半导体物理刘恩科考研复习总结

合集下载

《半导体物理学》刘恩科、朱秉生版上海科技1-12章课后答案

《半导体物理学》刘恩科、朱秉生版上海科技1-12章课后答案

第 1 页

第一章 半导体中的电子状态

1. 设晶格常数为 a 的一维晶格,导带极小值附近能量 E c (k )和价带极大值附近 能量 E v (k )分别为:

E c (k)=

2 2

h k + 3m 0

2

h (k − m 0

k

1) 2

和 E v (k)= 2 2

h k - 6m 0

32

2

h k ; m 0

m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度;

②导带底电子有效质量; ③价带顶电子有效质量;

④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度 Eg

2

2

h k − k =0;可求出对应导带能量极小值 E min

的 k 值:

根据 dEc (k ) =2h k +2( dk 3m 0

m 0

3 ,

1 )

k min

= k 1

4

由题中 E C

式可得:E min

=E C

(K)|k=k min

=

h k 2

m 40

1 由题中 E V

式可看出,对应价带能量极大值 Emax 的 k 值为:k max

=0;

2 2 2

h 2

并且 E min

=E V

(k)|k=k max

k ;∴Eg =E min

-E max

=h

k 1

= h 2

1 6m 12m

48m a 2

0 −27 2

0 0

×

−28

× (6.62 ×10

) −8 2 ×

× −11

=0.64eV

48 × 9.1 10

(3.14 ×10 1.6 10

②导带底电子有效质量 m n

2

2 2 2

2

d E C

= 2h + 2h = 8h ;∴ m n

= h

2 / d E C =

3 m 0

dk 2

3m 0 m 0 3m 0

《半导体物理学》刘恩科、朱秉生_课后答案

《半导体物理学》刘恩科、朱秉生_课后答案

h2 k12 h 2 k12 h2 并且 Emin=EV(k)|k=kmax= ;∴Eg=Emin-Emax= = 12m0 6m0 48m0 a 2

(6.62 × 10 −27 ) 2 =0.64eV 48 × 9.1 × 10 − 28 × (3.14 × 10 −8 ) 2 × 1.6 × 10 −11
(1) 若 B 沿[111]方向,则 cos θ 可以取两组数.
对 [110] , ⎡ ⎣ 1 10 ⎤ ⎦ , [101] , ⎡ ⎣ 10 1 ⎤ ⎦, ⎡ ⎣0 1 1 ⎤ ⎦ , [ 011] 方向的旋转椭球得:
cos θ = 2 3
对⎡ ⎣1 10 ⎤ ⎦,⎡ ⎣ 110 ⎤ ⎦,⎡ ⎣ 101⎤ ⎦,⎡ ⎣10 1 ⎤ ⎦,⎡ ⎣ 0 11⎤ ⎦,⎡ ⎣ 01 1 ⎤ ⎦ 方向的旋转椭球得:
第三章
热平衡时半导体中载流子的统计分布
⎛ h2 ⎞ 1.计算能量 E = Ec 到 E = Ec + 100 ⎜ ∗ 2 ⎟ 之间单位体积中的量子态数。 ⎝ 8mn L ⎠
[解]导带底 Ec 附近单位能量间隔量子态数:
gc g c 即状态密度。
( 2mdn ) ( E ) = 4π V
h3
32
( E − Ec ) 2
由 ωc = qB
对 [110] , ⎡ ⎣ 1 10 ⎤ ⎦ 方向旋转椭球, cos θ = 1 对⎡ ⎣1 10 ⎤ ⎦,⎡ ⎣ 110 ⎤ ⎦ 方向旋转椭球, cos θ = 0 对 [ 011] , ⎡ ⎣0 11⎤ ⎦,⎡ ⎣01 1 ⎤ ⎦,⎡ ⎣0 1 1 ⎤ ⎦ , [101] , ⎡ ⎣ 10 1 ⎤ ⎦,⎡ ⎣10 1 ⎤ ⎦,⎡ ⎣ 101⎤ ⎦ 方向的旋转椭球,

半导体物理 刘恩科 第四版 知识点总结

半导体物理  刘恩科 第四版 知识点总结

2268半导体器件与物理考试大纲

2268 半导体器件与物理

[1] 《半导体物理学》,刘恩科、朱秉升、罗晋生,国防工业出版社;

[2] 《半导体物理学》,顾祖毅、田立林、富力文等,电子工业出版社;

[3] 《半导体器件物理》,孟庆巨、刘海波、孟庆辉,科学出版社。网上提供考试大纲。

第一部分:半导体中的电子状态

一、理解下列基本概念

能级:原子中的电子只能在一些特定的分离能级上运动,这些特定能级称为原子的能级;能层(英语:Energy level)理论是一种解释原子核外电子运动轨道的一种理论。它认为电子只能在特定的、分立的轨道上运动,各个轨道上的电子具有分立的能量,这些能量值即为能级。电子可以在不同的轨道间发生跃迁,电子吸收能量可以从低能级跃迁到高能级或者从高能级跃迁到低能级从而辐射出光子。

能级简并化:

共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子将可以在整个晶体中运动。这种运动称为电子的共有化运动。注意:因为各原子中相似壳层上的电子才有相同的能量,电子只能在相似壳层间转移。因此,共有化运动的产生是由于不同原子的相似壳层间的交叠,例如2p、3s支壳层的交叠。由于内外壳层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。

能带(导带,价带,满带,空带):

晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。

能带:原子聚集在一起形成晶体时,电子的分立能量随之分裂为能带。

半导体物理(刘恩科)--详细归纳总结

半导体物理(刘恩科)--详细归纳总结

第一章、 半导体中的电子状态习题

1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为

[])sin(3.0)cos(1.01)(0ka ka E k E --=

其中E 0=3eV ,晶格常数a=5х10-11m 。求:

(1) 能带宽度;

(2) 能带底和能带顶的有效质量。

题解:

1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本

征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有

化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒

子。主要特征如下:

A 、荷正电:+q ;

B 、空穴浓度表示为p (电子浓度表示为n );

C 、E P =-E n

D 、m P *=-m n *。

1-4、 解:

(1) Ge 、Si:

a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;

半导体物理_复习总结(刘恩科)

半导体物理_复习总结(刘恩科)

半导体物理
多子堆 积
多子耗尽
少子反型
半导ຫໍສະໝຸດ Baidu物理
强反型条件(推导、理解)
强反型: ns pp0
Vs≥2VB
NA=pp0,
VB

k0T q
ln
NA ni

Vs

2k0T q
ln
NA ni

T↑,NA↑衬底杂质浓度越高,Vs就越大,越不容易达 到反型。
半导体物理
C-V特性
非平衡载流子的复合:当 半导体由非平衡态恢复为 平衡态,过剩载流子消失 的过程。
半导体物理
准费米能级
当半导体处于非平衡状态,不再具有统一的费米能 级,引入准费米能级
非平衡态下电子浓度:
n

ni
exp


Ei EFn k0T

非平衡态下空穴浓度:
p

ni
exp

Ei EFp k0T
2
E

1
Ec 2
推导过程书上P51
半导体物理
费米能级与分布函数
费米分布函数:(描述热平衡状态下,电子在允许的量子态上如
何分布)
f
E


1

exp
1 (E

EF
)

半导体物理学(刘恩科第七版)半导体物理学课本习题解一到四章

半导体物理学(刘恩科第七版)半导体物理学课本习题解一到四章

半导体物理学(刘恩科第七版)半导体物理学课本习题解⼀到四章

第⼀章

1.设晶格常数为a 的⼀维晶格,导带极⼩值附近能量E c (k)和价带极⼤值附近

能量E V (k)分别为:

E c =0

2

20122021202236)(,)(3m k h m k h k E m k k h m k h V -

=-+ 0m 。试求:为电⼦惯性质量,nm a a

k 314.0,1==π

(1)禁带宽度;

(2)导带底电⼦有效质量; (3)价带顶电⼦有效质量;

(4)价带顶电⼦跃迁到导带底时准动量的变化解:(1)

eV

m k E k E E E k m dk E d k m k

dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43

(0,060064

3

382324

3

0)(2320

2121022

20

202

02022210

1202==-==<-===-==>=+===-+ 因此:取极⼤值处,所以⼜因为得价带:

取极⼩值处,所以:在⼜因为:得:由导带:

04

32

2

2

*8

3)2(1

m dk E d m

k k C nC

=

==

s

N k k k p k p m dk E d m

k k k k V nV

/1095.704

3

)()

()4(6

)3(25104

3

002

2

2*1

1

-===?=-=-=?=-

== 所以:准动量的定义:

2. 晶格常数为0.25nm 的⼀维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电⼦⾃能带底运动到能带顶所需的时间。解:根据:t k h

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百(精)

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百(精)

第一章习题

1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:

Ec=

(1)禁带宽度;

(2)导带底电子有效质量;

(3)价带顶电子有效质量;

(4)价带顶电子跃迁到导带底时准动量的变化

解:(1)

2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:得

补充题1

分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)

Si在(100),(110)和(111)面上的原子分布如图1所示:

(a)(100晶面(b)(110晶面

(c)(111晶面

补充题2

一维晶体的电子能带可写为,式中a为晶格常数,试求

(1)布里渊区边界;

(2)能带宽度;

(3)电子在波矢k状态时的速度;

(4)能带底部电子的有效质量;

(5)能带顶部空穴的有效质量

解:(1)由得

(n=0,1,2…)

进一步分析,E(k)有极大值,

时,E(k)有极小值

所以布里渊区边界为

(2能带宽度为

(3)电子在波矢k状态的速度

(4)电子的有效质量

能带底部所以

(5能带顶部,

且,

所以能带顶部空穴的有效质量

半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?

答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。

(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。

半导体物理学刘恩科知识点总结

半导体物理学刘恩科知识点总结

半导体物理学刘恩科知识点总结

半导体是一种由大量导电粒子组成的具有特殊性质,特别是对电流敏感、且不易被杂质和缺陷所掺杂的物质。半导体又称为绝缘体,但这只是相对而言,它仍然可以被看做导体。从结构上来说,纯净的半导体也是由两种载流子:导带中的电子和价带中的空穴所组成;另外还存在着三种束缚态:即导带底中的自由电子,价带顶中的空穴和禁带中的空穴。我们把这样的半导体叫做绝缘体。现实生活中最常见到的半导体是硅( si)材料,其他常用的材料还包括砷化镓、磷化镓、锑化铟、锗( ge)等等。硅属于金属氧族元素,化学符号为 Si,常温下硅以单质状态存在,常见的硅材料是一种具有金属光泽的灰黑色固体,无毒无味,比较柔软,容易切割,具有优良的导热性、导电性和延展性,在化工生产中应用很广泛。硅材料具有“刚柔并济”的特点。刚性表现在受力之后会马上断裂,如果加入氧、氮等元素,还会形成导电、导热性更好的材料。柔性则是指当受压或受拉伸时,内部分子的排列顺序容易发生变化,使得分子间的连接变弱甚至断开,从而获得弹性。总的来说,硅材料兼具导电、耐高温的性能。此外,将硅与硼、铝等非金属元素掺合后,还可制成性能独特的多种半导体器件,例如红外探测器、光电倍增管、热释电探测器等。

所谓“特殊”就是不能再导电了!为什么呢?答案就在半导体中出现的各类缺陷中。通俗地讲,半导体就像人体的血液一样,流动着各式各样的“细胞”,它们之间交换的信息都通过载流子传递给了外界环境。在这些携带着数据信息的“小蝌蚪”(电子)中,除了少量

与原料本身的性质直接相关之外,其余的大部分都起到调控作用。

半导体物理-刘恩科-第10章第2节

半导体物理-刘恩科-第10章第2节
1.理想半导体在绝对零度时, 价带完全被电子占满,价 带电子丌能被激发到更高 的能级。 2.可以被足够能量的光子激 发,越过禁带迚入导带, 形成电子-空穴对。 3.电子带不带之间的跃迁形 成的吸收过程称为本征吸 收。 4.要发生本征吸收,光子能 量必须大于禁带宽度 E g 即 可得出本征吸收长波限的 公式为
Thanks for listening
1.可参见《光电导物理及其应用》,应根裕编著,电子工业出版社,P1112; 2.可参见《半导体物理学》第二版,上册,叶良修编著,高等教育出版社, P531-537;
10.2.3.2 自由载流子吸收
以右图所示的Ge的价带为例, 该价带由三个独立的能带组成, 每一个波矢k对应于分属三个带 的三个状态。价带顶实际上是由 两个简并带组成,空穴主要分布 在这两个简并带顶的附近,第三 个分裂的带则经常被电子填满。 在p-Ge的红外光谱中观测到的三 个波长分别为3.4,4.7和20m 的吸收峰,分别对应于右图中的 c、b和a跃迁过程。这个现象是 确定价带重叠的重要依据。
10.2.3.4 晶格振动吸收
在晶体吸收光谱的进红外区还会发现一些吸收带,这 是由晶格振动吸收形成的。在这种吸收中,光子能量直接 转换为晶格振动的动能,也即声子的动能。由于声子的能 量是量子化的,晶格振动吸收谱具有谱线特征,而非连续 谱。在实际情况中,这些谱线会因各种原因展宽成有一定 半高宽的吸收带。 晶格振动吸收通常称为红外吸收,是研究材料组分和 键合结构的重要手段。

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案答辩

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案答辩

第一章习题

1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近

能量E V (k)分别为:

E c =02

20122021202236)(,)(3m k h m k h k E m k k h m k h V -

=-+ 0m 。试求:为电子惯性质量,nm a a

k 314.0,1==π

(1)禁带宽度;

(2) 导带底电子有效质量; (3)价带顶电子有效质量;

(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV m k E k E E E k m dk E d k m k

dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43

(0,060064

3

382324

3

0)(2320

2121022

20

202

02022210

1202==

-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:

取极小值处,所以:在又因为:得:由导带:

04

32

2

2

*8

3)2(1

m dk E d m

k k C nC

=

==

s

N k k k p k p m dk E d m

k k k k V nV

/1095.704

3

)()

()4(6

)3(25104

3

002

2

2*1

1

-===⨯=-=-=∆=-

== 所以:准动量的定义:

2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别

计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h

qE f ∆∆== 得qE

半导体物理(刘恩科)第五章复习答辩

半导体物理(刘恩科)第五章复习答辩
答:为孤立原子中的电子状态的组合,故 它主要适用于绝缘体,主要可计算S带的能 带宽度。

效的周期势场 V (r)该如何表示。
3、什么叫Bloch定理?
晶体中的电子波函数是由晶格周期性调制 的调幅平面波,
即: (k ,x)=u(k,x)eikx 其中 u(k,x)=u(k ,x+na) 另一种表示: (k ,x+na)=(k ,x)e ikna
4、由Bloch定理有哪些结论和推论?
d.E(k)具有与正晶格相同的对称性
5、在第一B、Z内波矢K的取值,K点数,K
点密度
3
k=
i 1
li Ni
bi

l1 N1
b1

l2 N2
b2

l3 N3
b3
第一B .Z内独立的K点数为N(初基元胞数),每
个k点在k空间平均占有的体积为
b1 N1


b2 N2

b3 N3
第五章 固体能带论
基本近似:绝热近似、单电子近似
一、固体电子的共有化和能带
二、布洛赫(Bloch)定理 1.布洛赫定理:表述及讨论 2. Bloch 定理的证明 3.布洛赫定理的一些重要推论 4.能态密度
wenku.baidu.com
三、近自由电子模型
1.索末菲(Sommerfeld)模型 (1)自由电子(半量子)模型 (2)自由电子费米(Femi)气模型

半导体物理学刘恩科全部章节ppt

半导体物理学刘恩科全部章节ppt
1. 纤锌矿型结构也是以正四面体结构为基础构成的,但 其晶胞具有六方对称性,而不是立方对称性
2. 由于正四面体顶角原子与中心原子不同,其结合方式 与闪锌矿型的类似,即同时具有共价结合和离子性特 征,但比闪锌矿型的离子性更强;当两种元素的电负 性差别较大时,离子性占优势
3. 有些材料能以闪锌矿型和纤锌矿型两种结构结晶,如 ZnS、ZnSe、CdS、CdSe等
氯化钠型结构
材料: IV-Ⅵ族二元化合物半导体
例: 百度文库化铅、硒化铅、 碲化铅等
结构特点:负离子构 成面心立方点阵,正离 子占据全部八面体间隙, 正、负离子的配位数均 为6。
半导体中电子的状态与能带的形成
研究固态晶体中电子的能量状态的方法
单电子近似
单电子近似
假设每个电子是在周期性排列且固定不动的 原子核势场及其他电子的平均势场中运动,
3. 若进一步考虑自旋,根据泡利不相容原理,每个共有 化状态可容纳两个电子,则每个能带能容纳的电子数 等于共有化状态数的2倍
➢电子共有化运动与能带
– 注意几点:
4. 电子的共有化运动取决于孤立原子结合成晶体时相似 电子壳层之间的交叠程度,因而对于主量子数相同的 情形,相对有:
s态电子:共有化运动弱 能级分裂晚 形成能带窄
V hk , E h2k 2
m0
2m0
波矢k描述自由电子的运动状态。

【精品】半导体物理学(刘恩科第七版)习题答案(比较完全)

【精品】半导体物理学(刘恩科第七版)习题答案(比较完全)

半导体物理学(刘恩科第七版)习题答案(比较完全)

------------------------------------------作者

------------------------------------------日期

第一章习题

1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近

能量E V (k)分别为:

E c =0

2

20122021202236)(,)(3m k h m k h k E m k k h m k h V -

=-+ 0m 。试求:

为电子惯性质量,nm a a

k 314.0,1==

π

(1)禁带宽度;

(2)导带底电子有效质量; (3)价带顶电子有效质量;

(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV

m k E k E E E k m dk E d k m k

dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43

(0,060064

3

382324

3

0)

(2320

2121022

20

202

02022210

1202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:

取极小值处,所以:在又因为:得:由导带:

04

32

2

2*8

3)2(1

m dk E d m

k k C nC

=== s

N k k k p k p m dk E d m

k k k k V nV

/1095.704

3

)()

()4(6

)3(25104

3002

2

2*1

1

-===⨯=-=-=∆=-

半导体物理刘恩科考研复习总结

半导体物理刘恩科考研复习总结

1。半导体中的电子状态

金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成

闪锌矿与混合键(砷化镓III—V族):具有离子性,面心立方+两个不同原子

纤锌矿结构:六方对称结构(AB堆积)

晶体结构:原子周期性排列(点阵+基元)

共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以在整

个晶体中运动。

能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能

级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围内,

可以认为是连续的。

能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用.

(边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差)自由电子与

半导体的

E-K图:

自由电子模型:

半导体模型:

导带底:E(k)〉E(0),电子有效质量为正值;

价带顶:E(k)<E(0),电子有效质量为负值;

能带越窄,k=0处的曲率越小,二次微商就小,有效质量就越大。

正负与有效质量正负有关。

空穴:共价键上流失一个电子而出现空位置,认为这个空状态带正电。

波矢为k的电子波的布喇格衍射条件:

一维情况(布里渊区边界满足布拉格):

第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N

-每个初基晶胞恰好给每个能带贡献一个独立的k值;

-直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取向,于是每个能带中存在2N个独立轨道。

-若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半;

“半导体物理、器件物理与集成电路”(801)复习提纲.doc

“半导体物理、器件物理与集成电路”(801)复习提纲.doc

“半导体物理、器件物理与集成电路”(801)

复习提纲

一、总体要求

“半导体物理、器件物理与集成电路”(801)由半导体物理、半导体器件物理和数字集成电路三部分组成,半导体物理占60% (90分)、器件物理占20% (30分)、集成电路各占20% ( 30分)。

“半导体物理,,要求学生熟练掌握半导体的相关基础理论,了解半导体性质以及受外界因素的影响及其变化规律。重点掌握半导体中的电子状态和带、半导体中的杂质和缺陷能级、半导体中载流子的统计分布、半导体的导电性、半导体中的非平衡载流子等相关知识、基本概念及相关理论,掌握半导体中载流子浓度计算、电阻(导)率计算以及运用连续性方程解决载流子浓度随时间或位置的变化及其分布规律等。

“器件物理”要求学生掌握MOSFET器件物理的基本理论和基本的分析方法,使学生具备基本的器件分析、求解、应用能力。要求掌握MOS基本结构和电容电压特性; MESFET器件的基本工作原理;MOSFET器件的频率特性;MOSFET器件中的非理想效应;MOSFET器件按比例缩小理论;阈值电压的影响因素;MOSFET的击穿特性;掌握器件特性的基本分析方法。

“数字集成电路”要求考生应深入理解数字集成电路的相关基础理论,掌握数字集成电路电路、系统及其设计方法。重点掌握数字集成电路设计的质量评价、相关参量;能够设计并定量分析数字集成电路的核心一一反相器的完整性、性能和能量指标;掌握CMOS组合逻辑门的设计、优化和评价指标;掌握基本时序逻辑电路的设计、优化、不同形式时序器件各自的特点,时钟的设计策略和影响因素;定性了解MOS器件;掌握并能够量化芯片内部互连线参数。

《半导体物理学》刘恩科课后答案

《半导体物理学》刘恩科课后答案

Ec
1 2 c
3
=

( 2mdn
h3
)3
2
×
2 3
×
⎛ ⎜100

h2 8mn∗ L2
⎞2 ⎟ ⎠
故: Z=1000π 3L3
7. ①在室温下,锗的有效状态密度 Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试 求锗的载流子有效质量 mn*和 mp*。计算 77k 时的 Nc 和 Nv。已知 300k 时,Eg= 0.67eV。77k 时 Eg=0.76eV。求这两个温度时锗的本征载流子浓度。②77k,锗 的电子浓度为 1017cm-3,假定浓度为零,而 Ec-ED=0.01eV,求锗中施主浓度 ND
[解]1) T=300k 时,对于锗:ND=5×1015cm-3,NA=2×109cm-3:
ni
=
1
(NcNv) 2
exp(− Eg ) 2k0T
= 1.96 ×1013 cm−3 ;
n0 = N D − N A = 5 ×1015 − 2 ×109 ≈ 5 ×1015 cm−3 ;
n0 >> ni ;
(6.625
×
10
−34
)
2
( 5.7
×
1018
)
2 3
=
2 2 × 3.14 ×1.38 ×10−23 × 300
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理刘恩科考研

复习总结

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.半导体中的电子状态

金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成

闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子

纤锌矿结构:六方对称结构(AB堆积)

晶体结构:原子周期性排列(点阵+基元)

共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以

在整个晶体中运动。

能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能

级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围

内,可以认为是连续的。

能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。

(边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差)

自由电子与

半导体的

E-K图:

自由电子模型:

半导体模型:

导带底:E(k)>E(0),电子有效质量为正值;

价带顶:E(k)

能带越窄,k=0处的曲率越小,二次微商就小,有效质量就越大。

正负与有效质量正负有关。

空穴:共价键上流失一个电子而出现空位置,认为这个空状态带正电。

波矢为k的电子波的布喇格衍射条件:

一维情况(布里渊区边界满足布拉格):

第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N

-每个初基晶胞恰好给每个能带贡献一个独立的k值;

-直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取

向,于是每个能带中存在2N个独立轨道。

-若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半;

-若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。

杂质电离:电子脱离杂质原子的的束缚成为导电电子的过程。脱离束缚所需要的能力成为杂质电离能。

杂质能级:1)替位式杂质(3、5族元素,5族元素释放电子,正电中心,称施

主杂质;3族元素接收电子,负电中心,受主杂

质。)

2)间隙式杂质(杂质原子小)

杂质能带是虚线,分离的。

浅能级杂质电离能:

施主杂质电离能

受主杂质电离能

杂质补偿作用:施主和受主杂质之间的相互抵消作用(大的起作用)

杂质高度补偿:施主电子刚好能填充受主能级,虽然杂质多,但不能向导带和价带提供电子和空穴。

深能级杂质:非III,V 族杂质在禁带中产生的施主能级和受主能级距离导带底和价带顶都比较远。

1)杂质能级离带边较远,需要的电离能大。

2)多次电离⇒多重能级,还有可能成为两性杂质。(替位式)缺陷、错位能级:1)点缺陷:原子获得能量克服周围原子的束缚,挤入晶格原

子的间隙,形成间隙原子。

弗仓克尔缺陷:间隙原子和空位成对出现。

肖特基缺陷:只在晶体内形成空位而无间隙原子。

2)位错

(点缺陷,空穴、间隙原子;线缺陷,位错;面缺陷,层错、晶粒间界)

导体、半导体、绝缘体的能带:

绝缘体:至一个全满,其余全满或空(初基晶胞内的价电子数目为偶数,能带不

交叠)2N.

金属:半空半满

半导体或半金属:一个或两个能带是几乎空着或几乎充满以外,其余全满

(半金属能带交叠)

Si、Ge和GaAs的能带图及其相关特性比较

共同点:1)都存在一定大小的禁带宽度,并且禁带宽度都具有负的温度系数。

(锗的Eg在边界处;砷化镓在中心处,有两个谷能。)

2)价带结构基本上相同价带顶都位于布里渊区中心,并且该状态都是三度简并的态。

3)在计入电子自旋后,价带顶能带都将一分为二:出现一个二度简并的价带顶能带和一个能量较低一些的非简并能带分裂带。在价带顶简并

的两个能带,较高能量的称为重空穴带,较低能量的称为轻空穴带

4)在0K时,导带中完全是空着的(即其中没有电子),同时价带中填满了价电子是满带,这时没有载流子。在0K以上时,满带中的一些

价电子可以被热激发(本征激发)到导带,从而产生出载流子;温

度越高,被热激发而成为载流子的数目就越多,因此就呈现出所有

半导体的共同性质:电导率随着温度的升高而很快增大。

不同点:Si和Ge是完全的共价晶体,而GaAs晶体的价键带有约30%的离子键性质),因此它们的能带也具有若干重要的差异,这主要是表现

在禁带宽度和导带结构上的不同

1)不同半导体的键能不同,则禁带宽度不同(GaAs>Si>Ge)造成:

(1)本征载流子浓度ni不同;

(2)载流子在强电场下的电离率不同;

(3)光吸收和光激发的波长不同。

2)因为导带底(能谷)的状况不完全决定于晶体的对称性,则Si、Ge和GaAs的的导带底状态的性质以及位置等也就有所不同。

3)导带底的三维形状可以采用等能面来反映,因为Si和Ge的多个导带底都不在k=0处,则它们的等能面都是椭球面;而GaAs的一个

导带底,正好是在k=0处,则其等能面是球面。

4)在强电场下,GaAs与Si、Ge的导带的贡献情况有所不同。而Si、Ge 的导带则不存在这种次能谷,也不可能产生负电阻。

5)在价带顶与导带底的相互关系上,Si、Ge具有间接跃迁的能带结构(导带底与价带顶不在布里渊区区中的同一点,而GaAs具有

直接跃迁的能带结构(即电子与空穴的波矢基本相同)。

相关文档
最新文档