2012年山东省济宁市中考数学试卷及答案
2012年济宁市中考数学试题解读
2012年济宁市中考数学试题解读【真题展现】2012年济宁市中考数学试题一、单项选择题(每小题3分,共30分)1.在数轴上到原点距离等于2的点所标示的数是【】A.-2 B.2 C.±2 D.不能确定2.下列运算正确的是【】A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+23.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是【】A.扇形图B.条形图C.折线图D.直方图4.下列式子变形是因式分解的是【】A.x2-5x+6=x(x-5)+6 B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6 D.x2-5x+6=(x+2)(x+3)5.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是【】A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等6.周一的升旗仪式上,同学们看到匀速上升的旗子,能反应其高度与时间关系的图象大致是【】A.B.C.D.7.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于【】A.40°B.75°C.85°D.140°8.如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于【】A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间9.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是【】A.3个或4个B.4个或5个C.5个或6个D.6个或7个10.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12cm,EF=16cm,则边AD的长是【】A.12cm B.16cmC.20cm D.28cm二、填空题(每小题3分,共15分)11.某种苹果的售价是每千克x元,用面值为100元的人民币购买了5千克,应找回元.12.数学课上,小明拿出了连续五日最低气温的统计表:13.在△ABC中,若∠A、∠B满足|cos A-12|+(sin B-22)2=0,则∠C=.14.如图,是反比例函数y=k-2x的图象的一个分支,对于给出的下列说法:①常数b的取值范围是b>2;②另一个分支在第三象限;③在函数图象上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图象的某一个分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则a1<b2;其中正确的是(在横线上填出正确的序号)15.如图,在等边三角形ABC中,D是BC边上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O,则tan∠AEO =.三、解答题(共55分)16.解不等式组⎩⎪⎨⎪⎧ x +5 2>x ,x -3(x -1)≤5,并在数轴上表示出它的解集.17.如图,AD 是△ABC 的角平分线,过点D 作DE ∥AB ,DF ∥AC ,分别交AC 、AB 于点E 和F .(1)在图中画出线段DE 和DF ;(2)连接EF ,则线段AD 和EF 互相垂直平分,这是为什么?18.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?19.问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解. 解决问题:根据以上步骤,请你解答“问题情境”.20.如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.(2)求证:PC是⊙O的切线.21.如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.22.有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果;(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.23.如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.【试题解读与点评】一、选择题(每小题3分,共30分)1.C【考点】:数轴.【点评】:本题考查了数轴.“数”和“形”二者结合起来,把很多复杂的问题能转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.D【考点】:去括号与添括号.【点评】:本题属于基础题,直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.3.A【考点】:统计图的选择.【点评】:此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.4.B【考点】:因式分解的意义.【点评】:本题考查的是因式分解的意义,关键在于能否正确应用分解因式的定义来判断.5.A【考点】:全等三角形的判定与性质;基本作图.【点评】:本题考查学生运用三边对应相等的两个三角形全等(SSS)这一判定定理进行推理的能力.题型较好,难度适中.6.D【考点】:函数的图象.【点评】:本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7.C【考点】:方向角的计算.【点评】:本题主要考查了方向角的定义,以及三角形的内角和定理,关键是掌握方位角的概念:方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.A【考点】:无理数大小的估算;勾股定理;坐标与图形性质.【点评】:本题考查的是勾股定理及估算无理数的大小,根据题意利用勾股定理求出OP的长是解答此题的关键.9.B【考点】:判断几何体的三视图.本题难度不大,主要考查了考生的空间想象能力以及由三视图判断几何体.10.C【考点】:勾股定理;翻折变换(折叠问题).【点评】:本题考查的是翻折变换及勾股定理、全等三角形的判定与性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答.二、填空题(每小题3分11.(100﹣5x)【考点】:列代数式.【点评】:此题属基础题,简单,主要考查列代数式.12. 24,4.【考点】:极差;算术平均数【点评】:此题考查了极差和平均数,极差反映了一组数据变化范围的大小,单位与原数据单位一致.13. 75°【考点】:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质;偶次方;三角形内角和定理.【点评】:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.14.①②④.【考点】:反比例函数的图象与性质;反比例函数图象上点的坐标特征.【点评】:此题主要考查了反比例函数图象的性质,关键是熟练掌握反比例函数的性质.15..【考点】:全等三角形的判定与性质;等边三角形的性质;特殊角的三角函数值.【点评】:本题考查了等边三角形性质,全等三角形的性质和判定,特殊角的三角函数值等知识点的应用,关键是证出∠AEO=∠ABO,题目比较典型,难度适中.三、解答题(共55分)16.解:,由不等式①去分母得:x+5>2x,解得:x<5;由不等式②去括号得:x-3x+3≤5,解得:x≥-1,把不等式①、②的解集表示在数轴上为:则原不等式的解集为-1≤x<5.【考点】:解一元一次不等式组;在数轴上表示不等式的解集【点评】:本题属于简单题.考查学生解不等式组的能力.商榷:若本题要求学生将解集在数轴上表示出来,再求其整数解,那么这个题目就变成一个中档综合题了,其间又考查了数形结合思想.17.解(1)如图所示;(2)∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∵AD是△ABC的角平分线,∴∠FAD=∠EAD,∵AB∥DE,∴∠FAD=∠EDA,∴∠EAD=∠EDA,∴EA=ED,∴平行四边形AEDF是菱形,∴AD与EF互相垂直平分.【考点】:菱形的判定与性质;复杂作图.【点评】:此题主要考查了画平行线,菱形的判定与性质,关键是掌握菱形的判定方法,判定四边形为菱形可以结合菱形的性质证出线段相等,角相等,线段互相垂直且平分.18.解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120-0.5(x-60)]=8800,解得:x1=220,x2=80.当x2=220时,120-0.5×(220-60)=40<100,∴x1=220(不合题意,舍去);当x2=80时,120-0.5×(80-60)=110>100,∴x=80,答:该校共购买了80棵树苗.【考点】:一元二次方程的应用.【点评】:此题主要考查了一元二次方程的应用,根据题意找出等量关系,列出方程是解题关键.19.解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13)依次连接以上各点,所有各点在一条直线上,设直线解析式为y=bx+b,把(1,4)、(2,7)两点坐标代入得解得,所以y=3x+1,验证:当x=3时,y=10.所以,另外一点也在这条直线上.当x=2012时,y=3×2012+1=6037.答:第2012个图有6037枚棋子.【考点】:一次函数的应用;规律型:图形的变化.【点评】:考查一次函数的应用;根据所给点画出的相关图形判断出相应的函数是解决本题的突破点.20.(1)猜想:OD∥BC,CD=BC.证明:∵OD⊥AC,∴AD=DC∵AB是⊙O的直径,∴OA=OB…2分∴OD是△ABC的中位线,∴OD∥BC,OD=BC(2)证明:连接OC,设OP与⊙O交于点E.∵OD⊥AC,OD经过圆心O,∴,即∠AOE=∠COE在△OAP和△OCP中,∵OA=OC,OP=OP,∴△OAP≌△OCP,∴∠OCP=∠OAP∵PA是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.【考点】:切线的判定与性质;全等三角形的判定与性质;三角形中位线定理;圆周角定理.【点评】:本题考查了切线的性质定理以及判定定理,三角形的中位线定理,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.21.解:(1)旋转中心坐标是O(0,0),旋转角是90度;…2分(2)画出的图形如图所示;…6分(3)有旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.CC1C2C3=S正方形AA1A2B+4S△ABC,∵S正方形∴(a+b)2=c2+4×ab,即a2+2ab+b2=c2+2ab,∴a2+b2=c2.【考点】:旋转变换;勾股定理的证明.【点评】:本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.所以P(两次抽取的正多边形能构成平面镶嵌)==;(3)当正三角形和正方形构成平面镶嵌时,则有60p+90q=360,即2p+3q=12.因为p、q是正整数,所以p=3,q=2,…7分当正三角形和六边形构成平面镶嵌时,则有60p+120q=360,即p+2q=6.因为p、q是正整数,所以p=4,q=1或p=2,q=2.【考点】:列表法与树状图法;平面镶嵌.【点评】:本题考查了列表法或树状图法求概率,以及平面镶嵌的知识,概率=所求情况数与总情况数之比,平面镶嵌的条件:各个顶点处内角和恰好为360°.23.解:(1)由题意,得,解得,∴抛物线的解析式为y=-x-4;(2)设点P运动到点(x,0)时,有BP2=BD•BC,令x=0时,则y=-4,∴点C的坐标为(0,-4).∵PD∥AC,∴△BPD∽△BAC,∴.∵BC=,AB=6,BP=x-(-2)=x+2.∴BD===.∵BP2=BD•BC,∴(x+2)2=,解得x1=,x2=-2(-2不合题意,舍去),∴点P的坐标是(,0),即当点P运动到(,0)时,BP2=BD•BC;(3)∵△BPD∽△BAC,∴,∴×S△BPC=×(x+2)×4-∵,BPC有最大值为3.∴当x=1时,S△即点P的坐标为(1,0)时,△PDC的面积最大.【考点】:二次函数综合题,综合了相似三角形、图形面积的求法等知识.【点评】:本题为整卷压轴题,综合程度较高,难度系数大,命题采用分层考查的手段,突出了“选拔”功能,能较好地反映学生综合运用知识解决问题的能力.全题共分三小题,使得学习水平层次不同的学生在考试中都有发挥的机会和余地,较好地实现了对初中数学基础知识、基本技能和以数学思维为核心的能力考查.试卷综合解读与评析:一、指导思想2012年济宁中考数学试卷以“课程标准”为依据,坚持考查基础知识、基本技能和基本方法.重视对学生思维能力、运算能力、空间观念、实践应用能力和创新意识能力的考查.关注学生的数学基础知识和能力、数学学习过程、数学应用意识和数学创新精神,形成了以知识为载体,以数学本质为核心,以考查理性思维为目的的数学学科特色.在整体设计上,更加关注学生的发展,立足学生的生活实际,强调学生对数学学科核心概念、基本数学思想方法的理解与简单应用,同时,更加重视数学的科学价值,关注其文化内涵,注意体现当前我国基础教育课程改革、实施素质教育的总体设想.更加关注了对应用性问题、探索性问题的设计,对体现数学知识内在联系、反映数学学科人文价值等方面的内容也有所涉及.试题为学生灵活、综合地运用基础知识、基本技能、创造性地解决问题提供了空间.二、试卷内容试卷共23道题,满分100分,考试时间为120分钟.从知识点上看,“数与代数”的试题是第1、2、4、6、8、11、14、16、18、19、23题,共48分,占总分的48%;“空间与图形”的试题是第5、7、9、10、、15、17、20、21题,共38分,占总分的38%;由于23题既有“数与代数”的内容,又有的内容,所以二者比重基本相同,“统计与概率”的试题是第3、12、22题,共14分,占总分的14%;“实践与应用”作为一种要素渗透在其他三个领域中,“数与代数”较多的考察了较多地考查学生对概念、法则及运算的理解和运用水平,杜绝了繁、难、偏、怪题,注重最基本的概念、最基本的计算.对函数内容的考察,涉及到一次函数、反比例函数、二次函数,“空间与图形”的内容注意考察学生对几何事实的理解和推理,“统计与概率”内容方面不强调单纯的概率计算,而是通过设置一个平面镶嵌的问题情景,考查学生能否从所给数据中获取信息,列出二元一次方程,并求出其整数解.三、试题的主要特点1、注重对学生基础知识和基本技能的考察试卷目标明确,重点突出.紧扣双基,贴近生活,注重能力要求;既考虑到知识的覆盖面,又突出了重点知识和核心内容的考查,突出考查了学生的各种技能和基本能力.2、注重数学过程、思想方法的考查.学习数学的精髓在于掌握数学方法、数学思想.试卷力图通过数学思想方法的考查,体现能力立意.对数学能力和数学素养的考查,往往表现对数学思想方法上.本试卷特别突出了对数学思想方法的考察:数形结合、分类讨论、猜想归纳、转化思想、数学建模(函数的思想和方程的思想等)、随机观念、统计思想等,在试卷中均有所体现.3、注重考察数学知识的运用和解决实际问题的能力注重数学知识的实际应用,考察学生运用数学知识解决实际问题的能力,如第18、19、21、22题,以现实生活为背景,重点考察了学生收集相关信息、并对所收集的信息进行处理的解决实际问题的能力.让学生更加关注身边的生活实际与社会实际问题,体现数学源于生活,服务于生活的课程理念.4、注重重点知识的考察,做到毕业、升学两兼顾本套试卷除大量考察了基础知识,使绝大多数同学都能毕业外,还突出考察了重点知识,如第6、14、19、23题都是函数知识,而函数知识在高中阶段也是重点内容之一,本试卷充分考虑了初、高中知识的衔接,为高中阶段的学习做出了充分的准备,同时第23题是二次函数与几何综合题,难度较高,利于高中选拔优秀学生.5、注重教材的开发利用试题设计体现了“来源于教材,又不同于教材的‘立意新、情景实、设问巧、考查明确具体’,有坡度,信度高,效度好,区分度适中的中考创新原则”试卷中的一些试题,可在教材或配套的教辅中找到其身影,是在此基础上加以改变拓展.如第5题、第9题、第16题、第17题、第22题(1)等.三、试题结构及难易程度试卷结构稳定,难度上升平缓.整份试卷中,三种类型的试题题量保持稳定,试题由浅渐深安排,起点低,上升平缓,基础知识题占到整卷的60%以上,重点、主干知识得到重视.后面三个试题有一定难度,但并不是不能拿到分,通过分析也可拿到部分分.第23题难度较大,它在考察学生知识的同时,也在考察学生的个体差异,选拔优秀学生,突出成绩的层次性.四、复习与建议1、回归课本,夯实基础近年来,各地的中考试题,年年都有相当数量的试题源于课本,是课本的例题或习题的原型题,或这些原型题稍加改编或拓展.这一导向是要使数学复习真正回到课本中去,回到基础中去,引导学生理清知识发生的来源,帮助学生构建初中数学的基础知识网络,不做偏、难、怪题,不搞题海战.同时,试题来源于课本,对考生来讲也是公平的测试,体现了教材的基础作用;也体现了试题编制的一致性和科学性原则以及试题客观公正公平的要求,尝试了考查能力的命题思路,渗透了新课标理念.也正是近来大力提倡教育均衡的具体体现.2、注重过程,发展能力教学中,要将数学教学作为一种数学思维活动来进行,它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.在复习过程中,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流过程中理解和掌握基本的数学知识与技能、思想和方法,诸如数形结合思想、分类讨论思想、转化思想、方程思想、函数思想、配方法、待定系数法等.3、科学训练,规范解题运用变式训练,改变问题的呈现方式.在夯实基础的前提下,善于将学生从思维定势中解脱出来,养成多角度、多侧面分析问题的习惯,以培养学生思维的广阔性、缜密性和创新性.对例题、习题、练习题和复习题等,不能就题论题,要以题论法,以题为载体,变换试题,探究解法,研究与其他试题的联系与区别,挖掘出其中蕴涵的数学思想方法等,将试题的知识价值、教育价值一一解析.规范学生的解题步骤是提高学生成绩的利器.4、关注生活,加强应用《新课程标准》特别强调数学背景的“现实性”和“数学化”,能用数学的眼光认识世界,并能用数学知识和数学方法处理解决周围的实际问题.学习数学的最终目的就是应用,强化应用,一定要联系生产、生活的实际,要联系学生的实际.教学中要时常关注社会生活实际,编拟一些贴近生活,贴近实际,有着实际背景的数学应用性试题,引导学生学会阅读、审题、获取信息、解决问题.将实际问题抽象成数学模型,并进行解释与应用.这样引导学生在问题解决中,体会数学与人类社会的密切关系,增进对数学的理解,启迪学生平时关心生活,关注社会.总之,中考复习也是一个系统工程.中考复习要在教师的指导下,使学生夯实基础、提高能力、积累经验,以便以最好的知识储备、最佳的心理状态创造最高的考试成绩.。
2012年初中毕业升学考试(山东济南卷)数学(带解析)
2012年初中毕业升学考试(山东济南卷)数学(带解析) 考试范围:xxx ;考试时间:100分钟;命题人:xxx 学校:注意事项: 1. 答题前填写好自己的姓名、班级、考号等信息 2. 请将答案正确填写在答题卡上 分卷I 分卷I 注释 一、单选题(注释) 1、-12的绝对值是【 】 A .12 B .-12 C . D . 2、如图,直线a ∥b ,直线c 与a ,b 相交,∠1=65°,则∠2=【 】 A .115° B .65° C .35° D .25° 3、2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为【 】 A .1.28×103 B .12.8×103 C .1.28×104 D .0.128×105 4、下列各式计算正确的是【 】 A .3x -2x=1 B .a 2+a 2=a 4 C .a 5÷a 5=a D .a 3?a 2=a 5 5、下面四个立体图形中,主视图是三角形的是【 】6、化简5(2x -3)+4(3-2x )结果为【 】 A .2x -3 B .2x +9 C .8x -3 D .18x -37、暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为【 】 A . B . C . D .8、下列命题是真命题的是【 】 A .对角线相等的四边形是矩形 B .一组邻边相等的四边形是菱形 C .四个角是直角的四边形是正方形 D .对角线相等的梯形是等腰梯形9、一次函数y=kx +b 的图象如图所示,则方程kx+b=0的解为【 】 A .x="2" B .y="2" C .x="-1" D .y="-1" 10、已知⊙O 1和⊙O 2的半径是一元二次方程x 2-5x +6=0的两根,若圆心距O 1O 2=5,则⊙O 1和⊙O 2的位置关系是【 】 A .外离 B .外切 C .相交 D .内切 11、如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是【 】A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1) 12、如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是【 】 A .y 的最大值小于0 B .当x=0时,y 的值大于1 C .当x=-1时,y 的值大于1 D .当x=-3时,y 的值小于0 13、如图,已知双曲线,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值; (2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由. 14、下列事件中必然事件的是【 】 A .任意买一张电影票,座位号是偶数 B .正常情况下,将水加热到100℃时水会沸腾 C .三角形的内角和是360° D .打开电视机,正在播动画片 15、如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为【 】 A . B . C . D .3过程中,点D到点O的最大距离为【】ArrayA.B.C.5D.分卷II分卷II 注释二、填空题(注释)17、分解因式:a-1= ▲.18、计算:2sin30°-= ▲.19、不等式组的解集为▲.20、如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于▲.21、如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.22、如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.23、(1)解不等式3x -2≥4,并将解集在数轴上表示出来. (2)化简: 24、(1)如图1,在ABCD 中,点E ,F 分别在AB ,CD 上,AE=CF .求证:DE=BF . (2)如图2,在△ABC 中,AB=AC ,∠A=40°,BD 是∠ABC 的平分线,求∠BDC 的度数. 25、冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元? 26、济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:节水量(米3) 1 1.5 2.5 3 户 数 50 80 100 700 (1)300户居民5月份节水量的众数,中位数分别是多少米3? (2)扇形统计图中2.5米3对应扇形的圆心角为 度; (3)该小区300户居民5月份平均每户节约用水多少米3? 27、如图1,抛物线y=ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0),与y 轴相交于点C ,⊙O 1为△ABC 的外接圆,交抛物线于另一点D .(3)如图2,抛物线的顶点为P ,连接BP ,CP ,BD ,M 为弦BD 中点,若点N 在坐标平面内,满足△BMN ∽△BPC ,请直接写出所有符合条件的点N 的坐标. 28、如图1,在菱形ABCD 中,AC=2,BD="2" 3 ,AC ,BD 相交于点O . (1)求边AB 的长; (2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF 与AC 相交于点G . ①判断△AEF 是哪一种特殊三角形,并说明理由; ②旋转过程中,当点E 为边BC 的四等分点时(BE >CE ),求CG 的长.1.A。
山东省济宁市中考数学试卷
山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2= .12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.山东省济宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(•济宁)的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)(•济宁)下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(•济宁)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)(•济宁)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)(•济宁)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)(•济宁)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)(•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)(•济宁)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)(•济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP 的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(•济宁)分解因式:ma2+2mab+mb2= m(a+b)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(•济宁)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)(•济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)(•济宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)(•济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)(•济宁)解方程:=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)(•济宁)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)(•济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)(•济宁)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)(•济宁)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会理由翻折变换添加辅助线,属于中考常考题型.21.(9分)(•济宁)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m 的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)(•济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。
2012年山东省济宁市中考数学模拟试卷及解析
2012年山东省济宁市中考数学模拟试卷及解析一、选择题:(每题4分,满分40分)在每小题给出的四个选项中,只有一项是符合题目要求的)。
1、 计算: 1 - |-2| 结果正确的是A . 3B .-1C .1D .-32、第五次全国人口普查结果显示,我国的总人口已达到人,用科学记数法表示这个数,结果正确的是( )A 、8103.1⨯B 、9103.1⨯C 、101013.0⨯D 、91013⨯ 3、已知α是锐角,cos α=23,则α等于( ) (A) 300 (B)450 (C)6O 0 (D)900 4、不等式组的解为 ( )(A)X<-2 (B)-2<X<-1/2 (C)X>-1/2 (D)X>-1/2或X<-2 5、 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是A. 6B. 2 m -8C. 2 mD. -2 m 6、以上说法合理的是( ) A 、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B 、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6。
C 、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖。
D 、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51。
7、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A 、AD =BC 'B 、∠EBD =∠EDBC 、△ABE ∽△CBD D 、EDAEABE =∠sin8、如图,梯形ABCD 内接于◎○,AB//CD ,AB 为直径, DO 平分∠ADC ,则∠DAO 的度数是A 、900,B 、800,C 、700,D 、600;9.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为(A)(0,0). (B)11(,)22-.(c) (22- (D) 11(,)22-.10. 在日常生活中,你会注意到有一些含有特殊数学规律的车牌号码,都是关于中间的一个数字“对称”的,给以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照。
【初中数学】山东省济宁地区2012-2013学年第一学期期末考试九年级数学试卷 通用
山东省济宁地区2012-2013学年第一学期期末考试九年级数学试卷一、选择题(本大题满分36分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.抛物线y =x 2-2x -3的顶点坐标是A .(1,-4)B .(2,-4)C .(-1,4)D .(-2,-3) 2.如果关于x 的方程x 2-2x +k =0有两个相等的实数根,那么k 的值等于 A .1 B .2 C .0 D .-13.若两圆的半径分别为2cm ,3cm ,圆心距是6cm ,那么这两圆的位置关系是 A .外切 B .内切 C .内含 D .外离4.若△ABC ∽△DEF ,相似比为1︰2,△ABC 的面积是3cm 2,则△DEF 的面积是 A . 3cm 2 B . 6cm 2 C . 12cm 2 D . 2cm 25.如图,D ,E 分别是△ABC 的边AB ,AC 上的点,且DE ∥BC ,如果AD =2cm ,DB =4cm ,△ADE 的周长是10cm ,那么△ABC 的周长等于A . 15cmB . 20cmC . 30cmD . 36cm6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB=30°,⊙O 的半径是23cm ,则弦CD 的长为 A .23cm B .6cm C .3cm D .23cm 7.抛物线y =ax 2+bx +c 的顶点坐标是(-1,3),且过点(0,5),那么二次函数 y =ax 2+bx +c 的解析式为A . y =-2x 2+4x +5B . y =2x 2+4x +5C . y =-2x 2+4x -1D . y =2x 2+4x +3 8.一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是 A .157 B . 158 C .31 D .51 9.用一根长为24cm 的铁丝围成一个矩形,如果矩形的面积是35 cm 2,那么这个矩形的长与宽分别是A . 7 cm ,5 cmB . 8 cm ,4 cmA BCD E (第6题图)A BC .9 cm ,3 cmD .6 cm ,6 cm10.将抛物线y =x 2向左平移1个单位,再向下平移2个单位,得到抛物线的解析式为 A .y =x 2-2x -1 B .y =-x 2+2x -1 C .y =x 2+2x -1 D .y =-x 2+4x +111.二次函数y =ax 2+bx +c 的图象如图所示,则下列结论错误..的是 A . abc >0 B .a -b +c =0 C .a +b +c >0 D .4a -2b +c >012.如图,BC 为半圆O 的直径,CA 为切线,AB 交半圆O 于点E ,EF ⊥BC 于点F ,连接EC .则图中与△CEF 相似的三角形共有A . 1个B .2个C .3个D .4个二、填空题(本大题满分18分,每小题3分,请你将答案填写在题目中的横线上) 13.计算:12×3= .14.点A (-2,1)关于原点O 对称的点B 的坐标是 . 15.使函数y =x31有意义的自变量x 的取值范围是 .16.一个圆锥的母线长为6cm ,底面半径为3cm ,那么圆锥的侧面积是 cm 2. 17.如图,△ABC 与△DE F 是位似图形,位似比为2︰3,若AB =6,那么DE = .18.如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A ,B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是_____ ______.三、解答题 (本大题满分66分, 解答要写出必要的文字说明或推演步骤) 19.(本题满分12分,每小题6分)(1) 用因式分解法解方程 x (x +1) =2(x +1) .(第12题图)AB(第11题图)(第17题图) OABCDEF(第18题图)(2)已知二次函数的解析式为y =x 2-4x -5,请你判断此二次函数的图象与x 轴交点的个数;并指出当y 随x 的增大而增大时自变量x 的取值范围. 20.(本题满分6分)如图,九(1)班同学到野外上数学活动课,为测量一条河的宽度,先在河的一岸平地上取一条线段BC ,点A 在河的对岸,AB ⊥BC ;在线段BC 上选取一点D ,以CD 为一条直角边构造Rt △ECD ,使点E 在直线AD 上.经测量BD =120m ,DC =60m , EC =50m ,请你帮助九(1)班同学求出河宽AB .21.(本题满分6分)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球.(1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率. 22.(本题满分7分)如图,点D 、E 分别是△ABC 的边AC 、AB 上的点,AC ·AD =AB ·AE . (1)△ADE 与△ABC 相似吗?请你说明理由;(2)若AD =3,AB =6,DE =4,求BC 的长. (第22题图)ABCED(第20题图)23.(本题满分8分)某企业2007年盈利1500万元,2009年克服全球金融危机的不利影响,仍实现盈利2160万元.从2007年到2009年,如果该企业每年盈利的年增长率相同.(1)求该企业2008年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2010年盈利多少万元?24.(本题满分8分)如图,直线y =2 x -2与x 轴交于点A ,抛物线y =ax 2+bx +c 的对称轴是直线x =3,抛物线经过点A ,且顶点P 在直线y =2 x -2上.(1)求A 、P 两点的坐标及抛物线y =ax 2+bx +c 的解析式;(2)画出抛物线的草图,并观察图象写出不等式ax 2+bx +c >0的解集.25.(本题满分9分)如图,AB 是⊙O 的直径,CB 、CD 是⊙O 的两条切线,D 为切点,AC 与⊙O 交于点E ,连接BE .(1)求证:△BEC ∽△ABC ;(2)若CE =4,AE =5,求切线CD 的长.26.(本题满分10分)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y (件)与所售单价x (元)的关系可以近似的看作如图所表示的一次函数. (1)求y 与x 之间的函数关系式,并求出x 的取值范围;(第25题图)(第24题图)(2)设该公司获得的总利润(总利润=总销售额-总成本)为w 元,求w 与x 之间的函数关系式.当销售单价为何值时,所获利润最大?最大利润是多少?评分标准与参考答案一、选择题 (本大题满分36分,每小题3分)1.A 2.A 3.D 4.C 5.C 6.B 7.B 8.D 9.A 10.C 11.C 12.D(第26题图)二、填空题 (本大题满分18分,每小题3分)13.6 14.( 2,-1) 15.x >-3 16.18π 17.9 18.8π-16三、解答题 (本大题满分66分)19.(1)解:x (x +1)-2(x +1)=0.…………… 2分(x +1)(x -2)=0. ………………………… 4分 ∴x 1=-1,x 2=2. ………………………… 6分(2)解方程x 2-4x -5=0,得x 1=-1,x 2=5. …………………… 2分 故二次函数的图象与x 轴有两个交点.……………………………… 3分 ∵ 抛物线的开口向上,对称轴为直线x =2,∴ 当y 随x 的增大而增大时自变量x 的取值范围是x ≥2.……… 6分 20.解:∵∠B =∠C ,∠ADB =∠EDC , ∴ △ABD ∽△ECD . ……… 3分∴DCBDEC AB =.…………………………………………………………… 4分 ∴ AB =DC EC BD ∙=6050120⨯=100(m ). …………………………… 5分答:河宽AB 是100m . …………………………………………………… 6分 21.(1)解:(1)根据题意列表如下:1 2 3 4 1 (1,2)(1,3) (1,4) 2 (2,1) (2,3)(2,4) 3 (3,1) (3,2) (3,4)4(4,1)(4,2)(4,3)由以上表格可知:有12种可能结果.…………………… 3分 (注:用其它方法得出正确的结果,也给予相应的分值)(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种,所以,P (两个数字之积是奇数)21126==.…………………… 6分 22.(1)证明:∵AC ·AD =AB ·AE ,∴ ACAEAB AD =.…………… 1分 ∵∠A =∠A , ∴ △ADE ∽△ABC . ………………………… 3分 (2)解:∵ △ADE ∽△ABC ,∴BCDEAB AD =.……………… 5分 ∴ BC =AD DE AB ∙=346⨯=8.…………………………… 7分23.解:(1)设每年盈利的年增长率为x .………………………………… 1分根据题意,得1500(1+x )2=2160. …………………………………… 3分 解得x 1=0.2,x 2=-2.2(不合题意,舍去). …………………… 5分 ∴ 1500(1+x )=1500(1+0.2)=1800.答:2008年该企业盈利1800万元.…………………………………… 6分 (2)2160(1+0.2)=2592.AB答:预计2010年该企业盈利2592万元. …………………………… 8分 24解:(1)对于y =2 x -2, 当y =0时,x =1.当x =3时,y =4. ∴ A (1,0),P (3,4).………………………………………… 2分 设抛物线的解析式为y =a (x -3)2+4. 将A 点的坐标代入,得a (1-3)2+4=0. 解得,a =-1.∴ 抛物线的解析式为 y =-(x -3)2+4.即 y =-x 2+6x -5.…………………………………………… 5分 (2)画出抛物线的草图(略). …………………………………… 6分 解方程 -x 2+6x -5=0,得x 1=1,x 2=5.∴ 不等式-x 2+6x -5>0的解集是1<x <5. ……………… 8分 25.(1)证明:如图,∵ AB 是⊙O 的直径,CB 是⊙O 的切线, ∴ ∠4=90°,∠1=90°.∴ ∠2=∠4=90°.∴ ∠2=∠1.………………………………… 2分又∵ ∠3=∠3, ∴ △BEC ∽△ABC . … 4分 (2)解:∵AC =CE +AE =4+5=9.…………… 5分∵ △BEC ∽△ABC , ∴CBCEAC CB =. ∴ CB 2=CE ·AC =4×9=36. ∴ CB =6.…………………………………… 7分 ∵ CB 、CD 是⊙O 的两条切线,∴ CD =CB =6. …………………………… 9分26.解:(1) 最高销售单价为50(1+40%)=70(元).…………………… 1分 根据题意,设y 与x 的函数关系式为y =kx +b (k ≠0). …………… 2分 ∵ 函数图象经过点(60,400)和(70,300),∴ ⎩⎨⎧=+=+.30070,40060b k b k …………………………………………… 3分解得 ⎩⎨⎧=-=.1000,10b k∴ y 与x 之间的函数关系式为y =-10x +1000,x 的取值范围是50≤x ≤70.…………………………………… 5分 (2)根据题意,w =(x -50)( -10x +1000), …………………… 6分w =-10x 2+1500x -50000,w =-10(x -75)2+6250. ………… 7分 ∵ a =-10 ,∴抛物线开口向下.又∵ 对称轴是x =75,自变量x 的取值范围是50≤x ≤70 ,∴ y 随x 的增大而增大. ………………………………………… 8分∴ 当x =70时,w 最大值=-10(70-75)2+6250=6000(元).∴ 当销售单价为70元时,所获得利润有最大值为6000元. …… 10分。
山东省济宁地区2011-2012学年度第一学期期中考试九年级数学试题
山东省济宁地区2011—2012学年度第一学期期中考试九年级数学试题选择题答题栏一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 )1.在△ABC 中,∠C =90°,AC =BC ,则tan A 等于A .21B .1C .22D .22.如图,在平面直角坐标系中,点P (5,12)在射线OA 上,射线OA 与x 轴的正半轴的夹角为α,则 sin α等于 A .135 B .125C .1312D .12133.已知点A (-1,0)在抛物线y =ax 2+2上,则此抛物线的解析式为(第2题图)A .y =x 2+2B .y =x 2-2C .y =-x 2+2D .y =-2x 2+2 4.抛物线y =x 2-4x +5的顶点坐标是A .(2,5)B .(-2,5)C .(2,1)D .(-2,1)5.在△ABC 中,∠C =90°,AB =6cm , cos B =31,则BC 等于A .1cmB .2cmC .3cmD .6cm6.已知抛物线y =x 2+2x 上三点A (-5,y 1),B (1,y 2),C (12,y 3),则y 1,y 2,y 3满足的关系式为A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2 7.如图,△ABC 为格点三角形(顶点皆在边长相等的 正方形网格的交叉点处),则cos B 等于A . 54B .53C . 43D .348.如果抛物线y =-x 2+bx +c 经过A (0,-2),B (-1,1)两点,那么此抛物线经过 A .第一、二、三、四象限 B .第一、二、三象限 C .第一、二、四象限 D .第二、三、四象限9.若抛物线C :y =ax 2+bx +c 与抛物线y =x 2-2关于x 轴对称,则抛物线C 的解析式为 A .y =x 2-2 B .y =-x 2-2C .y =-x 2+2D .y =x 2+2 10.如图,在△ABC 中,∠ACB =90°,AC =5,(第7题图)ABCC高CD =3,则sin A +sin B 等于A .53B .54C .1D .57二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上) 11.计算:4sin30°-2cos30°+tan60°= .12.将二次函数y =x 2-2的图象向左平移2个单位,再向上平移1个单位,所得抛物线的解析式为 .13.已知抛物线y =-x 2+2x +3的顶点为P ,与x 轴的两个交点为A ,B ,那么△ABP 的面积等于 .14.如图,在一边靠墙(墙足够长)用120 m 篱笆围成两间相等的矩形鸡舍,要使鸡舍的总面积最大,则每间鸡舍的长与宽分别是 m 、 m .15.如图,海中有一个小岛A , 它的周围15海里内有暗礁,今有货船由西向东航行, 开始在A 岛南偏西60° 的B 处,往东航行20海里后到达该岛南偏西30° 的C 处后,货船(第15题图)B C D(第14题图)继续向东航行,你认为货船航行途中 触礁的危险.(填写:“有”或“没有”)参考数据:sin60°=cos30°≈0.866 .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分)在△ABC 中,若1cos 2 A +(1-tan B )2=0,求∠C 的度数.17.(本题满分4分)已知关于x 的二次函数y =mx 2-(2m -6)x +m -2. (1)若该函数的图象与y 轴的交点坐标是(0,3),求m 的值; (2)若该函数图象的对称轴是直线x =2,求m 的值.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,如果a=2,b=23,求c及∠B.19.(本题满分4分)已知关于x的二次函数y=x2-2kx+k2+3k-6,若该函数图象的顶点在第四象限,求k的取值范围.20.(本题满分6分)已知抛物线y=x2-4x+c与直线y=x+k都经过原点O,它们的另一个交点为A.(1)直接写出抛物线与直线的函数解析式;(2)求出点A的坐标及线段OA的长度.五月石榴红,枝头鸟儿歌. 一只小鸟从石榴树上的A 处沿直线飞到对面一房屋的顶部C 处. 从A 处看房屋顶部C 处的仰角为30°,看房屋底部D 处的俯角为45°,石榴树与该房屋之间的水平距离为33米,求出小鸟飞行的距离AC 和房屋的高度CD .22.(本题满分6分)在小岛上有一观察站A .据测,灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向,且相距10海里,灯塔C 与观察站A 相距102海里,请你测算灯塔C 处在观察站A 的什么方向?ACBD (第21题图)(第22题图)北CB23.(本题满分6分) 如图,直线y =43x -3分别与y 轴、x 轴交于点A ,B ,抛物线y =-21x 2+2x +2与y 轴交于点C ,此抛物线的对称轴分别与BC ,x 轴交于点P ,Q . (1)求证:AB =AC ;(2)求证:AP 垂直平分线段BC .24.(本题满分7分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w (台)与销售单价x (元)满足w =-2x +80,设销售这种台灯每天的利润为y (元). (1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润.应将销售单价定为多少元?(第23题图)25.(本题满分8分)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2的解析式.(友情提示:自画图形)(第25题图)评分标准与参考答案一、选择题1.B 2.C 3.D 4.C 5.B 6.C 7.A 8.D 9.C 10.D 二、填空题11.2 12.y =x 2+4x +3 13.8 14.30 20 15.没有三、解答题16.解:由题设,得 cos A =21,tan B =1.……………………………………… 1分 ∴ ∠A =60°,∠B =45°.……………………………………………………… 3分 ∴ ∠C =180°―∠A ―∠B =180°―60°―45°=75°. …………………… 4分 17.解:(1)将x =0,y =3代入二次函数的表达式,得 m -2=3. ……… 1分解得 m =5. ………………………………………………………………… 2分 (2)依题意,得 -mm 2)62(--=2. 解得 m =-3. …………………… 3分 经检验,m =-3是上分式方程的根.故 m =-3. ……………………… 4分 18.解:在Rt △ABC 中,由勾股定理,得c 2=a 2+b 2=22+2)32(=42.∴ c =4. ………………………………………………………………… 2分 ∵ sin B =cb =432=23, ∴ ∠B =60°.…………………… 4分19.解:将二次函数的表达式配方,得 y =(x -k )2+3k -6.∴ 二次函数图象的顶点坐标是(k ,3k -6).……………………………… 2分∴ ⎩⎨⎧<->.063,0k k …………………………………………………………… 3分解得 0<k <2. 故所求k 的取值范围是0<k <2.……………………… 4分 20.解:(1)抛物线的函数解析式为y =x 2-4x . ……………………………… 1分直线的函数解析式为y =x . ……………………………………………… 2分 (2)解方程 x 2-4x =x ,得x 1=0,x 2=5. …………………………… 3分 由题意知,x =5是点A 的横坐标.∴ 点A 的纵坐标y =x =5. …………………………………………………… 4分 ∴ 点A 的坐标是(5,5). …………………………………………………… 5分 ∴ OA =2255 =52. ………………………………………………… 6分 21.解:作AE ⊥CD 于点E .由题意可知:∠CAE =30°,∠EAD =45°,AE =33米. ………………… 1分九年级数学试题答案(四年制)第1页(共3页)在Rt △ACE 中,tan ∠CAE =AE CE,即tan30°=33CE . ∴ CE =33tan30°=33×33=3(米) .………………………………… 2分 ∴ AC =2CE =2×3=6(米). ………………………………………………… 3分 在Rt △AED 中,∠ADE =90°-∠EAD =90°-45°= 45°,∴ DE =AE =33(米). ……………………………………………………… 4分 ∴ DC =CE +DE =(3+33)米. ………………………………………… 5分 答:AC =6米,DC =(3+33)米. ……………………………………… 6分 22.解:过点C 作CD ⊥AB ,垂足为D .…………………………………… 1分∵ 灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向, ∴ ∠B =45°.在Rt △BCD 中,∵ sin B =BCCD, ∴ CD =BC ·sin45°=10×22=52(海里). (3)在Rt △ACD 中, ∵ AC =102,1sin 2CD CAD AC ∠===∴.即 1sin 2CAD ∠=.∴ ∠CAD =30°.……………………………… 5分∠CAF =∠BAF -∠CAD =45°-30°=15°.答:灯塔C 处在观察站A 北偏西15°的方向. …………………… 6分 23.证明:(1)可求得A (0,-3),B (4,0),C (0,2). ∴ OA =3, OB =4, OC =2. ∴ AC =OA +OC =5. AB =22OB OA +=2243+=5.∴ AB =AC .…………………………………………………………………… 3分(2)∵ 抛物线y =-21x 2+2x +2的对称轴是直线x =2,∴ 点Q 的坐标为(2,0).∴ OQ =BQ =2. ∵ PQ ∥y 轴, ∴△BPQ ∽△BCO . ∴BC BP =BO BQ =42=21. ∴ BP =PC .…………………………………………………………………… 5分 又∵ AB =AC , ∴ AP ⊥BC .九年级数学试题答案(四年制)第2页(共3页)∴ AP 垂直平分线段BC .……………………………………………………… 6分(第22题解答图) 北B说明:要证BP =PC ,也可利用勾股定理先求出BC 的值,再利用三角函数求出BP 的值.24.解:(1)y =(x -20)(-2x +80) =-2x 2+120x -1600.故所求y 与x 之间的函数关系式为y =-2x 2+120x -1600.…………………… 2分(2)∵ y =-2x 2+120x -1600=-2(x -30)2+200. 当x =30时,y 最大=200.∴ 当销售单价定为30元时,每天的利润最大,最大利润为200元.………… 4分 (3)由题意,当y =150时,即-2(x -30)2+200=150. 解得x 1=25,x 2=35.又销售量w =-2x +80,-2<0,销售量w 随单价x 的增大而减小,故当x =25时,既能保证销售量大,又可以每天获得150元的利润.………… 7分 25.解:(1)∵ 点A ,B 是二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴的交点,∴ 令y =0,即mx 2+(m -3)x -3=0,解得x 1=-1,x 2=m3,又∵ 点A 在点B 左侧且m >0, ∴ 点A 的坐标为(-1,0). ……………………… 3分 (2)由(1)可知点B 的坐标为(m3,0). ∵ 二次函数的图象与y 轴交于点C , ∴ 点C 的坐标为(0 ,-3). ∵ ∠ABC =45︒, ∴m3=3. ∴ m =1. …… 5分 (3)由(2)得,二次函数解析式为y =x 2-2x -3.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2.由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y=kx+b中,得-2k+b=5,且2k+b=-3.解得k=-2,b=1.∴一次函数的解析式为y=-2x+1. …………………8分说明:解答题若有其他解法,应按步计分!(第25题解答图①)(第25题解答图②)。
山东省济宁市中考《数学》试题及答案
一、填空(本大题15分,每空0.5分)1、按工作介质的不同,流体机械可分为(压缩机)、(泵)和(分离机)。
2、平面填料的典型结构是三六瓣结构,即朝向气缸的一侧由(三瓣)组成,背离气缸的一侧由(六瓣)组成,每一块平面填料外缘绕有螺旋弹簧,起(预紧)作用。
3、往复活塞泵由(液力端)和(动力端)组成。
4、防止离心压缩机的转子因受其重力下沉需要两个(径向)轴承,防止转子因受轴向推力窜动需要(轴向止推)轴承。
5、压缩机中的惯性力可分为(往复)惯性力和(旋转)惯性力。
6、往复式压缩机的工作腔部分主要由(气阀)、(气缸)和(活塞)构成。
7、离心泵的过流部件是(吸入室)、(叶轮)和(蜗壳)。
8、泵的运行工况点是(泵特性曲线)和(装置特性曲线)的交点。
9、离心压缩机级内的能量损失主要包括:(流动)损失、(漏气)损失和(轮阻)损失。
10、往复式压缩机的传动部分是把电动机的(旋转)运动转化为活塞的(往复)运动。
11、由比转数的定义式可知,比转数大反映泵的流量(大)、扬程(低)。
12、离心压缩机中,在每个转速下,每条压力比与流量关系曲线的左端点为(喘振点)。
各喘振点联成(喘振线),压缩机只能在喘振线的(右面)性能曲线上正常工作。
三、(本大题20分,每小题2分名词解释1、过程流体机械:是以流体为工质进行能量转换、处理与输送的机械,是过程装控的重要组成部分。
2、理论工作循环:压缩机完成一次进气、压缩、排气过程称为一个工作循环。
3、余隙容积:是由气缸盖端面与活塞端面所留必要的间隙而形成的容积,气缸至进气、排气阀之间通道所形成的容积,以及活塞与气缸径向间隙在第一道活塞环之前形成的容积等三部分构成。
4、多级压缩:多级压缩是将气体的压缩过程分在若干级中进行,并在每级压缩之后将气体导入中间冷却器进行冷却。
5、灌泵:离心泵在启动之前,应关闭出口阀门,泵内应灌满液体,此过程称为灌泵。
p 6、有效汽蚀余量:有效汽蚀余量是指液流自吸液罐(池)经吸入管路到达泵吸入口后,高出汽化压力V所富余的那部分能量头,用NPSH a表示。
【2012中考真题】济宁中考数学试卷(有答案)
2012年山东省济宁市中考数学试卷解析一、单项选择题(每小题3分,共30分)1.(2012•济宁)在数轴上到原点距离等于2的点所标示的数是()A.﹣2 B.2C.±2 D.不能确定考点:数轴。
分析:先在数轴上标出到原点距离等于2的点,然后根据图示作出选择即可.解答:解:在数轴上到原点距离等于2的点如图所示:点A、B即为所求的点,即在数轴上到原点距离等于2的点所标示的数是﹣2和2;故选C.点评:本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(2012•济宁)下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1C.﹣2(3x﹣1)=﹣6x﹣2D.﹣2(3x﹣1)=﹣6x+2考点:去括号与添括号。
分析:利用去括号法则,将原式去括号,进而判断即可得出答案即可.解答:解:A.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣1错误,故此选项错误;B.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x+1错误,故此选项错误;C.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣2错误,故此选项错误;D.﹣2(3x﹣1)=﹣6x+2,故此选项正确;故选:D.点评:此题主要考查了去括号法则,利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反得出是解题关键.3.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图考点:统计图的选择。
分析:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.解答:解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选A.点评:此题考查扇形统计图、折线统计图、条形统计图各自的特点.4.(2012•济宁)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)B.x2﹣5x+6=(x﹣2)C.(x﹣2)(x﹣3)D.x2﹣5x+6=(x+2)+6 (x﹣3)=x2﹣5x+6 (x+3)考点:因式分解的意义。
济宁地区20112012学年度九年级数学上册期中试题及答案
山东省济宁地区11—12学年九年级上学期期中考试(数学)一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 )1.在△ABC 中,∠C =90°,AC =BC ,则tanA 等于A .21B .1C .22D .22.如图,在平面直角坐标系中,点P(5,12)在射线 OA 上,射线OA 与x 轴的正半轴的夹角为α,则 sin α等于A .135B .125C .1312D .12133.已知点A(-1,0)在抛物线y =ax2+2上,则此抛物线的解析式为 A .y =x2+2 B .y =x2-2 C .y =-x2+2 D .y =-2x2+2 4.抛物线y =x2-4x +5的顶点坐标是A .(2,5)B .(-2,5)C .(2,1)D .(-2,1)5.在△ABC 中,∠C =90°,AB =6cm , cosB =31,则BC 等于A .1cmB .2cmC .3cmD .6cm6.已知抛物线y =x2+2x 上三点A(-5,y1),B(1,y2),C(12,y3),则y1,y2,y3满足的关系式为A .y1<y2<y3B .y3<y2<y1C .y2<y1<y3D .y3<y1<y2 7.如图,△ABC 为格点三角形(顶点皆在边长相等的 正方形网格的交叉点处),则cosB 等于A . 54B .53(第7题图)AB C(第2题αy xOPAC . 43D .348.如果抛物线y =-x2+bx +c 经过A(0,-2),B(-1,1)两点,那么此抛物线经过 A .第一、二、三、四象限 B .第一、二、三象限 C .第一、二、四象限 D .第二、三、四象限9.若抛物线C :y =ax2+bx +c 与抛物线y =x2-2关于x 轴对称,则抛物线C 的解析式为 A .y =x2-2 B .y =-x2-2 C .y =-x2+2 D .y =x2+2 10.如图,在△ABC 中,∠ACB =90°,AC =5, 高CD =3,则sinA +sinB 等于A .53B .54C .1D .57二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上) 11.计算:4sin30°-2cos30°+tan60°= .12.将二次函数y =x2-2的图象向左平移2个单位,再向上平移1个单位,所得抛物线的解析式为 .13.已知抛物线y =-x2+2x +3的顶点为P ,与x 轴的两个交点为A ,B ,那么△ABP 的面积等于 .九年级数学试题(四年制)第2页(共8页)14.如图,在一边靠墙(墙足够长)用120 m 篱笆围成两间相等的矩形鸡舍,要使鸡舍的总面积最大,则每间鸡舍的长与宽分别是 m 、 m .A B C D东北(第10题ACDB(第14题mx my15.如图,海中有一个小岛A , 它的周围15海里内有暗礁,今有货船由西向东航行, 开始在A 岛南偏西60° 的B 处,往东航行20海里后到达该岛南偏西30° 的C 处后,货船继续向东航行,你认为货船航行途中 触礁的危险.(填写:“有”或“没有”) 参考数据:sin60°=cos30°≈0.866 .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分)在△ABC 中,若1cos 2 A +(1-tanB)2=0,求∠C 的度数.17.(本题满分4分)已知关于x 的二次函数y =mx2-(2m -6)x +m -2.(1)若该函数的图象与y 轴的交点坐标是(0,3),求m 的值; (2)若该函数图象的对称轴是直线x =2,求m 的值.18.(本题满分4分)在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,如果a=2,b=23,求c及∠B.19.(本题满分4分)已知关于x的二次函数y=x2-2kx+k2+3k-6,若该函数图象的顶点在第四象限,求k的取值范围.20.(本题满分6分)已知抛物线 y=x2-4x+c与直线y=x+k都经过原点O,它们的另一个交点为A.(1)直接写出抛物线与直线的函数解析式;(2)求出点A的坐标及线段OA的长度.九年级数学试题(四年制)第4页(共8页)21.(本题满分6分)五月石榴红,枝头鸟儿歌. 一只小鸟从石榴树上的A处沿直线飞到对面一房屋的顶部C处. 从A处看房屋顶部C处的仰角为30°,看房屋底部D处的俯角为45°,石榴树与该房屋之3米,求出小鸟飞行的距离AC和房屋的高度CD.间的水平距离为3CADB(第21题22.(本题满分6分)在小岛上有一观察站A .据测,灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向,且相距10海里,灯塔C 与观察站A 相距102海里,请你测算灯塔C 处在观察站A 的什么方向?23.(本题满分6分)如图,直线y =43x -3分别与y 轴、x 轴交于点A ,B ,抛物线y =-21x2+2x +2与y轴交于点C ,此抛物线的对称轴分别与BC ,x 轴交于点P ,Q . (1)求证:AB =AC ;(2)求证:AP 垂直平分线段BC .24.(本题满分7分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w =-2x +80,设销售这种台灯每天的利润为y (元). (1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(第23题yxO A BCP Q(第22题北CB A(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润.应将销售单价定为多少元?25.(本题满分8分)在平面直角坐标系xOy 中,二次函数y =mx2+(m -3)x -3(m >0)的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P(n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx2+(m -3)x -3(m >0)的图象于点N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.(友情提示:自画图形)(第25题3211231234512345yxO32112312345yxO参考答案一、选择题1.B 2.C 3.D 4.C 5.B 6.C 7.A 8.D 9.C 10.D 二、填空题11.2 12.y =x2+4x +3 13.8 14.30 20 15.没有三、解答题16.解:由题设,得 cosA =21,tanB =1.……………………………………… 1分∴ ∠A =60°,∠B =45°.……………………………………………………… 3分 ∴ ∠C =180°―∠A ―∠B =180°―60°―45°=75°. …………………… 4分 17.解:(1)将x =0,y =3代入二次函数的表达式,得 m -2=3. ……… 1分 解得 m =5. ………………………………………………………………… 2分(2)依题意,得 -m m 2)62(--=2. 解得 m =-3. …………………… 3分经检验,m =-3是上分式方程的根.故 m =-3. ……………………… 4分 18.解:在Rt △ABC 中,由勾股定理,得 c2=a2+b2=22+2)32(=42.∴ c =4. ………………………………………………………………… 2分∵ sin B =c b =432=23, ∴ ∠B =60°.…………………… 4分19.解:将二次函数的表达式配方,得 y =(x -k)2+3k -6.∴ 二次函数图象的顶点坐标是(k ,3k -6).……………………………… 2分∴ ⎩⎨⎧<->.063,0k k …………………………………………………………… 3分 解得 0<k <2. 故所求k 的取值范围是0<k <2.……………………… 4分 20.解:(1)抛物线的函数解析式为y =x2-4x. ……………………………… 1分 直线的函数解析式为y =x. ……………………………………………… 2分 (2)解方程 x2-4x =x ,得x1=0,x2=5. …………………………… 3分 由题意知,x =5是点A 的横坐标.∴ 点A 的纵坐标y =x =5. …………………………………………………… 4分 ∴ 点A 的坐标是(5,5). …………………………………………………… 5分 ∴ OA =2255+=52. ………………………………………………… 6分21.解:作AE ⊥CD 于点E.由题意可知:∠CAE =30°,∠EAD =45°,AE =33米. ………………… 1分九年级数学试题答案(四年制)第1页(共3页)在Rt △ACE 中,tan ∠CAE =AE CE,即tan30°=33CE .∴ CE =33tan 30°=33×33=3(米) .………………………………… 2分∴ AC =2CE =2×3=6(米). ………………………………………………… 3分 在Rt △AED 中,∠ADE=90°-∠EAD=90°-45°= 45°,∴ DE =AE =33(米). ……………………………………………………… 4分 ∴ DC =CE +DE =(3+33)米. ………………………………………… 5分 答:AC =6米,DC =(3+33)米. ……………………………………… 6分 22.解:过点C 作CD ⊥AB ,垂足为D .…………………………………… 1分 ∵ 灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向, ∴ ∠B =45°.在Rt △BCD 中,∵ sinB =BC CD,∴ CD =BC ·sin 45°=10×22=52(海里).…… 3分在Rt △ACD 中, ∵ AC =102, 521sin 2102CD CAD AC ∠===∴.即1sin 2CAD ∠=.∴ ∠CAD =30°.……………………………… 5分∠CAF =∠BAF -∠CAD =45°-30°=15°.答:灯塔C 处在观察站A 北偏西15°的方向. …………………… 6分 23.证明:(1)可求得A (0,-3),B (4,0),C (0,2).(第22题解答北CBAFD∴ OA =3, OB =4, OC =2. ∴ AC =OA +OC =5.AB =22OB OA +=2243+=5.∴ AB =AC .…………………………………………………………………… 3分(2)∵ 抛物线y =-21x2+2x +2的对称轴是直线x =2,∴ 点Q 的坐标为(2,0).∴ OQ =BQ =2. ∵ PQ ∥y 轴, ∴△BPQ ∽△BCO .∴ BC BP =BO BQ =42=21.∴ BP =PC .…………………………………………………………………… 5分 又∵ AB =AC , ∴ AP ⊥BC .九年级数学试题答案(四年制)第2页(共3页)∴ AP 垂直平分线段BC .……………………………………………………… 6分 说明:要证BP =PC ,也可利用勾股定理先求出BC 的值,再利用三角函数求出BP 的值. 24.解:(1)y =(x -20)(-2x +80) =-2x2+120x -1600.故所求y 与x 之间的函数关系式为y =-2x2+120x -1600.…………………… 2分 (2)∵ y =-2x2+120x -1600=-2(x -30)2+200. 当x =30时,y 最大=200.∴ 当销售单价定为30元时,每天的利润最大,最大利润为200元.………… 4分 (3)由题意,当y =150时,即-2(x -30)2+200=150. 解得x1=25,x2=35.又销售量w =-2x +80,-2<0,销售量w 随单价x 的增大而减小,故当x =25时,既能保证销售量大,又可以每天获得150元的利润.………… 7分 25.解:(1)∵ 点A ,B 是二次函数y =mx2+(m -3)x -3(m >0)的图象与x 轴的交点, ∴ 令y =0,即mx2+(m -3)x -3=0,解得x1=-1,x2=m 3,又∵ 点A 在点B 左侧且m >0,∴ 点A 的坐标为(-1,0). ……………………… 3分321112345yxOAB(2)由(1)可知点B 的坐标为(m 3,0).∵ 二次函数的图象与y 轴交于点C ,∴ 点C 的坐标为(0 ,-3).∵ ∠ABC =45︒, ∴ m 3=3. ∴ m =1. …… 5分(3)由(2)得,二次函数解析式为y =x2-2x -3. 依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为 -2和2.由此可得交点坐标为(-2,5)和(2, -3).将交点坐标分别代入一次函数解析式y =kx +b 中,得 -2k +b =5,且2k +b =-3.解得k =-2,b =1.∴ 一次函数的解析式为 y =-2x +1. ………………… 8分。
济宁市中考数学试题及答案
数学试题第I卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求. 1. 23-的相反数是 A. 23-B. 32 C . 23 D. 32- 2. 化简()160.5x --的结果是A. 160.5x --B. 5.016+xC. 816-xD. 168x -+ 3.2x -x 必须满足 A.x ≤2 B. x ≥2 C. x <2 D.x >24.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“值”字相对的字是A .记B .观C .心D .间5.三角形两边长分别为3和6,第三边是方程213360x x -+=的根,则三角形的周长为 A.13 B.15 C.18 D.13或186.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状是下图中哪一个 A B C D 7.只用下列哪一种正多边形,可以进行平面镶嵌A .正五边形B .正六边形C .正八边形D .正十边形8. 解分式方程22311x x x++=--时,去分母后变形正确的为( ) A .2+(x+2)=3(x-1) B .2-x+2=3(x-1) C .2-(x+2)=3 D . 2-(x+2)=3(x-1)9.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连,若AB=10米,则旗杆BC 的高度为A.5米B.6米C. 8米D. (35)+米 10.将一副三角尺(在t R ACB ∆中,∠ACB=090,∠B=060;值 观 间心记 价PNM F 'FE 'EDCBADCBA在t R EDF ∆中,∠EDF=090,∠E=045)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C.将EDF ∆绕点D 顺时针方向旋转角(060)αα<<oo, 'DE 交AC 于点M ,'DF 交BC 于点N ,则PMCN 的值为A.12二、填空题:本大题共5小题,每小题3分,共15分.11. 2014年我国国内生产总值约为636000亿元,用科学计数法表示636000亿元约为 亿元12. 分解因式:22312y x -=13.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温的方差大小关系为2S 甲 2S 乙 (填>或<)14.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90O,得到的点B 的坐标为15.若221223127⨯-⨯=-⨯⨯, 2222(1223)(3445)2311⨯-⨯+⨯-⨯=-⨯⨯,222222(1223)(3445)(5667)3415⨯-⨯+⨯-⨯+⨯-⨯=-⨯⨯,则222222(1223)(3445).........(2n 1)(2n)2(2n 1)n ⎡⎤⨯-⨯+⨯-⨯++--+=⎣⎦三、解答题:本大题共7小题,共55分. 16.(本题满分5分)计算: 01123π-+- 17. (本题满分7分)某学校初三年级男生共200人,随机抽取10名测量他们的身高为(单位:cm ): 181、176、169、155、163、175、173、167、165、166. (1)求这10名男生的平均身高和上面这组数据的中位数; (2)估计该校初三年级男生身高高于170cm 的人数;(3)从身高(单位:cm )为181、176、175、173的男生中任选2名,求身高为181cm 的男生被抽中的概率. 18. (本题满分7分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。
济宁市中考数学试题及答案
济宁市中考数学试题及答案本文为您提供济宁市中考数学试题及答案。
济宁市中考数学试题涵盖基本数学知识和解题方法,通过答题分析可帮助考生巩固知识,提高解题技巧。
以下是试题及详细解答:一、选择题1. 以下哪个数是无理数?A) 5B) 0C) √2D) 9/10【答案】C【解析】无理数是指不能表示为两个整数之比的数,√2是一个无理数。
因此选项C正确。
2. 已知 a = 3, b = -2,则下列哪个式子成立?A) a + b = -5B) a - b = 1C) ab = 6D) a^2 + b^2 = 9【答案】A【解析】将a和b的值代入选项进行计算,只有选项A的结果是正确的,因此选项A正确。
3. 在直角三角形ABC中,∠ABC是直角,AB = 5,BC = 12。
求AC的长度。
A) 7B) 13C) 17D) 25【答案】B【解析】根据勾股定理,AC^2 = AB^2 + BC^2,代入已知值计算可得AC = √(5^2 + 12^2) = 13,因此选项B正确。
4. 已知正方形ABCD的边长为3 cm,E为BC的中点。
若以AE为直径绘制一个圆,求圆的面积。
A) 4.5π cm^2B) 6π cm^2C) 9π cm^2D) 12π cm^2【答案】C【解析】正方形的对角线相等,所以AC = BD = 3√2。
半径为AC的一半,即r = 3√2/2 = (3/√2) cm。
圆的面积为πr^2 = π(3/√2)^2 = 9πcm^2,因此选项C正确。
5. 在等差数列{an}中,a1 = 3,d = 2。
若an = 23,则n的值为多少?A) 9B) 10C) 11D) 12【答案】D【解析】等差数列的通项公式为an = a1 + (n - 1)d,代入已知值23 =3 + (n - 1)2进行计算,得到n = 12,因此选项D正确。
二、填空题1. 已知长方形的长为6 cm,宽为4 cm,则其面积为_______cm^2。
济宁中考数学试题及答案
济宁中考数学试题及答案(文中所涉及的试题及答案仅为示范,与实际情况无关)一、选择题1. 若方程x^2 - 5x + k = 0的两根相等,则k的值为()。
A. 6B. 8C. 10D. 12答案: A2. 设函数f(x) = 2x + 3,则f(-2)的值为()。
A. -1B. 1C. 4D. -4答案: B3. 一列等差数列的前五项之和为20,公差为2,则这个数列的首项为()。
A. 2B. 3C. 4D. 5答案: C二、填空题1. 在平面直角坐标系中,点A(-3, 4)关于x轴的对称点是(______, _______)。
答案: A(-3, -4)2. 甲、乙两人一起做一项工作,甲单独做需要5小时完成,乙单独做需要8小时完成,两人一起工作需要______小时完成。
答案: 40/133. 一个长方体的表面积为56平方厘米,它的体积为_____立方厘米。
答案:64三、解答题1. 已知数列An的通项公式为An = 4n - 1,计算A1 + A2 + A3 + ... + A10的值。
解答:将An = 4n - 1代入,得到A1 + A2 + A3 + ... + A10 = (4*1 - 1) + (4*2 - 1) + (4*3 - 1) + ... + (4*10 - 1)= 3 + 7 + 11 + ... + 39= 4 * (1 + 2 + 3 + ... + 10) - 10= 4 * (10 * 11 / 2) - 10= 220所以A1 + A2 + A3 + ... + A10的值为220。
2. 用因式分解法求解方程x^2 - 5x + 6 = 0。
解答:根据因式分解法,x^2 - 5x + 6可以分解为(x - 2)(x - 3) = 0。
所以方程的解为x = 2或x = 3。
四、计算题1. 甲、乙两地相距180公里,甲以每小时60公里的速度向乙地出发,乙以每小时40公里的速度向甲地出发。
山东省济宁市2012年中考数学试卷(解析版)
2012年山东省济宁市中考数学试卷解析一、单项选择题(每小题3分,共30分)1.(2012•济宁)在数轴上到原点距离等于2的点所标示的数是()A.﹣2 B.2C.±2 D.不能确定考点:数轴。
分析:先在数轴上标出到原点距离等于2的点,然后根据图示作出选择即可.解答:解:在数轴上到原点距离等于2的点如图所示:点A、B即为所求的点,即在数轴上到原点距离等于2的点所标示的数是﹣2和2;故选C.点评:本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(2012•济宁)下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1C.﹣2(3x﹣1)=﹣6x﹣2D.﹣2(3x﹣1)=﹣6x+2考点:去括号与添括号。
分析:利用去括号法则,将原式去括号,进而判断即可得出答案即可.解答:解:A.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣1错误,故此选项错误;B.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x+1错误,故此选项错误;C.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣2错误,故此选项错误;D.﹣2(3x﹣1)=﹣6x+2,故此选项正确;故选:D.点评:此题主要考查了去括号法则,利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反得出是解题关键.3.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图考点:统计图的选择。
分析:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.解答: 解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图. 故选A .点评: 此题考查扇形统计图、折线统计图、条形统计图各自的特点. 4.(2012•济宁)下列式子变形是因式分解的是( )A . x 2﹣5x +6=x (x ﹣5)+6B . x 2﹣5x +6=(x ﹣2)(x ﹣3) C . (x ﹣2)(x ﹣3)=x 2﹣5x +6 D . x 2﹣5x +6=(x +2)(x +3)考点: 因式分解的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年山东省济宁市中考数学试卷解析一、单项选择题(每小题3分,共30分)1.(2012•济宁)在数轴上到原点距离等于2的点所标示的数是()A.﹣2 B.2C.±2 D.不能确定考点:数轴。
分析:先在数轴上标出到原点距离等于2的点,然后根据图示作出选择即可.解答:解:在数轴上到原点距离等于2的点如图所示:点A、B即为所求的点,即在数轴上到原点距离等于2的点所标示的数是﹣2和2;故选C.点评:本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(2012•济宁)下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1C.﹣2(3x﹣1)=﹣6x﹣2D.﹣2(3x﹣1)=﹣6x+2考点:去括号与添括号。
分析:利用去括号法则,将原式去括号,进而判断即可得出答案即可.解答:解:A.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣1错误,故此选项错误;B.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x+1错误,故此选项错误;C.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣2错误,故此选项错误;D.﹣2(3x﹣1)=﹣6x+2,故此选项正确;故选:D.点评:此题主要考查了去括号法则,利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反得出是解题关键.3.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图考点:统计图的选择。
分析:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.解答: 解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图. 故选A .点评: 此题考查扇形统计图、折线统计图、条形统计图各自的特点. 4.(2012•济宁)下列式子变形是因式分解的是( )A . x 2﹣5x +6=x (x ﹣5)+6B . x 2﹣5x +6=(x ﹣2)(x ﹣3) C . (x ﹣2)(x ﹣3)=x 2﹣5x +6 D . x 2﹣5x +6=(x +2)(x +3)考点: 因式分解的意义。
分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答: 解:A 、x 2﹣5x +6=x (x ﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B 、x 2﹣5x +6=(x ﹣2)(x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C 、(x ﹣2)(x ﹣3)=x 2﹣5x +6是整式的乘法,故不是分解因式,故本选项错误;D 、x 2﹣5x +6=(x ﹣2)(x ﹣3),故本选项错误. 故选B .点评: 本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.(2012•济宁)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A . S SSB . ASAC . A ASD . 角平分线上的点到角两边距离相等考点: 全等三角形的判定与性质;作图—基本作图。
专题: 证明题。
分析: 连接NC ,MC ,根据SSS 证△ONC ≌△OMC ,即可推出答案. 解答:解:连接NC ,MC ,在△ONC 和△OMC 中,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选A.点评:本题考查了全等三角形的性质和判定的应,主要考查学生运用性质进行推理的能力,题型较好,难度适中.6.(2012•济宁)周一的升旗仪式上,同学们看到匀速上升的旗子,能反应其高度与时间关系的图象大致是()A.B.C.D.考点:函数的图象。
专题:应用题。
分析:根据旗子匀速上升可知,高度与时间的关系是一次函数关系,且随着时间的增大高度在逐渐增大,然后根据各选项图象选择即可.解答:解:∵旗子是匀速上升的,且开始时是拿在同学手中,∴旗子的高度与时间关系是一次函数关系,并且随着时间的增大高度在不断增大,纵观各选项,只有D选项图象符合.故选D.点评:本题考查了函数图象,根据题意判断出旗子的高度与时间是一次函数关系,并且随着时间的增大高度在不断增大是解题的关键.7.(2012•济宁)如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A.40°B.75°C.85°D.140°考点:方向角。
专题:计算题。
分析:根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.解答:解:如同:∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.故选C.点评:本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.8.(2012•济宁)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间考点:勾股定理;估算无理数的大小;坐标与图形性质。
专题:探究型。
分析:先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x 轴的负半轴上即可得出结论.解答:解:∵点P坐标为(﹣2,3),∴OP==,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=,∵9<13<16,∴3<<4.∵点A在x轴的负半轴上,∴点A的横坐标介于﹣4和﹣3之间.故选A.点评:本题考查的是勾股定理及估算无理数的大小,根据题意利用勾股定理求出OP的长是解答此题的关键.9.(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个考点:由三视图判断几何体。
分析:左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有3个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.解答:解:左视图与主视图相同,可判断出底面最少有3个小正方体,最多有4个小正方体.而第二行则只有1个小正方体.则这个几何体的小立方块可能有4或5个.故选B.点评:本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.10.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米考点:翻折变换(折叠问题);勾股定理。
分析:先求出△EFH是直角三角形,再根据勾股定理求出FH=20,再利用全等三角形的性质解答即可.解答:解:设斜线上两个点分别为P、Q,∵P点是B点对折过去的,∴∠EPH为直角,△AEH≌△PEH,∴∠HEA=∠PEH,同理∠PEF=∠BEF,∴这四个角互补,∴∠PEH+∠PEF=90°,∴四边形EFGH是矩形,∴△DHG≌△BFE,HEF是直角三角形,∴BF=DH=PF,∵AH=HP,∴AD=HF,∵EH=12cm,EF=16cm,∴FH===20cm,∴FH=AD=20cm.故选C.点评:本题考查的是翻折变换及勾股定理、全等三角形的判定与性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答.二、填空题(每小题3分,共15分,只要求填写最后结果)11.(2012•济宁)某种苹果的售价是每千克x元,用面值为100元的人民币购买了5千克,应找回(100﹣5x)元.考点:列代数式。
分析:单价×重量=应付的钱;剩余的钱即为应找回的钱.解答:解:根据题意,5千克苹果售价为5x元,所以应找回(100﹣5x)元.故答案为(100﹣5x).点评:此题考查列代数式,属基础题,简单.12.(2012•济宁)数学课上,小明拿出了连续五日最低气温的统计表:日期一二三四五最低气温(℃)22 24 26 23 25考点:极差;算术平均数。
分析:根据极差和平均数的定义即可求得.解答:解:这组数据的平均数是(22+24+26+23+25)÷5=24,极差为26﹣22=4.故答案为:24,4.点评:此题考查了极差和平均数,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.13.(2012•济宁)在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理。
分析:首先根据绝对值与偶次幂具有非负性可知cosA﹣=0,sinB﹣=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA﹣|+(sinB﹣)2=0,∴cosA﹣=0,sinB﹣=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.14.(2012•济宁)如图,是反比例函数y=的图象的一个分支,对于给出的下列说法:①常数k的取值范围是k>2;②另一个分支在第三象限;③在函数图象上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图象的某一个分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;其中正确的是①②④(在横线上填出正确的序号)考点:反比例函数的图象;反比例函数的性质;反比例函数图象上点的坐标特征。