点的向心加速度大小相等10.质量为m 的汽车在平直路面上由静止开始匀加速启动,运动过程的t υ-图像如图所示,已知1t 时刻汽车达到额定功率,之后保持额定功率运动,整个过程中汽车受到的阻力恒定,则下列说法正确的是( )A.在10~t 时间内,汽车的牵引力大小为11m t υ B.在10~t 时间内,汽车的功率与时间t 成正比C.汽车受到的阻力大小为21121()m t υυυ-D.在与12~t t 时间内,汽车克服阻力做的功为22211()2m υυ- 11.如图所示,轻弹簧一端固定在1O 点,另一端系一小球,小球穿在固定于竖直面内、圆心为2O 的光滑圆环上, 1O 在2O 的正上方, C 是12O O 的连线和圆环的交点,将小球拉到圆环上的A 点且无初速度释放后,发现小球通过了C 点,最终在A B 、之间做往复运动已知小球在A 点时弹簧被拉长,在C 点时弹簧被压缩,则下列判断正确的是( )A.小球从A 到C 一直做加速运动,从C 到B 一直做减速运动B.小球在A 点的伸长量一定大于弹簧在C 点的压缩量C.弹簧处于原长时,小球的速度最大D.小球机械能最大的位置有两处第Ⅱ卷(非选择题 共66分)二、实验题:(本题共2小题,共15分,将正确答案填写在答题卡上)12.(7分)如图所示,在用橡皮筋拉动小车的装置来探究做功与物体速度变化的关系的活动中。

四川省达州市2017-2018学年高二下学期期末物理试卷 Word版含解析

四川省达州市2017-2018学年高二下学期期末物理试卷 Word版含解析

四川省达州市2017-2018学年高二下学期期末物理试卷一、选择题(本大题14小题,1-10题每小题3分,共30分,每小题给出的四个选项中只有一个是正确的;11-14题每小题3分,共16分,每小题给出的四个选项中,有两个选项正确,全选对的得4分,选对但不全的得2分,有选错或不答的得0分.)1.(3分)简谐机械波在某均匀介质中传播,下列说法中正确的是()A.振幅越大,则波传播的速度越大B.振幅越大,则波传播的速度越小C.在一个周期内,振动质点经过的路程等于一个波长D.振动的周期越短,则波传播一个波长的距离所用的时间越短2.(3分)下列说法中正确的是()A.涂有增透膜的照相机镜头看上去呈淡紫色,说明增透膜增强了对淡紫色光的透射B.狭义相对论认为真空中的光速在不同的惯性参考系中都是相同的C.光的偏振现象说明光是纵波D.物体做受迫振动的频率总是等于其固有频率3.(3分)下列关于物理原理在技术上的应用,说法正确的是()A.利用回旋加速器加速粒子时,通过增大回旋加速器半径,可以使粒子的速度超过光速B.光导纤维由内芯与外套两部分组成,光传播时要在界面上发生全反射,所以内芯的折射率应大于外套的折射率C.电视机遥控器是利用发出紫外线脉冲信号来变换频道的D.摄影机镜头镀增透膜是利用了光的衍射特性4.(3分)如图所示的金属圆环放在有界匀强磁场中,将它从磁场中匀速拉出的过程中,下列说法正确的是()A.向左拉出和向右拉出,其感应电流方向相反B.不管从什么方向拉出,环中的感应电流总是逆时针方向C.不管从什么方向拉出,环中的感应电流总是顺时针方向D.在匀速拉出过程中感应电流大小不变5.(3分)穿过某单匝线圈的磁通量随时间的变化如图所示,则在线圈内产生的感应电动势的最大值是()A.0.5V B.2.0V C.2.5V D.3.0V6.(3分)下列有关单摆运动过程中受力的说法中,正确的是()A.回复力是重力和摆线拉力的合力B.回复力是重力沿圆弧切线方向的一个分力C.单摆过平衡位置时合力为零D.回复力是摆线拉力的一个分力7.(3分)如图为某质点沿x轴做简谐运动的图象,下列说法正确的是()A.在0到1s时间内,质点速度和加速度方向相同B.在t=1s时,质点速度和加速度都达到最大值C.在t=4s时,质点速度最大,加速度为零D.在t=2s时,质点的位移沿x轴负方向,加速度也沿x轴负方向8.(3分)a、b两种单色光以相同的入射角从某种介质射向空气,光路如图所示,则下列说法正确的是()A.逐渐增大入射角α的过程中,a光先发生全反射B.通过同一双缝干涉装置,a光的干涉条纹间距比b光的宽C.在该介质中b光的传播速度大于a光的传播速度D.在该介质中a光的波长小于b光的波长9.(3分)如图甲所示,一根水平张紧的弹性长绳上有等间距离的M、N、O、P、Q等5个质点,相邻两质点间距离为1m,t=0时质点从平衡位置开始砸竖直平面内做简谐运动,并长绳分别向左、向右传播的简谐横波.当0质点第一次回到平衡位置时Q质点刚开始振动,Q质点振动图象如图乙所示,则()A.0质点开始振动方向沿y轴负方向B.N、P两质点振动方向始终相反C.该波的波速为1m/sD.当M质点第一次达到负向最大位移时,0质点经过的路程为25cm10.(3分)如图所示,一轻质弹簧一端固定,另一端与物体A相连接并使A在光滑水平面上做简谐运动,当A到达最大位移处时,把物块B由静止放置在A上面,此后A、B保持相对静止,共同做简谐运动,下列说法正确的是()A.振幅将比原来小B.经过平衡位置的速度大小和原来相等C.振子由最大位移处回到平衡位置所用时间和原来相同D.A对B的静摩擦力大小与弹簧形变量成正比11.(4分)矩形线框在匀强磁场内绕垂直于磁场的轴匀速转动过程中,输出的交流电压随时间变化的图象如图所示,下列说法中正确的是()A.1s末线框平面垂直于磁场,穿过线框的磁通量变化最快B.2s末线框平面垂直于磁场,穿过线框的磁通量最大C.交流电压的有效值为36V,频率为0.25HzD.用该交流电为额定电压36V的机床照明灯供电,照明灯恰好可以正常发光12.(4分)图甲为一列简谐横波在t=0.10s时刻的波形图,P是平衡位置为x=1m处的质点,Q是平衡位置为x=4m处的质点,图乙为质点Q的振动图象,则()A.t=0.15s时,质点Q的加速度达到负向最大B.t=0.10s时,质点P的运动方向沿y轴正方向C.t=0.15s时,质点P的运动方向沿y轴负方向运动D.从t=0.10s到t=0.25s,质点P通过的路程为30cm13.(4分)如图所示,理想变压器原线圈输入电压u=220sin100πt(V),原、副线圈匝数比为10:1,副线圈电路中R0为定值电阻,R是光敏电阻(其阻值随光照强度的增大而减小),图中电表均为理想电表,下列说法正确的是()A.电压器输出电压的频率为50HzB.电压表V2的示数为22VC.照射R的光变强时,灯泡L变暗D.照射R的光变强时,电压表V1、电流表A1的示数都不变14.(4分)如图所示,边长为L的正方形金属框,匝数为n,质量为m,电阻为R,用绝缘细线把它悬挂于一个有界的匀强磁场边缘,线框平面与磁场方向垂直,其上半部处于磁场内,下半部处于磁场外,磁场随时间变化规律为B=kt(k>0),已知细线所能承受的最大拉力为2mg,下列说法正确的是()A.线圈中产生逆时针方向的感应电流B.线圈的感应电动势大小为nKL2C.细线拉力最大时,金属框受到的安培力大小为3mgD.从t=0开始直到细线被拉断的时间为二、实验题(本题两个小题,每空2分,共16分)15.(4分)用红光做双缝干涉实验,在接收屏上观察到干涉条纹,在其他条件不变的情况下:(1)若改用紫光做实验,则干涉条纹间距将变;(2)如果改用白光做实验,在屏上将出现条纹.16.(12分)某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆在摆动过程中的摆角小于5,在测量单摆的周期时,从单摆运动到最低点开始计时且记数为0,到第n次经过最低点所用的时间为t,在测量单摆的摆长时,先用毫米刻度尺测得摆球悬挂后的摆线长(从悬点到摆球的最上端)为L′,再用游标卡尺测得摆球的直径为d(读数如图).(1)为了减小实验误差:当摆球的直径约为2cm时,比较合适的摆长应选.A.100cmB.30cmC.10cm(2)从图可知,摆球的直径d=mm;(3)该单摆在摆动过程中的周期T的表达式为T=;(4)写出用上述所测物理量求重力加速度的表达式g=;(5)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的.A.单摆的悬点未固定紧,振动中出现松动,使摆线增长了B.把n次摆动的时间误记为(n+1)次摆动的时间C.以摆线长做为摆长来计算D.以摆线长与摆球的直径之和做为摆长来计算(6)为了提高实验精度,在实验中可改变几次摆长L并测出相应的周期T,从而得出一组对应的L与T的数据,再以L为横坐标、T2为纵坐标将所得数据连成直线,并求得该直线的斜率k,则重力加速度g=.(用k表示)三、计算题(本题共3小题,其中第17题10分、18题13分,第19题15分,共38分。

四川省成都外国语学校2017_2018学年高二数学下学期期末考试试题理

四川省成都外国语学校2017_2018学年高二数学下学期期末考试试题理

成都外国语学校2017-2018高二(下)期末考试数学试题(理工类)满分:150分,时间:120分钟一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

1. 已知集合{}|1 2 A x x =-<<,{}2|20 B x x x =+≤,则A B =( )A. {}|0 2 x x <<B. {}|0 2 x x ≤<C. {}|10 x x -<<D. {}|10 x x -<≤2.若复数201824(1)2i z i i =+-+,复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 已知双曲线2221x y -=的一个焦点为F ,则焦点F 到其中一条渐近线的距离为( )A. 2B. 1124. 设函数()(1)x f x x e =+,则(1)f '=( )A. 1B. 2C. 3e +D. 3e5. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入x n ,的值分别为3,2则输出v 的值为( )A. 35B.20C. 18D. 96.已知直线310x y -+=的倾斜角为α,则1sin 22α=( ) A. 310 B. 35 C. 310- D. 1107. 已知二项式91()2x ax +的展开式中3x 的系数为212-,则()1e a x dx x +⎰的值为( ) A .212e + B . 232e - C. 232e + D .252e - 8.设5sin π=a ,3log 2=b ,3241⎪⎭⎫ ⎝⎛=c ,则( )A.b c a <<B. c a b <<C. b a c <<D. a b c <<9.定义域为R 的奇函数()y f x =的图像关于直线2x =对称,且(2)2018f =,则(2018)(2016)f f +=( )A. 2018B. 2020C. 4034D. 210.已知三棱锥ABC D -四个顶点均在半径为R 的球面上,且22===AC BC AB ,,若该三棱锥体积的最大值为1,则这个球的表面积为( ) A.81500π B. π4 C. 925π D.9100π 11.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分別为12,F F ,过2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角项点的等腰直角三角形,则椭圆的离心率为( )A.2B.22 D- 12. 已知函数()ln 2f x x x x a =-+,若函数()y f x =与(())y f f x =有相同的值域,则a 的取值范围是( )A .1(,1]2B .(,1]-∞C .3[1,)2D .[1,)+∞二、填空题:本题共4小题,每小题5分,共20分。

2017-2018学年高二下学期期末考试语文试题+Word版含答案

2017-2018学年高二下学期期末考试语文试题+Word版含答案

2017—2018学年第二学期高二级期末考试语文试题第Ⅰ卷阅读题一、现代文阅读(23分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

中国传统社会给人两个相互矛盾的印象:一方面,它十分注重平等;另一方面,它又十分注重纲常伦理,表现出严格的等级秩序。

不过,无论如何解释这种印象,它至少说明在中国传统社会中同时存在人与人之间的平等和差异两个问题。

在西方由正义原则加以处理的人与人之间平等与差异的关系问题在中国社会同样存在,而且同样也需要某种协调机制。

概而言之,从功能的角度看,中国传统社会,特别是在儒家思想中,对这一关系的处理,是通过“仁”“礼”“义”三项基本原则彼此支撑、相互为用实现的。

“仁”是对他人之爱,在儒家的价值体系中处于核心地位,所以孔子说:“志士仁人,无求生以害仁,有杀身以成仁。

”“仁”的基础则是对亲人之爱,所谓“仁者人也,亲亲为大”。

孟子进一步指出:“孩提之童,无不知爱其亲者;……亲亲,仁也。

”并且孟子认为,这种爱的基础,是“不忍人之心”,即同情心。

同情即同样的感情,是“人同此心,心同此理”这一心理事实的体现。

因此,“仁”的生发机制,是一个推己及人,由近及远的过程,即把对亲人之爱扩展为对邻人之爱,再扩展到对天下人之爱,也就是孟子所说的:“老吾老,以及人之老;幼吾幼,以及人之幼。

”与“仁”所体现的“合和”精神不同,“礼”强调的是人与人之间尊卑贵贱(纵向)、亲疏厚薄(横向)的差秩格局和纲常秩序,反映“别”与“分”的一面。

“礼”在儒家思想中的重要地位是一个众人皆知的事实,“礼,国之干也。

”“礼”提供了一套基本的政治架构,对中国传统社会的稳定有序具有举足轻重的作用,后者因此也被称为“礼治社会”。

儒家强调“礼”治,但目的不是造成一个等级森严、上下隔阂的社会,而是通过“礼”的规范与约束,实现社会的和谐和睦。

用以平衡“仁”与“礼”的就是“义”的原则。

在中国传统文献中,“义”是一个含义比较丰富的概念。

【全国市级联考word】四川省雅安市2017-2018学年高二下学期期末考试英语试题(有答案)

【全国市级联考word】四川省雅安市2017-2018学年高二下学期期末考试英语试题(有答案)

第Ⅰ卷(选择题,共100分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷答题卡上。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What does the woman usually wear?A. A uniform.B. A dress.C. A skirt.2. Where did Jack study as an exchange student?A. In Germany.B. In France.C. In Britain.3. How was the woman’s weekend?A. Free,B. Tiring.C. Wonderful.4. Why did Tom go to New York last month?A. To see his wife and children.B. To attend a meeting.C. To take a holiday.5. What are the two speakers talking about?A. The professor,B. The lecture.C. The work.第二节(共15小题,每小题1.5分,共22,5分)听下面5段对话或独白。

每段对话或独白后面有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独的读两遍。

听第6段材料,回答第6、7题。

6. When will the dinner start?A. At 7:30 pm.B. At 8:00 pm.C. At 8:30 pm.7. What does the man make a reservation for?A. A wedding anniversary.B. A meeting.C. A birthday party,听第7段材料,回答第8、9题。

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题(含精品解析)

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题(含精品解析)

2017-2018学年度(下)调研检测2018.07高二数学(理科)第一部分(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若焦点在轴上的双曲线的焦距为,则等于()A. B. C. D.【答案】B【解析】分析:根据题意,由焦点的位置可得,又由焦距为,即,再由双曲线的几何性质可得,即可求得.详解:根据题意,焦点在轴上的双曲线,则,即,又由焦距为,即,则有,解得.故选:B.点睛:本题考查双曲线的几何性质,注意双曲线的焦点在y轴上,先求出a的范围.2. 已知复数(为虚数单位),则( )A. B. C. D.【答案】D【解析】分析:化简复,利用复数模的公式求解即可.详解:因为,所以=,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 设是函数的导函数,则的值为( )A. B. C. D.【答案】C【解析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.4. 某程序框图如图所示,该程序运行后输出的的值是()A. 4B. 5C. 6D. 7【答案】A【解析】试题分析:,,考点:程序框图5. 如图是函数的导函数的图象,则下面说法正确的是( )A. 在上是增函数B. 在上是减函数C. 当时,取极大值D. 当时,取极大值【答案】D【解析】分析:先由图象得出函数的单调性,再利用函数的单调性与导数的关系即可得出.详解:由图象可知上恒有,在上恒有,在上单调递增,在上单调递减则当时,取极大值故选:D.点睛:熟练掌握函数的单调性、极值与导数的关系是解题的关键,是一道基础题.6. 祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.根据祖暅原理可知,p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:利用祖暅原理分析判断即可.详解:设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.如果截面面积恒相等,那么这两个几何体的体积一定相等,根据祖暅原理可知,p是q的充分不必要条件.故选:A.点睛:本题考查满足祖暅原理的几何体的判断,是基础题,解题时要认真审查,注意空间思维能力的培养.7. 若曲线与曲线在它们的公共点处具有公共切线,则实数的值为( )A. B. C. D.【答案】A【解析】分析:设公共点,求导数,利用曲线与曲线在它们的公共点处具有公共切线,建立方程组,即可求出a的值.详解:设公共点,,,曲线与曲线在它们的公共点处具有公共切线,,解得.故选:A.点睛:本题考查利用导数研究曲线上某点切线方程,考查学生的计算能力,正确求导是关键.8. 设、是两条不同的直线,、是两个不同的平面,下列命题中正确的是()(A)若,且,则(B)若,则(C)若,,则(D)若,且,则【答案】C【解析】分析:对选项逐一分析即可.详解:对于A,,且,则与位置关系不确定,可能相交、平行或者异面,故A错误;对于B,,则有可能,有可能,故B错误;对于C,,,利用面面垂直的性质定理得到作垂直于交线的直线与垂直,又,得到,又,得到,,故C正确;对于D,,且,则与位置关系不确定,可能相交、平行或者异面,故D错误.故选:C.点睛:本题考查线线平行、线面平行、线面垂直以及面面垂直的判断,主要考查空间立体的感知能力以及组织相关知识进行判断证明的能力,要求熟练相应的判定定理和性质定理.9. 某空间几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.【答案】B【解析】分析:由三视图得该几何体是从四棱锥中挖去一个半圆锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.详解:由三视图得该几何体是从四棱锥中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形,高为2,圆锥的底面半径是1,高为2,.故选:B.点睛:本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力. 10. 图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )A. B.C. D.【答案】C【解析】分析:将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,再根据概率公式求解可得.详解:由图共有4种等可能结果,其中将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,则所组成的图形能围成正方体的概率是.故选:C.点睛:本题考查了概率公式和展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形,注意:只要有“田”字格的展开图都不是正方体的表面展开图.11. 正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A. B. C. D.【答案】C【解析】分析:三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.详解:根据题意可知三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面,,,的外接圆的半径为,由题意可得:球心到底面的距离为.球的半径为.外接球的表面积为:.故选:C.点睛:考查空间想象能力,计算能力.三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.12. 设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.【答案】D【解析】分析:根据题意,设,对求导,利用导数与函数单调性的关系分析可得在上为减函数,分析的特殊值,结合函数的单调性分析可得在区间和上都有,结合函数的奇偶性可得在区间和上都有,进而将不等式变形转化可得或,解可得x的取值范围,即可得答案.详解:根据题意,设,其导数,又当时,,则有,即函数在上为减函数,又,则在区间上,,又由,则,在区间上,,又由,则,则在区间和上都有,又由为奇函数,则在区间和上都有,或,解可得:或.则x的取值范围是.故选:D.点睛:本题考查函数的导数与函数的单调性的关系,以及不等式的解法,关键是分析与的解集.第二部分(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 命题:,使得成立;命题,不等式恒成立.若命题为真,则实数的取值范围为___________.【答案】【解析】分析:命题为真,则都为真,分别求出取交集即可.详解:命题为真,则都为真,对,,使得成立,则;对,,不等式恒成立,则,又(当且仅当时取等),,故.故答案为:.点睛:本题考查函数的性质,复合命题的真假判定方法,考查了推理能力与计算能力,属于中档题.14. 如图,在三棱柱中,底面,,,是的中点,则直线与所成角的余弦值为__________.【答案】【解析】分析:记中点为E,则,则直线与所成角即为与所成角,设,从而即可计算.详解:记中点为E,并连接,是的中点,则,直线与所成角即为与所成角,设,,.故答案为:.点睛:(1)求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.15. 在推导等差数列前n项和的过程中,我们使用了倒序相加的方法,类比可以求得________.【答案】【解析】令,则:,两式相加可得:,故:,即.16. 已知函数,若存在三个互不相等的实数,使得成立,则实数的取值范围是__________.【答案】【解析】分析:若存在三个互不相等的实数,使得成立,等价为方程存在三个不相等的实根,由于当时,,只有一个根,则当时,方程存在两个不相等的实根,构造函数,求函数的导数,研究函数的最值,即可得到结论.详解:若存在三个互不相等的实数,使得成立,等价为方程存在三个不相等的实根,当时,,,解得,当时,,只有一个根.当时,方程存在两个不相等的实根,即.设,,令,解得,当,解得,在上单调递增;当,解得,在上单调递减;又,,存在两个不相等的实根,.故答案为:.点睛:本题考查导数的综合应用,根据条件转化为方程存在三个不相等的实根,构造函数,利用导数研究函数的极值是解决本题的关键,综合性较强,难度较大.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知函数在处有极值.(Ⅰ)求、的值;(Ⅱ)求函数的单调区间.【答案】(1);(2)的单调递减区间是,单调递增区间是.【解析】试题分析:(1)f′(x)=2ax+.由题意可得:,解得a,b.(2)f(x)=x2-lnx,f′(x)=x .函数定义域为(0,+∞).令f′(x)>0,f′(x)<0,分别解出即可得出单调区间.试题解析:(1)∵f′(x)=2ax+.又f(x)在x=1处有极值,∴即解得a=,b=-1.(2)由(1)可知f(x)=x2-lnx,其定义域是(0,+∞),f′(x)=x-=.由f′(x)<0,得0<x<1;由f′(x)>0,得x>1.所以函数y=f(x)的单调减区间是(0,1),单调增区间是(1,+∞).18. 2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:月份违章驾驶员人数(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下列联表:不礼让斑马线礼让斑马线合计驾龄不超过年驾龄年以上合计能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?【答案】(1);(2)66;(3) 有97.5%的把握认为“礼让斑马线”行为与驾龄有关.【解析】分析:(1)由表中数据知:,代入公式即可求得,,从而求得违章人数与月份之间的回归直线方程;(2)把代入回归直线方程即可;(3)求得观测值,从而即可得到答案.详解:(Ⅰ)由表中数据知:∴,,∴所求回归直线方程为.(Ⅱ)由(Ⅰ)知,令,则人,(Ⅲ)由表中数据得,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.点睛:求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为,常数项为,这与一次函数的习惯表示不同.)19. 如图,在边长为的正方形中,点是的中点,点是的中点,点是上的点,且.将△AED,△DCF分别沿,折起,使,两点重合于,连接,.(Ⅰ)求证:;(Ⅱ)试判断与平面的位置关系,并给出证明.【答案】(1)见解析;(2)见解析.【解析】分析:(1)折叠前,,折叠后,,从而即可证明;(2)连接交于,连接,在正方形中,连接交于,从而可得,从而在中,,即得,从而平面.详解:(Ⅰ)证明:∵折叠前,∴折叠后,又∵∴平面,而平面∴.(Ⅱ)平面,证明如下:连接交于,连接,在正方形中,连接交于,则,所以,又,即,在中,,所以.平面,平面,所以平面.点睛:本题主要考查线面之间的平行与垂直关系,注意证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.线面垂直的性质,常用来证明线线垂直.20. 已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线与椭圆C相交于A、B两点,在y轴上是否存在点D,使直线AD与BD关于y轴对称?若存在,求出点D坐标;若不存在,请说明理由.【答案】(1);(2)见解析.【解析】分析:(1)由题意得,求解即可;(2)假设存在点满足条件,则,设,,,联立方程,从而可得,又由,得,从而求得答案.详解:(Ⅰ)由题意,设椭圆方程为,则有,解得,所以椭圆C的方程为.(Ⅱ)假设存在点满足条件,则.设,,,联立方程,得,,,由,得,即,综上所述,存在点,使直线AD与BD关于y轴对称.点睛:对题目涉及的变量巧妙的引进参数,利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得结果.21. 如图,在三棱柱中,侧面底面,,.(Ⅰ)求证:平面;(Ⅱ)若,,且与平面所成的角为,求二面角的平面角的余弦值.【答案】(1)见解析;(2)余弦值为.【解析】分析:(1)由四边形为菱形,得对角线,由侧面底面,, 得到侧面,从而,由此能证明平面;(2)由题意易知为等边三角形,以点为坐标原点,为轴,为轴,过平行的直线为,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,由此能求出二面角的平面角的余弦值.详解:(Ⅰ)由已知侧面底面,, 底面,得到侧面,又因为侧面,所以,又由已知,侧面为菱形,所以对角线,即,,,所以平面.(Ⅱ)设线段的中点为点,连接,,因为,易知为等边三角形,中线,由(Ⅰ)侧面,所以,得到平面,即为与平面所成的角, ,,, ,得到;以点为坐标原点,为轴,为轴,过平行的直线为,建立空间直角坐标系,,,,,,,,由(Ⅰ)知平面的法向量为,设平面的法向量,,解得,,二面角为钝二面角,故余弦值为.点睛:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,涉及到线线、线面、面面平行与垂直的性质、向量法等知识点的合理运用,是中档题.22. 已知函数(其中,为自然对数的底数).(Ⅰ)若函数无极值,求实数的取值范围;(Ⅱ)当时,证明:.【答案】(1)实数的取值范围是;(2)见解析.【解析】分析:(1)因为函数无极值,所以在上单调递增或单调递减.即或在时恒成立,求导分析整理即可得到答案;(2)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可,构造函数=(),求导分析整理即可.详解:(Ⅰ)函数无极值,在上单调递增或单调递减.即或在时恒成立;又,令,则;所以在上单调递减,在上单调递增;,当时,,即,当时,显然不成立;所以实数的取值范围是.(Ⅱ)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可.构造函数=(),则恒成立,故在单调递增,从而.即,亦即.得证.点睛:可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.。

四川省攀枝花市2017-2018学年高二下学期期末调研检测物理试题含答案

四川省攀枝花市2017-2018学年高二下学期期末调研检测物理试题含答案

2017-2018学年度(下)调研检测2018.7高二物理试题卷本试题卷分为第一部分(必考题)和第二部分(选考题)两部分。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

满分100分,考试时间90分钟。

注意事项: 1.答题前,务必将自己的姓名、考号填写在答题卡规定的位置上。

并用2B 铅笔将答题卡考号对应数字标号涂黑。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.答非择题题时,必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。

作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。

第一部分(必考题,共80分)一、 选择题 本题共10小题,每小题3分,在每小题给出的四个选项中,第1~7小题只有一项符合题目要求,第8~10题有多项符合题目要求。

全部选对的得3分,选对但不全的得1.5分,有选错的得0分。

1.在下列核过程的方程中,表示核聚变过程的是A. 14140671C N+e -→B. 32411120H+H He+n →C.235114489192056360U+n Ba+Kr+3n →D.1441717281N+He O+H →2.如图甲,100匝的线圈(为了表示线圈的绕向,图中只画了2匝)两端A 、B 与一个理想电压表相连。

线圈内有垂直纸面向里的磁场,穿过线圈的磁通量随时间的变化规律如图乙所示。

下列说法中正确的是A .电压表的示数为50V ,A 点电势高于B 点电势 B .电压表的示数为0.5V ,A 点电势高于B 点电势C .电压表的示数为50V ,B 点电势高于A 点电势D .电压表的示数为0.5V ,B 点电势高于A 点电势乙甲3.如图为氢原子的能级图。

大量氢原子处在n =3的能级,能够辐射出N 种频率的光,其中波长最长的光,光子能量为E ,则 A .N =3,E =1.89 eV B .N =3,E =12.09 eV C .N =2,E =1.51 eV D .N =2,E =1.89 eV4.几种金属的截止频率和逸出功如下表,现用波长为550 nm 的光照射,能发生光电效应的5.如图所示的电路中,理想变压器的原、副线圈匝数之比为2∶l ,电阻R 1=R 2=10 Ω,两电表均为理想交流电表。

[小初高学习]四川省宜宾市第四中学2017-2018学年高二生物下学期期末模拟试题

[小初高学习]四川省宜宾市第四中学2017-2018学年高二生物下学期期末模拟试题

四川省宜宾市第四中学2017-2018学年高二生物下学期期末模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷(选择题共126分)可能用到的相对原子质量:H—1 C—12 O—16 S—32 Ti—48 Fe—56一.选择题(本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于核酸的叙述,正确的是A.mRNA与ATP的组成元素种类相同 B.DNA是人体的主要遗传物质C.HIV的核酸由脱氧核糖核苷酸组成 D.大肠杆菌的DNA分布在拟核和线粒体中2.下列有关物质运输方式的叙述中,正确的是A.无机盐离子进出细胞的方式均为主动运输 B.mRNA通过核孔运输到细胞质的过程需要消耗能量C.被动运输都是顺浓度梯度进行的,不需要载体和能量D.分泌蛋白分泌到细胞外的过程主要体现细胞膜的选择透过性3.下列有关T细胞的说法,正确的是A. T细胞中直接合成、加工、运输淋巴因子的细胞器都含有RNAB. T细胞凋亡过程中有新蛋白质合成,体现了基因的选择性表达C. HIV识别并结合T细胞表面受体体现了细胞间信息交流的功能D. AIDS患者易发恶性肿瘤的直接原因是HIV使T细胞原癌基因和抑癌基因突变4.下列关于实验方法的阐述,正确的是A.用哺乳动物红细胞制备细胞膜时用差速离心法 B.研究细胞核的功能时通常采用去核、核移植等方法C.调查跳蝻的种群密度可以用取样器取样法D.艾弗里用放射性同位素示踪法研究肺炎双球菌的遗传物质图 2 图1 5.下列关于实验数据的分析,正确的是A .观察有丝分裂实验时,分裂期的细胞数与细胞总数的比值能计算细胞周期时长B .探究生长素促进扦插枝条生根实验,预实验的数据可以减少实验误差C .使用标志重捕法调查动物种群密度时,标记物易脱落会导致种群密度估算值偏大D .探究细胞体积与物质运输效率实验,不同体积的琼脂块中NaOH 的扩散速率不等6.研究发现SORLA 是影响脂肪组织代谢平衡的一种蛋白分子,该分子表达过多会导致脂肪细胞脂解活性(脂肪分解的能力)改变。

四川省棠湖中学2017-2018学年高二物理下学期零诊模拟试题(含解析)

四川省棠湖中学2017-2018学年高二物理下学期零诊模拟试题(含解析)

四川省棠湖中学2017-2019学年高二模拟考试理综试卷物理试题一、选择题1. )轰击铀核)并释放中子,当达到某些条件时可发生链式反应,—个铀核裂变时,释放的能量约为200MeV (1eV= l.6×10-19J).以下说法错误确的是D.3.6×10-28kg【答案】AA错误,B正确.链式反应在进行过程中,还需要铀块达到临界体积才能维持链式反应持续不断进行下去,故C正确.根据释放出来的核能,结合质能方程△E=△mc2可知,反应过程中,亏损质量为:故D正确.故选BCD.点睛:解决本题的关键知道在核反应过程中,电荷数守恒、质量数守恒,掌握爱因斯坦质能方程,并能灵活运用.2. 一切物体的分子都在做永不停息的无规则热运动,但大量分子的运动却有一定的统计规律。

氧气分子在0°C 或100°C 温度下单位速率间隔的分子数占总分子数的百分比(以下简称占比)随气体分子速率的变化如图中两条曲线所示。

对于图线的分析,下列说法正确的是A. 温度升高,所有分子的动能都增大B. 100°C 温度下,速率在 200-300m/s 的那一部分分子占比较0°C 的占比多C. 由于分子之间的频繁碰撞,经过足够长时间,各种温度下的氧气分子都将比现在速率更趋于一样D. 如果同样质量的氧气所占据体积不变,100°C 温度下氧气分子在单位时间与单位面积器壁碰撞的次数较0°C 时更多【答案】D【解析】温度升高,分子的平均动能变大,并非所有分子的动能都增大,选项A错误;实线对应的最大比例的速率区间内分子动能大,说明实验对应的温度大,为100℃时的情形,由图可知速率在 200-300m/s 的那一部分分子占比较0°C 的占比少,选项B错误;因速率较大的分子与速率较小的分子碰撞时只是交换速度,则即使分子之间的频繁碰撞,经过足够长时间,各种速率的分子所占的比例不会发生变化,选项C错误;如果同样质量的氧气所占据体积不变,100°C 温度下氧气分子运动的平均速率较大,则在单位时间与单位面积器壁碰撞的次数较0°C 时更多,选项D正确;故选D.3. 如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定A. 小于拉力所做的功B. 等于拉力所做的功C. 等于克服摩擦力所做的功D. 大于克服摩擦力所做的功【答案】A【解析】试题分析:受力分析,找到能影响动能变化的是那几个物理量,然后观测这几个物理量的变化即可。

2017-2018学年度高二下期期末考试化学试卷(含参考答案)

2017-2018学年度高二下期期末考试化学试卷(含参考答案)
B.“梨花淡自柳深青,柳絮飞时花满城”中柳絮的主要成分和棉花的相同
C.铝合金的大量使用归功于人们能使用焦炭从氧化铝中获得铝
D.锅炉水垢中的硫酸钙可用碳酸钠溶液处理,使之转化为碳酸钙,再用酸除去
2.设NA为阿伏伽德罗常数的值,下列说法正确的是
A.100g46%的乙醇溶4在熔融状态下电离出的阳离子数为2NA
B.X、Z的浓度相等时
D.密闭容器内气体的密度不再发生变化
4.由下列实验操作及现象能推出相应结论的是
2017-2018学年度高二下期期末考试
化学试卷
可能用到的相对原子质量:N—14O—16Na—23Ag—108S-32Cu-64Cl-35.5
第I卷选择题(共42分)
选择题(1-10为必做题,11-14为选做题,每题3分共42分)
1.下列有关化学与生产、生活的说法中,不正确的是
A.陶瓷、水泥和玻璃都属于硅酸盐产品
C.氢氧燃料电池负极消耗1.12L气体时,电路中转移的电子数为0.1NA
D.常温常压下,92g的NO2和N2O4混合气体含有的原子数为6NA
3.一定条件下的恒容密闭容器中,能表示反应X(g)+2Y(s)
Z(g)一定达到化学平衡状态的是
A.正反应和逆反应的速率均相等且都为零
C.容器中的压强不再发生变化

四川省眉山市2017-2018学年高二下学期期末考试英语试卷

四川省眉山市2017-2018学年高二下学期期末考试英语试卷

四川省眉山市2017-2018学年高二下学期期末考试英语试卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。

1. What will the man probably do next?A. Put on a shirt.B. Turn the dryer off.C. Fix the refrigerator.2. What can we learn from the conversation?A. The woman thought the tickets would be available soon.B. The woman thought there were no tickets left.C. The audience were deeply impressed by the concert.3. Where are the speakers?A. At a hospital.B. At a classroom.C. At a gym.4. What day is it today?A. Thursday.B. Friday.C. Sunday.5. What did the woman think of the movie?A. Terrible.B. Average.C. Fantastic.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

四川省雅安市2017-2018学年高二下学期期末考试有答案

四川省雅安市2017-2018学年高二下学期期末考试有答案

四川省雅安市2017-2018学年高二下学期期末考试英语试题第Ⅰ卷(选择题,共100分)第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

ABasic Study Manual Hardcover $37.50Future success depends on the ability to learn. Here are the answers to the questions most often asked by parents, teachers, business trainers and by students themselves. Read this book and learn:◆ What the three barriers to study are, and what to do about them.◆ What to do if you get tired of a subject you are studying.◆ Twenty-six simple drills to help you learn how to study easily, rapidly and with full understanding.Buy and read Basic Study Manual and use it to improve your ability to study.Study Skills for Life Hardcover: $31,99L. Ron Hubbard’s study technology for teenagers opens the door to their future success by giving them the ability to study and learn. Fully illustrated (配插图) for easy understanding.How to Use a Dictionary Picture Book for Children Hardcover: $34.90In spite of billions of dollars spent on “educational research,” children are not taught the most basic skills of learning, even the most basic of these: how to use a dictionary. In fact, a search of educational books for children found not one that told them how to use a dictionary. Written for children 8 to 12, this fully illustrated book will teach your children:◆ How to find words in a dictionary.◆ The different ways that words are used.◆ What the different marks and symbols that are used in a dictionary mean.◆ How to use a dictionary to correctly pronounce words.This book includes a part for parents and teachers showing you how to use this book with children. Buy thisbook and give it to your children to unlock their education. What’s more, you’ll just pay 50 percent for it before September, 1, 2018.21. The book Study Skills for Life was illustrated to ________.A. make the book more attractiveB. make the book suitable for different readersC. persuade readers to buy the bookD. help readers understand the book22. Which of the books is written for 8 to 12-year-olds to use a dictionary?A. Basic Study ManualB. How to Use a Dictionary Picture Book for ChildrenC. Study Skills for LifeD. All of them.23. According to the advertisements, the three books are all intended for ________.A. adultsB. womenC. childrenD. teachers【答案】21. D 22. B 23. C【解析】本文是一篇应用文。

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题-含答案

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题-含答案

2017-2018学年度(下)调研检测 2018.07高二数学(理科)本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共12小题,每小题5分,共60分.第一部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若焦点在y 轴上的双曲线22113y x m m -=--的焦距为4,则m 等于( )(A )0 (B )4 (C )10 (D )6- 2.已知复数2i1iz=+(i 为虚数单位),则||z =( ) (A )3 (B )2 (C (D3. 设)(x f '是函数cos ()x xf x e=的导函数,则(0)f '的值为( ) (A )1 (B )0 (C )1- (D )1e4. 某程序框图如图所示,该程序运行后输出的k 的值是( ) (A )4 (B )5(C )6 (D )75. 如图是函数()y f x =的导函数()y f x '=的图象,则下面说法正确的是( ) (A )在(2,1)-上()f x 是增函数(B )在(1,3)上()f x 是减函数 (C )当1x =时,()f x 取极大值 (D )当2x =时,()f x 取极大值6. 祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A ,B 为两个同高的几何体,:p A ,B 的体积不相等,:q A ,B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q 的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件7.若曲线2y ax =与曲线ln y x =在它们的公共点处具有公共切线,则实数a 的值为( ) (A )12e (B )12(C )(D )1e8. 设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是( ) (A )若//,//m n αβ,且//αβ,则//m n (B )若,m αβα⊥⊥,则//m β(C )若,m n αβ⊥⊥,αβ⊥,则m n ⊥ (D )若//,m n αβ⊥,且αβ⊥,则//m n9. 某空间几何体的三视图如图所示,则该几何体的体积为( ) (A )83 (B )83π- (C )73 (D )73π- 10. 图1和图2中所有的正方形都全等,将图1中的正方形放在图2中 的①②③④某一位置,所组成的图形能围成正方体的概率是( ) (A )14 (B )12 (C )34(D )1 11. 正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为3,此时四面体ABCD 外接球表面积为( ) (A(B(C )7π (D )19π 12. 设函数)(x f '是奇函数))((R x x f ∈的导函数,当0x >时,()ln ()0f x x x f x '⋅+<,2正视图侧视图俯视图则使得2(1)()0x f x -<成立的x 的取值范围是( ) (A )(,1)(1,)-∞-+∞ (B )(,1)(0,1)-∞-(C )(1,0)(0,1)- (D )(1,0)(1,)-+∞第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.13. 命题p [1,1]x ∃∈-,使得2x a <成立;命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立.若命题q p ∧为真,则实数a 的取值范围为___________.14.如图,在三棱柱111ABC A B C -中,1CC ⊥底面ABC ,90ACB ∠=,1CA CB CC ==,D 是1CC 的中点,则直线1AC 与BD 所成角的余弦值为__________.15. 在推导等差数列前n 项和的过程中,我们使用了倒序相加的方法, 类比可以求得222sin 1sin 2sin 89+++= .16.已知函数,0()(1),0x xe xf x a x e x -⎧<=⎨--≥⎩()a R ∈,若存在三个互不相等的实数123,,x x x ,使得312123()()()f x f x f x e x x x ===-成立,则实数a 的取值范围是__________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数2()ln f x ax b x =+在1x =处有极值12. (Ⅰ)求a 、b 的值;(Ⅱ)求函数()y f x =的单调区间.18. (本小题满分12分)2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:ˆˆy bx a =+;(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下22⨯列联表:参考公式:1122211()()ˆˆˆ,()n ni iiii i nni ii i x y nx y x x y y bay bx x nxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19.(本小题满分12分)如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,点M 是AD 上的点, 且13AM MD =.将△AED ,△DCF 分别沿DE ,DF 折起, 使A ,C 两点重合于P ,连接EF ,PB . (Ⅰ) 求证:PD EF ⊥;(Ⅱ)试判断PB 与平面EFM 的位置关系,并给出证明.20.(本小题满分12分)已知椭圆C它的一个顶点恰好是抛物线24x y =-的焦点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:2l y kx =+与椭圆C 相交于A 、B 两点,在y 轴上是否存在点D ,使直线AD 与BD 关于y 轴对称?若存在,求出点D 坐标;若不存在,请说明理由.21.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,1AA AB =,90ABC ∠=.(Ⅰ)求证:1AB ⊥平面1A BC ;(Ⅱ)若2AB =,160A AB ∠=,且1A C 与平面11BB C C 所成的角 为30,求二面角11B A C C --的平面角的余弦值.EBM PE FM22.(本小题满分12分)已知函数21()e 12x f x x ax =---(其中a ∈R ,e 为自然对数的底数).(Ⅰ)若函数()f x 无极值,求实数a 的取值范围; (Ⅱ)当0x >时,证明:2(e 1)ln(1)x x x -+>.攀枝花市2017-2018学年度(下)调研检测 2018.07高二数学(理)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1~5)BDCAD (6~10)AACBC (11~12)CD二、填空题:本大题共4小题,每小题5分,共20分. 13、1(,2)214、1015、8944.5()2或 16、(,1]e --三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17、(本小题满分10分)解:(Ⅰ)'()2bf x ax x =+,则2(1)201(1)1l n 12f a b f a b '=+=⎧⎪⎨=⋅+=⎪⎩121a b ìïï=ï\íïï=-ïî.…………………5分(Ⅱ)21()ln 2f x x x =-的定义域为(0,)+∞,211'()x f x x x x-=-=,令'()0f x =,则1x =或1x =-(舍去)\当01x <<时,'()0f x <,()f x 递减;当1x >时,'()0f x >,()f x 递增, \()f x 的单调递减区间是(0,1),单调递增区间是(1,)+∞.…………………10分18、(本小题满分12分)解:(Ⅰ)由表中数据知:3,100x y ==∴1221141515008.55545ni ii ni i x y nx yb x nx==--===---∑∑,ˆ125.5a y bx =-=,∴所求回归直线方程为ˆ8.5125.5yx =-+.…………………5分 (Ⅱ)由(Ⅰ)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………7分(Ⅲ)由表中数据得2250(221288)505.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.…………………12分19、(本小题满分12分)(Ⅰ)证明:∵折叠前A D AE ⊥,DC CF ⊥…………2分 ∴折叠后PD PE ⊥,PD PF ⊥…………3分 又∵PEPF P =∴PD ⊥平面PEF ,而EF ⊂平面PEF ∴PD EF ⊥.…………………5分 (Ⅱ)//PB 平面EFM ,证明如下:连接BD 交EF 于N ,连接NM ,在正方形ABCD 中,连接AC 交BD 于O , 则1124BN BO BD ==,所以13BN ND =,…………………9分 又13AM MD =,即13PM DM =,在PBD ∆中,13PM BN MD ND ==,所以//PB MN . PB ⊄平面EFM ,MN ⊂平面EFM ,所以//PB 平面EFM .…………………12分20、(本小题满分12分)解:(Ⅰ)由题意,设椭圆方程为22221(0)x y a b a b+=>>,则有2221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得222211a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为2212xy +=.…………………5分(Ⅱ)假设存在点D 满足条件,则0AD BD k k +=.设0(0,)D y ,11(,)A x y ,22(,)B x y ,联立方程22122x y y kx ⎧+=⎪⎨⎪=+⎩,得22(12)860k x kx +++=,PE BMNEM2226424(12)16240k k k ∆=-+=->,122122812612k x x k x x k ⎧+=-⎪⎪+⎨⎪⋅=⎪+⎩,…………………9分 由AD BD k k +=,得102120y y y yx x --+=,即211212012122312222x y x y kx x y x x x x +==+=-+=++,综上所述,存在点1(0,)2D ,使直线AD 与BD 关于y 轴对称.…………………12分21、(本小题满分12分)解:(Ⅰ)由已知侧面11AA B B ⊥底面ABC ,CB CA ⊥, CB ⊂底面ABC ,得到CB ⊥侧面11AA B B , 又因为1AB ⊂侧面11AA B B ,所以1AB CB ⊥,又由已知1AA AB =,侧面11AA B B 为菱形,所以对角线11AB A B ⊥, 即1AB CB ⊥,11AB A B ⊥,1A BCB B =,所以1AB ⊥平面1A BC .…………………6分(Ⅱ)设线段1BB 的中点为D 点,连接1A D ,DC ,因为160A AB ∠=,易知11A BB 为等边三角形,中线1A D ⊥1BB ,由(Ⅰ)CB ⊥侧面11AA B B ,所以1CB A D ⊥,得到1A D ⊥平面11BB C C ,1A CD ∠即为1A C 与平面11BB C C 所成的角,12A B =,1A D,1AC =, 22211CB A C A B =-,得到CB =以D 点为坐标原点,1DA 为x 轴,DB 为y 轴,过D 平行BC 的直线为z ,建立空间直角坐标系,(),0D,)1A,(0,1,C ,()0,1,0B,(10,C -,()10,1,0B -,)A,由(Ⅰ)知平面1A CB 的法向量为()13,3,0AB =,设平面11C CA 的法向量(),,n x y z =,1100n C C n A C ⎧=⎪⎨=⎪⎩,解得(22,0,n=,11122cos ,11AB n AB n AB n==, 二面角11B A C C --为钝二面角,故余弦值为11-.…………………12分22、(本小题满分12分)解:(Ⅰ) 函数()f x 无极值,∴)(x f 在R 上单调递增或单调递减.即0)(≥'x f 或0)≤'x f (在R x ∈时恒成立;又a x e x f x --=')( 令()x g x e x a =--,则1)(-='x e x g ;所以)(x g 在()0-,∞上单调递减,在()∞+,0上单调递增;min ()(0)1g x g a ==-当0)(≥'x f 时,min min ()()10f x g x a '==-≥,即1≤a当0)≤'x f (时,显然不成立; 所以实数a 的取值范围是(,1]-∞.……………………5分(Ⅱ)由(Ⅰ)可知,当1a =时,当0x >时,()(0)0f x f >=,即212xx e x ->+.欲证(e 1)ln(1)x x -+>2x ,只需证2ln(1)2xx x +>+即可. 构造函数()h x =ln(1)x +-22xx +(0x >), 则22214()01(2)(1)(2)x h x x x x x '=-=>++++恒成立,故()h x 在(0,)+∞单调递增, 从而()(0)0h x h >=.即2ln(1)02x x x +->+,亦即2ln(1)2xx x +>+. 得证2(e 1)ln(1)x x x -+>. ……………………12分。

四川省攀枝花市20172018学年高二数学下学期期末调研检测试题文

四川省攀枝花市20172018学年高二数学下学期期末调研检测试题文

四川省攀枝花市2017-2018学年高二数学下学期期末调研检测试题文本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共12小题,每小题5分,共60分.第一部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若焦点在y 轴上的双曲线22113y xm m -=--的焦距为4,则m 等于( )(A )0 (B )4 (C )10 (D )6- 2.已知复数2i1iz=+(i 为虚数单位),则||z =( ) (A )3 (B )2 (C )3 (D )2 3. 设)(x f '是函数cos ()x xf x e=的导函数,则(0)f '的值为( ) (A )1 (B )0 (C )1- (D )1e4. 某程序框图如图所示,该程序运行后输出的k 的值是( ) (A )4(B )5(C )6 (D )75. 如图是函数()y f x =的导函数()y f x '=的图象,则下面说法正确的是( ) (A )在(2,1)-上()f x 是增函数 (B )在(1,3)上()f x 是减函数 (C )当1x =时,()f x 取极大值 (D )当2x =时,()f x 取极大值6.将一个直角边长为1的等腰直角三角形绕其一条直角边旋转一周所形成的几何体的侧面积为( ) (A )4π(B )22π(C )2π(D )2π7. 若[1,5]a ∈,则函数()af x x x=+在区间[2,+)∞内单调递增的概率是( ) (A )34 (B )24 (C )14 (D )458.函数3y x x =-的图象与直线2y ax =+相切,则实数a 的值为( ) (A )1- (B )1 (C )2(D )49. 设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是( ) (A )若//,//m n αβ,且//αβ,则//m n (B )若,m αβα⊥⊥,则//m β(C )若,m n αβ⊥⊥,αβ⊥,则m n ⊥ (D )若//,m n αβ⊥,且αβ⊥,则//m n10. 某空间几何体的三视图如图所示,则该几何体的体积为( )(A )83 (B )83π-(C )73 (D )73π-11. 正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 2,此时四面体ABCD 外接球表面积为( ) (A 55(B )76 (C )5π (D )7π 12.设函数)(x f '是奇函数))((R x x f ∈的导函数,当0x >时,()()ln f x f x x x'⋅<-,则使得2(1)()0x f x -<成立的x 的取值范围是( )(A )(,1)(1,)-∞-+∞ (B )(,1)(0,1)-∞- (C )(1,0)(0,1)- (D )(1,0)(1,)-+∞1122正视图侧视图俯视图第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分. 13. 已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率等于22,它的一个顶点 恰好是抛物线24x y =的焦点,则椭圆C 的标准方程为________.14.如图,在三棱柱111ABC A B C -中,1CC ⊥底面ABC ,90ACB ∠=,1CA CB CC ==,D 是1CC 的中点,则直线1AC 与BD 所成角的余弦值为__________.15. 在推导等差数列前n 项和的过程中,我们使用了倒序相加的方法,类比可以求得222sin 1sin 2sin 89+++= .16.已知函数1,0(),0x a x f x xe x ⎧-<⎪=⎨⎪≥⎩()a R ∈,()g x ex =,若()f x 与()g x 的图象恰好有三个公共点,则实数a 的取值范围是__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数2()ln f x ax b x =+在1x 处有极值12. (Ⅰ)求a 、b 的值;(Ⅱ)求函数()y f x =的单调区间.18. (本小题满分12分)2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:月份 1 2345违章驾驶员人数120 105 100 90 85(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程ˆˆˆybx a =+; (Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下22⨯列联表:不礼让斑马线礼让斑马线合计驾龄不超过1年 22 8 30 驾龄1年以上81220合计30 20 50能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?参考公式:1122211()()ˆˆˆ,()n ni iiii i nni ii i x y nx y x x y y bay bx x nxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)2()P K k ≥ 0.150 0.100 0.050 0.025 0.010 0.0050.001k2.072 2.7063.841 5.024 6.635 7.879 10.82819.(本小题满分12分)如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,点M 是AD 上的点, 且13AM MD =.将△AED ,△DCF 分别沿DE ,DF 折起, 使A ,C 两点重合于P ,连接EF ,PB . (Ⅰ) 求证:PD EF ⊥; (Ⅱ)求证://PB 平面EFM .20.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,1AA AB =,90ABC ∠=.(Ⅰ)求证:1AB ⊥平面1A BC ;(Ⅱ)设1BB 中点为D 点,若2AB =,160A AB ∠=, 且1A C 与平面11BB C C 所成的角为30,求三棱锥11D A C C -的体积.21.(本小题满分12分)已知函数21()e 12xf x x ax =---(其中a ∈R ,e 为自然对数的底数).(Ⅰ)若函数()f x 是R 上的单调增函数,求实数a 的取值范围; (Ⅱ)当0x >时,证明:2(e 1)ln(1)xx x -+>. E BAMPE BFM请考生在22~23三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线1C 的普通方程为2214x y +=.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=-. (Ⅰ)求曲线1C 的参数方程和2C 的普通方程;(Ⅱ)若P 、Q 分别是曲线1C 、2C 上的动点,求PQ 的最大值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()1f x x a x =++-. (Ⅰ)若1a =,解不等式()4f x <;(Ⅱ)对任意满足1m n +=的正实数m 、n ,若总存在实数0x ,使得011()f x m n+≥成立,求实数a 的取值范围.攀枝花市2017-2018学年度(下)调研检测 2018.07高二数学(文)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1~5)BDCAD (6~10)CABCB (11~12)CD二、填空题:本大题共4小题,每小题5分,共20分.13、2212x y += 14、1010 15、8944.5()2或 16、(,2)e -∞-三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17、(本小题满分12分)解:(Ⅰ)'()2bf x ax x =+,则2(1)201(1)1ln12f a b f a b '=+=⎧⎪⎨=⋅+=⎪⎩ 121a b.…………………6分(Ⅱ)21()ln 2f x x x =-的定义域为(0,)+∞,211'()x f x x x x-=-=,令'()0f x =,则1x 或1x =-(舍去)当01x 时,'()0f x <,()f x 递减;当1x 时,'()0fx >,()f x 递增,()f x 的单调递减区间是(0,1),单调递增区间是(1,)+∞.…………………12分18、(本小题满分12分)解:(Ⅰ)由表中数据知:3,100x y ==∴1221141515008.55545ni ii ni i x y nx yb x nx==--===---∑∑,ˆ125.5a y bx =-=,∴所求回归直线方程为ˆ8.5125.5yx =-+.…………………5分 (Ⅱ)由(Ⅰ)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………7分(Ⅲ)由表中数据得2250(221288)505.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.…………………12分19、(本小题满分12分)(Ⅰ)证明:∵折叠前A D AE ⊥,DC CF ⊥…………2分 ∴折叠后PD PE ⊥,PD PF ⊥…………3分 又∵PEPF P =∴PD ⊥平面PEF ,而EF ⊂平面PEF ∴PD EF ⊥.…………………5分(Ⅱ)连接BD 交EF 于N ,连接NM ,在正方形ABCD 中,连接AC 交BD 于O , 则1124BN BO BD ==,所以13BN ND =,…………………9分 又13AM MD =,即13PM DM =,在PBD ∆中,13PM BN MD ND ==, 所以//PB MN ,PB ⊄平面EFM ,MN ⊂平面EFM ,所以//PB 平面EFM .…………………12分20、(本小题满分12分)解:(Ⅰ)由已知侧面11AA B B ⊥底面ABC ,CB CA ⊥, CB ⊂底面ABC ,得到CB ⊥侧面11AA B B ,又因为1AB ⊂侧面11AA B B ,所以1AB CB ⊥,又由已知1AA AB =,侧面11AA B B 为菱形,所以对角线11AB A B ⊥,即1AB CB ⊥,11AB A B ⊥,1A B CB B =,所以1AB ⊥平面1A BC .…………………6分(Ⅱ)因为160A AB ∠=,易知11A BB 为等边三角形,中线1A D ⊥1BB , 由(Ⅰ)CB ⊥侧面11AA B B ,所以1CB A D ⊥,得到1A D ⊥平面11BB C C ,1A CD ∠即为1A C 与平面11BB C C 所成的角,12A B = ,13A D =,123AC =, 22211CB A C A B =-,得到22CB =PE FMNEAMON111222DC CSCC BC ==, 11111112633D A C C A DCC DC CV V A D S--===.…………………12分21、(本小题满分12分)解:(Ⅰ)a x e x f x--=')(函数()f x 是R 上的单调递增函数,0)(≥'∴x f 在R x ∈上恒成立,即a x e x ≥-在R x ∈时恒成立,令x e x g x-=)(,则1)(-='xe x g ;所以)(x g 在()0-,∞上单调递减,在()∞+,0上单调递增;1)0()(min ==g x g所以实数a 的取值范围是(,1]-∞.……………………5分(Ⅱ)由(Ⅰ)可知,当1a =时,当0x >时,()(0)0f x f >=,即212xx e x ->+.欲证(e 1)ln(1)xx -+>2x ,只需证2ln(1)2xx x +>+即可. 构造函数()h x =ln(1)x +-22xx +(0x >), 则22214()01(2)(1)(2)x h x x x x x '=-=>++++恒成立,故()h x 在(0,)+∞单调递增, 从而()(0)0h x h >=.即2ln(1)02x x x +->+,亦即2ln(1)2xx x +>+. 得证2(e 1)ln(1)xx x -+>. ……………………12分请考生在22~23三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数). ……………………2分曲线2C 的极坐标方程为2sin ρθ=-,即22sin ρρθ=-,∴曲线2C 的直角坐标方程为222x y y +=-,即()2211x y ++=. ……………………5分(Ⅱ)法一:设()2cos ,sin P αα,则P 到曲线2C 的圆心()0,1-的距离()224cos sin 1d αα=++23sin 2sin 5αα=-++21163(sin )33α=--+, ∵[]sin 1,1α∈-,∴当1sin 3α=时,max 43d =. ∴max max PQ d r =+43433133+=+=. ……………………10分 法二:设(),P x y ,则P 到曲线2C 的圆心()0,1-的距离222222116(1)44(1)3253()33d x y y y y y y =++=-++=-++=--+,∵[]1,1y ∈-,∴当13y =时,max 433d =. ∴max max PQ d r =+434331+=+=. ……………………10分23.(本小题满分10分)选修4-5:不等式选讲 解:(Ⅰ)1a =时,()11f x x x =++-法一:由绝对值不等式的几何意义得不等式的解集为(2,2)x ∈-. 法二:当1x ≤-时,由()24f x x =-<得2x >-,则21x -<≤-;当11x -<≤时,()24f x =<恒成立;当1x >时,由()24f x x =<得2x <,则12x <<.综上,不等式()4f x <的解集为{}|22x x -<<. ……………………5分 (Ⅱ)由题意1111()()114n mm n m n m n m n+=++=+++≥,……………………7分 由绝对值不等式得()11f x x a x a =++-≥+,当且仅当()(1)0x a x +-≤时取等号,故()f x 的最小值为1a +.……………………9分由题意得41a ≥+,解得53a -≤≤. ……………………10分。

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题-含答案

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题-含答案

2017-2018学年度(下)调研检测 2018.07高二数学(理科)本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共12小题,每小题5分,共60分.第一部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若焦点在y 轴上的双曲线22113y x m m -=--的焦距为4,则m 等于( )(A )0 (B )4 (C )10 (D )6- 2.已知复数2i1iz=+(i 为虚数单位),则||z =( ) (A )3 (B )2 (C (D3. 设)(x f '是函数cos ()x xf x e=的导函数,则(0)f '的值为( ) (A )1 (B )0 (C )1- (D )1e4. 某程序框图如图所示,该程序运行后输出的k 的值是( ) (A )4 (B )5(C )6 (D )75. 如图是函数()y f x =的导函数()y f x '=的图象,则下面说法正确的是( ) (A )在(2,1)-上()f x 是增函数(B )在(1,3)上()f x 是减函数 (C )当1x =时,()f x 取极大值 (D )当2x =时,()f x 取极大值6. 祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A ,B 为两个同高的几何体,:p A ,B 的体积不相等,:q A ,B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q 的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件7.若曲线2y ax =与曲线ln y x =在它们的公共点处具有公共切线,则实数a 的值为( ) (A )12e(B )12 (C )(D )1e8. 设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是( ) (A )若//,//m n αβ,且//αβ,则//m n (B )若,m αβα⊥⊥,则//m β(C )若,m n αβ⊥⊥,αβ⊥,则m n ⊥ (D )若//,m n αβ⊥,且αβ⊥,则//m n9. 某空间几何体的三视图如图所示,则该几何体的体积为( ) (A )83 (B )83π- (C )73 (D )73π- 10. 图1和图2中所有的正方形都全等,将图1中的正方形放在图2中 的①②③④某一位置,所组成的图形能围成正方体的概率是( ) (A )14 (B )12 (C )34(D )1 11. 正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为3,此时四面体ABCD 外接球表面积为( ) (A(B(C )7π (D )19π 12. 设函数)(x f '是奇函数))((R x x f ∈的导函数,当0x >时,()ln ()0f x x x f x '⋅+<,2正视图侧视图俯视图则使得2(1)()0x f x -<成立的x 的取值范围是( ) (A )(,1)(1,)-∞-+∞ (B )(,1)(0,1)-∞-(C )(1,0)(0,1)- (D )(1,0)(1,)-+∞第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.13. 命题p [1,1]x ∃∈-,使得2x a <成立;命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立.若命题q p ∧为真,则实数a 的取值范围为___________.14.如图,在三棱柱111ABC A B C -中,1CC ⊥底面ABC ,90ACB ∠=,1CA CB CC ==,D 是1CC 的中点,则直线1AC 与BD 所成角的余弦值为__________.15. 在推导等差数列前n 项和的过程中,我们使用了倒序相加的方法, 类比可以求得222sin 1sin 2sin 89+++= .16.已知函数,0()(1),0x xe xf x a x e x -⎧<=⎨--≥⎩()a R ∈,若存在三个互不相等的实数123,,x x x ,使得312123()()()f x f x f x e x x x ===-成立,则实数a 的取值范围是__________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数2()ln f x ax b x =+在1x =处有极值12. (Ⅰ)求a 、b 的值;(Ⅱ)求函数()y f x =的单调区间.18. (本小题满分12分)2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:ˆˆy bx a =+;(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下22⨯列联表:年参考公式:1122211()()ˆˆˆ,()n ni iiii i nni ii i x y nx y x x y y bay bx x nxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19.(本小题满分12分)如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,点M 是AD 上的点, 且13AM MD =.将△AED ,△DCF 分别沿DE ,DF 折起, 使A ,C 两点重合于P ,连接EF ,PB . (Ⅰ) 求证:PD EF ⊥;(Ⅱ)试判断PB 与平面EFM 的位置关系,并给出证明.20.(本小题满分12分)已知椭圆C,它的一个顶点恰好是抛物线24x y =-的焦点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:2l y kx =+与椭圆C 相交于A 、B 两点,在y 轴上是否存在点D ,使直线AD 与BD 关于y 轴对称?若存在,求出点D 坐标;若不存在,请说明理由.21.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,1AA AB =,90ABC ∠=.(Ⅰ)求证:1AB ⊥平面1A BC ;(Ⅱ)若2AB =,160A AB ∠=,且1A C 与平面11BB C C 所成的角 为30,求二面角11B A C C --的平面角的余弦值.EBM PE FM22.(本小题满分12分)已知函数21()e 12x f x x ax =---(其中a ∈R ,e 为自然对数的底数).(Ⅰ)若函数()f x 无极值,求实数a 的取值范围; (Ⅱ)当0x >时,证明:2(e 1)ln(1)x x x -+>.攀枝花市2017-2018学年度(下)调研检测 2018.07高二数学(理)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1~5)BDCAD (6~10)AACBC (11~12)CD二、填空题:本大题共4小题,每小题5分,共20分. 13、1(,2)214、1015、8944.5()2或 16、(,1]e --三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17、(本小题满分10分)解:(Ⅰ)'()2bf x ax x =+,则2(1)201(1)1l n 12f a b f a b '=+=⎧⎪⎨=⋅+=⎪⎩121a b ìïï=ï\íïï=-ïî.…………………5分(Ⅱ)21()ln 2f x x x =-的定义域为(0,)+∞,211'()x f x x x x-=-=,令'()0f x =,则1x =或1x =-(舍去)\当01x <<时,'()0f x <,()f x 递减;当1x >时,'()0f x >,()f x 递增, \()f x 的单调递减区间是(0,1),单调递增区间是(1,)+∞.…………………10分18、(本小题满分12分)解:(Ⅰ)由表中数据知:3,100x y ==∴1221141515008.55545ni ii ni i x y nx yb x nx==--===---∑∑,ˆ125.5a y bx =-=,∴所求回归直线方程为ˆ8.5125.5yx =-+.…………………5分 (Ⅱ)由(Ⅰ)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………7分(Ⅲ)由表中数据得2250(221288)505.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.…………………12分19、(本小题满分12分)(Ⅰ)证明:∵折叠前A D AE ⊥,DC CF ⊥…………2分 ∴折叠后PD PE ⊥,PD PF ⊥…………3分 又∵PEPF P =∴PD ⊥平面PEF ,而EF ⊂平面PEF ∴PD EF ⊥.…………………5分 (Ⅱ)//PB 平面EFM ,证明如下:连接BD 交EF 于N ,连接NM ,在正方形ABCD 中,连接AC 交BD 于O , 则1124BN BO BD ==,所以13BN ND =,…………………9分 又13AM MD =,即13PM DM =,在PBD ∆中,13PM BN MD ND ==,所以//PB MN . PB ⊄平面EFM ,MN ⊂平面EFM ,所以//PB 平面EFM .…………………12分20、(本小题满分12分)解:(Ⅰ)由题意,设椭圆方程为22221(0)x y a b a b+=>>,则有2221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得222211a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为2212xy +=.…………………5分(Ⅱ)假设存在点D 满足条件,则0AD BD k k +=.设0(0,)D y ,11(,)A x y ,22(,)B x y ,联立方程22122x y y kx ⎧+=⎪⎨⎪=+⎩,得22(12)860k x kx +++=,PE BMNEM2226424(12)16240k k k ∆=-+=->,122122812612k x x k x x k ⎧+=-⎪⎪+⎨⎪⋅=⎪+⎩,…………………9分 由AD BD k k +=,得102120y y y yx x --+=,即211212012122312222x y x y kx x y x x x x +==+=-+=++,综上所述,存在点1(0,)2D ,使直线AD 与BD 关于y 轴对称.…………………12分21、(本小题满分12分)解:(Ⅰ)由已知侧面11AA B B ⊥底面ABC ,CB CA ⊥, CB ⊂底面ABC ,得到CB ⊥侧面11AA B B , 又因为1AB ⊂侧面11AA B B ,所以1AB CB ⊥,又由已知1AA AB =,侧面11AA B B 为菱形,所以对角线11AB A B ⊥, 即1AB CB ⊥,11AB A B ⊥,1A BCB B =,所以1AB ⊥平面1A BC .…………………6分(Ⅱ)设线段1BB 的中点为D 点,连接1A D ,DC ,因为160A AB ∠=,易知11A BB 为等边三角形,中线1A D ⊥1BB ,由(Ⅰ)CB ⊥侧面11AA B B ,所以1CB A D ⊥,得到1A D ⊥平面11BB C C ,1A CD ∠即为1A C 与平面11BB C C 所成的角,12A B =,1A D,1AC =22211CB A C A B =-,得到CB =以D 点为坐标原点,1DA 为x 轴,DB 为y 轴,过D 平行BC 的直线为z ,建立空间直角坐标系,(),0D,)1A,(0,1,C ,()0,1,0B,(10,C -,()10,1,0B -,)A,由(Ⅰ)知平面1A CB 的法向量为()13,3,0AB =,设平面11C CA 的法向量(),,n x y z =,1100n C C n A C ⎧=⎪⎨=⎪⎩,解得(22,0,n =,11122cos ,11AB n AB n AB n==, 二面角11B A C C --为钝二面角,故余弦值为11-.…………………12分22、(本小题满分12分)解:(Ⅰ) 函数()f x 无极值,∴)(x f 在R 上单调递增或单调递减.即0)(≥'x f 或0)≤'x f (在R x ∈时恒成立;又a x e x f x --=')( 令()x g x e x a =--,则1)(-='x e x g ;所以)(x g 在()0-,∞上单调递减,在()∞+,0上单调递增;min ()(0)1g x g a ==-当0)(≥'x f 时,min min ()()10f x g x a '==-≥,即1≤a当0)≤'x f (时,显然不成立; 所以实数a 的取值范围是(,1]-∞.……………………5分(Ⅱ)由(Ⅰ)可知,当1a =时,当0x >时,()(0)0f x f >=,即212xx e x ->+.欲证(e 1)ln(1)x x -+>2x ,只需证2ln(1)2xx x +>+即可. 构造函数()h x =ln(1)x +-22xx +(0x >), 则22214()01(2)(1)(2)x h x x x x x '=-=>++++恒成立,故()h x 在(0,)+∞单调递增, 从而()(0)0h x h >=.即2ln(1)02x x x +->+,亦即2ln(1)2xx x +>+. 得证2(e 1)ln(1)x x x -+>. ……………………12分。

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题-含答案

四川省攀枝花市2017-2018学年高二下学期期末调研检测数学(理)试题-含答案

2017-2018学年度(下)调研检测 2018.07高二数学(理科)本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共12小题,每小题5分,共60分.第一部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若焦点在y 轴上的双曲线22113y x m m -=--的焦距为4,则m 等于( )(A )0 (B )4 (C )10 (D )6- 2.已知复数2i1iz=+(i 为虚数单位),则||z =( ) (A )3 (B )2 (C (D3. 设)(x f '是函数cos ()x xf x e=的导函数,则(0)f '的值为( ) (A )1 (B )0 (C )1- (D )1e4. 某程序框图如图所示,该程序运行后输出的k 的值是( ) (A )4(B )5(C )6 (D )75. 如图是函数()y f x =的导函数()y f x '=的图象,则下面说法正确的是( ) (A )在(2,1)-上()f x 是增函数(B )在(1,3)上()f x 是减函数 (C )当1x =时,()f x 取极大值 (D )当2x =时,()f x 取极大值6. 祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A ,B 为两个同高的几何体,:p A ,B 的体积不相等,:q A ,B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q 的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件7.若曲线2y ax =与曲线ln y x =在它们的公共点处具有公共切线,则实数a 的值为( ) (A )12e (B )12(C )(D )1e8. 设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是( ) (A )若//,//m n αβ,且//αβ,则//m n (B )若,m αβα⊥⊥,则//m β(C )若,m n αβ⊥⊥,αβ⊥,则m n ⊥ (D )若//,m n αβ⊥,且αβ⊥,则//m n9. 某空间几何体的三视图如图所示,则该几何体的体积为( ) (A )83 (B )83π- (C )73 (D )73π- 10. 图1和图2中所有的正方形都全等,将图1中的正方形放在图2中 的①②③④某一位置,所组成的图形能围成正方体的概率是( ) (A )14 (B )12 (C )34(D )1 11. 正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为3,此时四面体ABCD 外接球表面积为( ) (A(B(C )7π (D )19π 12. 设函数)(x f '是奇函数))((R x x f ∈的导函数,当0x >时,()ln ()0f x x x f x '⋅+<,2正视图侧视图俯视图则使得2(1)()0x f x -<成立的x 的取值范围是( ) (A )(,1)(1,)-∞-+∞ (B )(,1)(0,1)-∞-(C )(1,0)(0,1)- (D )(1,0)(1,)-+∞第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.13. 命题p [1,1]x ∃∈-,使得2x a <成立;命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立.若命题q p ∧为真,则实数a 的取值范围为___________.14.如图,在三棱柱111ABC A B C -中,1CC ⊥底面ABC ,90ACB ∠=,1CA CB CC ==,D 是1CC 的中点,则直线1AC 与BD 所成角的余弦值为__________.15. 在推导等差数列前n 项和的过程中,我们使用了倒序相加的方法, 类比可以求得222sin 1sin 2sin 89+++= .16.已知函数,0()(1),0x xe xf x a x e x -⎧<=⎨--≥⎩()a R ∈,若存在三个互不相等的实数123,,x x x ,使得312123()()()f x f x f x e x x x ===-成立,则实数a 的取值范围是__________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数2()ln f x ax b x =+在1x =处有极值12. (Ⅰ)求a 、b 的值;(Ⅱ)求函数()y f x =的单调区间.18. (本小题满分12分)2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:ˆˆy bx a =+;(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下22⨯列联表:年参考公式:1122211()()ˆˆˆ,()n ni iiii i nni ii i x y nx y x x y y bay bx x nxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19.(本小题满分12分)如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,点M 是AD 上的点, 且13AM MD =.将△AED ,△DCF 分别沿DE ,DF 折起, 使A ,C 两点重合于P ,连接EF ,PB . (Ⅰ) 求证:PD EF ⊥;(Ⅱ)试判断PB 与平面EFM 的位置关系,并给出证明.20.(本小题满分12分)已知椭圆C它的一个顶点恰好是抛物线24x y =-的焦点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:2l y kx =+与椭圆C 相交于A 、B 两点,在y 轴上是否存在点D ,使直线AD 与BD 关于y 轴对称?若存在,求出点D 坐标;若不存在,请说明理由.21.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,1AA AB =,90ABC ∠=.(Ⅰ)求证:1AB ⊥平面1A BC ;(Ⅱ)若2AB =,160A AB ∠=,且1A C 与平面11BB C C 所成的角 为30,求二面角11B A C C --的平面角的余弦值.E BMPE FM22.(本小题满分12分)已知函数21()e 12x f x x ax =---(其中a ∈R ,e 为自然对数的底数).(Ⅰ)若函数()f x 无极值,求实数a 的取值范围; (Ⅱ)当0x >时,证明:2(e 1)ln(1)x x x -+>.攀枝花市2017-2018学年度(下)调研检测 2018.07高二数学(理)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1~5)BDCAD (6~10)AACBC (11~12)CD二、填空题:本大题共4小题,每小题5分,共20分. 13、1(,2)214、1015、8944.5()2或 16、(,1]e --三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17、(本小题满分10分)解:(Ⅰ)'()2b f x ax x =+,则2(1)201(1)1l n12f a b f a b '=+=⎧⎪⎨=⋅+=⎪⎩ 121a b ìïï=ï\íïï=-ïî.…………………5分(Ⅱ)21()ln 2f x x x =-的定义域为(0,)+∞,211'()x f x x x x-=-=,令'()0f x =,则1x =或1x =-(舍去)\当01x <<时,'()0f x <,()f x 递减;当1x >时,'()0f x >,()f x 递增, \()f x 的单调递减区间是(0,1),单调递增区间是(1,)+∞.…………………10分18、(本小题满分12分)解:(Ⅰ)由表中数据知:3,100x y ==∴1221141515008.55545ni ii ni i x y nx yb x nx==--===---∑∑,ˆ125.5a y bx =-=,∴所求回归直线方程为ˆ8.5125.5yx =-+.…………………5分 (Ⅱ)由(Ⅰ)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………7分(Ⅲ)由表中数据得2250(221288)505.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.…………………12分19、(本小题满分12分)(Ⅰ)证明:∵折叠前A D AE ⊥,DC CF ⊥…………2分 ∴折叠后PD PE ⊥,PD PF ⊥…………3分 又∵PEPF P =∴PD ⊥平面PEF ,而EF ⊂平面PEF ∴PD EF ⊥.…………………5分 (Ⅱ)//PB 平面EFM ,证明如下:连接BD 交EF 于N ,连接NM ,在正方形ABCD 中,连接AC 交BD 于O , 则1124BN BO BD ==,所以13BN ND =,…………………9分 又13AM MD =,即13PM DM =,在PBD ∆中,13PM BN MD ND ==,所以//PB MN . PB ⊄平面EFM ,MN ⊂平面EFM ,所以//PB 平面EFM .…………………12分20、(本小题满分12分)解:(Ⅰ)由题意,设椭圆方程为22221(0)x y a b a b+=>>,则有2221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得222211a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为2212xy +=.…………………5分(Ⅱ)假设存在点D 满足条件,则0AD BD k k +=.设0(0,)D y ,11(,)A x y ,22(,)B x y ,联立方程22122x y y kx ⎧+=⎪⎨⎪=+⎩,得22(12)860k x kx +++=,PE BMNEM2226424(12)16240k k k ∆=-+=->,122122812612k x x k x x k ⎧+=-⎪⎪+⎨⎪⋅=⎪+⎩,…………………9分 由AD BD k k +=,得10212y y y y x x --+=,即211212012122312222x y x y kx x y x x x x +==+=-+=++,综上所述,存在点1(0,)2D ,使直线AD 与BD 关于y 轴对称.…………………12分21、(本小题满分12分)解:(Ⅰ)由已知侧面11AA B B ⊥底面ABC ,CB CA ⊥, CB ⊂底面ABC ,得到CB ⊥侧面11AA B B , 又因为1AB ⊂侧面11AA B B ,所以1AB CB ⊥,又由已知1AA AB =,侧面11AA B B 为菱形,所以对角线11AB A B ⊥, 即1AB CB ⊥,11AB A B ⊥,1A BCB B =,所以1AB ⊥平面1A BC .…………………6分(Ⅱ)设线段1BB 的中点为D 点,连接1A D ,DC ,因为160A AB ∠=,易知11A BB 为等边三角形,中线1A D ⊥1BB ,由(Ⅰ)CB ⊥侧面11AA B B ,所以1CB A D ⊥,得到1A D ⊥平面11BB C C ,1A CD ∠即为1A C 与平面11BB C C 所成的角,12A B =,1A D,1AC=22211CB A C A B =-,得到CB =以D 点为坐标原点,1DA 为x 轴,DB 为y 轴,过D 平行BC 的直线为z ,建立空间直角坐标系,(),0D,)1A,(0,1,C ,()0,1,0B,(10,C -,()10,1,0B -,)A,由(Ⅰ)知平面1A CB 的法向量为()13,3,0AB =,设平面11C CA 的法向量(),,n x y z =,110n C C n A C ⎧=⎪⎨=⎪⎩,解得(22,0,n =,11122cos ,11AB n AB n AB n==, 二面角11B A C C --为钝二面角,故余弦值为11-.…………………12分22、(本小题满分12分)解:(Ⅰ) 函数()f x 无极值,∴)(x f 在R 上单调递增或单调递减.即0)(≥'x f 或0)≤'x f (在R x ∈时恒成立;又a x e x f x --=')( 令()x g x e x a =--,则1)(-='x e x g ;所以)(x g 在()0-,∞上单调递减,在()∞+,0上单调递增;min ()(0)1g x g a ==-当0)(≥'x f 时,min min ()()10f x g x a '==-≥,即1≤a当0)≤'x f (时,显然不成立; 所以实数a 的取值范围是(,1]-∞.……………………5分(Ⅱ)由(Ⅰ)可知,当1a =时,当0x >时,()(0)0f x f >=,即212xx e x ->+.欲证(e 1)ln(1)x x -+>2x ,只需证2ln(1)2xx x +>+即可. 构造函数()h x =ln(1)x +-22xx +(0x >), 则22214()01(2)(1)(2)x h x x x x x '=-=>++++恒成立,故()h x 在(0,)+∞单调递增, 从而()(0)0h x h >=.即2ln(1)02x x x +->+,亦即2ln(1)2xx x +>+. 得证2(e 1)ln(1)x x x -+>. ……………………12分。

四川省攀枝花市2017-2018学年高二下学期期末调研检测英语试题

四川省攀枝花市2017-2018学年高二下学期期末调研检测英语试题

四川省攀枝花市2017-2018学年高二下学期期末调研检测英语试题第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从试题所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.15.C. £9.18.答案是B。

1. When should the passengers check in for flight 452?A. At 3:50.B. At 4:50.C. At 5:50.2. Where does the conversation take place?A. At a music hall.B. At a restaurant.C. At a store.3. How will the man go to the North?A. By air.B. By train.C. By bus.4. What will the woman probably do on Thursday?A. Have dinner with the man.B. Prepare for a job interview.C. Go to a concert.5. What are the speakers mainly talking about?A. New dictionaries.B. Forms of language.C. Development of language.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省2017—2018学年高二下学期期末模拟考试卷(三)(理科)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.1.双曲线﹣=1的渐近线方程为()A.y=±x B.y=±2x C.y=±x D.y=±x2.复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3i B.﹣2+3i C.2﹣3i D.2+3i3.观察下列式子:1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52,…,据此你可以归纳猜想出的一般结论为()A.1+3+5+…+(2n+1)=n2(n∈N*)B.1+3+5+…+(2n+1)=(n+1)2(n∈N*)C.1+3+5+…+(2n﹣1)=(n﹣1)2(n∈N*)D.1+3+5+…+(2n﹣1)=(n+1)2(n∈N*)4.定积分e x dx=()A.1+e B.e C.e﹣1 D.1﹣e5.已知x,y的取值如表所示,若y与x线性相关,且线性回归方程为,则的A.B.C.D.﹣6.函数f(x)=x3﹣3x+2的极大值点是()A.x=±1 B.x=1 C.x=0 D.x=﹣17.设(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+a2+a3+a4+a5=()A.2 B.1 C.0 D.﹣18.函数f(x)=的导函数f′(x)为()A.f′(x)=B.f′(x)=﹣C.f′(x)= D.f′(x)=﹣9.五人站成一排,其中甲、乙之间有且仅有1人,不同排法的总数是()A.48 B.36 C.18 D.1210.已知椭圆+=1的左、右焦点分别为F1,F2,点P在椭圆上,若|PF2|=,则cos∠F1PF2=()A.B.C.D.11.已知P是抛物线y2=4x上一动点,则点P到直线l:2x﹣y+3=0和y轴的距离之和的最小值是()A.B.C.2 D.﹣112.已知f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,f(x)+xf′(x)>0(其中f′(x)为f(x)的导函数),则f(x)>0的解集为()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(2,+∞)D.(﹣2,0)∪(0,2)二、填空题:本大题共4小题,每小题5分,共20分.13.(x﹣)6展开式的常数项为_______.14.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=_______.15.已知椭圆+=1(a>b>0)的左焦点F1(﹣c,0),右焦点F2(c,0),若椭圆上存在一点P,使|PF1|=2c,∠F1PF2=30°,则该椭圆的离心率e为_______.16.若存在正实数x0使e(x0﹣a)<2(其中e是自然对数的底数,e=2.71828…)成立,则实数a的取值范围是_______.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.已知抛物线x2=4y的焦点为F,P为该抛物线在第一象限内的图象上的一个动点(Ⅰ)当|PF|=2时,求点P的坐标;(Ⅱ)求点P到直线y=x﹣10的距离的最小值.18.学校游园活动有这样一个游戏:A箱子里装有3个白球,2个黑球,B箱子里装有2个白球,2个黑球,参加该游戏的同学从两个箱子中各摸出一个球,若颜色相同则获奖,现甲同学参加了一次该游戏.(Ⅰ)求甲获奖的概率P;(Ⅱ)记甲摸出的两个球中白球的个数为ξ,求ξ的分布列和数学期望E(ξ)19.已知函数f(x)=alnx﹣x+3(y=kx+2k),曲线y=f(x)在点(1,f(1))处的切线方程为y=x+b(b∈R)(Ⅰ)求a,b的值;(Ⅱ)求f(x)的极值.20.某市高二学生进行了体能测试,经分析,他们的体能成绩X服从正态分布N(μ,σ2),已知P(X≤75)=0.5,P(X≥95)=0.1(Ⅰ)求P(75<X<95);(Ⅱ)现从该市高二学生中随机抽取3位同学,记抽到的3位同学中体能测试成绩不超过75分的人数为ξ,求ξ的分布列和数学期望.21.已知椭圆C: +=1(a>b>0)的离心率e=,点A(1,)在椭圆C上(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的左顶点B且互相垂直的两直线l1,l2分别交椭圆C于点M,N(点M,N 均异于点B),试问直线MN是否过定点?若过定点,求出定点的坐标;若不过定点,说明理由.22.已知函数f(x)=alnx+x2﹣(a∈R)(Ⅰ)若a=﹣4,求f(x)的单调区间;(Ⅱ)若f(x)≥0在区间[1,+∞)上恒成立,求a的最小值.参考答案一、单项选择题1.解:由双曲线﹣=1的渐近线方程为y=±x,双曲线﹣=1的a=2,b=,可得所求渐近线方程为y=±x.故选:A.2.解:∵z=(3﹣2i)i=2+3i,∴.故选:C.3.解:∵1+3=22,1+3+5=32,…,∴第n个等式为1+3+5+…+(2n+1)=(n+1)2(n∈N*),故选:B.4.解:原式==e﹣1;故选C.5.解:根据所给的三对数据,得到=2,=5,∴这组数据的样本中心点是(2,5)∵线性回归直线的方程一定过样本中心点,线性回归方程为,∴5=2b+6∴b=﹣.故选:D.6.解:∵f(x)=x3﹣3x+2,∴f′(x)=3x2﹣3,当f′(x)=0时,3x2﹣3=0,∴x=±1.令f′(x)>0,得x<﹣1或x>1;令f′(x)<0,得﹣1<x<1;∴函数的单调增区间为(﹣∞,﹣1),(1,+∞),函数的单调减区间为(﹣1,1)∴函数的极大值点是x=﹣1故选:D.7.解:把x=0代入得,a0=﹣1,把x=1代入得a0+a1+a2+a3+a4+a5=1,把a0=﹣1,代入得a1+a2+a3+a4+a5=1﹣(﹣1)=2.故选:A.8.解:函数的导数f′(x)===﹣,故选:B9.解:因为5人站成一排,甲、乙两人之间恰有1人的不同站法=36,故选:B.10.解:∵椭圆+=1,∴a=2,b=2=c,∵|PF2|=,|PF1|+|PF2|=4,∴|PF1||=3,∴cos∠F1PF2==.故选:D.11.解:由题意作图如右图,点P到直线l:2x﹣y+3=0为PA;点P到y轴的距离为PB﹣1;而由抛物线的定义知,PB=PF;故点P到直线l:2x﹣y+3=0和y轴的距离之和为PF+PA﹣1;而点F(1,0)到直线l:2x﹣y+3=0的距离为=;故点P到直线l:2x﹣y+3=0和y轴的距离之和的最小值为﹣1;故选D.12.解:∵函数f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x)令g(x)=xf(x),∴g(﹣x)=g(x)是定义在R上的偶函数,又∵f(2)=0,∴f(﹣2)=﹣f(2)=0,∴g(2)=g(﹣2)=0又∵当x>0时,f(x)+xf′(x)>0,即当x>0时,g′(x)>0,即g(x)在(0,+∞)上是增函数,在(﹣∞,0)是减函数,∴当x>0时,f(x)>0,即g(x)>g(2),解得:x>2∴当x<0时,f(x)>0,即g(x)<g(﹣2),解得:﹣2<x<0,∴不等式xf(x)<0的解集为:(﹣2,0)∪(2,+∞),故(﹣2,0)∪(2,+∞)故选:C.二、填空题13.解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣1)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣=﹣20,故答案为:﹣20.14.解:由题意得,y′=k+,∵在点(1,k)处的切线平行于x轴,∴k+1=0,得k=﹣1,故答案为:﹣1.15.解:由椭圆的定义可得,2a=|PF1|+|PF2|,由|PF1|=2c,可得|PF2|=2a﹣2c,在△F1PF2中,由余弦定理可得,cos∠F1PF2=cos30°===,化简可得,c=(a﹣c),即有e===.故答案为:.16.解:由题意设f(x)=e x(x﹣a)﹣2,则f′(x)=e x(x﹣a+1),由f′(x)=0得,x=a﹣1,当x∈(﹣∞,a﹣1)时,f′(x)<0,则f(x)是减函数,当x∈(a﹣1,+∞)时,f′(x)>0,则f(x)是增函数,①当a﹣1≤0时,则a≤1,f(x)在(0,+∞)上是增函数,∵存在正实数x0使e(x0﹣a)<2成立,∴函数的最小值是f(0)=﹣a﹣2<0,解得a>﹣2,即﹣2<a≤1;②当a﹣1>0时,则a>1,f(x)在(0,a﹣1)是减函数,在(a﹣1,+∞)上是增函数,∵存在正实数x0使e(x0﹣a)<2成立,∴函数的最小值是f(a﹣1)=e a﹣1(a﹣1﹣a)﹣2<0,即﹣e a﹣1﹣2<0恒成立,则a>1,综上可得,实数a的取值范围是(﹣2,+∞).三、解答题17.解:(Ⅰ)由抛物线x2=4y的焦点为F,P为该抛物线在第一象限内的图象上的一个动点,故设P(a,),(a>0),∵|PF|=2,结合抛物线的定义得, +1=2,∴a=2,∴点P的坐标为(2,1);(Ⅱ)设点P的坐标为P(a,),(a>0),则点P到直线y=x﹣10的距离d为=,∵﹣a+10=(a﹣2)2+9,∴当a=2时,﹣a+10取得最小值9,故点P到直线y=x﹣10的距离的最小值==.18.解:(Ⅰ)∵A箱子里装有3个白球,2个黑球,B箱子里装有2个白球,2个黑球,参加该游戏的同学从两个箱子中各摸出一个球,颜色相同则获奖,现甲同学参加了一次该游戏.∴甲获奖的概率P==.(Ⅱ)由题意ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,ξE(ξ)==.19.解:(Ⅰ)由,则,得a=2,所以,,把切点代入切线方程有,解得b=1,综上:a=2,b=1.(Ⅱ)由(Ⅰ)有,当0<x<时,f'(x)>0,f(x)单调递增;当时,f'(x)<0,f(x)单调递减.所以f(x)在时取得极大值,f(x)无极小值.20.解:(Ⅰ)∵体能成绩X服从正态分布N(μ,σ2),P(X≤75)=0.5,P(X≥95)=0.1,∴P(75<X<95)=1﹣P(X≤75)﹣P(X≥95)=1﹣0.5﹣0.1=0.4.(Ⅱ)ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)=,P(ξ=2)==,P(ξ=3)==,ξE(ξ)==.21.解:(Ⅰ)e==,a2﹣b2=c2,点A(1,)在椭圆C上,可得+=1,解方程可得a=2,b=1,c=,可得椭圆方程为+y2=1;(Ⅱ)椭圆的左顶点为B(﹣2,0),由题意可知直线BM的斜率存在且不为0.设直线BM的方程为y=kx+2k,则直线BN的方程为y=﹣(x+2),联立方程组,得(1+4k2)x2+16k2x+16k2﹣4=0,由﹣2x M=,解得x M=,即有M(,),同理将k换为﹣,可得N(,﹣).∴直线MN的斜率k MN==,∴MN的直线方程为y﹣=(x﹣),即y=x+,即y=(x+),∴直线MN过定点(﹣,0).22.解:(Ⅰ)a=﹣4时,f(x)=﹣4lnx+x2﹣,(x>0),f′(x)=﹣+x=,令f′(x)>0,解得:x>2,令f′(x)<0,解得:0<x<2,∴f(x)在(0,2)递减,在(2,+∞)递增;(Ⅱ)若f(x)≥0在区间[1,+∞)上恒成立,x=1时,成立,x>1时,即a≥在区间(1,+∞)上恒成立,令g(x)=,x>1,则g′(x)=,令h(x)=﹣4lnx+2x﹣,(x>1),h′(x)=﹣4lnx﹣<0,∴h(x)在(1,+∞)递减,∴h(x)<h(1)=0,∴g′(x)<0,g(x)在(1,+∞)递减,而==﹣1,故g(x)<g(1)=﹣1,∴a≥﹣1,故a的最小值是﹣1.。

相关文档
最新文档