2018_2019高中数学模块综合学业质量标准检测新人教A版必修4
2018-2019学年高中数学 模块综合测评(B)新人教A版必修4
模块综合测评(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知sin(-α)=,且cos(-α)>0,则tan α=()A. B.- C. D.-解析由已知得sin α=-,cos α>0,所以α是第四象限角,于是tan α=-.答案D2.已知向量a=(1,-2),b=(1,1),m=a-b,n=a+λb,如果m⊥n,那么实数λ=()A.4B.3C.2D.1解析因为向量a=(1,-2),b=(1,1),m=a-b,n=a+λb,所以m=(0,-3),n=(1+λ,-2+λ).因为m⊥n,所以m·n=0-3(-2+λ)=0,解得λ=2.答案C3.若角α的终边与单位圆相交于点(x0,2x0)(x0≠0),则tan 2α=()A.-B.C.-D.解析依题意tan α==2,所以tan 2α==-.答案A4.已知平面向量a,b是非零向量,|a|=2,a⊥(a+2b),则向量b在向量a方向上的投影为()A.1B.-1C.2D.-2解析由题设a·(a+2b)=0,即a2+2a·b=0,所以4+4|b|cos θ=0,即|b|cos θ=-1.答案B5.函数y=在一个周期内的图象是()解析y=cosx·=-2sin x cos x=-sin 2x,故选B.答案B6.导学号68254118将函数f(x)=sin 2x的图象向左平移个单位,再向上平移2个单位,得到g(x)的图象.若g(x1)·g(x2)=9,且x1,x2∈[-2π,2π],则|x1-x2|的最大值为()A.πB.2πC.3πD.4π解析依题意得g(x)=sin 2+2=sin+2,若g(x1)·g(x2)=9,则g(x1)=g(x2)=3,所以sin=sin=1.因为x1,x2∈[-2π,2π],所以2x1+,2x2+,设2x1++2kπ,2x2++2nπ,k,n∈Z,则当2x1+=-,2x2+时,|x1-x2|取得最大值3π.答案C7.已知a与b是非零向量且满足(a-6b)⊥a,(2a-3b)⊥b,则a与b的夹角是()A. B. C.π D.π解析根据条件(a-6b)·a=a2-6a·b=0,(2a-3b)·b=2a·b-3b2=0,又因为|a|≠0,|b|≠0,所以|a|=6|b|cos <a,b>①,3|b|=2|a|cos <a,b>②,所以3|a||b|=12|a||b|cos2<a,b>,得cos2<a,b>=,则cos <a,b>=,故a,b的夹角为.答案B8.的值等于()A.4B.-4C.-4D.4解析原式======-4.答案C9.已知函数f(x)=2sin(ωx+φ)+1,其图象与直线y=-1相邻两个交点的距离为π,若f(x)>1对∀x∈恒成立,则φ的取值范围是()A. B.C. D.解析函数f(x)=2sin(ωx+φ)+1,其图象与直线y=-1相邻两个交点的距离为π,故函数的周期为=π,所以ω=2,于是f(x)=2sin(2x+φ)+1.若f(x)>1对∀x∈恒成立,即当x∈时,sin(2x+φ)>0恒成立,则有2kπ≤2·+φ<2·+φ≤2kπ+π,求得2kπ+≤φ≤2kπ+,k∈Z,又|φ|≤,所以≤φ≤,故选D.答案D10.如图,O是坐标原点,M,N是单位圆上的两点,且分别在第一和第三象限,则||的范围为()A.[0,)B.[0,2)C.[1,)D.[1,2)解析设的夹角为θ,θ∈,则cos θ∈[-1,0),||2=+2=2+2cos θ∈[0,2),故||的范围为[0,).答案A11.已知函数f(x)=sin(π-x)cos(-x)+sin(π+x)cos图象上的一个最低点为A,离A最近的两个最高点分别为B与C,则=()A.9+B.9-C.4+D.4-解析f(x)=sin x cos x-sin2x=·sin 2x-sin 2x+cos 2x-=sin, 因此f(x)最大值为,最小值为-.设A,则B,C,于是,故=4-.答案D12.若函数y=2sin ωx(ω>0)在(0,2π)上恰有两个最大值和一个最小值,则ω的取值范围是()A. B.C. D.解析依题意,函数y=2sin ωx在(0,2π)上恰有两个最大值和一个最小值,由图象可知T≤2π<T,亦即≤2π<,解得≤ω<.答案A二、填空题(本大题共4小题,每小题5分,共20分)13.函数f(x)=cos x cos +cos cos 的值域是.解析f(x)=cos x cos +cos cos =cos x cos -sin x sin =cos,故函数值域为[-1,1].答案[-1,1]14.如图,将两块三角板拼在一起组成一个平面四边形ABCD,若=x+y(x,y∈R),则x+y=.解析设AB=1,则AD=,BD=BC=2,过点C作CE⊥AB,CF⊥AD,垂足分别为E,F,如图所示;则BE=,AF=1,且=(+1),又=x+y,所以x=+1,y=,即x+y=1+.答案1+15.已知函数y=cos x与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.解析由题意知cos =sin,即sin,所以+φ=+2kπ或+φ=+2kπ,k∈Z,所以φ=-+2kπ或φ=+2kπ,k∈Z.因为0≤φ<π,所以φ=.答案16.定义a*b是向量a和b的“向量积”,其长度|a*b|=|a||b|sin θ,其中θ为向量a与b的夹角.若u=(2,0),u-v=(1,-),则|u*(u+v)|=.解析因为u=(2,0),u-v=(1,-),所以v=(1,),从而u+v=(3,).若设u与(u+v)的夹角为θ,则cos θ==,从而sin θ=,故|u*(u+v)|=|u||u+v|sin θ=2×2=2答案2三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知向量=(1,-2),=(4,-1),=(m,m+1).(1)若,求实数m的值;(2)若△ABC为直角三角形,求实数m的值.解(1)因为向量=(1,-2),=(4,-1),所以=(3,1).因为,且=(m,m+1),所以3(m+1)-m=0,所以m=-.(2)由(1)知=(3,1),=(m-1,m+3),=(m-4,m+2).因为△ABC为直角三角形,所以.当时,有3(m-1)+m+3=0,解得m=0;当时,有3(m-4)+m+2=0,解得m=;当时,有(m-1)(m-4)+(m+3)(m+2)=0,无解.所以实数m的值为0或.18.(本小题满分12分)已知α∈,β∈,cos β=-,sin(α+β)=.(1)求tan 2β的值;(2)求α的值.解(1)因为β∈,cos β=-,可得sin β=,所以tan β==-2, 故tan 2β=.(2)因为α∈,β∈,所以α+β∈,又因为sin(α+β)=,所以cos(α+β)=-=-,于是cos α=cos(α+β-β)=cos(α+β)cos β+sin(α+β)sin β=,由于α∈,故α=.19.(本小题满分12分)已知向量a=(1,sin x),b=,函数f(x)=a·b-cos 2x.(1)求函数f(x)的解析式及其单调递增区间;(2)当x∈时,求函数f(x)的值域.解(1)函数f(x)=a·b-cos 2x=cos 2x cos -sin 2x sin cos 2x=-sin.由2kπ+≤2x+≤2kπ+,可得kπ+≤x≤kπ+,故单调递增区间为:.(2)当x∈时,可得2x+,因此sin,所以函数f(x)的值域是.20.导学号68254119(本小题满分12分)已知函数f(x)=sin(ωx+φ)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f,求cos的值.解(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2.又因为f(x)的图象关于直线x=对称,所以2·+φ=kπ+,k∈Z.由-≤φ<,得k=0,所以φ==-.(2)由(1)得f sin,所以sin.由<α<,得0<α-,所以cos=.因此cos=sin α=sin=sin cos +cos sin=.21.导学号68254120(本小题满分12分)某房地产开发商为吸引更多消费者购房,决定在一块闲置的扇形空地中修建一个花园.如图,已知扇形AOB的圆心角∠AOB=,半径为R.现欲修建的花园为▱OMNH,其中M,H分别在OA,OB上,N在上.设∠MON=θ,▱OMNH的面积为S.(1)将S表示为关于θ的函数;(2)求S的最大值及相应的θ值.解(1)如图,过N作NP⊥OA于点P,过H作HE⊥OA于点E,∵∠AOB=,∴OE=EH=NP=R sin θ,OP=R cos θ,∴HN=EP=OP-OE=R(cos θ-sin θ),∴S=HN·NP=R2(cos θ-sin θ)sin θ,θ∈.(2)S=R2(cos θsin θ-sin2θ)=R2=R2(sin 2θ+cos 2θ-1)=R2,∵θ∈,∴2θ+,∴当2θ+,即θ=时,S取得最大值,且最大值为R2.22.(本小题满分12分)已知点A(sin 2x,1),B,设函数f(x)=(x∈R),其中O 为坐标原点.(1)求函数f(x)的最小正周期;(2)当x∈时,求函数f(x)的最大值与最小值;(3)求函数f(x)的单调减区间.解(1)∵A(sin 2x,1),B,∴=(sin 2x,1),,∴f(x)==sin 2x+cos=sin 2x+cos 2x cos -sin 2x sin=sin 2x+cos 2x=sin 2x cos +cos 2x sin=sin.故f(x)的最小正周期T==π.(2)∵0≤x≤,∴≤2x+,∴-≤sin≤1,∴f(x)的最大值和最小值分别为1和-.(3)由+2kπ≤2x++2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z, ∴f(x)的单调减区间是,k∈Z.。
(新人教版)2019年高中数学 模块综合评价 新人教A版必修4【重点推荐】
模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( )A.57B.61 C .57D .61解析:由题意可得a·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a·b =16+81-36=61. 答案:B2.已知角α的终边经过点P (4,-3),则2sin α+cos α的值等于( ) A .-35B .45C .25D .-25解析:因为α的终边过点P (4,-3), 所以x =4,y =-3,r =|OP |=5,所以sin α=y r =-35,cos α=45,所以2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.答案:D3.下列各向量中,与a =(3,2)垂直的是( ) A .(3,-2) B .(2,3) C .(-4,6)D .(-3,2)解析:因为(3,2)·(-4,6)=3×(-4)+2×6=0. 答案:C4.将函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象向左平移π6个单位后,得到f (x )的图象,则( )A .f (x )=-sin 2xB .f (x )的图象关于x =-π3对称C .f ⎝⎛⎭⎪⎫7π3=12D .f (x )的图象关于⎝⎛⎭⎪⎫π12,0对称解析:f (x )=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6+π3=cos ⎝ ⎛⎭⎪⎫2x +2π3=-sin ⎝ ⎛⎭⎪⎫2x +π6,所以f ⎝ ⎛⎭⎪⎫-π3=1,f (x )的图象关于x =-π3对称;f ⎝⎛⎭⎪⎫7π3=cos 16π3=-12,f ⎝ ⎛⎭⎪⎫π12=cos 5π6≠0,因此选B.答案:B5.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于( ) A .30° B .60° C .120°D .90°解析:设a ,b 的夹角为θ,由c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a ·b =0⇒a ·b =-1⇒cos θ=a ·b |a ||b |=-12且0°≤θ≤180°⇒θ⇒120°.故选C.答案:C6.函数f (x )=A sin (ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,将函数f (x )的图象向右平移7π24个单位后得到函数g (x )的图象,若函数g (x )在区间⎣⎢⎡⎦⎥⎤-π3,θ⎝ ⎛⎭⎪⎫θ>-π3上的值域为[-1,2],则θ等于( )A.π6B.π4C.2π3D.7π12解析:由图象可知,A =-2,T =π,ω=2,φ=π4,所以f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π4.g (x )=-2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -7π24+π4=-2sin ⎝ ⎛⎭⎪⎫2x -π3,由题意及g (x )的单调性知,g (θ)=-1,解得θ=π4+k π,k ∈Z ,结合题意知θ=π4.答案:B7.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限解析:因为点P 位于第三象限,所以⎩⎪⎨⎪⎧sin θcos θ<0,2cos θ<0,所以⎩⎪⎨⎪⎧cos θ<0,sin θ >0,所以θ在第二象限. 答案:B8.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),点C 在第二象限内,∠AOC =5π6,且|OC →|=2,OC →=λOA →+μOB →,则λ,μ的值分别是( )A .1,1 B.3,1 C .-3,-1D .-3,1解析:因为∠AOC =5π6,所以〈OA →,OC →〉=5π6.〈OC →,OB →〉=5π6-π2=π3.则OC →=λOA →+μOB →=(λ,μ),OC →·OA →=(λ,μ)·(1,0)=|OC →|·|OA →|cos 5π6,即λ=2×(-32)=-3,OC →·OB →=(λ,μ)·(0,1)=|OC →||OB →|·cos π3,即μ=2×12=1,所以λ=-3,μ=1,选D.答案:D9.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知,周期T =2⎝ ⎛⎭⎪⎫54-14=2,所以2πω=2,所以ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,所以f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,所以f (x )的单调递减区间为⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z.答案:D10.在△ABC 中,P 是边BC 的中点,角A ,B ,C 的对边分别是a ,b ,c ,若cAC →+aPA →+bPB →=0,则△ABC 的形状是( )A .等边三角形B .钝角三角形C .直角三角形D .等腰直角三角形但不是等边三角形 解析:如图,由P 是BC 的中点,cAC →+aPA →+bPB →=0,知c (PC →-PA →)+aPA →-bPC →=(a -c )·PA →+(c -b )PC →=0,而PA →与PC →不共线,所以a -c =c -b =0, 所以a =b =c ,故选A. 答案:A11.已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),将函数f (x )的图象向左平移π12个单位长度后得到函数g (x )的图象,且g ⎝ ⎛⎭⎪⎫π4=12,则φ=( )A.π6B.π4C.π3D.2π3解析:f (x )=12sin 2x sin φ+cos φ⎝⎛⎭⎪⎫cos 2x -12=12sin 2x sin φ+12cos φcos 2x =12cos(2x -φ), 所以g (x )=12cos ⎝ ⎛⎭⎪⎫2x +π6-φ. 因为g ⎝ ⎛⎭⎪⎫π4=12,所以2×π4+π6-φ=2k π(k ∈Z),即φ=2π3-2k π(k ∈Z).因为0<φ<π,所以φ=2π3. 答案:D12.已知向量a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝ ⎛⎭⎪⎫π2,π,若a ·b =25,则tan ⎝⎛⎭⎪⎫α+π4=( )A.13B.27C.17D.23解析:由题意,得cos 2α+sin α(2sin α-1)=25,解得sin α=35.又α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-45,tan α=-34.则tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=-34+11-⎝ ⎛⎭⎪⎫-34×1=17.答案:C二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.设sin 2α=-sin α,α∈⎝⎛⎭⎪⎫π2,π,则tan 2α的值是________.解析:因为sin 2α=-sin α,所以2sin αcos α=-sin α.因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α≠0,所以cos α=-12.又因为α∈⎝ ⎛⎭⎪⎫π2,π,所以α=23π, 所以tan 2α=tan 43π=tan ⎝ ⎛⎭⎪⎫π+π3=tan π3= 3. 答案:314.若函数y =sin x (a ≤x ≤b )的值域是⎣⎢⎡⎦⎥⎤-1,12,则b -a 的最大值是________.解析:令y =12,可得x =2k π+π6或x =2k π+5π6,x 的值为…,-7π6,π6,5π6,13π6,…,两个相邻的x 值相差的最大值为4π3,因为函数y =sin x (a ≤x ≤b )的值域是⎣⎢⎡⎦⎥⎤-1,12,所以b -a 的最大值是4π3. 答案:4π315.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________.解析:如图,由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形,所以|AC →|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18.答案:1816.如图,在同一平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R),则m +n =________.解析:由tan α=7,得tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=-43. 以O 为原点,OA 方向为x 轴正半轴建立坐标系(图略),则A 点坐标为(1,0). 由tan ⎝ ⎛⎭⎪⎫α +π4=-43,OB →的模为1,可得B ⎝ ⎛⎭⎪⎫-35,45.由tan α=7,OC →的模为2,可得C ⎝ ⎛⎭⎪⎫15,75.由OC →=mOA →+nOB →,代入A ,B ,C 点坐标可得, ⎩⎪⎨⎪⎧m -35n =15,45n =75,解得⎩⎪⎨⎪⎧m =54,n =74. 所以m +n =3. 答案:3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a·b ; (2)若a -b 与a 垂直,求θ.解:(1)因为a ∥b ,所以θ=0°或180°, 所以a·b =|a ||b |cos θ=± 2. (2)因为a -b 与a 垂直,所以(a -b )·a =0,即|a |2-a·b =1-2cos θ=0,所以cos θ=22. 又0°≤θ ≤180°,所以θ=45°.18.(本小题满分12分)已知a =(1,2),b =(-3,1), (1)求a -2b ;(2)设a ,b 的夹角为θ,求cos θ的值; (3)若向量a +kb 与a -kb 互相垂直,求k 的值.解:(1)a -2b =(1,2)-2(-3,1)=(1+6,2-2)=(7,0).(2)cos θ=a ·b |a ||b |=1×(-3)+2×112+22·12+(-3)2=-210. (3)因为向量a +kb 与a -kb 互相垂直, 所以(a +kb )·(a -kb )=0, 即a 2-k 2b 2=0.因为a 2=5,b 2=10, 所以5-10k 2=0,所以k =±22. 19.(本小题满分12分)已知向量a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎪⎫3π2,2π,且a ⊥b .(1)求tan α的值;(2)求cos ⎝ ⎛⎭⎪⎫α2+π3的值.解:(1)因为a ⊥b ,所以a ·b =0.而a =(3sin α,cos α),b =(2sin α,5sin α-4cos α), 故a ·b =6sin 2α+5sin αcos α-4cos 2α=0, 由于cos α≠0,所以6tan 2α+5tan α-4=0. 解得tan α=-43或tan α=12.因为α∈⎝⎛⎭⎪⎫3π2,2π,所以tan α<0, 所以tan α=-43.(2)因为α∈⎝⎛⎭⎪⎫3π2,2π,所以α2∈⎝ ⎛⎭⎪⎫3π4,π.由tan α=-43,得tan α2=-12或tan α2=2(舍去).所以sin α2=55,cos α2=-255,所以cos ⎝ ⎛⎭⎪⎫α2+π3=cos α2cos π3-sin α2·sin π3=-255×12-55×32=-25+1510. 20.(本小题满分12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,x ∈R. (1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π. 由-π+2k π≤2x -π4≤2k π(k ∈Z),得-3π8+k π≤x ≤π8+k π(k ∈Z),故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z).(2)因为f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤-π8,π8上为增函数,在区间⎣⎢⎡⎦⎥⎤π8,π2上为减函数,又f ⎝ ⎛⎭⎪⎫-π8=0,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π2=2cos ⎝⎛⎭⎪⎫π-π4=-2cos π4=-1, 所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最大值为2,此时x =π8;最小值为-1,此时x =π2. 21.(本小题满分12分)(2015·广东卷)在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m ⊥n ,则m·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0,所以tan x =1.(2)因为m 与n 的夹角为π3,所以m·n =|m |·|n |cos π3,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎪⎫x -π4=12.又因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以x -π4∈⎝ ⎛⎭⎪⎫-π4,π4, 所以x -π4=π6,即x =5π12.22.(本小题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(2)根据(1)的结果,若函数y =f (kx )(k >0)的最小正周期为2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,方程f (kx )=m 恰好有两个不同的解,求实数m 的取值范围.解:(1)设f (x )的最小正周期为T ,则T =11π6-⎝ ⎛⎭⎪⎫-π6=2π,由T =2πω,得ω=1.又⎩⎪⎨⎪⎧B +A =3,B -A =-1,解得⎩⎪⎨⎪⎧A =2,B =1. 令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,所以f (x )=2sin ⎝⎛⎭⎪⎫x -π3+1.(2)因为函数y =f (kx )=2sin ⎝ ⎛⎭⎪⎫kx -π3+1的最小正周期为2π3,又k >0,所以k =3,令t =3x -π3,精品学习资料最新精品资料,为您推荐下载! 11 因为x ∈⎣⎢⎡⎦⎥⎤0,π3,t ∈⎣⎢⎡⎦⎥⎤-π3,2π3, 若sin t =s 在t ∈⎣⎢⎡⎦⎥⎤-π3,2π3上有两个不同的解,则s ∈⎣⎢⎡⎭⎪⎫32,1, 所以方程f (kx )=m 在x ∈⎣⎢⎡⎦⎥⎤0,π3上恰好有两个不同的解,则m ∈[3+1,3), 即实数m 的取值范围是[3+1,3).。
2018_2019学年高中数学阶段质量检测(一)(含解析)新人教A版必修4
阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3 C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12 C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1 C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D. 6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12 C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2 C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝⎛⎭⎪⎫2x +3π4D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a a ≤b ,ba >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2=2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z . 21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m 的取值范围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根. 因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,求实数m 的取值范围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3.(2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433,故m ≤-1-332,即实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-1-332.。
2018_2019高中数学模块综合学业质量标准检测新人教A版
模块综合学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.cos1,sin1,tan1的大小关系是( D ) A .sin1<cos1<tan1 B .sin1<tan1<cos1 C .cos1<tan1<sin1D .cos1<sin1<tan1[解析] 作出单位圆,用三角函数线进行求解,如图所示,有OM <MP <AT ,即cos1<sin1<tan1.故选D .2.(2015·陕西)对任意向量a 、b ,下列关系式中不恒成立....的是( B ) A .|a ·b |≤|a ||b | B .|a -b |≤|a |-|b | C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2[解析] 对于A 选项,设向量a ,b 的夹角为θ,∵|a ·b |=|a ||b ||cos θ|≤|a ||b |,∴A 选项正确;对于B 选项,∵当向量a ,b 反向时,|a -b |≥|a |-|b |,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出(a +b )·(a -b )=a 2-b 2,故D 选项正确,综上选B .3.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( D )A .43B .34C .-34D .-43[解析] ∵α是第二象限角,∴cos α=15x <0,即x <0.又cos α=15x =xx 2+16,解得x =-3,∴tan α=4x =-43.4.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( A ) A .-32B .-53C .53D .32[解析] 因为c =(1+k,2+k ),b ·c =0,所以1+k +2+k =0,解得k =-32,故选A .5.若cos2αα-π4=-22,则sin α+cos α的值为( C ) A .-72B .-12C .12D .72[解析]cos 2α-sin 2α22α-cos α=-22,即α+sin αα-sin α22α-cos α=-22∴cos α+sin α=12.6.将函数y =cos2x 的图象上的所有点向左平移π6个单位长度,再把所得图象向上平移1个单位长度,所得图象的函数解析式是( C )A .y =cos ⎝ ⎛⎭⎪⎫2x +π6+1B .y =cos ⎝ ⎛⎭⎪⎫2x -π3+1C .y =cos ⎝⎛⎭⎪⎫2x +π3+1 D .y =cos ⎝⎛⎭⎪⎫2x -π6+1 [解析] 将函数y =cos2x 的图象上的所有点向左平移π6个单位长度,得函数y =cos2⎝ ⎛⎭⎪⎫x +π6的图象,再把y =cos2⎝⎛⎭⎪⎫x +π6的图象向上平移1个单位长度,所得图象的函数解析式是y =cos2⎝ ⎛⎭⎪⎫x +π6+1=cos ⎝⎛⎭⎪⎫2x +π3+1.7.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于( D ) A .-16 B .-8 C .8D .16[解析] 解法1:∵AB →·AC →=|AB →|·|AC →|cos A ,△ABC 为直角三角形,∴AB →·AC →=|AB →|·|AC →|·|AC →||AB →|=|AC →|2=16.故选D .解法2:∵△ACB 为直角三角形,∴AB →在AC →上的投影为AC ,∴AB →·AC →=AC →2=16. 8.已知a =(cos2α,sin α),b =(1,2sin α-1),α∈⎝ ⎛⎭⎪⎫π2,π,若a ·b =25,则tan ⎝⎛⎭⎪⎫α+π4等于( C )A .13B .27C .17D .23[解析] 由题意,得cos2α+sin α(2sin α-1)=25,整理得sin α=35.又α∈⎝ ⎛⎭⎪⎫π2,π,则cos α=-45.所以tan α=-34.则tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=17.9.每一个音都是纯音合成的,纯音的数字模型是函数y =A sin ωt ,音调、响度、音长、音色等音的四要素都与正弦函数及其参数(振幅、频率)有关.我们听到的声音是许多音的结合,称为复合音.若一个复合音的函数是y =14sin4x +16sin6x ,则该复合音的周期为( B )A .3π2B .πC .2π3D .π6[解析] y 1=14sin4x 的周期是π2,y 2=16sin6x 的周期是π3,所以y =y 1+y 2的周期应为π2与π3的公倍数π. 10.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =( C )A .5B .4C .3D .2[解析] 如图所示,△ABC 中,D 是BC 边的中点,由MA →+MB →+MC →=0易知M 是△ABC 的重心, ∴AB →+AC →=2AD →. 又∵AD →=32AM →,∴AB →+AC →=2AD →=3AM →,∴m =3,故选C .11.函数y =tan(π4x -π2)的部分图象如图,则(OA →+OB →)·AB →=( A )A .6B .4C .-4D .-6[解析] ∵点B 的纵坐标为1, ∴tan(π4x -π2)=1,∴π4x -π2=π4,∴x =3,即B (3,1). 令tan(π4x -π2)=0,则π4x -π2=0,解得x =2,∴A (2,0),∴OA →+OB →=(5,1),AB →=(1,1). ∴(OA →+OB →)·AB →=6.12.(2018·全国卷Ⅱ理,10)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( A )A .π4B .π2C .3π4D .π [解析] f (x )=cos x -sin x =-2⎝ ⎛⎭⎪⎫sin x ·22-cos x ·22=-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,34π,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时,y =sin ⎝⎛⎭⎪⎫x -π4单调递增,y =-2sin ⎝⎛⎭⎪⎫x -π4单调递减.∵ 函数f (x )在[-a ,a ]是减函数,∴ [-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,34π, ∴ 0<a ≤π4,∴ a 的最大值为π4.故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017全国卷Ⅱ理科)函数f (x )=sin 2x +3cos x -34(x ∈[0,π2])的最大值是__1__.[解析] f (x )=1-cos 2x +3cos x -34=-(cos x -32)2+1.∵x ∈[0,π2],∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1. 14.已知向量a =(1,2),b =(x,1),若a ∥b ,则实数x = 12 .[解析] ∵a ∥b ,∴1-2x =0.∴x =12.15.已知e 1、e 2是平面单位向量,且e 1· e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=3. [解析] 不妨设b =x e 1+y e 2,则b ·e 1=x +y2=1,b ·e 2=x 2+y =1,因此可得x =y =23,所以|b |=23|e 1+e 2|=233.16.关于函数f (x )=cos(2x -π3)+cos(2x +π6),有下列说法:①y =f (x )的最大值为2;②y =f (x )是以π为最小正周期的周期函数; ③y =f (x )在区间(π24,13π24)上单调递减;④将函数y =2cos2x 的图象向左平移π24个单位后,将与已知函数的图象重合.其中正确说法的序号是__①②③__.(注:把你认为正确的说法的序号都填上) [解析] 化简f (x )=cos(2x -π3)+cos(2x +π2-π3)=cos(2x -π3)-sin(2x -π3)=2cos(2x -π12),∴f (x )max =2,即①正确.T =2π|ω|=2π2=π,即②正确. f (x )的递减区间为2k π≤2x -π12≤2k π+π(k ∈Z ).即k π+π24≤x ≤k π+1324π(k ∈Z ),即③正确.将函数y =2cos2x 向左平移π24个单位得y =2cos[2(x +π24)]≠f (x ),∴④不正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)在△AOB 中,C 是AB 边上的一点,且BC →=λCA →(λ>0),若OA →=a ,OB →=b .(1)当λ=1时,用a 、b 表示OC →; (2)用a 、b 表示OC →.[解析] (1)当λ=1时,BC →=CA →,即C 是AB 的中点, ∴OC →=12(OB →+OA →)=12a +12b .(2)∵BC →=λCA →,∴BC →=λ1+λBA →.又BA →=OA →-OB →=a -b , ∴BC →=λ1+λ(a -b ).∴OC →=OB →+BC →=b +λ1+λ(a -b )=λ1+λa +11+λb . 18.(本题满分12分)(2018·浙江卷,18)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.[解析] (1)解:由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)解:由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.19.(本题满分12分)已知点A (1,0)、B (0,1)、C (2sin θ,cos θ). (1)若|AC →|=|BC →|,求sin θ+2cos θsin θ-cos θ的值;(2)若(OA →+2OB →)·OC →=1,其中O 为坐标原点,求sin θ·cos θ的值. [解析] ∵A (1,0)、B (0,1)、C (2sin θ,cos θ), ∴AC →=(2sin θ-1,cos θ), BC →=(2sin θ,cos θ-1).(1)|AC →|=|BC →|, ∴θ-2+cos 2θ=θ2+θ-2,化简得2sin θ=cos θ, ∴tan θ=12.∴sin θ+2cos θsin θ-cos θ=tan θ+2tan θ-1=12+212-1=-5. (2)OA →=(1,0),OB →=(0,1),OC →=(2sin θ,cos θ), ∴OA →+2OB →=(1,2), ∵(OA →+2OB →)·OC →=1, ∴2sin θ+2cos θ=1, ∴(sin θ+cos θ)2=14,∴1+2sin θcos θ=14,∴sin θcos θ=-38.20.(本题满分12分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为4+π2.(1)求f (x )的解析式; (2)若tan α+1tan α=5,求2fα-π4-11-tan α的值.[解析] (1)设最高点为(x 1,1),相邻的最低点为(x 2,-1), 则|x 1-x 2|=T2(T >0),∴x 1-x 22++2=4+π2,∴T 24+4=4+π2,∴T =2π=2π|ω|,又ω>0,∴ω=1. ∴f (x )=sin(x +φ). ∵f (x )是偶函数, ∴φ=k π+π2(k ∈Z ).∵0≤φ≤π,∴φ=π2,∴f (x )=sin(x +π2)=cos x .(2)∵tan α+1tan α=5,∴sin αcos α+cos αsin α=5, ∴sin αcos α=15,∴2f α-π4-11-tan α=2α-π4-11-tan α=2αcos π4+sin2αcossinπ4-11-sin αcos α=cos2α+sin2α-1cos α-sin αcos α=αcos α-2sin 2ααcos α-sin α=2sin αcos α=25.21.(本题满分12分)如图,矩形ABCD 的长AD =23,宽AB =1,A ,D 两点分别在x 轴,y 轴的正半轴上移动,B ,C 两点在第一象限.求OB 2的最大值.[解析] 过点B 作BH ⊥OA ,垂足为H .设∠OAD =θ(0<θ<π2),则∠BAH =π2-θ,OA =23cos θ,BH =sin(π2-θ)=cos θ, AH =cos(π2-θ)=sin θ,所以B (23cos θ+sin θ,cos θ),OB 2=(23cos θ+sin θ)2+cos 2θ=7+6cos2θ+23sin2θ=7+43sin(2θ+π3).由0<θ<π2,知π3<2θ+π3<4π3,所以当θ=π12时,OB 2取得最大值7+43.22.(本题满分12分)已知向量m =(sin 12x,1),n =(43cos 12x ,2cos x ),设函数f (x )=m·n .(1)求函数f (x )的解析式.(2)求函数f (x ),x ∈[-π,π]的单调递增区间.(3)设函数h (x )=f (x )-k (k ∈R )在区间[-π,π]上的零点的个数为a ,试探求a 的值及对应的k 的取值范围.[解析] (1)f (x )=m·n =43sin 12x cos 12x +2cos x=23sin x +2cos x =4sin(x +π6). (2)由(1),知f (x )=4sin(x +π6),x ∈[-π,π],所以x +π6∈[-5π6,7π6],由-π2≤x +π6≤π2,解得-2π3≤x ≤π3,所以函数f (x )的单调递增区间为[-2π3,π3].(3)当x ∈[-π,π]时,函数h (x )=f (x )-k 的零点讨论如下: 当k >4或k <-4时,h (x )无零点,a =0; 当k =4或k =-4时,h (x )有一个零点,a =1; 当-4<k <-2或-2<k <4时,h (x )有两个零点,a =2; 当k =-2时,h (x )有三个零点,a =3.。
2018-2019学年高中数学人教A版必修4综合质量评估卷含答案
综合质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin2010°= ( )A.-B.-C.D.【解析】选A.sin2010°=sin(5×360°+210°)=sin210°=-sin30°=-.2.若点在角α的终边上,则sinα的值为( )A.-B.-C.D.【解析】选A.由题意,x=sin=,y=cos=-,r=1,所以sinα==-.3.(2018·石家庄高一检测)若tanθ=2,则的值为( )A.-B.C.-D.【解析】选D.因为tanθ=2,则====.4.已知a与b是非零向量且满足(a-6b)⊥a,(2a-3b)⊥b,则a与b的夹角是( )A. B. C.π D.π【解析】选B.根据条件:(a-6b)·a=a2-6a·b=0;(2a-3b)·b=2a·b-3b2=0;因为|a|≠0,|b|≠0;所以|a|=6|b|cos<a,b>①,3|b|=2|a|cos<a,b>②;所以3|a||b|=12|a||b|cos2<a,b>,所以cos2<a,b>=;所以cos<a,b>=,所以a,b的夹角为.5.已知扇形的圆心角为π弧度,半径为2,则扇形的面积是( )A.πB.C.2πD.π【解析】选D.由S扇形=|α|R2,可得S扇形=×π×22=π.6.若α,β都是锐角,且cosα=,sin(α-β)=,则cosβ= ( )A. B.C.或-D.或【解析】选A.因为cosα=,所以sinα=,因为α,β都是锐角,所以-<α-β<,因为sin(α-β)=>0,所以0<α-β<,所以cos(α-β)=,所以cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.7. (2018·日照高一检测)已知A(3,0),B(0,3),C(cosα,sinα),若·=-1,则sin的值为( ) A. B. C. D.【解析】选B.因为=(cosα-3,sinα),=(cosα,sinα-3),所以·=(cosα-3)·cosα+sinα(sinα-3)=-1,得cos2α+sin2α-3(cosα+sinα)=-1,所以sinα+cosα=,故sin=(sinα+cosα)=×=.8.已知a=(2,3),b=(-4,7),则a在b上的投影为( )A. B. C. D.【解析】选C9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的递增区间为( )A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z【解析】选B.由图象可知A=2,T=-=,所以T=π,故ω=2.由五点法作图可得2·+φ=0,求得φ=-,所以f(x)=2sin.由2x-∈(k∈Z),得x∈(k∈Z),所以f(x)的递增区间是(k∈Z).10.设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在内单调递减【解析】选D.当x∈时,x+∈,函数在该区间内不单调.11.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,则|+|的取值范围为( )A. B.[,4]C.[,]D.【解析】选 B.以O为原点建立平面直角坐标系,如图所示:则C(0,1),A(1,0), D(3,0),设P(x,y),则+=(x+1,y),所以|+|=,设M(-1,0),则|+|=||,由图可知当P与C重合时||取得最小值,当P与D重合时,||取得最大值4,所以|+|的取值范围是[,4].12.已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则·(+)的最小值是( )A.-2B.-C.-D.-1【解析】选B.以BC为x轴,BC的垂直平分线AD为y轴,D为坐标原点建立坐标系,则A(0,),B(-1,0),C(1,0),设P(x,y),所以=(-x,-y),=(-1-x,-y),=(1-x,-y),所以+=(-2x,-2y),·(+)=2x2-2y(-y)=2x2+2-≥-,当P时,所求的最小值为-.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.将函数y=sin的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为________.【解析】将函数y=sin的图象上的所有点向右平移个单位,得到函数y=sin=sin2x的图象,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.答案:y=sin4x14.=________.【解析】原式===.答案:15.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________. 【解析】由已知得:a+b=(m+1,3),所以|a+b|2=|a|2+|b|2⇒(m+1)2+32=m2+12+12+22,解得m=-2.答案:-216.已知e1,e2是互相垂直的单位向量,若e1+e2与e1-λe2夹角为60°,则实数λ的值是________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,在△ABC中,已知AB=2,AC=6,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=5,(1)若=-+,求证:点F为DE的中点.(2)在(1)的条件下,求·的值.【解析】(1)因为=-+,所以=-=+,又=2,=5,所以=+,所以F为DE的中点.(2)由(1)可得==(-),因为=2,=5,所以=-,所以·=-·=-+·=-×4+×2×6×cos60°=-.18.(12分)已知a=(sinx,cosx),b=(cosx,cosx),f(x)=2a·b+2m-1(x,m∈R). (1)求f(x)的对称轴方程.(2)若x∈时,f(x)的最小值为5,求m的值.【解析】(1)a·b=sinxcosx+cos2x=sin2x+cos2x+=sin+;所以f(x)=2sin+2m;令2x+=+kπ,k∈Z;所以f(x)的对称轴方程为x=+,k∈Z.(2)因为x∈,所以≤2x+≤;所以2x+=时,f(x)min=2×+2m=5;所以m=3.19.(12分)已知函数f(x)=+cos2x-sin2x.(1)求函数f(x)的最小正周期和单调递减区间.(2)在所给坐标系中画出函数在区间的图象(只作图不写过程).【解析】f(x)=+cos2x =sin2x+cos2x=sin.(1)函数f(x)的最小正周期T==π, 令2kπ+≤2x+≤2kπ+π,k∈Z,则2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z,所以函数f(x)的单调递减区间为(k∈Z).(2)图象如下:20.(12分)(2018·山东高考)设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f=0,(1)求ω.(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在上的最小值.【解析】(1)因为f(x)=sin+sin,所以f(x)=sinωx-cosωx-cosωx=sinωx-cosωx==sin,由题设知f=0,所以-=kπ,k∈Z.故ω=6k+2,k∈Z,又0<ω<3,所以ω=2.(2)由(1)得f(x)=sin,所以g(x)=sin=sin,因为x∈,所以x-∈,当x-=-,即x=-时,g(x)取得最小值-.21.(12分)已知函数f(x)=sin+b(ω>0),且函数图象的对称中心到对称轴的最小距离为,当x∈时,f(x)的最大值为1.(1)求函数f(x)的解析式.(2)将函数f(x)的图象向右平移个单位长度得到函数g(x)的图象,若g(x)-3≤m≤g(x)+3在x∈上恒成立,求实数m的取值范围. 【解析】(1)因为函数f(x)=sin+b(ω>0),且函数图象的对称中心到对称轴的最小距离为,所以=,可得T=π,由=π,可得ω=2,所以f(x)=sin+b,因为当x∈时,2x-∈,由y=sinx在上单调递增,可得当2x-=,即x=时,函数f(x)取得最大值f=sin+b,所以sin+b=1,解得b=-,所以f(x)=sin-.(2)将函数f(x)的图象向右平移个单位长度得到函数解析式为:g(x)=sin-=sin-,因为当x∈时,2x-∈,g(x)=sin-∈[-2,1],所以g(x)-3∈[-5,-2],g(x)+3∈[1,4],因为g(x)-3≤m≤g(x)+3在x∈上恒成立,所以m∈[-2,1].22.(12分)如图所示,已知OPQ是半径为1,圆心角为的扇形,四边形ABCD是扇形的内接矩形,B,C两点在圆弧上,OE是∠POQ的平分线,E在上,连接OC,记∠COE=α,则角α为何值时矩形ABCD的面积最大?并求最大面积.【解析】设OE交AD于M,交BC于N,显然矩形ABCD关于OE对称,而M,N分别为AD,BC的中点,在Rt△ONC中,CN=sinα,ON=cosα,OM==DM=CN=sinα,所以MN=ON-OM=cosα-sinα,即AB=cosα-sinα,而BC=2CN=2sinα,故S矩形ABCD=AB·BC=(cosα-sinα)·2sinα=2sinαcosα-2sin2α=sin2α-(1-cos2α)=sin2α+cos2α-=2-=2sin-.因为0<α<,所以0<2α<,<2α+<,故当2α+=,即α=时,S矩形ABCD取得最大值,此时S矩形ABCD=2-.。
2018_2019学年高中数学阶段质量检测(三)(含解析)新人教A版必修4
阶段质量检测(三)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π4-cos ⎝⎛⎭⎪⎫x -π4是( )A .周期为π的偶函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为2π的奇函数解析:选D 因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π4-cos ⎝ ⎛⎭⎪⎫x -π4=⎝ ⎛⎭⎪⎫22cos x -22sin x -⎝ ⎛⎭⎪⎫22cos x +22sin x =-2sin x ,所以函数f (x )的最小正周期为2π1=2π.又f (-x )=-2sin(-x )=2sin x =-f (x ),所以函数f (x )为奇函数,故选D.2.sin 45°·cos 15°+cos 225°·sin 15°的值为( ) A .-32 B .-12C.12D.32解析:选C sin 45°cos 15°+cos 225°sin 15° =sin 45°cos 15°-cos 45°sin 15°=sin(45°-15°) =sin 30°=12.3.已知α是第二象限角,且cos α=-35,则cos ⎝ ⎛⎭⎪⎫π4-α的值是( )A.210 B .-210 C.7210 D .-7210解析:选A 由题意,sin α=45,cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin π4sin α=210. 4.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝⎛⎭⎪⎫2π3+2α等于( )A .-79B .-13C.13D.79解析:选A cos 2π3+2α=cos π-2π6-α=-cos2π6-α=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=-79.5.已知tan(α+β)=14,tan α=322,那么tan(2α+β)等于( )A.25B.14 C.1318 D.1322解析:选A tan(2α+β)=α+β+tan α1-α+βα=25.6.已知3sin x +cos x =2a -3,则a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,52 B.⎝⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫52,+∞D.⎣⎢⎡⎦⎥⎤-52,12解析:选A 由3sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π6=2a -3,得sin ⎝ ⎛⎭⎪⎫x +π6=a -32,∴⎪⎪⎪⎪⎪⎪a -32≤1,即12≤a ≤52.7.在△ABC 中,已知tanA +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形 解析:选C 在△ABC 中,tanA +B2=sin C =sin(A +B )=2sinA +B2cosA +B2,∴2cos2A +B2=1,∴cos(A +B )=0,从而A +B =π2,即△ABC 为直角三角形.8.若θ∈⎝ ⎛⎭⎪⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32 B .-32 C .±32 D .±12解析:选B 由sin θ-cos θ=22两边平方得,sin 2θ=12,又θ∈⎝⎛⎭⎪⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B.9.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x -π6,若存在α∈(0,π),使得f (x +α)=f (x -α)恒成立,则α的值是( )A.π6B.π3C.π4 D.π2解析:选D ∵f (x +α)=f (x -α),∴函数f (x )的周期为T =2α,而函数f (x )=sin ⎝⎛⎭⎪⎫2x -π6的周期为T =2π2=π,∴2α=π,∴α=π2. 10.已知tan θ和tan ⎝ ⎛⎭⎪⎫π4-θ是方程x 2+ax +b =0的两个实数根,那么a ,b 间的关系是( )A .a +b +1=0B .a +b -1=0C .a -b +1=0D .a -b -1=0解析:选C 由条件得tan θ+tan ⎝ ⎛⎭⎪⎫π4-θ=-a ,tan θtan π4-θ=b ,∴tan π4=1=tan θ+π4-θ=tan θ+tan ⎝ ⎛⎭⎪⎫π4-θ1-tan θtan ⎝ ⎛⎭⎪⎫π4-θ=-a1-b ,∴-a =1-b ,即a -b +1=0.11.设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =sin 37°·sin 67°+sin 53°sin 23°,则( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c解析:选A a =cos 45°sin 17°+sin 45°cos 17°=sin 62°,b =cos 26°=sin 64°,c =sin 37°cos 23°+cos 37°sin 23°=sin 60°,故c <a <b .12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ·cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1解析:选D f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B ·1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B )=2sin B +1. ∵f (B )-m <2恒成立,∴2sin B +1-m <2恒成立,即m >2sin B -1恒成立. ∵0<B <π,∴0<sin B ≤1. ∴-1<2sin B -1≤1,故m >1.二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,则tan 2α=________. 解析:因为sin α=55,α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-sin 2α=-255.所以tan α=sin αcos α=-12,所以tan 2α=2tan α1-tan 2α=-11-14=-43. 答案:-4314.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________.解析:由题意,sin A 2=14,∴cos A 2=154,∴tan A 2=1515.∴tan A =2tanA21-tan2A 2=157.答案:15715.化简sin(x +60°)+2sin(x -60°)-3cos(120°-x )的结果是________. 解析:原式=12sin x +32cos x +sin x -3cos x +32cos x -32sin x =0.答案:016.已知函数f (x )=3sin 2x +2cos 2x +m 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为3,则m =________.解析:f (x )=3sin 2x +2cos 2x +m =3sin 2x +1+cos 2x +m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为0≤x ≤π2,所以π6≤2x +π6≤7π6,所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,所以f (x )max =2+m +1=3+m =3,所以m =0.答案:0三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分 )已知cos θ=1213,θ∈(π,2π),求sin ⎝ ⎛⎭⎪⎫θ-π6以及tan ⎝ ⎛⎭⎪⎫θ+π4的值. 解:因为cos θ=1213,θ∈(π,2π),所以sin θ=-513,tan θ=-512,所以sin ⎝ ⎛⎭⎪⎫θ-π6=sin θcos π6-cos θsin π6 =-513×32-1213×12=-53+1226,tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+tan π41-tan θtan π4=-512+11-⎝ ⎛⎭⎪⎫-512×1=717.18.(12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝⎛⎭⎪⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+sin ⎝ ⎛⎭⎪⎫x -3π4+π2 =sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加得2cos βcos α=0. ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin2π4-2=0.19.(12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解:(1)由|a|2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12,当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1,此时f (x )取得最大值,最大值为32.20.(12分)已知向量a =(3,cos 2ωx ),b =(sin 2ωx,1)(ω>0),令f (x )=a·b ,且函数f (x )的最小正周期为π.(1)求函数f (x )的解析式;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )+m ≤3,求实数m 的取值范围. 解:(1)f (x )=a·b =3sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π6.∵函数f (x )的最小正周期为π,∴ω=1,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴f (x )∈[-1,2]. 由f (x )+m ≤3,得f (x )max +m ≤3, ∴2+m ≤3,∴m ≤1.21.(12分)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,A >0,ω>0,|φ|<π2的部分图象如图所示.(1)试确定函数f (x )的解析式; (2)若f ⎝ ⎛⎭⎪⎫α2π=13,求cos 2π3-α的值.解:(1)由图象知,A =2,设函数f (x )的最小正周期为T ,则T 4=56-13=12,∴T =2,∴ω=2πT =2π2=π,故函数f (x )=2sin(πx +φ).∵f ⎝ ⎛⎭⎪⎫13=2sin ⎝ ⎛⎭⎪⎫π3+φ=2,∴sin ⎝ ⎛⎭⎪⎫π3+φ=1. 又∵|φ|<π2,即-π2<φ<π2,∴-π6<π3+φ<5π6,故π3+φ=π2,解得φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6.(2)∵f ⎝⎛⎭⎪⎫α2π=13,∴2sin ⎝ ⎛⎭⎪⎫π·α2π+π6=2sin ⎝ ⎛⎭⎪⎫α2+π6=13,∴sin ⎝ ⎛⎭⎪⎫α2+π6=16,∴cos ⎝ ⎛⎭⎪⎫π3-α2=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α2=sin ⎝ ⎛⎭⎪⎫π6+α2=16,∴cos ⎝⎛⎭⎪⎫2π3-α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3-α2=2cos 2π3-α2-1=2×⎝ ⎛⎭⎪⎫162-1=-1718.22.(12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(2)若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos 2x 0的值.解:(1)由f (x )=23sin x cos x +2cos 2x -1,得f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6在区间⎣⎢⎡⎦⎥⎤0,π6上为增函数,在区间⎝ ⎛⎦⎥⎤π6,π2上为减函数,又f (0)=1,f ⎝ ⎛⎭⎪⎫π6=2,f ⎝ ⎛⎭⎪⎫π2=-1, ∴函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为2,最小值为-1.(2)由(1)可知f (x 0)=2sin ⎝ ⎛⎭⎪⎫2x 0+π6.又∵f (x 0)=65,∴sin ⎝ ⎛⎭⎪⎫2x 0+π6=35. 由x 0∈⎣⎢⎡⎦⎥⎤π4,π2,得2x 0+π6∈⎣⎢⎡⎦⎥⎤2π3,7π6.从而cos ⎝⎛⎭⎪⎫2x 0+π6=-1-sin 2⎝⎛⎭⎪⎫2x 0+π6=-45.∴cos 2x 0=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 0+π6-π6=cos ⎝ ⎛⎭⎪⎫2x 0+π6cos π6+sin ⎝ ⎛⎭⎪⎫2x 0+π6sin π6=3-4310.。
2019高中数学 模块综合测评 新人教A版必修4
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.cos(-2 640°)+sin 1 665°等于( ) A .1+22B .-1+22C .1+32D .-1+32B [cos(-2 640°)=cos 2 640° =cos(7×360°+120°) =cos 120°=-12,sin 1 665°=sin(4×360°+225°) =sin 225°=sin(180°+45°) =-sin 45°=-22, ∴cos(-2 640°)+sin 1 665°=-12-22=-1+22.]2.已知扇形的圆心角为2π3弧度,半径为2,则扇形的面积是( )【导学号:84352374】A .8π3B .43C .2πD .4π3D [此扇形的面积S =12×2π3×22=4π3.]3.log 2sin π12+log 2cos π12的值为( )A .-4B .4C .-2D .2C [log 2sin π12+log 2cos π12=log 2⎝ ⎛⎭⎪⎫sin π12cos π12=log 2⎝ ⎛⎭⎪⎫12sin π6=log 214=-2.]4.设向量a =(2tan α,tan β),向量b =(4,-3),且a +b =0,则tan(α+β)=( )【导学号:84352375】A .17B .-15C .15D .-17A [∵a +b =(2tan α+4,tan β-3)=0,∴⎩⎪⎨⎪⎧2tan α+4=0,tan β-3=0,∴tan α=-2,tan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+31--2×3=17.]5.函数y =sin(ωx +φ)(x ∈R ,且ω>0,0≤φ<2π)的部分图象如图1所示,则( )图1A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π4C [∵T =4×2=8,∴ω=π4, 又π4×1+φ=π2,∴φ=π4.] 6.已知tan θ2=23,则1-cos θ+sin θ1+cos θ+sin θ的值为( )A .23 B .-23C .32D .-32A [1-cos θ+sin θ1+cos θ+sin θ=2sin2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cosθ2=tan θ2=23.]7.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于( )【导学号:84352376】A .-32B .-16C .16D .32D [由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,]8.函数y =sin x cos x +3cos 2x -3的图象的一个对称中心为( ) A.⎝⎛⎭⎪⎫2π3,-32B.⎝ ⎛⎭⎪⎫5π6,-32C.⎝ ⎛⎭⎪⎫-2π3,32D.⎝⎛⎭⎪⎫π3,-3B [y =12sin 2x +32(1+cos 2x )-3=sin ⎝⎛⎭⎪⎫2x +π3-32,令2x +π3=k π,(k ∈Z ),x =k π2-π6(k ∈Z ),当k =2时,x =5π6,∴函数图象的一个对称中心为⎝⎛⎭⎪⎫5π6,-32.]9.设向量a =(c os 55°,sin 55°),b =(cos 25°,sin 25°),若t 为实数,则|a -t b |的最小值是( )A .12B .1C .32D .1+ 3A [|a -t b |=a -t b2=a 2-2t a·b +t 2b 2=1-2t a·b +t 2=t 2-2t ++1=t 2--2t +1=t 2-3t +1=⎝⎛⎭⎪⎫t -322+14,即|a -t b |的最小值为12.]10.已知f (x )=1+sin 2x2,若a =f (lg 5),b =f (lg 0.2),则下列正确的是( )【导学号:84352377】A .a +b =0B .a -b =0C .a +b =1D .a -b =1C [∵b =f (lg 0.2)=f (-lg 5), ∴f (x )+f (-x )=1+sin 2x 2+1+-2x 2=1, ∴a +b =f (lg 5)+f (-lg 5)=1.]11.如图2,设P 为△ABC 内一点,且AP →=14AB →+15AC →,BM →=34BA →,CN →=45CA →,则△PMB 的面积与△ABC 的面积之比等于( )图2A .1∶5B .2∶5C .3∶20D .7∶20C [由题可知AM →=14AB →,AN →=15AC →,则AP →=AM →+AN →,由平行四边形法则可知NP →∥AB →,AN →∥MP →,所以S △PMB S △ABC =|PM →|·|MB →||AB →|·|AC →|=15×34=320.]12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ·cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )【导学号:84352378】A .m <1B .m >-3C .m <3D .m >1D [f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B ·1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B ) =2sin B +1.∵f (B )-m <2恒成立, ∴2sin B +1-m <2恒成立, 即m >2sin B -1恒成立. ∵0<B <π, ∴0<sin B ≤1,∴-1<2sin B -1≤1,故m >1.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知O A →=(-2,1),O B →=(0,2),且A C →∥O B →,B C →⊥A B →,则点C 的坐标是________. (-2,6) [设C (x ,y ),则A C →=(x +2,y -1),B C →=(x ,y -2),A B →=(2,1).由A C →∥O B →,B C →⊥A B →,得⎩⎪⎨⎪⎧x +=0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =-2,y =6,∴点C 的坐标为(-2,6).]14.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位,再将图象上所有点的横坐标变为原来的12(纵坐标不变),则所得的图象的函数解析式为________.【导学号:84352379】y =sin 4x [y =sin ⎝⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3=sin 2x , 再将图象上所有点的横坐标变为原来的12(纵坐标不变)得y =sin 4x .]15.如图3,在平行四边形OPQR 中,S 是对角线的交点,若OP →=2e 1,OR →=3e 2,以e 1,e 2为基底,表示PS →=________,QS →=________.图332e 2-e 1,-e 1-32e 2 [∵平行四边形OPQR 中,OQ →=OP →+OR →=2e 1+3e 2, PR →=OR →-OP →=3e 2-2e 1. S 是OQ ,PR 的中点,∴PS →=12PR →=32e 2-e 1,QS →=-12OQ →=-e 1-32e 2.]16.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于________. 【导学号:84352380】π3[由题意得, sin αcos β-cos αsin β=3314,∴sin(α-β)=3314.∵0<β<α<π2,∴cos(α-β)=1-27196=1314. 又cos α=17得sin α=437.cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12, ∴β=π3.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知角α的终边过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求式子sin ⎝ ⎛⎭⎪⎫π2-αα+π·α-ππ-α的值.[解] (1)∵|OP |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫-352=1, ∴点P 在单位圆上,由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α.由(1)得sin α=-35,P 在单位圆上,∴cos α=45,∴原式=54.18.(本小题满分12分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.【导学号:84352381】[解] 由已知得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2 =3sin 2α+sin αcos α+2cos 2α =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3×⎝ ⎛⎭⎪⎫122+12+2⎝ ⎛⎭⎪⎫122+1=135. 19.(本小题满分12分)如图4,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=5AE →,图4(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点;(2)在(1)的条件下,求BA →·EF →的值. [解] (1)证明:因为BF →=-34AB →+110AC →,所以AF →=BF →-BA →=14AB →+110AC →,又AB →=2AD →,AC →=5AE →,所以AF →=12AD →+12AE →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB →=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →,所以BA →·EF →=-AB →·⎝ ⎛⎭⎪⎫14AB →-110AC →=-14AB 2→+110AB →·AC →=-14×4+110×2×6×cos 60°=-25.20.(本小题满分12分)已知函数f (x )=cos 4x -12cos ⎝ ⎛⎭⎪⎫π2+2x +cos 2x -sin 2x .(1)求函数f (x )的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间⎣⎢⎡⎦⎥⎤38π,118π的图象(只作图不写过程).【导学号:84352382】图5[解] f (x )=1-2sin 22x -1-2sin 2x +cos 2x=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)函数f (x )的最小正周期T =2π2=π,令2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,则2k π+π4≤2x ≤2k π+5π4,k ∈Z ,故k π+π8≤x ≤k π+5π8,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). (2)图象如下:21.(本小题满分12分)如图6,已知OP →=(2,1),OA →=(1,7),OB →=(5,1),设Z 是直线OP 上的一动点.图6(1)求使ZA →·ZB →取最小值时的OZ →;(2)对(1)中求出的点Z ,求cos ∠AZB 的值. [解] (1)∵Z 是直线OP 上的一点, ∴OZ →∥OP →.设实数t ,使OZ →=tOP →, ∴OZ →=t (2,1)=(2t ,t ), 则ZA →=OA →-OZ →=(1,7)-(2t ,t ) =(1-2t,7-t ), ZB →=OB →-OZ →=(5,1)-(2t ,t )=(5-2t,1-t ),∴ZA →·ZB →=(1-2t )(5-2t )+(7-t )(1-t ) =5t 2-20t +12=5(t -2)2-8. 当t =2时,ZA →·ZB →有最小值-8, 此时OZ →=(2t ,t )=(4,2).(2)当t =2时,ZA →=(1-2t,7-t )=(-3,5),|ZA →|=34,ZB →=(5-2t,1-t )=(1,-1),|ZB →|= 2. 故cos ∠AZB =ZA →·ZB→|ZA →||ZB →|=-834×2=-417=-41717.22.(本小题满分12分)已知函数f (x )=3tan ωx +1tan 2ωx +1(ω>0). (1)若f ⎝⎛⎭⎪⎫x +π2=-f (x ),求f (x )的单调增区间;(2)若f (-x )=f ⎝ ⎛⎭⎪⎫2π3+x (0<ω<2),求ω的值; (3)若y =f (x )在⎣⎢⎡⎦⎥⎤-3π2,π2上单调递增,则ω的最大值为多少? 【导学号:84352383】[解] f (x )=3sin ωx cos ωx +1⎝ ⎛⎭⎪⎫sin ωx cos ωx 2+1 =3sin ωx cos ωx +cos 2ωx sin 2ωx +cos 2ωx =3sin ωx cos ωx +cos 2ωx =32sin 2ωx +1+cos 2ωx 2 =32sin 2ωx +12cos 2ωx +12 =sin ⎝⎛⎭⎪⎫2ωx +π6+12. (1)因为f ⎝⎛⎭⎪⎫x +π2=-f (x ), 所以f (x +π)=f (x ),所以T =π,2π|2ω|=π. 又ω>0,所以ω=1.所以f (x )=sin ⎝⎛⎭⎪⎫2x +π6+12,又因当2k π-π2≤2x +π6≤2k π+π2时f (x )单调递增即f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6k ∈Z . (2)因为f (-x )=f ⎝ ⎛⎭⎪⎫2π3+x , 所以函数f (x )关于直线x =π3对称, 所以sin ⎝ ⎛⎭⎪⎫2π3ω+π6=±1, 所以ω=12+3k 2(k ∈Z ). 又ω∈(0,2),所以k =0,ω=12.(3)由题意知ω>0,y =f (x )在⎣⎢⎡⎦⎥⎤-3π2,π2上单调递增,所以T 4=π4ω, 所以⎩⎪⎨⎪⎧ -π4ω≤-3π2,π4ω≥π2,解得ω∈⎝ ⎛⎦⎥⎤0,16, 所以ωmax =16.。
2018-2019学年高中数学(人教A版+必修4)课后习题:模块综合测评(B)+Word版含解析
模块综合测评(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知sin(-α)=,且cos(-α)>0,则tan α=()A. B.- C. D.-解析由已知得sin α=-,cos α>0,所以α是第四象限角,于是tan α=-.答案D2.已知向量a=(1,-2),b=(1,1),m=a-b,n=a+λb,如果m⊥n,那么实数λ=()A.4B.3C.2D.1解析因为向量a=(1,-2),b=(1,1),m=a-b,n=a+λb,所以m=(0,-3),n=(1+λ,-2+λ).因为m⊥n,所以m·n=0-3(-2+λ)=0,解得λ=2.答案C3.若角α的终边与单位圆相交于点(x0,2x0)(x0≠0),则tan 2α=()A.-B.C.-D.解析依题意tan α==2,所以tan 2α==-.--答案A4.已知平面向量a,b是非零向量,|a|=2,a⊥(a+2b),则向量b在向量a方向上的投影为()A.1B.-1C.2D.-2解析由题设a·(a+2b)=0,即a2+2a·b=0,所以4+4|b|cos θ=0,即|b|cos θ=-1.答案B5.函数y=-在一个周期内的图象是()12解析y=----cosx · - =-2sin x cos x=-sin 2x ,故选B . 答案B 6.导学号68254118将函数f (x )=sin 2x的图象向左平移个单位,再向上平移2个单位,得到g (x )的图象.若g (x 1)·g (x 2)=9,且x 1,x 2∈[-2π,2π],则|x 1-x 2|的最大值为( ) A.πB.2πC.3πD.4π解析依题意得g (x )=sin 2+2=sin+2,若g (x 1)·g (x 2)=9,则g (x 1)=g (x 2)=3,所以sin3=sin 2 2+ 3=1.因为x 1,x 2∈[-2π,2π],所以2x 1+,2x 2+-,设2x 1++2k π,2x 2++2n π,k ,n ∈Z ,则当2x 1+=-,2x 2+时,|x 1-x 2|取得最大值3π. 答案C7.已知a 与b 是非零向量且满足(a -6b )⊥a ,(2a -3b )⊥b ,则a 与b 的夹角是( ) A.B.C. πD. π解析根据条件(a -6b )·a =a 2-6a ·b =0,(2a -3b )·b =2a ·b -3b 2=0,又因为|a |≠0,|b |≠0,所以|a |=6|b |cos <a ,b >①, 3|b |=2|a |cos <a ,b >②, 所以3|a ||b |=12|a ||b |cos 2<a ,b >, 得cos 2<a ,b >=,则cos <a ,b >=, 故a ,b 的夹角为. 答案B8.的值等于( )A.4B.-4C.-4D.4解析原式=--===-=-=-4.答案C9.已知函数f(x)=2sin(ωx+φ)+1,其图象与直线y=-1相邻两个交点的距离为π,若f(x)>1对∀x∈-恒成立,则φ的取值范围是()A. B.C. D.解析函数f(x)=2sin(ωx+φ)+1,其图象与直线y=-1相邻两个交点的距离为π,故函数的周期为=π,所以ω=2,于是f(x)=2sin(2x+φ)+1.若f(x)>1对∀x∈-恒成立,即当x∈-时,sin(2x+φ)>0恒成立,则有2kπ≤2·-+φ<2·+φ≤2kπ+π,求得2kπ+≤φ≤2kπ+,k∈Z,又|φ|≤,所以≤φ≤,故选D.答案D10.如图,O是坐标原点,M,N是单位圆上的两点,且分别在第一和第三象限,则||的范围为()A.[0,B.[0,2)3D.[1,2)解析设的夹角为θ,θ∈,则cos θ∈[-1,0),||2=+2=2+2cos θ∈[0,2),故||的范围为[0,).答案A11.已知函数f(x)=sin(π-x)cos(-x)+sin(π+x)cos-图象上的一个最低点为A,离A最近的两个最高点分别为B与C,则=()A.9+B.9-C.4+D.4-解析f(x)=sin x cos x-sin2x=·sin 2x--sin 2x+cos 2x-=sin, 因此f(x)最大值为,最小值为-.设A-,则B-,C,于是-,故=4-.答案D12.若函数y=2sin ωx(ω>0)在(0,2π)上恰有两个最大值和一个最小值,则ω的取值范围是()A. B.C. D.解析依题意,函数y=2sin ωx在(0,2π)上恰有两个最大值和一个最小值,由图象可知T≤2π<T,亦即≤2π<,解得≤ω<.答案A二、填空题(本大题共4小题,每小题5分,共20分)13.函数f(x)=cos x cos +cos cos 的值域是.解析f(x)=cos x cos +cos cos =cos x cos -sin x sin =cos,故函数值域为[-1,1].414.如图,将两块三角板拼在一起组成一个平面四边形ABCD,若=x+y(x,y∈R),则x+y=.解析设AB=1,则AD=,BD=BC=2,过点C作CE⊥AB,CF⊥AD,垂足分别为E,F,如图所示;则BE=,AF=1,且=(+1),又=x+y,所以x=+1,y=,即x+y=1+.答案1+15.已知函数y=cos x与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.解析由题意知cos =sin,即sin,所以+φ=+2kπ或+φ=+2kπ,k∈Z,所以φ=-+2kπ或φ=+2kπ,k∈Z.因为0≤φ<π,所以φ=.答案16.定义a*b是向量a和b的“向量积”,其长度|a*b|=|a||b|sin θ,其中θ为向量a与b的夹角.若u=(2,0),u-v=(1,-),则|u*(u+v)|=.解析因为u=(2,0),u-v=(1,-),所以v=(1,),从而u+v=(3,).若设u与(u+v)的夹角为θ,则cos θ=5=,从而sin θ=,故|u*(u+v)|=|u||u+v|sin θ=2×2=2答案2三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知向量=(1,-2),=(4,-1),=(m,m+1).(1)若,求实数m的值;(2)若△ABC为直角三角形,求实数m的值.解(1)因为向量=(1,-2),=(4,-1),所以=(3,1).因为,且=(m,m+1),所以3(m+1)-m=0,所以m=-.(2)由(1)知=(3,1),=(m-1,m+3),=(m-4,m+2).因为△ABC为直角三角形,所以或或.当时,有3(m-1)+m+3=0,解得m=0;当时,有3(m-4)+m+2=0,解得m=;当时,有(m-1)(m-4)+(m+3)(m+2)=0,无解.所以实数m的值为0或.18.(本小题满分12分)已知α∈,β∈,cos β=-,sin(α+β)=-.(1)求tan 2β的值;(2)求α的值.=-2,解(1)因为β∈,cos β=-,可得sin β=-,所以tan β=-6故tan 2β=.-(2)因为α∈,β∈,所以α+β∈,又因为sin(α+β)=-,所以cos(α+β)=--=-,于是cos α=cos(α+β-β)=cos(α+β)cos β+sin(α+β)sin β=---,由于α∈,故α=.19.(本小题满分12分)已知向量a=(1,sin x),b=,函数f(x)=a·b-cos 2x.(1)求函数f(x)的解析式及其单调递增区间;(2)当x∈时,求函数f(x)的值域.解(1)函数f(x)=a·b-cos 2x=cos 2x cos -sin 2x sin -cos 2x=-sin.由2kπ+≤2x+≤2kπ+,可得kπ+≤x≤kπ+,故单调递增区间为:.(2)当x∈时,可得2x+,因此sin,所以函数f(x)的值域是-. 20.导学号68254119(本小题满分12分)已知函数f(x)=sin(ωx+φ)-的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f,求cos的值.解(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2.又因为f(x)的图象关于直线x=对称,所以2·+φ=kπ+,k∈Z.由-≤φ<,得k=0,所以φ==-.(2)由(1)得f sin-,78所以sin -.由 <α< ,得0<α- , 所以cos - - -= -.因此cos =sin α=sin -=sin - cos+cos - sin=.21.导学号68254120(本小题满分12分)某房地产开发商为吸引更多消费者购房,决定在一块闲置的扇形空地中修建一个花园.如图,已知扇形AOB 的圆心角∠AOB=,半径为R.现欲修建的花园为▱OMNH ,其中M ,H 分别在OA ,OB 上,N 在 上.设∠MON=θ,▱OMNH 的面积为S. (1)将S 表示为关于θ的函数; (2)求S 的最大值及相应的θ值.解(1)如图,过N 作NP ⊥OA 于点P ,过H 作HE ⊥OA 于点E ,∵∠AOB=,∴OE=EH=NP=R sin θ,OP=R cos θ, ∴HN=EP=OP-OE=R (cos θ-sin θ), ∴S=HN ·NP=R 2(cos θ-sin θ)sin θ,θ∈.(2)S=R 2(cos θsin θ-sin 2θ)=R2--=R2(sin 2θ+cos 2θ-1)=R2-,∵θ∈,∴2θ+,∴当2θ+,即θ=时,S取得最大值,且最大值为-R2.22.(本小题满分12分)已知点A(sin 2x,1),B,设函数f(x)=(x∈R),其中O为坐标原点.(1)求函数f(x)的最小正周期;(2)当x∈时,求函数f(x)的最大值与最小值;(3)求函数f(x)的单调减区间.解(1)∵A(sin 2x,1),B,∴=(sin 2x,1),,∴f(x)==sin 2x+cos=sin 2x+cos 2x cos -sin 2x sin=sin 2x+cos 2x=sin 2x cos +cos 2x sin=sin.故f(x)的最小正周期T==π.(2)∵0≤x≤,∴≤2x+,∴-≤sin≤1,∴f(x)的最大值和最小值分别为1和-.9(3)由+2kπ≤2x++2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z,∴f(x)的单调减区间是,k∈Z.10。
2018_2019学年高中数学阶段质量检测(二)(含解析)新人教A版必修4
阶段质量检测(二)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE中(如图),AB+BC-DC=( )A.AC B.ADC.BD D.BE解析:选B ∵AB+BC-DC=AC+CD=AD.2.已知平面向量a=(1,2),b=(-2,m),且a∥b,则2a+3b=( )A.(-5,-10) B.(-4,-8)C.(-3,-6) D.(-2,-4)解析:选B ∵a∥b,∴-21=m2,∴m=-4,∴b=(-2,-4),∴2a+3b=2(1,2)+3(-2,-4)=(-4,-8).3.已知平面向量a=(1,-3),b=(4,-2),若λa+b与a垂直,则λ的值是( ) A.-1 B.1 C.-2 D.2解析:选A 由题意可知(λa+b)·a=λa2+b·a=0.∵|a|=10,a·b=1×4+(-3)×(-2)=10,∴10λ+10=0,λ=-1.4.若|a|=2,|b|=2,且(a-b)⊥a,则a与b的夹角是( )A.π6B.π4C.π3D.π2解析:选B 由于(a-b)⊥a,所以(a-b)·a=0,即|a|2-a·b=0,所以a·b=|a|2=2,所以 cos〈a,b〉=a·b|a||b|=222=22,即a与b的夹角是π4.5.设a,b,c为非零向量,若p=a|a|+b|b|+c|c|,则|p|的取值范围为( )A.[0,1] B.[1,2] C.[0,3] D.[1,3]解析:选Ca|a|,b|b|,c|c|分别为a,b,c方向上的单位向量,∴当a,b,c同向时,|p|取得最大值3,且|p|的最小值为0,故选C.6.已知角C为△ABC的一个内角,向量m=(2cos C-1,-2),n=(cos C,cos C+1).若m⊥n,则角C等于( )A.π6B.π3C.2π3D.5π6解析:选C ∵m⊥n ,∴2cos 2C -3cos C -2=0,∴(2cos C +1)(cos C -2)=0,∴cosC =-12,又C 为△ABC 的一个内角,∴C =2π3. 7.P 是△ABC 所在平面上一点,若PA ·PB =PB ·PC =PC ·PA ,则P 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:选C ∵PA ·PB =PB ·PC , ∴PB ·(PA -PC )=0, ∴PB ·CA =0,∴PB ⊥CA . 同理PC ⊥AB ,PA ⊥BC , ∴P 是△ABC 的垂心.8.如图所示,非零向量OA =a ,OB =b ,且BC ⊥OA ,垂足为C ,若OC =λa (λ≠0),则λ=( )A.|a||b|a·b B.a·b |a||b| C.a·b |b|2 D.a·b|a|2解析:选D 由题意知OC ·BC =0,∴OC ·(OC -OB )=OC 2-OC ·OB =0.又∵OC =λa ,∴λ2a 2-λa·b =0,即λa 2=a·b ,∴λ=a·b|a|2.9.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设AD =a ,BE =b ,则BC 等于( )A.43a +23bB.23a +43bC.23a -43b D .-23a +43b 解析:选B 由题意得BE =12(BA +BC ),所以2BE =BA +BC ,①同理得2AD =AB +AC =-BA +(BC -BA )=-2BA +BC , 即2 AD =-2 BA +BC .② ①×2+②得4 BE +2 AD =3 BC , 即 4b +2a =3 BC ,所以BC =23a +43b .选B.10.如图,在平面直角坐标系xOy 中,两个非零向量OA ,OB 与x 轴正半轴的夹角分别为π6和2π3,向量OC 满足OA +OB +OC =0,则OC与x 轴正半轴夹角取值范围是( )A.⎝ ⎛⎭⎪⎫0,π3B.⎝ ⎛⎭⎪⎫π3,5π6C.⎝ ⎛⎭⎪⎫π2,2π3D.⎝ ⎛⎭⎪⎫2π3,5π6解析:选B 由题意OC =-OA -OB ,由向量加法的几何意义得OC 是以-OA 与-OB 为邻边的平行四边形的对角线所表示的向量,所以OC 与x 轴正半轴夹角的取值介于-OA 与-OB 与x 轴正半轴夹角之间.由题意得-OA ,-OB 与x 轴正半轴夹角分别为5π6与π3. 11.已知a =(-1,3),OA =a -b ,OB =a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .4解析:选D 由题意|OA |=|OB |且OA ⊥OB , 所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2,所以S △AOB =12|OA |·|OB |=12a -b2a +b2=12a 2+b 22=4.12.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ), 所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a x -+by =0,ay +bx -=0.由于对任意m =(a ,b ),都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0.所以p =(1,0).故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x,2x )(x ∈R ).则|a +b |的取值范围为________.解析:因为a +b =(x ,x +2),所以|a +b |=x 2+x +2=2x 2+4x +4=x +2+2≥2,所以|a +b |∈[2,+∞).答案:[2,+∞)14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________.解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b ,即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215.如图所示,在正方形ABCD 中,已知| AB |=2,若点N 为正方形内(含边界)任意一点,则AB ·AN 的最大值是________.解析:AB ·AN =| AB ||AN |·cos∠BAN ,|AN |·cos∠BAN 表示AN 在AB 方向上的投影,又| AB |=2,∴AB ·AN 的最大值是4.答案:416.设a ,b ,c 都是单位向量,且a 与b 的夹角为2π3,则(c -a )·(c -b )的最小值为________.解析:(c -a )·(c -b )=c 2-c·b -a·c +a·b =|c |2-c ·(a +b )+|a |·|b |·cos 2π3=12-c ·(a +b ),要使(c -a )·(c -b )最小,则只需c 与a +b 同向共线即可.∵a 与b 都是单位向量,且a 与b 的夹角为2π3,∴|a +b |=1,故最小值为-12.答案:-12三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1×(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝ ⎛⎭⎪⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α.解:(1)证明:由题意,得a +b =⎝⎛⎭⎪⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎪⎫cos α+12,sin α-32, 因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫322=1, 所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π, 所以α=π6或α=7π6.19.(12分)如图所示,在△ABC 中,已知CA =2,CB =3,∠ACB =60°,CH 为AB 边上的高.(1)求AB ·BC ;(2)设CH =m CB +n CA ,其中m ,n ∈R ,求m ,n 的值. 解:设CB =a ,CA =b .(1)因为AB =CB -CA =a -b ,所以AB ·BC =(a -b )·(-a )=-a 2+a·b =-9+3×2×cos 60°=-6.(2)因为A ,H ,B 三点共线,所以设AH =λAB =λ(a -b ),所以CH =CA +AH =b +λ(a -b )=λa +(1-λ)b .因为CH ⊥AB ,所以CH ·AB =0,所以[λa +(1-λ)b ]·(a -b )=0, 即λa 2-(1-λ)b 2+(1-2λ)a·b =0. 又a 2=9,b 2=4,a·b =3,代入上式, 解得λ=17,所以CH =17a +67b ,即m =17,n =67.20.(12分)在边长为1的正△ABC 中,BC =2BD ,AC =3EC ,AD 与BE 相交于点F .(1)求AD ·BE 的值;(2)若AF =λFD ,求实数λ的值.解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC , 设AB =a ,AC =b ,则AD ·BE =12( AB +AC )·(AE -AB )=12(a +b )·⎝ ⎛⎭⎪⎫23b -a =13b 2-12a 2-16a ·b =13-12-16×1×1×12=-14. (2)根据题意:BF =BA +AF =-AB +λλ+1AD =-AB +λ2λ+1( AB +AC )=-λ-22λ+1 AB +λ2λ+1AC .记BF =μBE ,则BF =μBE =μ(-AB +AE )=-μAB +2μ3AC .根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22λ+1=-μ,λ2λ+1=2μ3,解得λ=4.21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎪⎫0≤θ≤π2.(1)若AB ⊥a ,且| AB |=5|OA |,求向量OB ;(2)若向量AC 与向量a 共线,当k >4,且t sin θ取最大值为4时,求OA ·OC . 解:(1) AB =(n -8,t ), ∵AB ⊥a ,∴8-n +2t =0. 又∵5|OA |=| AB |,∴5×64=(n -8)2+t 2=5t 2,得t =±8, ∴OB =(24,8)或OB =(-8,-8). (2) AC =(k sin θ-8,t ). ∵AC 与a 共线, ∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ =-2k ⎝ ⎛⎭⎪⎫sin θ-4k2+32k, ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k.由32k=4,得k =8,此时θ=π6,OC =(4,8),∴OA ·OC =(8,0)·(4,8)=32.22.(12分)已知向量a =(cos α,sin α),b =(cos β,sin β),且a ,b 满足关系式|k a +b |=3|a -k b |(k >0).(1)求向量a 与b 的数量积(用k 表示).(2)a 能否和b 垂直?a 能否和b 平行?若不能,则说明理由;若能,则求出相应的k 值.(3)求向量a 与b 夹角的最大值. 解:(1)由已知得|a |=|b |=1. ∵|k a +b |=3|a -k b |, ∴(k a +b )2=3(a -k b )2,∴k 2|a |2+2k a ·b +|b |2=3(|a |2-2k a ·b +k 2|b |2),∴8k a ·b =2k 2+2,∴a·b =k 2+14k(k >0).(2)由(1)知a·b >0,∴a 与b 不可能垂直.若a∥b ,由a·b >0知a ,b 同向, 于是有a·b =|a||b|cos 0°=|a||b|=1,即k 2+14k=1,解得k =2±3,∴当k =2±3时,a∥b . (3)设a 与b 的夹角为θ,则cos θ=a·b |a||b|=a·b =k 2+14k(k >0),∴cos θ=14⎝ ⎛⎭⎪⎫k +1k=14⎣⎢⎡⎦⎥⎤k2+⎝ ⎛⎭⎪⎫1k 2 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫k -1k 2+2, ∴当k =1k,即k =1时,cos θ取得最小值12.又0°≤θ≤180°,∴a 与b 夹角θ的最大值为60°.。
2018-2019学年高中数学(人教A版 必修4)课后习题:模块综合测评(A) Word版含解析
模块综合测评(A )(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知α∈(π2,π),tan α=-34,则sin(α+π)=( )A.35B.-35C.45D.-45 解析由题意可得sin α=35,∴sin(α+π)=-sin α=-35,故选B .答案B2.函数y=cos 42θ-sin 42θ的最小正周期是( )A.2πB.4πC.π4D.π2解析y=cos 42θ-sin 42θ=(cos 22θ+sin 22θ)(cos 22θ-sin 22θ)=cos 4θ,所以最小正周期T=2π4=π2.故选D .答案D3.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A.-4B.-3C.-2D.-1解析由题意得(m +n )·(m -n )=m 2-n 2=0,即(λ+1)2+1=(λ+2)2+4,解得λ=-3. 答案B4.已知f (x )=A sin(ωx+θ)(ω>0),若两个不等的实数x 1,x 2∈{x |f (x )=A 2},且|x 1-x 2|min =π,则f (x )的最小正周期是( )A.3πB.2πC.πD.π2 解析依题意,转化为sin(ωx+θ)=12有两个不等的实数x 1,x 2,|x 1-x 2|min =π,则13·2πω=π,得ω=23,故f (x )的最小正周期是T=2πω=3π.答案A5.设D 为△ABC 所在平面内一点,BC⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −43AC ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ 解析依题意得AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ .答案A6.在△ABC 中,若sin(A-B )=1+2cos(B+C )sin(A+C ),则△ABC 的形状一定是( )A.等边三角形B.直角三角形C.钝角三角形D.不含60°角的等腰三角形解析由题意知sin(A-B )=1-2cos A sin B ,即sin A cos B-sin B cos A=1-2cos A sin B ,得sin A cos B+sin B cos A=1=sin(A+B ),所以A+B=C=π2,所以△ABC 的形状一定是直角三角形.答案B7.式子sin 238°+cos38°sin52°-tan 215°3tan15°的值等于( ) A.2√33B.√33C.2√3D.3√32 解析原式=sin (38°+52°)-tan 215°3tan15°=1-tan 215°2tan15°×23=1tan30°=√3×23=2√33. 答案A8.将曲线y=sin (x +π3)上所有点的横坐标缩短到原来的12倍(纵坐标不变)得到曲线A ,再把A 上的所有点向右平行移动π3个单位长度得到曲线B ,则曲线B 的函数解析式为( )A.y=sin 2xB.y=sin (2x -π3)C.y=sin 12xD.y=sin (12x -π3)解析将曲线y=sin (x +π3)上所有点的横坐标缩短为原来的12倍,得到的曲线的解析式为y=sin (2x +π3),再把所有点向右平移π3个单位长度得到的曲线的解析式为y=sin [2(x -π3)+π3]=sin (2x -π3). 答案B9.若向量a ,b 满足|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则a ,b 的夹角为( )A.π3B.2π3C.π4D.3π4解析由条件得:{(a +b )·a =0,(2a +b )·b =0,∴{a ·b =-1,|b |=√2⇒cos <a ,b >=√2=-√22,故a ,b 的夹角为3π4. 答案D10.已知函数f (x )=sin(2x+φ)在x=π6处取得最大值,则函数y=cos(2x+φ)的图象( )A.关于点(π6,0)对称B.关于点(π3,0)对称。
2018学年高一人教A版数学必修四:模块综合检测 含答案
必修4模块综合检测一、选择题1. 已知△ABC 中,tan A =-512,则cos A 等于( ).A .1213B .513C .-513D .-12132. 已知向量a =(2,1),a +b =(1,k ),若a ⊥b ,则实数k 等于( ).A .12B .-2C .-7D .33. 在Rt △ABC 中,∠C =90°,AC =4,则AB →•AC →等于( ).A .-16B .-8C .8D .164. 已知sin (π-α)=-2sin (π2+α),则sin αcos α等于( ).A .25B .-25C .25或-25D .-155. 函数y =A sin (ωx +φ) (ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数表达式为( ).A .y =-4sin ⎝⎛⎭⎫π8x +π4 B .y =4sin ⎝⎛⎭⎫π8x -π4 C .y =-4sin ⎝⎛⎭⎫π8x -π4D .y =4sin ⎝⎛⎭⎫π8x +π46. 若|a |=2cos 15°,|b |=4sin 15°,a ,b 的夹角为30°,则a •b 等于( ).A .32B . 3C .2 3D .127. 把函数f (x )=sin ⎝⎛⎭⎫-2x +π3的图象向右平移π3个单位可以得到函数g (x )的图象,则g ⎝⎛⎭⎫π4等于( ). A .-32 B .32C .-1D .18. 在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( ).A .23B .13C .-13D .-239. 若2α+β=π,则y =cos β-6sin α的最大值和最小值分别是( ).A .7,5B .7,-112C .5,-112D .7,-510.已知向量a =(sin (α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin (α+4π3)等于( ).A .-34B .-14C .34D .1411.将函数f (x )=sin (ωx +φ)的图象向左平移π2个单位,若所得图象与原图象重合,则ω的值不可能等于( ).A .4B .6C .8D .12二、填空题 12.sin 2010°=________.13.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ(θ为锐角),且a ∥b ,则tan θ=________. 14.已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在CD →上的投影为________.15.已知函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的图象上的两个相邻的最高点和最低点的距离为22,且过点(2,-12),则函数f (x )=________.三、解答题16.已知向量a =(sin x ,32),b =(cos x ,-1).(1)当a ∥b 时,求2cos 2x -sin 2x 的值;(2)求f (x )=(a +b )•b 在[-π2,0]上的最大值.17.设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan (α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .18.已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈(0,π2).(1)求sin θ和cos θ的值;(2)若5cos (θ-φ)=35cos φ,0<φ<π2,求cos φ的值.19.已知函数f (x )=sin (π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间[0,π16]上的最小值.20.已知函数f (x )=4cos 4x -2cos 2x -1sin (π4+x )sin (π4-x ).(1)求f (-11π12)的值;(2)当x ∈[0,π4)时,求g (x )=12f (x )+sin 2x 的最大值和最小值.21.已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.(1)求cos (α-β)的值;(2)若0<α<π2,-π2<β<0,且sin β=-513,求sin α.必修4模块综合检测 答案1.D 2.D 3.D 4.B 5.A 6.B 7.D 8.A 9.D 10.B 11.B 12.-1213.1 14.210515.sin (πx 2+π6)16.解:(1)∵a ∥b ,∴32cos x +sin x =0,∴tan x =-32,2cos 2x -sin 2x =2cos 2x -2sin x cos x sin 2x +cos 2x=2-2tan x 1+tan 2x =2013. (2)f (x )=(a +b )•b =22sin (2x +π4).∵-π2≤x ≤0,∴-3π4≤2x +π4≤π4,∴-1≤sin (2x +π4)≤22,∴-22≤f (x )≤12,∴f (x )max =12.17.解:(1)因为a 与b -2c 垂直,所以a •(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin (α+β)-8cos (α+β)=0, 因此tan (α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤42.又当β=-π4+k π(k ∈Z )时,等号成立,所以|b +c |的最大值为42.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b . 18.解:(1)∵a ⊥b ,∴a •b =sin θ-2cos θ=0,即sin θ=2cos θ.又∵sin 2θ+cos 2θ=1,∴4cos 2θ+cos 2θ=1,即cos 2θ=15,∴sin 2θ=45.又θ∈(0,π2),∴sin θ=255,cos θ=55.(2)∵5cos (θ-φ)=5(cos θcos φ+sin θsin φ) =5cos φ+25sin φ=35cos φ, ∴cos φ=sin φ.∴cos 2φ=sin 2φ=1-cos 2φ,即cos 2φ=12.又∵0<φ<π2,∴cos φ=22.19.解:(1)因为f (x )=sin (π-ωx )cos ωx +cos 2ωx ,所以f (x )=sin ωx cos ωx +1+cos 2ωx2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1.(2)由(1)知f (x )=22sin ⎝⎛⎭⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2,所以22≤sin ⎝⎛⎭⎫4x +π4≤1.因此1≤g (x )≤1+22. 故g (x )在区间⎣⎡⎦⎤0,π16上的最小值为1. 20.解:(1)f (x )=(1+cos 2x )2-2cos 2x -1sin (π4+x )sin (π4-x )=cos 22x sin (π4+x )cos (π4+x )=2cos 22xsin (π2+2x )=2cos 22x cos 2x=2cos 2x , ∴f (-11π12)=2cos (-11π6)=2cos π6=3.(2)g (x )=cos 2x +sin 2x =2sin (2x +π4).∵x ∈[0,π4),∴2x +π4∈[π4,3π4).∴当x =π8时,g (x )max =2,当x =0时,g (x )min =1.21.解:(1)∵|a |=1,|b |=1,∴|a -b |2=|a |2-2a •b +|b |2=|a |2+|b |2-2(cos αcos β+sin αsin β) =1+1-2cos (α-β)=2-2cos (α-β),∵|a -b |2=(255)2=45,∴2-2cos (α-β)=45,∴cos (α-β)=35.(2)∵-π2<β<0<α<π2,∴0<α-β<π.由cos (α-β)=35得sin (α-β)=45,由sin β=-513得cos β=1213.∴sin α=sin[(α-β)+β]=sin (α-β)cos β+cos (α-β)sin β=45×1213+35×(-513)=3365.。
2018-2019学年高中数学 模块综合检测(含解析)新人教A版选修4-4
模块综合检测(时间90分钟,满分120分)一、选择题(本大题共10个小题,每个小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在极坐标系中,圆ρ=sin θ的圆心的极坐标是( )A.⎝ ⎛⎭⎪⎫1,π2B .(1,0)C.⎝ ⎛⎭⎪⎫12,π2 D.⎝ ⎛⎭⎪⎫12,0 解析:选C 将圆的极坐标方程ρ=sin θ化成直角坐标方程为x 2+⎝ ⎛⎭⎪⎫y -122=14,可知圆心的直角坐标为⎝ ⎛⎭⎪⎫0,12,化为极坐标为⎝ ⎛⎭⎪⎫12,π2.故选C. 2.在极坐标系中,过点⎝⎛⎭⎪⎫2,π2且与极轴平行的直线方程是( )A .ρ=2B .θ=π2C .ρcos θ=2D .ρsin θ=2解析:选D 极坐标为⎝⎛⎭⎪⎫2,π2的点的直角坐标为(0,2),过该点且与极轴平行的直线的方程为y=2,其极坐标方程为ρsin θ=2.3.在同一坐标系中,将曲线y =2sin x 变为曲线y ′=sin 2x ′的伸缩变换是( )A.⎩⎪⎨⎪⎧ x =2x ′,y =12y ′B.⎩⎪⎨⎪⎧x ′=12x ,y ′=12yC.⎩⎪⎨⎪⎧x =12x ′,y =2y ′D.⎩⎪⎨⎪⎧x ′=2x ,y ′=2y解析:选B 设⎩⎪⎨⎪⎧x ′=λxλ>0,y ′=μy μ>0,则μy =sin 2λx ,即y =1μsin 2λx ,∴⎩⎪⎨⎪⎧1μ=2,2λ=1,解得⎩⎪⎨⎪⎧μ=12,λ=12,故选B.4.若曲线C 的参数方程为⎩⎪⎨⎪⎧x =-1+12t ,y =2+32t (t 为参数),则下列说法中正确的是( )A .曲线C 是直线且过点(-1,2)B .曲线C 是直线且斜率为33C .曲线C 是圆且圆心为(-1,2)D .曲线C 是圆且半径为|t |解析:选A 曲线C 的参数方程为⎩⎪⎨⎪⎧x =-1+12t ,y =2+32t (t 为参数),消去参数t 得曲线C 的普通方程为3x -y +2+3=0.该方程表示直线,且斜率是 3.把(-1,2)代入,成立,∴曲线C 是直线且过点(-1,2),故选A.5.点M 的极坐标是⎝⎛⎭⎪⎫-2,-π6,它关于直线θ=π2的对称点坐标是( ) A.⎝⎛⎭⎪⎫2,11π6B.⎝⎛⎭⎪⎫-2,7π6C.⎝⎛⎭⎪⎫2,-π6D.⎝⎛⎭⎪⎫-2,-11π6解析:选B 当ρ<0时,它的极角应在反向延长线上.如图,描点⎝ ⎛⎭⎪⎫-2,-π6时,先找到角-π6的终边,又因为ρ=-2<0,所以再在反向延长线上找到离极点2个单位长度的点即是点⎝ ⎛⎭⎪⎫-2,-π6.直线θ=π2就是极角为π2的那些点的集合.故M ⎝ ⎛⎭⎪⎫-2,-π6关于直线θ=π2的对称点为M ′⎝ ⎛⎭⎪⎫2,π6,但是选项没有这样的坐标.又因为M ′⎝ ⎛⎭⎪⎫2,π6的坐标还可以写成M ′⎝ ⎛⎭⎪⎫-2,7π6,故选B.6.已知双曲线C 的参数方程为⎩⎪⎨⎪⎧x =3sec θ,y =4tan θ(θ为参数),在下列直线的参数方程中,①⎩⎪⎨⎪⎧x =-3t ,y =4t ; ②⎩⎪⎨⎪⎧x =1+32t ,y =1-12t ; ③⎩⎪⎨⎪⎧x =35t ,y =-45t ;④⎩⎪⎨⎪⎧x =1-22t ,y =1+22t ; ⑤⎩⎪⎨⎪⎧x =3+3t ,y =-4-4t .(以上方程中t 为参数),可以作为双曲线C 的渐近线方程的是( ) A .①③⑤ B .①⑤ C .①②④D .②④⑤解析:选A 由双曲线的参数方程知,在双曲线中对应的a =3,b =4且双曲线的焦点在x 轴上,因此其渐近线方程是y =±43x .检验所给直线的参数方程可知只有①③⑤适合条件.7.已知过曲线⎩⎪⎨⎪⎧x =3sin θ,y =3cos θ(θ为参数,0≤θ≤π)上一点P 与原点O 的连线PO 的倾斜角为π2,则点P 的坐标是( )A .(0,3) B.⎝ ⎛⎭⎪⎫-125,-125C .(-3,0)D.⎝⎛⎭⎪⎫125,125 解析:选A 曲线的普通方程为x 2+y 2=9(0≤x ≤3),∵点P 与原点O 的连线PO 的倾斜角为π2,∴点P 的横坐标为0,将x =0代入x 2+y 2=9得y =3(y =-3舍去),∴P (0,3).故选A.8.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13解析:选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图.围成的图形为△OPQ ,可得S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34. 9.点(ρ,θ)满足3ρcos 2θ+2ρsin 2θ=6cos θ,则ρ2的最大值为( ) A.72 B .4 C.92D .5解析:选B 由3ρcos 2θ+2ρsin 2θ=6cos θ,两边乘ρ,化为3x 2+2y 2=6x ,得y 2=3x -32x 2,代入ρ2=x 2+y 2,得x 2+y 2=-12x 2+3x =-12(x 2-6x +9)+92=-12(x -3)2+92.因为y 2=3x -32x 2≥0,可得0≤x ≤2,故当x =2时,ρ2=x 2+y 2的最大值为4.10.过椭圆C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数)的右焦点F 作直线l :交C 于M ,N 两点,|MF |=m ,|NF |=n ,则1m +1n的值为( )A.23B.43C.83D .不能确定解析:选B 曲线C 为椭圆x 24+y 23=1,右焦点为F (1,0),设l :⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ,(t 为参数),将其代入椭圆方程得(3+sin 2θ)t 2+6cos θt -9=0,则t 1+t 2=-6cos θ3+sin 2θ,t 1t 2=-93+sin 2θ, ∴1m +1n =1|t 1|+1|t 2|=|t 1-t 2||t 1t 2|=t 1+t 22-4t 1t 2|t 1t 2|=43.二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.解析:直接化简,两式相减消去参数t 得,x -y =1,整理得普通方程为x -y -1=0.答案:x -y -1=012.在平面直角坐标系xOy 中,直线l 的方程为x +y -6=0,圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ+2(参数θ∈[0,2π)),则圆心C 到直线l 的距离为________.解析:圆C 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ+2(参数θ∈[0,2π))化成普通方程为x 2+(y -2)2=4,圆心为(0,2),半径为2,∴圆心C 到直线l 的距离为|0+2-6|2=2 2. 答案:2 213.在极坐标系中,曲线C 1 与C 2 的方程分别为 2ρcos 2θ=sin θ与 ρcos θ=1,以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,则曲线C 1 与C 2交点的直角坐标为________.解析:由2ρcos 2θ=sin θ⇒2ρ2cos 2θ=ρsin θ⇒2x 2=y ,又由ρcos θ=1⇒x =1,由⎩⎪⎨⎪⎧2x 2=y ,x =1⇒⎩⎪⎨⎪⎧x =1,y =2,故曲线C 1与C 2交点的直角坐标为(1,2).答案:(1,2)14.在极坐标系中,直线C 1的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4= 2.若以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系xOy ,则直线C 1的直角坐标方程为______;若曲线C 2的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =1+sin t (t 为参数),则C 1被C 2截得的弦长为________.解析:直线C 1的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,即ρsin θ+ρcos θ=2,∴直线C 1的直角坐标方程为x +y -2=0. 曲线C 2的参数方程⎩⎪⎨⎪⎧x =cos t ,y =1+sin t(t 为参数)化成普通方程为x 2+(y -1)2=1,表示圆,圆心到直线C 1的距离d =12,∴C 1被C 2截得的弦长为21-12= 2. 答案:x +y -2=02三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.解:因为直线l 的极坐标方程为θ=π3(ρ∈R),所以直线l 的普通方程为y =3x ,①又因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),所以曲线C 的直角坐标方程为y =12x 2(x ∈[-2,2]),②联立①②得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =23,y =6.(舍去)故点P 的直角坐标为(0,0).16.(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2. 所以直线l 的极坐标方程可化为ρcos θ+ρsin θ=2. 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交. 17.(本小题满分12分)在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =3+2cos θ,y =-4+2sin θ(θ为参数).(1)以原点为极点,x 轴非负半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)已知A (-2,0),B (0,2),圆C 上任意一点M (x ,y ),求△ABM 面积的最大值.解:(1)因为圆C 的参数方程为⎩⎪⎨⎪⎧x =3+2cos θ,y =-4+2sin θ(θ为参数),所以普通方程为(x -3)2+(y +4)2=4.由x =ρcos θ,y =ρsin θ,可得(ρcos θ-3)2+(ρsin θ+4)2=4, 化简可得圆C 的极坐标方程为ρ2-6ρcos θ+8ρsin θ+21=0. (2)由已知得直线AB 的方程为x -y +2=0,点M (x ,y )到直线AB :x -y +2=0的距离为d =|x -y +2|2=|2cos θ-2sin θ+9|2,又|AB |=-22+-22=22,所以△ABM 的面积S =12×|AB |×d=|2cos θ-2sin θ+9|=⎪⎪⎪⎪⎪⎪22cos ⎝ ⎛⎭⎪⎫π4+θ+9, 所以△ABM 面积的最大值为9+2 2.18.(本小题满分14分)在平面直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =t ,y =k t -1(t为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 2:ρ2+10ρcos θ-6ρsinθ+33=0.(1)求C 1的普通方程及C 2的直角坐标方程,并说明它们分别表示什么曲线; (2)若P ,Q 分别为C 1,C 2上的动点,且|PQ |的最小值为2,求k 的值. 解:(1)由⎩⎪⎨⎪⎧x =t ,y =kt -1(t 为参数)消去t 可得C 1的普通方程为y =k (x -1),它表示过定点(1,0),斜率为k 的直线.由ρ2+10ρcos θ-6ρsin θ+33=0可得C 2的直角坐标方程为x 2+y 2+10x -6y +33=0,整理得(x +5)2+(y -3)2=1,它表示圆心为(-5,3),半径为1的圆.(2)由题意知直线与圆相离.因为圆心(-5,3)到直线y =k (x -1)的距离d =|-6k -3|1+k2=|6k +3|1+k 2,故|PQ |的最小值为|6k +3|1+k 2-1,由|6k +3|1+k2-1=2,得3k 2+4k =0,解得k =0或k =-43.。
2018秋新版高中数学人教A版必修4习题:模块综合检测 Word版含解析
模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若sinα2=√33,则cos α=()A.−23B.−13C.13D.23解析:cosα=1-2sin2α2=1−2×(√33)2=13.故选C.答案:C2若tan(α-3π)>0,sin(-α+π)<0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由已知得tanα>0,sinα<0,∴α是第三象限角.答案:C3函数f(x)=si n(2x+π3)的图象的对称轴方程可以为()A.x=π12B.x=5π12C.x=π3D.x=π6解析:由2x+π3=kπ+π2(k∈Z),得x=kπ2+π12(k∈Z).当k=0时,x=π12 .答案:A4已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()A.π3B.π2C.2π3D.5π6解析:因为a⊥(2a+b),所以a·(2a+b)=0, 即2|a|2+a·b=0.设a与b的夹角为θ,则有2|a |2+|a ||b |cos θ=0.又|b |=4|a |,所以2|a |2+4|a |2cos θ=0,则cos θ=−12,从而θ=2π3. 答案:C5已知a =(1,12),b =(1,-12),c=a +k b ,d=a-b ,c 与d 的夹角是π4,则k 的值为( ) A.−13B.−3C.-3或−13D.−1解析:c =(1,12)+(k ,-12k)=(1+k ,12-12k),d =(0,1). co s π4=12-12k √(1+k )+14(1-k ),解得k=-3或−13.答案:C6将函数y =√3cos x +sin x(x ∈R )的图象向左平移m (m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12B.π6C .π3D.5π6解析:y =√3cos x+sin x=2co s (x -π6),向左平移m (m>0)个单位长度后得到函数y=2co s (x +m -π6)的图象.由于该图象关于y 轴对称,所以m −π6=kπ(k ∈Z ),即m=k π+π6,故当k=0时,m 取得最小值π6.答案:B7对任意平面向量a ,b ,下列关系式中不恒成立的是( )A.|a ·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b )2=|a+b|2D.(a+b )·(a-b )=a 2-b 2。
2018_2019学年高中数学模块综合评价新人教A版选修4_4
模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的直角坐标是(-1,3),则点M 的极坐标为( )A.⎝⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝⎛⎭⎪⎫2,2k π+π3(k ∈Z) 解析:点M 的极径是2,点M 在第二象限,故点M 的极坐标是⎝⎛⎭⎪⎫2,2π3. 答案:C2.极坐标方程cos θ=32(ρ∈R)表示的曲线是( ) A .两条相交直线B .两条射线C .一条直线D .一条射线 解析:由cos θ=32,解得θ=π6或θ=116π,又ρ∈R,故为两条过极点的直线. 答案:A3.曲线ρcos θ+1=0关于直线θ=π4对称的曲线的方程是( ) A .ρsin θ+1=0B .ρcos θ+1=0C .ρsin θ=2D .ρcos θ=2 解析:因为M (ρ,θ)关于直线θ=π4的对称点是N ⎝ ⎛⎭⎪⎫ρ,π2-θ,从而所求曲线方程为ρcos ⎝ ⎛⎭⎪⎫π2-θ+1=0,即ρsin θ+1=0. 答案:A4.直线⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)解析:将x =1+t 2,y =-33+32t 代入圆方程, 得⎝ ⎛⎭⎪⎫1+t 22+⎝ ⎛⎭⎪⎫-33+32t 2=16, 所以t 2-8t +12=0,则t 1=2,t 2=6,因此AB 的中点M 对应参数t =t 1+t 22=4,所以x =1+12×4=3,y =-33+32×4=-3, 故AB 中点M 的坐标为(3,-3).答案:D5.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( )A .x 2+y 2=0或y =1B .x =1C .x 2+y 2=0或x =1D .y =1解析:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0或ρcos θ=x =1.答案:C6.直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t(t 为参数)被圆x 2+y 2=9截得的弦长为( ) A.125B.125 5C.95 5D.9510 解析:把⎩⎪⎨⎪⎧x =1+2t ,y =2+t 化为标准形式为⎩⎪⎨⎪⎧x =1+25t ′,y =2+15t ′将其代入x 2+y 2=9,整理得t ′2+85t ′-4=0,由根与系数的关系得t ′1+t ′2=-85,t ′1t ′2=-4.故|t ′1-t ′2|=(t ′1+t ′2)-4t ′1t ′2=⎝⎛⎭⎪⎫-852+16=125·5,所以弦长为1255. 答案:B 7.已知圆M :x 2+y 2-2x -4y =10,则圆心M 到直线⎩⎪⎨⎪⎧x =4t +3,y =3t +1(t 为参数)的距离为( ) A .1 B .2。
2018-2019学年高中数学 模块综合检测(含解析)新人教A版必修4
模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)1.已知角α的终边经过点P (-3,4),则sin α的值等于( ) A .-35 B.35C.45 D .-45 解析:选C sin α=4-2+42=45. 2.已知cos ⎝ ⎛⎭⎪⎫π2+φ=-32且|φ|<π2,则tan φ=( ) A .-33 B.33C .- 3 D. 3解析:选D 由cos ⎝ ⎛⎭⎪⎫π2+φ=-32得sin φ=32,又|φ|<π2,所以φ=π3,所以tan φ= 3.3.已知M 是△ABC 的BC 边上的中点,若AB =a , AC =b ,则AM =( ) A.12(a -b ) B.12(a +b ) C .-12(a -b ) D .-12(a +b )解析:选B AM =AB +BM =AB +12BC =AB +12(AC -AB )=12(a +b ).4.设角α=-35π6,则π+απ-α-π+α1+sin 2α+π-α-cos 2π+α的值为( )A.12B.32 C.22D. 3 解析:选D 因为α=-35π6=π6-6π,所以π+απ-α-π+α1+sin 2α+π-α-cos 2π+α=2sin αcos α+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos αsin α =1tan ⎝ ⎛⎭⎪⎫-35π6=1tan π6= 3.故选D.5.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则k 的取值范围是( ) A .(-2,+∞) B.⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞C .(-∞,-2)D .(-2,2)解析:选B 当a ,b 共线时,2k -1=0,k =12,此时a ,b 方向相同夹角为0°,所以要使a 与b 的夹角为锐角,则有a ·b >0且a ,b 不共线.由a ·b =2+k >0得k >-2,且k ≠12,即实数k 的取值范围是⎝⎛⎭⎪⎫-2,12∪⎝⎛⎭⎪⎫12,+∞.6.向量a ,b 满足|a +b |=7,|a -b |=3,则a·b 的值为( ) A .1 B .2 C .3 D .4解析:选A 向量a ,b 满足|a +b |=7,|a -b |=3,可得a 2+2a·b +b 2=7,a 2-2a·b +b 2=3,两式相减可得4a·b =4.解得a·b =1,故选A.7.函数y =sin(ωx +φ)(x ∈R ,且ω>0,0≤φ<2π)的部分图象如图所示,则( ) A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π4解析:选C ∵T =4×2=8,∴ω=π4.又∵π4×1+φ=π2,∴φ=π4.8.若α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=45,则sin ⎝ ⎛⎭⎪⎫α+π4-22cos(π-α)等于( )A.225 B .-25 C.25 D .-225解析:选B sin ⎝ ⎛⎭⎪⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α=22sin α+2cos α. ∵sin α=45,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 9.△ABC 的外接圆圆心为O ,半径为2,OA +AB +AC =0,且|OA |=|AB |, CA 在CB 方向上的投影为( )A .-3B .- 3 C. 3 D .3解析:选C 如图,由OA +AB +AC =0得OB =-AC =CA ,所以四边形OBAC 是平行四边形.又|OA |=|AB |,所以三角形OAB 为正三角形,因为外接圆的半径为2,所以四边形OBAC 是边长为2的菱形.所以∠ACB =π6,所以CA 在CB 上的投影为|CA |cosπ6=2×32=3,选C. 10.已知在△ABC 中,AB =AC =2,BC =23,点P 为边BC 所在直线上的一个动点,则关于AP ·(AB +AC )的值,正确的是( )A .为定值2B .最大值为4C .最小值为1D .与P 的位置有关解析:选A 如图,取BC 中点D ,由题意知|AD |=1.AP ·(AB +AC )=AP ·(2AD )=2|AD |·|AP |·cos ∠DAP =2|AD |2=2.11.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增 解析:选A y =sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,由最小正周期为π得ω=2,又由f (-x )=f (x )可知f (x )为偶函数,|φ|<π2可得φ=π4,所以y =2cos 2x ,在⎝⎛⎭⎪⎫0,π2单调递减.12.在△ABC 所在的平面上有一点P ,满足PA +PB +PC =AB ,则△PBC 与△ABC 面积之比为( )A.13B.12 C.23 D.34解析:选C 因为PA +PB +PC =AB , 所以PA +PB +PC -AB =0, 即2PA +PC =0, 所以2PA =CP ,即点P 是CA 边上的靠近点A 的一个三等分点, 故S △PBC S △ABC =PC AC =23. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知cos x =2a -34-a ,x 是第二、三象限的角,则a 的取值范围为________.解析:-1<cos x <0,-1<2a -34-a <0,⎩⎪⎨⎪⎧2a -34-a <0,2a -34-a >-1.∴-1<a <32.答案:⎝⎛⎭⎪⎫-1,32 14.已知e 1、e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2.若a·b =0,则实数k 的值为________.解析:由题意知:a·b =(e 1-2e 2)·(k e 1+e 2)=0, 即k e 21+e 1e 2-2k e 1e 2-2e 22=0,即k +cos 2π3-2k cos 2π3-2=0,化简可求得k =54.答案:5415.y =3-2cos ⎝⎛⎭⎪⎫3x +π6的定义域为________. 解析:∵2cos ⎝ ⎛⎭⎪⎫3x +π6≥0,∴2k π-π2≤3x +π6≤2k π+π2,∴23k π-2π9≤x ≤23k π+π9(k ∈Z ), 函数的定义域为⎩⎨⎧⎭⎬⎫x |23k π-2π9≤x ≤23k π+π9,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |23k π-2π9≤x ≤23k π+π9,k ∈Z16.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6,给出下列命题:①f (x )的最大值为2; ②f (x )的最小正周期是π;③f (x )在区间⎣⎢⎡⎦⎥⎤π24,13π24上是减函数;④将函数y =2cos 2x 的图象向右平移π24个单位长度后,与函数y =f (x )的图象重合.其中正确命题的序号是____________.解析:f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6=cos2x -π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π6=cos ⎝ ⎛⎭⎪⎫2x -π3-sin2x -π3=2⎣⎢⎡⎦⎥⎤22cos ⎝ ⎛⎭⎪⎫2x -π3-22sin ⎝ ⎛⎭⎪⎫2x -π3=2cos2x -π3+π4=2cos ⎝⎛⎭⎪⎫2x -π12, ∴函数f (x )的最大值为2,最小正周期为π,故①②正确;又当x ∈⎣⎢⎡⎦⎥⎤π24,13π24时,2x -π12∈[0,π],∴函数f (x )在⎣⎢⎡⎦⎥⎤π24,13π24上是减函数,故③正确;由④得y =2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π24=2cos ⎝ ⎛⎭⎪⎫2x -π12,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知函数f (x )=A sin(ωx +φ)ω>0,A >0,φ∈⎝⎛⎭⎪⎫0,π2的部分图象如图所示,其中点P 是图象上的一个最高点.(1)求函数f (x )的解析式; (2)若α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=513,求f ⎝ ⎛⎭⎪⎫α2.解:(1)由函数最大值为2,得A =2.由图象可得函数周期为T =4×⎣⎢⎡⎦⎥⎤π12-⎝ ⎛⎭⎪⎫-π6=π,∴ω=2,又ω·π12+φ=2k π+π2,k ∈Z ,且φ∈⎝ ⎛⎭⎪⎫0,π2,得φ=π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由α∈⎝⎛⎭⎪⎫π2,π,且sin α=513,得cos α=-1-sin 2α=-1213,∴f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫2·α2+π3 =2⎝ ⎛⎭⎪⎫sin αcos π3+cos αsin π3=5-12313. 18.(12分)已知角α的终边过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求式子sin ⎝ ⎛⎭⎪⎫π2-αsin ()α+π·α-ππ-α的值.解:(1)∵|OP |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫-352=1, ∴点P 在单位圆上,由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α.由(1)得sin α=-35,P 在单位圆上,∴由已知得cos α=45,∴原式=54.19.(12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+sin ⎝ ⎛⎭⎪⎫2x -π6+2cos 2x .(1)求f (x )的最小值及最小正周期; (2)求使f (x )=3的x 的取值集合.解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+sin ⎝ ⎛⎭⎪⎫2x -π6+2cos 2x =sin 2x cos π6+cos 2x sin π6+sin2x cos π6-cos 2x ·sin π6+cos 2x +1=3sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π6+1,∴f (x )min =2×(-1)+1=-1, 最小正周期T =2π|ω|=2π2=π.(2)∵f (x )=3,∴2sin ⎝ ⎛⎭⎪⎫2x +π6+1=3, ∴sin ⎝ ⎛⎭⎪⎫2x +π6=1,∴2x +π6=2k π+π2,k ∈Z ,∴x =k π+π6,k ∈Z ,∴使f (x )=3的x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z .20.(12分)已知四边形ABCD ,AB =(6,1),BC =(x ,y ),CD =(-2,-3). (1)若BC ∥DA ,求y =f (x )的解析式;(2)在(1)的条件下,若AC ⊥BD ,求x ,y 的值以及四边形ABCD 的面积.解:(1) DA =-(AB +BC +CD )=(-x -4,2-y ), ∵BC ∥DA ,∴x (2-y )-(-x -4)y =0,整理得x +2y =0. ∴y =-12x .(2)∵AC =AB +BC =(x +6,y +1),BD =BC +CD =(x -2,y -3),又∵AC ⊥BD ,∴AC ·BD =0, 即(x +6)(x -2)+(y +1)(y -3)=0, 由(1)知x =-2y ,将其代入上式, 整理得y 2-2y -3=0.解得y 1=3,y 2=-1. 当y =3时,x =-6,于是BC =(-6,3),AC =(0,4),BD =(-8,0),|AC |=4,|BD |=8,∴S 四边形ABCD =12|AC ||BD |=12×4×8=16.当y =-1时,x =2,于是BC =(2,-1),AC =(8,0),BD =(0,-4),|AC |=8,|BD |=4, ∴S 四边形ABCD =12|AC ||BD |=12×8×4=16. 21.(12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫2π3x +π6.(1)请用“五点法”画出函数f (x )在一个周期上的图象(先列表,再画图); (2)求函数f (x )的单调递增区间;(3)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-12,34上的值域.解:(1)按五个关键点列表如下:(2)由2k π-π2≤2π3x +π6≤2k π+π2(k ∈Z ),得3k -1≤x ≤3k +12(k ∈Z ),所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤3k -1,3k +12(k ∈Z ).(3)因为x ∈⎣⎢⎡⎦⎥⎤-12,34,所以2π3x +π6∈⎣⎢⎡⎦⎥⎤-π6,2π3,所以sin ⎝ ⎛⎭⎪⎫2π3x +π6∈⎣⎢⎡⎦⎥⎤-12,1,所以2sin 2π3x +π6∈[-1,2],即函数f (x )在区间⎣⎢⎡⎦⎥⎤-12,34上的值域是[-1,2].22.(12分)已知定义在区间⎣⎢⎡⎦⎥⎤-π,2π3上的函数y =f (x )的图象关于直线x =-π6对称,当x ∈-π6,2π3时,函数f (x )=A sin(ωx +φ)A >0,ω>0,-π2<φ<π2的图象如图所示.(1)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π,2π3上的解析式;(2)求方程f (x )=22的解. 解:(1)当x ∈⎣⎢⎡⎦⎥⎤-π6,2π3时,由题中图象可知,A =1,T 4=2π3-π6,∴T =2π,∴ω=1.又f (x )的图象过点⎝ ⎛⎭⎪⎫2π3,0,∴2π3+φ=k π(k ∈Z ),又-π2<φ<π2,∴φ=π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫x +π3.当-π≤x <-π6时,-π6<-x -π3≤2π3,f ⎝⎛⎭⎪⎫-x -π3=sin ⎝⎛⎭⎪⎫-x -π3+π3.又函数y =f (x )的图象关于直线x =-π6对称,∴f (x )=f ⎝ ⎛⎭⎪⎫-x -π3, ∴f (x )=sin ⎝⎛⎭⎪⎫-x -π3+π3=-sin x ⎝⎛⎭⎪⎫-π≤x <-π6. ∴f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫x +π3,x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,-sin x ,x ∈⎣⎢⎡⎭⎪⎫-π,-π6.(2)当-π6≤x ≤2π3时,π6≤x +π3≤π, 由f (x )=sin ⎝ ⎛⎭⎪⎫x +π3=22,得x +π3=π4或3π4,∴x =-π12或5π12;当-π≤x <-π6时,由f (x )=-sin x =22,得sin x =-22,∴x =-π4或-3π4. 综上知,方程f (x )=22的解为 x =-π4或-3π4或-π12或5π12.。
2018-2019年高中数学 模块综合评价 新人教A版必修4
模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( )A.57B.61 C .57D .61解析:由题意可得a·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a·b =16+81-36=61. 答案:B2.已知角α的终边经过点P (4,-3),则2sin α+cos α的值等于( ) A .-35B .45C .25D .-25解析:因为α的终边过点P (4,-3), 所以x =4,y =-3,r =|OP |=5,所以sin α=y r =-35,cos α=45,所以2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.答案:D3.下列各向量中,与a =(3,2)垂直的是( ) A .(3,-2) B .(2,3) C .(-4,6)D .(-3,2)解析:因为(3,2)·(-4,6)=3×(-4)+2×6=0. 答案:C4.将函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象向左平移π6个单位后,得到f (x )的图象,则( )A .f (x )=-sin 2xB .f (x )的图象关于x =-π3对称C .f ⎝⎛⎭⎪⎫7π3=12D .f (x )的图象关于⎝⎛⎭⎪⎫π12,0对称解析:f (x )=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6+π3=cos ⎝ ⎛⎭⎪⎫2x +2π3=-sin ⎝ ⎛⎭⎪⎫2x +π6,所以f ⎝ ⎛⎭⎪⎫-π3=1,f (x )的图象关于x =-π3对称;f ⎝⎛⎭⎪⎫7π3=cos 16π3=-12,f ⎝ ⎛⎭⎪⎫π12=cos 5π6≠0,因此选B.答案:B5.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于( ) A .30° B .60° C .120°D .90°解析:设a ,b 的夹角为θ,由c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a ·b =0⇒a ·b =-1⇒cos θ=a ·b |a ||b |=-12且0°≤θ≤180°⇒θ⇒120°.故选C.答案:C6.函数f (x )=A sin (ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,将函数f (x )的图象向右平移7π24个单位后得到函数g (x )的图象,若函数g (x )在区间⎣⎢⎡⎦⎥⎤-π3,θ⎝ ⎛⎭⎪⎫θ>-π3上的值域为[-1,2],则θ等于( )A.π6B.π4C.2π3D.7π12解析:由图象可知,A =-2,T =π,ω=2,φ=π4,所以f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π4.g (x )=-2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -7π24+π4=-2sin ⎝ ⎛⎭⎪⎫2x -π3,由题意及g (x )的单调性知,g (θ)=-1,解得θ=π4+k π,k ∈Z ,结合题意知θ=π4.答案:B7.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限解析:因为点P 位于第三象限,所以⎩⎪⎨⎪⎧sin θcos θ<0,2cos θ<0,所以⎩⎪⎨⎪⎧cos θ<0,sin θ >0,所以θ在第二象限. 答案:B8.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),点C 在第二象限内,∠AOC =5π6,且|OC →|=2,OC →=λOA →+μOB →,则λ,μ的值分别是( )A .1,1 B.3,1 C .-3,-1D .-3,1解析:因为∠AOC =5π6,所以〈OA →,OC →〉=5π6.〈OC →,OB →〉=5π6-π2=π3.则OC →=λOA →+μOB →=(λ,μ),OC →·OA →=(λ,μ)·(1,0)=|OC →|·|OA →|cos 5π6,即λ=2×(-32)=-3,OC →·OB →=(λ,μ)·(0,1)=|OC →||OB →|·cos π3,即μ=2×12=1,所以λ=-3,μ=1,选D.答案:D9.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知,周期T =2⎝ ⎛⎭⎪⎫54-14=2,所以2πω=2,所以ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,所以f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,所以f (x )的单调递减区间为⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z.答案:D10.在△ABC 中,P 是边BC 的中点,角A ,B ,C 的对边分别是a ,b ,c ,若cAC →+aPA →+bPB →=0,则△ABC 的形状是( )A .等边三角形B .钝角三角形C .直角三角形D .等腰直角三角形但不是等边三角形 解析:如图,由P 是BC 的中点,cAC →+aPA →+bPB →=0,知c (PC →-PA →)+aPA →-bPC →=(a -c )·PA →+(c -b )PC →=0,而PA →与PC →不共线,所以a -c =c -b =0, 所以a =b =c ,故选A. 答案:A11.已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),将函数f (x )的图象向左平移π12个单位长度后得到函数g (x )的图象,且g ⎝ ⎛⎭⎪⎫π4=12,则φ=( )A.π6B.π4C.π3D.2π3解析:f (x )=12sin 2x sin φ+cos φ⎝⎛⎭⎪⎫cos 2x -12=12sin 2x sin φ+12cos φcos 2x =12cos(2x -φ), 所以g (x )=12cos ⎝ ⎛⎭⎪⎫2x +π6-φ. 因为g ⎝ ⎛⎭⎪⎫π4=12,所以2×π4+π6-φ=2k π(k ∈Z),即φ=2π3-2k π(k ∈Z).因为0<φ<π,所以φ=2π3. 答案:D12.已知向量a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝ ⎛⎭⎪⎫π2,π,若a ·b =25,则tan ⎝⎛⎭⎪⎫α+π4=( )A.13B.27C.17D.23解析:由题意,得cos 2α+sin α(2sin α-1)=25,解得sin α=35.又α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-45,tan α=-34.则tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=-34+11-⎝ ⎛⎭⎪⎫-34×1=17.答案:C二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.设sin 2α=-sin α,α∈⎝⎛⎭⎪⎫π2,π,则tan 2α的值是________.解析:因为sin 2α=-sin α,所以2sin αcos α=-sin α.因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α≠0,所以cos α=-12.又因为α∈⎝ ⎛⎭⎪⎫π2,π,所以α=23π, 所以tan 2α=tan 43π=tan ⎝ ⎛⎭⎪⎫π+π3=tan π3= 3. 答案:314.若函数y =sin x (a ≤x ≤b )的值域是⎣⎢⎡⎦⎥⎤-1,12,则b -a 的最大值是________.解析:令y =12,可得x =2k π+π6或x =2k π+5π6,x 的值为…,-7π6,π6,5π6,13π6,…,两个相邻的x 值相差的最大值为4π3,因为函数y =sin x (a ≤x ≤b )的值域是⎣⎢⎡⎦⎥⎤-1,12,所以b -a 的最大值是4π3. 答案:4π315.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________.解析:如图,由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形,所以|AC →|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18.答案:1816.如图,在同一平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R),则m +n =________.解析:由tan α=7,得tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=-43. 以O 为原点,OA 方向为x 轴正半轴建立坐标系(图略),则A 点坐标为(1,0). 由tan ⎝ ⎛⎭⎪⎫α +π4=-43,OB →的模为1,可得B ⎝ ⎛⎭⎪⎫-35,45.由tan α=7,OC →的模为2,可得C ⎝ ⎛⎭⎪⎫15,75.由OC →=mOA →+nOB →,代入A ,B ,C 点坐标可得, ⎩⎪⎨⎪⎧m -35n =15,45n =75,解得⎩⎪⎨⎪⎧m =54,n =74. 所以m +n =3. 答案:3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a·b ; (2)若a -b 与a 垂直,求θ.解:(1)因为a ∥b ,所以θ=0°或180°, 所以a·b =|a ||b |cos θ=± 2. (2)因为a -b 与a 垂直,所以(a -b )·a =0,即|a |2-a·b =1-2cos θ=0,所以cos θ=22. 又0°≤θ ≤180°,所以θ=45°.18.(本小题满分12分)已知a =(1,2),b =(-3,1), (1)求a -2b ;(2)设a ,b 的夹角为θ,求cos θ的值; (3)若向量a +kb 与a -kb 互相垂直,求k 的值.解:(1)a -2b =(1,2)-2(-3,1)=(1+6,2-2)=(7,0).(2)cos θ=a ·b |a ||b |=1×(-3)+2×112+22·12+(-3)2=-210. (3)因为向量a +kb 与a -kb 互相垂直, 所以(a +kb )·(a -kb )=0, 即a 2-k 2b 2=0.因为a 2=5,b 2=10, 所以5-10k 2=0,所以k =±22. 19.(本小题满分12分)已知向量a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎪⎫3π2,2π,且a ⊥b .(1)求tan α的值;(2)求cos ⎝ ⎛⎭⎪⎫α2+π3的值.解:(1)因为a ⊥b ,所以a ·b =0.而a =(3sin α,cos α),b =(2sin α,5sin α-4cos α), 故a ·b =6sin 2α+5sin αcos α-4cos 2α=0, 由于cos α≠0,所以6tan 2α+5tan α-4=0. 解得tan α=-43或tan α=12.因为α∈⎝⎛⎭⎪⎫3π2,2π,所以tan α<0, 所以tan α=-43.(2)因为α∈⎝⎛⎭⎪⎫3π2,2π,所以α2∈⎝ ⎛⎭⎪⎫3π4,π.由tan α=-43,得tan α2=-12或tan α2=2(舍去).所以sin α2=55,cos α2=-255,所以cos ⎝ ⎛⎭⎪⎫α2+π3=cos α2cos π3-sin α2·sin π3=-255×12-55×32=-25+1510. 20.(本小题满分12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,x ∈R. (1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π. 由-π+2k π≤2x -π4≤2k π(k ∈Z),得-3π8+k π≤x ≤π8+k π(k ∈Z),故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z).(2)因为f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤-π8,π8上为增函数,在区间⎣⎢⎡⎦⎥⎤π8,π2上为减函数,又f ⎝ ⎛⎭⎪⎫-π8=0,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π2=2cos ⎝⎛⎭⎪⎫π-π4=-2cos π4=-1, 所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最大值为2,此时x =π8;最小值为-1,此时x =π2. 21.(本小题满分12分)(2015·广东卷)在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m ⊥n ,则m·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0,所以tan x =1.(2)因为m 与n 的夹角为π3,所以m·n =|m |·|n |cos π3,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎪⎫x -π4=12.又因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以x -π4∈⎝ ⎛⎭⎪⎫-π4,π4, 所以x -π4=π6,即x =5π12.22.(本小题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(2)根据(1)的结果,若函数y =f (kx )(k >0)的最小正周期为2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,方程f (kx )=m 恰好有两个不同的解,求实数m 的取值范围.解:(1)设f (x )的最小正周期为T ,则T =11π6-⎝ ⎛⎭⎪⎫-π6=2π,由T =2πω,得ω=1.又⎩⎪⎨⎪⎧B +A =3,B -A =-1,解得⎩⎪⎨⎪⎧A =2,B =1. 令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,所以f (x )=2sin ⎝⎛⎭⎪⎫x -π3+1.(2)因为函数y =f (kx )=2sin ⎝ ⎛⎭⎪⎫kx -π3+1的最小正周期为2π3,又k >0,所以k =3,令t =3x -π3,11 因为x ∈⎣⎢⎡⎦⎥⎤0,π3,t ∈⎣⎢⎡⎦⎥⎤-π3,2π3, 若sin t =s 在t ∈⎣⎢⎡⎦⎥⎤-π3,2π3上有两个不同的解,则s ∈⎣⎢⎡⎭⎪⎫32,1, 所以方程f (kx )=m 在x ∈⎣⎢⎡⎦⎥⎤0,π3上恰好有两个不同的解,则m ∈[3+1,3), 即实数m 的取值范围是[3+1,3).。
2018-2019学年高中数学(人教A版,必修4)模块综合测评(A)(原卷版)
·模块综合测评(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知α∈,tan α=,则sin(α+π)=()A. B. C. D. -2.函数y=cos42θ-sin42θ的最小正周期是()A. 2πB. 4πC.D.3. 已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)⊥(m-n),则λ=().A. -4B. -3C. -2D. -14.已知f(x)=A sin(ωx+θ)(ω>0),若两个不等的实数x1,x2∈,且|x1-x2|min=π,则f(x)的最小正周期是()A. 3πB. 2πC. πD.5.设D为△ABC所在平面内一点,=3,则()A. =-B.C. D.6.在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),则△ABC的形状一定是()A. 等边三角形B. 直角三角形C. 钝角三角形D. 不含60°角的等腰三角形7.式子的值等于()A. B. C. 2 D.8.将曲线y=sin上所有点的横坐标缩短到原来的倍(纵坐标不变)得到曲线A,再把A上的所有点向右平行移动个单位长度得到曲线B,则曲线B的函数解析式为()A. y=sin 2xB. y=sinC. y=sin xD. y=sin9.若向量a,b满足|a|=1,(a+b)⊥a,(2a+b)⊥b,则a,b的夹角为()A. B. C. D.10.已知函数f(x)=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A. 关于点对称B. 关于点对称C. 关于直线x=对称D. 关于直线x=对称11.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使=2,则的值为()A. B. C. D. -12.已知=(2,2),=(cos α,sin α),则的模的最大值是()A. 3B. 3C.D. 18二、填空题(本大题共4小题,每小题5分,共20分)13.设e1,e2是两个不共线的向量,a=3e1+4e2,b=e1-2e2.若以a,b为基底表示向量e1+2e2,即e1+2e2=λa+μb,则λ+μ=_____.14.若将函数y=cos 2x的图象向左平移个单位长度,则平移后的函数对称轴为_____.15.已知θ是第四象限角,且sin,则tan=________________.16.已知函数f(x)=sin(ωx+φ)(ω>1,0≤φ≤π)是R上的偶函数,其图象关于点M对称,且在区间上是单调函数,则ω·φ=_____.三、解答题(本大题共6小题,共70分)17.如图,在△ABC中,AB=8,AC=3,∠BAC=60°,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的一条直径.(1)请用表示,用表示;(2)记∠BAP=θ,求的最大值.18.已知0<α<<β<π,cos,sin(α+β)=.(1)求sin 2β的值;(2)求cos的值.19.函数f(x)=A sin(ωx+φ)的部分图象如图所示.(1)求f(x)的最小正周期及解析式;(2)设函数g(x)=f(x)-cos 2x,求g(x)在区间上的最小值.20.已知m=(sin A,cos A),n=(,-1),m·n=1,且A为锐角.(1)求角A的大小;(2)求函数f(x)=cos 2x+4cos A sin x(x∈R)的值域.21.如图,在平面直角坐标系中,点A,B,锐角α的终边与单位圆O交于点P.(1)用α的三角函数表示点P的坐标;(2)当=-时,求α的值;(3)在x轴上是否存在定点M,使得||=|恒成立?若存在,求出点M的坐标;若不存在,请说明理由.22.设f(x)=2sin(π-x)sin x-(sin x-cos x)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.。
2018版高中数学(人教A版)必修4同步练习题:必考部分 模块综合测评
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a =(2,4)与向量b =(x,6)共线,则实数x =( ) A .2 B .3 C .4D .6【解析】 ∵a ∥b ,∴2×6-4x =0,解得x =3. 【答案】 B2.如果一扇形的弧长为2π cm ,半径等于2 cm ,则扇形所对圆心角为( ) A .2π B .π C .π2D .3π2【解析】 θ=l r =2π2=π.【答案】 B3.设α是第二象限的角,P (x,4)为其终边上的一点,且cos α=x5,则tan α=( )A .43B .34C .-34D .-43【解析】 ∵点P (x,4)在角α终边上,则有 cos α=x16+x 2=x 5. 又x ≠0,∴16+x 2=5,∴x =3或-3. 又α是第二象限角,∴x =-3, ∴tan α=y x =4-3=-43.【答案】 D4.已知1-tan α1+tan α=2+3,则tan ⎝⎛⎭⎫π4+α等于( ) A .2+ 3 B .1 C .2- 3D . 3【解析】 ∵1-tan α1+tan α=2+3,∴tan ⎝⎛⎭⎫π4+α=1+tan α1-tan α=12+3=2- 3. 【答案】 C5.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 2【解析】 由题意易得a ·b =2×(-1)+4×2=6,∴c =(2,4)-6(-1,2)=(8,-8),∴|c |=82+(-8)2=8 2. 【答案】 D6.已知cos ⎝⎛⎭⎫x -π6=m ,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A .2m B .±2m C .3mD .±3m【解析】 ∵cos ⎝⎛⎭⎫x -π6=m , ∴cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =3sin ⎝⎛⎭⎫x +π3 =3cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫x +π3 =3cos ⎝⎛⎭⎫x -π6=3m . 【答案】 C7.若非零向量a ,b 满足|a |=223|b|,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) 【导学号:00680081】 A .π4B .π2C .3π4D .π【解析】 由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a|=223|b|,设〈a ,b 〉=θ,即3|a|2-|a|·|b|·cos θ-2|b|2=0,∴83|b|2-223|b|2·cos θ-2|b|2=0,∴cos θ=22.又∵0≤θ≤π,∴θ=π4. 【答案】 A8.把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位,那么所得图象的一条对称轴方程为( )A .x =-π2B .x =-π4C .x =π8D .x =π4【解析】 将y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin ⎝⎛⎭⎫2x +π6;再将图象向右平移π3个单位,得到函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=sin ⎝⎛⎭⎫2x -π2,x =-π2是其图象的一条对称轴方程. 【答案】 A9.若α∈⎝⎛⎭⎫0,π2,且sin 2 α+cos 2α=14,则tan α的值等于( ) A .22B .33C . 2D . 3【解析】 因为sin 2 α+cos 2α=14,所以sin 2 α+cos 2 α-sin 2 α=cos 2 α=14.又0<α<π2,所以cos α=12,则有α=π3,所以tan α=tan π3= 3.【答案】 D10.已知A ,B 均为钝角,且sin A =55,sin B =1010,则A +B =( ) A .74πB .π4C .3π4D .-7π4【解析】 ∵A ,B 均为钝角,且sin A =55,sin B =1010, ∴cos A =-255,cos B =-31010,tan A =-12,tan B =-13.∵π2<A <π,π2<B <π,∴π<A +B <2π. ∴tan(A +B )=tan A +tan B1-tan A ·tan B=-12-131-⎝⎛⎭⎫-12⎝⎛⎭⎫-13=-1.∴A +B =74π.【答案】 A11.曲线y =A sin ωx +a (A >0,ω>0)在区间⎣⎡⎦⎤0,2πω上截直线y =2及y =-1所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( )A .a =12,A >32B .a =12,A ≤32C .a =1,A ≥1D .a =1,A ≤1【解析】 由题意可知:a =2-12=12, A =y max -y min 2>2-(-1)2=32,故选A .【答案】 A12.在△ABC 中,A ,B ,C 为三个内角,f (B )=4cos B ·sin 2⎝⎛⎭⎫π4+B 2+3cos 2B -2cos B ,若f (B )=2,则角B 为( )A .π12B .π6C .π4D .π3【解析】 由已知f (B )=4cos B ×1-cos ⎝⎛⎭⎫π2+B 2+3cos 2B -2cos B =2cos B (1+sin B )+3cos 2B -2cos B =2cos B sin B +3cos 2B =sin 2B +3cos 2B =2sin ⎝⎛⎭⎫2B +π3. ∵f (B )=2,∴2sin ⎝⎛⎭⎫2B +π3=2,π3<2B +π3<73π,∴2B +π3=π2,∴B =π12. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=________.【解析】 由题意知T =2×⎝⎛⎭⎫54π-π4=2π, ∴ω=2πT =1,∴f (x )=sin(x +φ). ∵0<φ<π,∴π4<π4+φ<54π.又x =π4是f (x )=sin(x +φ)图象的对称轴,∴π4+φ=π2+k π,k ∈Z , ∴φ=π4+k π,∵0<φ<π,∴φ=π4.【答案】 π414.已知向量a =(1,2),b =(x ,-1),若向量a 与b 的夹角为钝角,则x 的取值范围为________.【解析】 当a ∥b 时,有1×(-1)-2x =0,即x =-12,此时b =-12a ,即a 与b 反向,若向量a 与b 夹角为钝角,则有: ⎩⎪⎨⎪⎧ a·b <0,x ≠-12⇒⎩⎪⎨⎪⎧x -2<0,x ≠-12, ∴x <2且x ≠-12.【答案】 ⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2 15.函数y =sin ⎝⎛⎭⎫π3-2x +sin 2x 的最小正周期是________.【解析】 法一:y =sin ⎝⎛⎭⎫π3-2x +sin 2x =2sin π6cos ⎝⎛⎭⎫2x -π6 =cos ⎝⎛⎭⎫2x -π6, ∴T =2π2=π.法二:y =sin π3cos 2x -cos π3sin 2x +sin 2x=32cos 2x +12sin 2x =cos ⎝⎛⎭⎫2x -π6. ∴其最小正周期为T =2π2=π.【答案】 π16.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE →=23BC →,DF →=16DC →,则AE →·AF →的值为________.【解析】 取BA →,BC →为一组基底,则AE →=BE →-BA →=23BC →-BA →,AF →=AB →+BC →+CF →=-BA →+BC →+512BA →=-712B A →+BC →,∴AE →·AF →=⎝⎛⎭⎫23BC →-BA →·⎝⎛⎭⎫-712BA →+BC → =712|BA →|2-2518BA →·BC →+23|BC →|2 =712×4-2518×2×1×12+23 =2918. 【答案】2918三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)如果向量AB →=i -2j ,BC →=i +m j ,其中,i ,j 分别是x 轴,y 轴正方向上的单位向量,试分别确定实数m 的值,使(1)A ,B ,C 三点共线; (2)AB →⊥BC →.【解】 (1)利用AB →=λBC →可得i -2j =λ(i +m j ),于是⎩⎪⎨⎪⎧λ=1,λm =-2,得m =-2.(2)由AB →⊥BC →得AB →·BC →=0,∴(i -2j )·(i +m j )=i 2+m i ·j -2i ·j -2m j 2=0, ∴1-2m =0,解得m =12.18.(本小题满分12分)已知函数f (x )=1-2sin ⎝⎛⎭⎫2x -π4cos x .(1)求f (x )的定义域;(2)设α是第四象限的角,且tan α=-43,求f (α)的值.【解】 (1)由cos x ≠0,得x ≠k π+π2,k ∈Z .故f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∈Z . (2)tan α=-43,且α是第四象限的角,所以sin α=-45,cos α=35.故f (α)=1-2sin ⎝⎛⎭⎫2α-π4cos α=1-2⎝⎛⎭⎫22sin 2α-22cos 2αcos α=1-sin 2α+cos 2αcos α=2cos 2 α-2sin αcos αcos α=2(cos α-sin α)=145.19.(本小题满分12分)已知函数f (x )=2sin x 2·cos x 2-2sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.【解】 (1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝⎛⎭⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4.当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22. 20.(本小题满分12分)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.【解】 (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12,∴sin ⎝⎛⎭⎫x -π4=12. 又∵x ∈⎝⎛⎭⎫0,π2,∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=π6,即x =5π12.21.(本小题满分12分)已知A ,B ,C 为△ABC 的三个内角,且A <B <C ,sin B =45,cos(2A+C )=-45,求cos 2A 的值. 【导学号:70512046】【解】 ∵A <B <C ,A +B +C =π, ∴0<B <π2,A +C >π2,0<2A +C <π.∵sin B =45,∴cos B =35,∴sin(A +C )=sin(π-B )=45,cos(A +C )=-35.∵cos(2A +C )=-45,∴sin(2A +C )=35,∴sin A =sin [(2A +C )-(A +C )] =35×⎝⎛⎭⎫-35-⎝⎛⎭⎫-45×45=725, ∴cos 2A =1-2sin 2A =527625.22.(本小题满分12分)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 【解】 (1)f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎫2x -π3+3-1, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )⎝⎛⎭⎫或⎝⎛⎭⎫k π-π12,k π+5π12(k ∈Z ). (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象,再把得到的图象向左平移π3个单位,得到y=2sin x+3-1的图象,即g(x)=2sin x+3-1,所以g⎝⎛⎭⎫π6=2sin π6+3-1= 3.。
2018-2019学年高中数学 模块综合检测(含解析)新人教A版选修4-5(1)
模块综合检测(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式|3x -2|>4的解集是( ) A .{x |x >2}B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-23 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-23或x >2D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2 解析:选C 因为|3x -2|>4,所以3x -2>4或3x -2<-4,所以x >2或x <-23.2.已知a <0,-1<b <0,那么下列不等式成立的是( ) A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a解析:选D 因为-1<b <0,所以b <b 2<1. 又因为a <0,所以ab >ab 2>a .3.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A .假设三内角都不大于60°B .假设三内角都大于60°C .假设三内角至多有一个大于60°D .假设三内角至多有两个大于60°解析:选B 至少有一个不大于60°是指三个内角有一个或者两个或者三个小于或等于60°,所以反设应该是它的对立情况,即假设三内角都大于60°.4.若a ,b 是任意实数,且a >b ,则下列不等式一定成立的是( ) A .a 2>b 2B.ba<1C .lg(a -b )>0D.⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b 解析:选D 因为函数f (x )=⎝ ⎛⎭⎪⎫13x在R 上是减函数,又a >b ,所以⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b,故选D.5.若a >0,使不等式|x -4|+|x -3|<a 在R 上的解集不是空集的a 的取值范围是( ) A .(0,1)B .{1}C .(1,+∞)D .以上均不对解析:选C 函数y =|x -4|+|x -3|的最小值为1, 所以若|x -4|+|x -3|<a 的解集不是空集,需满足a >1.6.若关于实数x 的不等式|x -1|+|x -3|≤a 2-2a -1的解集为∅,则实数a 的取值范围是( )A .(-∞,-1)∪(3,+∞)B .(-∞,0)∪(3,+∞)C .(-1,3)D .[-1,3]解析:选C |x -1|+|x -3|的几何意义是数轴上对应的点到1,3对应的两点的距离之和,故它的最小值为2.∵原不等式的解集为∅,∴a 2-2a -1<2,即a 2-2a -3<0,解得-1<a <3.7.若存在x ∈R ,使|2x -a |+2|3-x |≤1成立,则实数a 的取值范围是( ) A .[2,4] B .(5,7)C .[5,7]D .(-∞,5]∪[7,+∞)解析:选C ∵|2x -a |+2|3-x |=|2x -a |+|6-2x |≥|2x -a +6-2x |=|a -6|, ∴|a -6|≤1,解得5≤a ≤7.8.若直线x a +y b=1过点M (cos α,sin α),则( ) A .a 2+b 2≤1B .a 2+b 2≥1C.1a 2+1b 2≤1D.1a 2+1b2≥1解析:选D 因为直线x a +yb=1过点M (cos α,sin α), 所以cos αa +sin αb=1.由柯西不等式可知⎝⎛⎭⎪⎫cos αa +sin αb 2≤(cos 2α+sin 2α)·⎝ ⎛⎭⎪⎫1a 2+1b 2,当且仅当cos αsin α=1a 1b时等号成立,故1a 2+1b2≥1.9.已知不等式|y +4|-|y |≤2x+a2x 对任意实数x ,y 都成立,则常数a 的最小值为( )A .1B .2C .3D .4解析:选D 由题意得(|y +4|-|y |)max ≤2x+a2x ,而|y +4|-|y |≤|y +4-y |=4,因此2x+a2x ≥4⇒a ≥[2x (4-2x)]max ,而2x(4-2x)≤⎝ ⎛⎭⎪⎫2x +4-2x22=4,当且仅当2x =2,即x =1时取等号,所以a ≥4,a min =4. 10.设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为( ) A .4 B .4 3 C .9D .16解析:选D 因为32+x +32+y =1,所以0<32+x <1,0<32+y <1,即x >1,y >1,所以x =y +8y -1, 所以xy =y +8y -1·y =y 2+8y y -1=y -2+1y -+9y -1=(y -1)+9y -1+10 ≥2y -9y -1+10=16, 当且仅当y =4时等号成立.二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.⎪⎪⎪⎪⎪⎪2x -1x <3的解集是________________.解析:∵⎪⎪⎪⎪⎪⎪2x -1x <3,∴|2x -1|<3|x |.两边平方得4x 2-4x +1<9x 2, ∴5x 2+4x -1>0,解得x >15或x <-1.∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >15. 答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞12.若x <0,则函数f (x )=x 2+1x 2-x -1x的最小值是________.解析:令t =x +1x,因为x <0,所以-⎝ ⎛⎭⎪⎫x +1x ≥2,所以t ≤-2,则g (t )=t 2-t -2=⎝ ⎛⎭⎪⎫t -122-94,所以f (x )min =g (-2)=4.13.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1. 所以不等式的解集为{x |x ≥1}. 答案:[1,+∞)14.设实数a ,b ,c 满足a +2b +3c =4,a 2+b 2+c 2的最小值为________. 解析:由柯西不等式,得(a 2+b 2+c 2)(12+22+32)≥(a +2b +3c )2, 因为a +2b +3c =4, 故a 2+b 2+c 2≥87,当且仅当a 1=b 2=c3,即a =27,b =47,c =67时取“=”.答案:87三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.解:(1)由题设知:|x +1|+|x -2|-5≥0,在同一坐标系中作出函数y =|x +1|+|x -2|-5的图象,可知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0, 即|x +1|+|x -2|≥-a .|x +1|+|x -2|≥|x +1+2-x |=3, ∴-a ≤3,∴a 的取值范围是[-3,+∞).16.(本小题满分12分)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1由-2<-2x -1<0,解得-12<x <12,则M =⎝ ⎛⎭⎪⎫-12,12.所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14.(2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.17.(本小题满分12分)已知函数f (x )=|x -1|+|x +1|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥a 2-a 在R 上恒成立,求实数a 的取值范围.解:(1)原不等式等价于⎩⎪⎨⎪⎧x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧-1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3,解得x ≤-32或x ∈∅或x ≥32.∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-32或x ≥32. (2)由题意得,关于x 的不等式|x -1|+|x +1|≥a 2-a 在R 上恒成立. ∵|x -1|+|x +1|≥|(x -1)-(x +1)|=2, ∴a 2-a ≤2,即a 2-a -2≤0,解得-1≤a ≤2. ∴实数a 的取值范围是[-1,2].18.(本小题满分14分)已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N +.(1)当n =1,2,3时,试比较f (n )与g (n )的大小; (2)猜想f (n )与g (n )的大小关系,并给出证明.解:(1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立, ②假设当n =k (k ≥3,k ∈N +)时不等式成立, 即1+123+133+143+…+1k 3<32-12k 2.那么,当n =k +1时,f (k +1)=f (k )+1k +3<32-12k 2+1k +3.因为f (k +1)-g (k +1)<32-12k 2+1k +3-⎣⎢⎡⎦⎥⎤32-1k +2=1k +2-⎣⎢⎡⎦⎥⎤12k 2-1k +3=k +3k +3-12k 2=-3k -1k +3k 2<0,所以f (k +1)<g (k +1).由①②可知,对一切n ∈N +,都有f (n )≤g (n )成立.。
高中数学 模块综合质量检测卷 新人教A版必修4-新人教A版高一必修4数学试题
模块综合质量检测卷(时间:120分钟 满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2≤0,综上知,θ2为第二象限角.故选B.2.若sin(π-α)=log 814,且α∈⎝ ⎛⎭⎪⎫-π2,0,则cos(π+α)的值为( )A .53 B .-53C .±53D .-23解析:选B ∵sin(π-α)=sin α=log 22-23=-23,又α∈⎝ ⎛⎭⎪⎫-π2,0,∴cos(π+α)=-cos α=- 1-sin 2α= -1-49=-53.故选B. 3.设单位向量e 1,e 2的夹角为60°,则向量3e 1+4e 2与向量e 1的夹角的余弦值是( ) A .34 B .537 C .2537D .53737解析:选D ∵|3e 1+4e 2|2=9e 21+24e 1·e 2+16e 22=9+24×12+16=37,∴|3e 1+4e 2|=37.又∵(3e 1+4e 2)·e 1=3e 21+4e 1·e 2=3+4×12=5,∴cos θ=537=53737.故选D.4.(2018·某某太和中学期中)已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( )A .-1B .2C .-2或1D .-1或2解析:选D 由于A ,B ,C 三点共线,故AB →∥AC →,因为AB →=λa +2b ,AC →=a +(λ-1)b ,所以λ(λ-1)-2×1=0,解得λ=-1或λ=2.故选D.5.(2019·某某诊断)设D 为△ABC 所在平面内一点,BC →=-4CD →,则AD →=( ) A .14AB →-34AC → B .14AB →+34AC →C .34AB →-14AC → D .34AB →+14AC → 解析:选 B 解法一:设AD →=xAB →+yAC →,由BC →=-4CD →可得,BA →+AC →=-4CA →-4AD →,即-AB →-3AC →=-4xAB →-4yAC →,则⎩⎪⎨⎪⎧-4x =-1,-4y =-3,解得⎩⎪⎨⎪⎧x =14,y =34,即AD →=14AB →+34AC →,故选B.解法二:在△ABC 中,BC →=-4CD →,即-14BC →=CD →,则AD →=AC →+CD →=AC →-14BC →=AC →-14(BA →+AC →)=14AB →+34AC →,故选B.6.(2019·某某定州中学调研)函数f (x )=12(1+cos2x )·sin 2x (x ∈R )是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数解析:选D 由题意,得f (x )=14(1+cos2x )(1-cos2x )=14(1-cos 22x )=14sin 22x =18(1-cos4x ).又f (-x )=f (x ),所以函数f (x )是最小正周期为π2的偶函数,故选D.7.(2018·永州二模)已知tan ⎝ ⎛⎭⎪⎫α+π4=34,则cos 2π4-α=( )A .725 B .925 C .1625D .2425解析:选B ∵tan ⎝ ⎛⎭⎪⎫α+π4=34, ∴cos 2⎝⎛⎭⎪⎫π4-α=sin 2⎝⎛⎭⎪⎫α+π4=sin 2⎝⎛⎭⎪⎫α+π4sin 2⎝ ⎛⎭⎪⎫α+π4+cos 2⎝ ⎛⎭⎪⎫α+π4=tan 2⎝⎛⎭⎪⎫α+π4tan 2⎝⎛⎭⎪⎫α+π4+1=916916+1=925.故选B.8.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A .⎝ ⎛⎦⎥⎤-32,12 B .⎣⎢⎡⎦⎥⎤-12,32 C .⎣⎢⎡⎦⎥⎤32,1 D .⎣⎢⎡⎦⎥⎤12,1解析:选B 由x ∈⎣⎢⎡⎦⎥⎤0,π2,得x +π6∈⎣⎢⎡⎦⎥⎤π6,2π3.故y max =cos π6=32,y min =cos 2π3=-12.所以,所求值域为⎣⎢⎡⎦⎥⎤-12,32.故选B.9.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向左平移π3个单位长度后,得到的图象对应的函数解析式为( )A .y =-cos2xB .y =cos2xC .y =sin ⎝ ⎛⎭⎪⎫2x +5π6D .y =sin ⎝⎛⎭⎪⎫2x -π6解析:选C 设函数f (x )的最小正周期为T .由题图知,34T =1112π-π6,得T =2πω=π,∴ω=2;由f (x )的最大值为1,得A =1,∴f (x )=sin(2x +φ),将⎝ ⎛⎭⎪⎫π6,1代入可得sin ⎝ ⎛⎭⎪⎫π3+φ=1,又∵|φ|<π2,∴φ=π6,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.f (x )的图象向左平移π3个单位长度,可得g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6的图象.故选C .10.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58B .18C .14D .118解析:选B如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=DE →+EF →=12AC →+14AC →=34AC →,所以AF →=AD →+DF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →.又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.11.(2019·某某百校联盟联考)已知cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6,则tan ⎝ ⎛⎭⎪⎫π12+α=( )A .4-2 3B .23-4C .4-4 3D .43-4解析:选B 由题意可得-sin α=-3sin ⎝ ⎛⎭⎪⎫α+π6,即sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π12=3sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π12+π12,∴sin ⎝ ⎛⎭⎪⎫α+π12·cos π12-cos ⎝ ⎛⎭⎪⎫α+π12sin π12=3sin α+π12cos π12+3cos ⎝ ⎛⎭⎪⎫α+π12sinπ12,整理可得tan ⎝ ⎛⎭⎪⎫α+π12=-2tan π12=-2tan ⎝ ⎛⎭⎪⎫π4-π6=-2×tan π4-tanπ61+tan π4tanπ6=23-4.故选B.12.(2019·某某部分市学校联考)如图,点C 在以AB 为直径的圆上,其中AB =2,过A 向点C 处的切线作垂线,垂足为P ,则AC →·PB →的最大值是( )A .2B .1C .0D .-1解析:选B 连接BC ,则∠ACB =90°.∵AP ⊥PC ,∴AC →·PB →=AC →·(PC →+CB →)=AC →·PC →=(AP →+PC →)·PC →=PC →2.依题意可证Rt △APC ∽Rt △ACB ,∴|PC →||CB →|=|AC →||AB→|,即|PC →|=|AC →||CB →|2.∵|AC →|2+|CB →|2=|AB →|2,∴|AC →|2+|CB →|2=4≥2|AC→||CB →|,即|AC →||CB →|≤2,当且仅当|AC →|=|CB →|时取等号,∴|PC →|≤1,∴AC →·PB →=PC →2≤1,AC →·PB →的最大值为1,故选B. 二、填空题(本题共4小题,每小题5分,共20分) 13.函数f (x )=sin(-2x )的单调增区间是________. 解析:由f (x )=sin(-2x )=-sin 2x ,令2k π+π2≤2x ≤2k π+3π2(k ∈Z ),得k π+π4≤x ≤k π+3π4(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z )14.(2019·某某师大附中一模)已知两个单位向量a ,b 满足|a +2b |=3,则a ,b 的夹角为________.解析:因为|a +2b |=3,所以|a +2b |2=a 2+4a ·b +4b 2=(3)2.又a ,b 是两个单位向量,所以|a |=1,|b |=1,所以a ·b =-12.因为a ·b =|a ||b |cos 〈a ,b 〉,所以cos 〈a ,b 〉=-12,则a ,b 的夹角为2π3. 答案:2π315.(2019·某某四校协作体联考)化简:1cos 80°-3sin 80°=________.解析:1cos 80°-3sin 80°=sin 80°-3cos 80°sin 80°cos 80°=2sin (80°-60°)12sin 160°=2sin 20°12sin 20°=4.答案:416.已知向量a =(1,1),b =(-1,1),设向量c 满足(2a -c )·(3b -c )=0,则|c |的最大值为________.解析:设c =(x ,y ),则2a -c =(2-x,2-y ),3b -c =(-3-x,3-y ),则由题意得(2-x )(-3-x )+(2-y )(3-y )=0,即⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -522=132,表示以⎝ ⎛⎭⎪⎫-12,52为圆心,262为半径的圆,所以|c |的最大值为26.答案:26三、解答题(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知c =m a +n b ,c =(-23,2),a ⊥c ,b 与c 的夹角为2π3,b ·c =-4,|a |=22,某某数m ,n 的值及a 与b 的夹角θ.解:∵c =(-23,2),∴|c |=4.∵a ⊥c ,∴a ·c =0. ∵b ·c =|b ||c |cos 2π3=|b |×4×⎝ ⎛⎭⎪⎫-12=-4, ∴|b |=2.∵c =m a +n b ,∴c 2=m a ·c +n b ·c . ∴16=n ×(-4).∴n =-4. 在c =m a +n b 两边同乘以a , 得0=8m -4a ·b ,即a ·b =2m ,①在c =m a +n b 两边同乘以b ,得m a ·b =12.② 由①②,得m =± 6. ∴a ·b =±2 6.∴cos θ=±2622×2=±32.∴θ=π6或5π6.18.(12分)(2019·某某日照五中期中)已知角α的终边过点P (-4,3). (1)求tan (3π+α)sin (5π-α)-cos ⎝ ⎛⎭⎪⎫π2+α的值;(2)若β为第三象限角,且tan β=43,求cos(α-β)的值.解:(1)因为角α的终边过点P (-4,3), 所以sin α=35,cos α=-45,所以tan (3π+α)sin (5π-α)-cos ⎝ ⎛⎭⎪⎫π2+α=sin αcos αsin α+sin α=12cos α=-58.(2)因为β为第三象限角,且tan β=43,所以sin β=-45,cos β=-35.由(1)知,sin α=35,cos α=-45,所以cos(α-β)=cos αcos β+sin αsin β=-45×⎝ ⎛⎭⎪⎫-35+35×⎝ ⎛⎭⎪⎫-45=0.19.(12分)如图是函数y =A sin(ωx +φ)+k ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的. 解:(1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,所以ω=2πT =2.所以y =12sin(2x +φ)-1.当x =π6时,2×π6+φ=π2+2k π,k ∈Z ,又|φ|<π2,所以φ=π6.综上,所求函数解析式为y =12sin ⎝⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x +π6;然后纵坐标保持不变,横坐标缩短为原来的12,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6;再使横坐标保持不变,纵坐标变为原来的12,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y =12sin ⎝⎛⎭⎪⎫2x +π6-1的图象.20.(12分)已知向量a ,b 不共线.(1)若OA →=a ,OB →=t b ,OC →=13(a +b ),求当实数t 为何值时,A ,B ,C 三点共线;(2)若|a |=|b |=1,且a 与b 的夹角为120°,实数x ∈⎣⎢⎡⎦⎥⎤-1,12,求|a -x b |的取值X 围.解:(1)若A ,B ,C 三点共线,则存在实数λ,使得OC →=λOA →+(1-λ)OB →, 即13(a +b )=λa +(1-λ)t b , 则⎩⎪⎨⎪⎧λ=13,(1-λ)t =13,解得⎩⎪⎨⎪⎧λ=13,t =12.故t =12时,A ,B ,C 三点共线.(2)因为a ·b =|a ||b |cos120°=-12,则|a -x b |2=a 2+x 2b 2-2x a ·b =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34. 因为x ∈⎣⎢⎡⎦⎥⎤-1,12,所以当x =-12时,|a -x b |取得最小值,最小值为32;当x =12时,|a -x b |取得最大值,最大值为72,所以|a -x b |的取值X 围是⎣⎢⎡⎦⎥⎤32,72. 21.(12分)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0. 于是tan x =-33.又x ∈[0,π]所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π]所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.22.(12分)(2019·襄阳四校期中)设函数f (x )=cos π2-x cos x -sin 2(π-x )-12.(1)求函数f (x )的最小正周期和单调递增区间;(2)若f (α)=3210-1,且α∈⎝ ⎛⎭⎪⎫π8,3π8,求f ⎝⎛⎭⎪⎫α-π8的值.解:(1)∵f (x )=sin x cos x -sin 2x -12=12(sin 2x +cos2x )-1=22sin ⎝ ⎛⎭⎪⎫2x +π4-1,∴f (x )的最小正周期为T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)∵f (α)=22sin ⎝⎛⎭⎪⎫2α+π4-1=3210-1, ∴sin ⎝⎛⎭⎪⎫2α+π4=35.由α∈⎝ ⎛⎭⎪⎫π8,3π8知,2α+π4∈⎝ ⎛⎭⎪⎫π2,π, ∴cos ⎝⎛⎭⎪⎫2α+π4=-45. ∴f ⎝ ⎛⎭⎪⎫α-π8=22sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α-π8+π4-1word11 / 11 =22sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π4-π4-1 =22⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2α+π4cos π4-cos ⎝⎛⎭⎪⎫2α+π4sin π4-1 =22×⎝ ⎛⎭⎪⎫35×22+45×22-1=-310.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.cos1,sin1,tan1的大小关系是( D ) A .sin1<cos1<tan1 B .sin1<tan1<cos1 C .cos1<tan1<sin1D .cos1<sin1<tan1[解析] 作出单位圆,用三角函数线进行求解,如图所示,有OM <MP <AT ,即cos1<sin1<tan1.故选D .2.(2015·陕西)对任意向量a 、b ,下列关系式中不恒成立....的是( B ) A .|a ·b |≤|a ||b | B .|a -b |≤|a |-|b | C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2[解析] 对于A 选项,设向量a ,b 的夹角为θ,∵|a ·b |=|a ||b ||cos θ|≤|a ||b |,∴A 选项正确;对于B 选项,∵当向量a ,b 反向时,|a -b |≥|a |-|b |,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出(a +b )·(a -b )=a 2-b 2,故D 选项正确,综上选B .3.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( D )A .43B .34C .-34D .-43[解析] ∵α是第二象限角,∴cos α=15x <0,即x <0.又cos α=15x =xx 2+16,解得x =-3,∴tan α=4x =-43.4.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( A ) A .-32B .-53C .53D .32[解析] 因为c =(1+k,2+k ),b ·c =0,所以1+k +2+k =0,解得k =-32,故选A .5.若cos2αα-π4=-22,则sin α+cos α的值为( C ) A .-72B .-12C .12D .72[解析]cos 2α-sin 2α22α-cos α=-22,即α+sin αα-sin α22α-cos α=-22∴cos α+sin α=12.6.将函数y =cos2x 的图象上的所有点向左平移π6个单位长度,再把所得图象向上平移1个单位长度,所得图象的函数解析式是( C )A .y =cos ⎝ ⎛⎭⎪⎫2x +π6+1B .y =cos ⎝ ⎛⎭⎪⎫2x -π3+1C .y =cos ⎝⎛⎭⎪⎫2x +π3+1 D .y =cos ⎝⎛⎭⎪⎫2x -π6+1 [解析] 将函数y =cos2x 的图象上的所有点向左平移π6个单位长度,得函数y =cos2⎝ ⎛⎭⎪⎫x +π6的图象,再把y =cos2⎝⎛⎭⎪⎫x +π6的图象向上平移1个单位长度,所得图象的函数解析式是y =cos2⎝ ⎛⎭⎪⎫x +π6+1=cos ⎝⎛⎭⎪⎫2x +π3+1.7.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于( D ) A .-16 B .-8 C .8D .16[解析] 解法1:∵AB →·AC →=|AB →|·|AC →|cos A ,△ABC 为直角三角形,∴AB →·AC →=|AB →|·|AC →|·|AC →||AB →|=|AC →|2=16.故选D .解法2:∵△ACB 为直角三角形,∴AB →在AC →上的投影为AC ,∴AB →·AC →=AC →2=16. 8.已知a =(cos2α,sin α),b =(1,2sin α-1),α∈⎝ ⎛⎭⎪⎫π2,π,若a ·b =25,则tan ⎝⎛⎭⎪⎫α+π4等于( C )A .13B .27C .17D .23[解析] 由题意,得cos2α+sin α(2sin α-1)=25,整理得sin α=35.又α∈⎝ ⎛⎭⎪⎫π2,π,则cos α=-45.所以tan α=-34.则tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=17.9.每一个音都是纯音合成的,纯音的数字模型是函数y =A sin ωt ,音调、响度、音长、音色等音的四要素都与正弦函数及其参数(振幅、频率)有关.我们听到的声音是许多音的结合,称为复合音.若一个复合音的函数是y =14sin4x +16sin6x ,则该复合音的周期为( B )A .3π2B .πC .2π3D .π6[解析] y 1=14sin4x 的周期是π2,y 2=16sin6x 的周期是π3,所以y =y 1+y 2的周期应为π2与π3的公倍数π. 10.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =( C )A .5B .4C .3D .2[解析] 如图所示,△ABC 中,D 是BC 边的中点,由MA →+MB →+MC →=0易知M 是△ABC 的重心, ∴AB →+AC →=2AD →. 又∵AD →=32AM →,∴AB →+AC →=2AD →=3AM →,∴m =3,故选C .11.函数y =tan(π4x -π2)的部分图象如图,则(OA →+OB →)·AB →=( A )A .6B .4C .-4D .-6[解析] ∵点B 的纵坐标为1, ∴tan(π4x -π2)=1,∴π4x -π2=π4,∴x =3,即B (3,1). 令tan(π4x -π2)=0,则π4x -π2=0,解得x =2,∴A (2,0),∴OA →+OB →=(5,1),AB →=(1,1). ∴(OA →+OB →)·AB →=6.12.(2018·全国卷Ⅱ理,10)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( A )A .π4B .π2C .3π4D .π [解析] f (x )=cos x -sin x =-2⎝ ⎛⎭⎪⎫sin x ·22-cos x ·22=-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,34π,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时,y =sin ⎝⎛⎭⎪⎫x -π4单调递增,y =-2sin ⎝⎛⎭⎪⎫x -π4单调递减.∵ 函数f (x )在[-a ,a ]是减函数,∴ [-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,34π, ∴ 0<a ≤π4,∴ a 的最大值为π4.故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017全国卷Ⅱ理科)函数f (x )=sin 2x +3cos x -34(x ∈[0,π2])的最大值是__1__.[解析] f (x )=1-cos 2x +3cos x -34=-(cos x -32)2+1.∵x ∈[0,π2],∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1. 14.已知向量a =(1,2),b =(x,1),若a ∥b ,则实数x = 12 .[解析] ∵a ∥b ,∴1-2x =0.∴x =12.15.已知e 1、e 2是平面单位向量,且e 1· e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=3. [解析] 不妨设b =x e 1+y e 2,则b ·e 1=x +y2=1,b ·e 2=x 2+y =1,因此可得x =y =23,所以|b |=23|e 1+e 2|=233.16.关于函数f (x )=cos(2x -π3)+cos(2x +π6),有下列说法:①y =f (x )的最大值为2;②y =f (x )是以π为最小正周期的周期函数; ③y =f (x )在区间(π24,13π24)上单调递减;④将函数y =2cos2x 的图象向左平移π24个单位后,将与已知函数的图象重合.其中正确说法的序号是__①②③__.(注:把你认为正确的说法的序号都填上) [解析] 化简f (x )=cos(2x -π3)+cos(2x +π2-π3)=cos(2x -π3)-sin(2x -π3)=2cos(2x -π12),∴f (x )max =2,即①正确.T =2π|ω|=2π2=π,即②正确. f (x )的递减区间为2k π≤2x -π12≤2k π+π(k ∈Z ).即k π+π24≤x ≤k π+1324π(k ∈Z ),即③正确.将函数y =2cos2x 向左平移π24个单位得y =2cos[2(x +π24)]≠f (x ),∴④不正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)在△AOB 中,C 是AB 边上的一点,且BC →=λCA →(λ>0),若OA →=a ,OB →=b .(1)当λ=1时,用a 、b 表示OC →; (2)用a 、b 表示OC →.[解析] (1)当λ=1时,BC →=CA →,即C 是AB 的中点, ∴OC →=12(OB →+OA →)=12a +12b .(2)∵BC →=λCA →,∴BC →=λ1+λBA →.又BA →=OA →-OB →=a -b , ∴BC →=λ1+λ(a -b ).∴OC →=OB →+BC →=b +λ1+λ(a -b )=λ1+λa +11+λb . 18.(本题满分12分)(2018·浙江卷,18)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.[解析] (1)解:由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)解:由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.19.(本题满分12分)已知点A (1,0)、B (0,1)、C (2sin θ,cos θ). (1)若|AC →|=|BC →|,求sin θ+2cos θsin θ-cos θ的值;(2)若(OA →+2OB →)·OC →=1,其中O 为坐标原点,求sin θ·cos θ的值. [解析] ∵A (1,0)、B (0,1)、C (2sin θ,cos θ), ∴AC →=(2sin θ-1,cos θ), BC →=(2sin θ,cos θ-1).(1)|AC →|=|BC →|, ∴θ-2+cos 2θ=θ2+θ-2,化简得2sin θ=cos θ, ∴tan θ=12.∴sin θ+2cos θsin θ-cos θ=tan θ+2tan θ-1=12+212-1=-5. (2)OA →=(1,0),OB →=(0,1),OC →=(2sin θ,cos θ), ∴OA →+2OB →=(1,2), ∵(OA →+2OB →)·OC →=1, ∴2sin θ+2cos θ=1, ∴(sin θ+cos θ)2=14,∴1+2sin θcos θ=14,∴sin θcos θ=-38.20.(本题满分12分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为4+π2.(1)求f (x )的解析式; (2)若tan α+1tan α=5,求2fα-π4-11-tan α的值.[解析] (1)设最高点为(x 1,1),相邻的最低点为(x 2,-1), 则|x 1-x 2|=T2(T >0),∴x 1-x 22++2=4+π2,∴T 24+4=4+π2,∴T =2π=2π|ω|,又ω>0,∴ω=1. ∴f (x )=sin(x +φ). ∵f (x )是偶函数, ∴φ=k π+π2(k ∈Z ).∵0≤φ≤π,∴φ=π2,∴f (x )=sin(x +π2)=cos x .(2)∵tan α+1tan α=5,∴sin αcos α+cos αsin α=5, ∴sin αcos α=15,∴2f α-π4-11-tan α=2α-π4-11-tan α=2αcos π4+sin2αcossinπ4-11-sin αcos α=cos2α+sin2α-1cos α-sin αcos α=αcos α-2sin 2ααcos α-sin α=2sin αcos α=25.21.(本题满分12分)如图,矩形ABCD 的长AD =23,宽AB =1,A ,D 两点分别在x 轴,y 轴的正半轴上移动,B ,C 两点在第一象限.求OB 2的最大值.[解析] 过点B 作BH ⊥OA ,垂足为H .设∠OAD =θ(0<θ<π2),则∠BAH =π2-θ,OA =23cos θ,BH =sin(π2-θ)=cos θ, AH =cos(π2-θ)=sin θ,所以B (23cos θ+sin θ,cos θ),OB 2=(23cos θ+sin θ)2+cos 2θ=7+6cos2θ+23sin2θ=7+43sin(2θ+π3).由0<θ<π2,知π3<2θ+π3<4π3,所以当θ=π12时,OB 2取得最大值7+43.22.(本题满分12分)已知向量m =(sin 12x,1),n =(43cos 12x ,2cos x ),设函数f (x )=m·n .(1)求函数f (x )的解析式.(2)求函数f (x ),x ∈[-π,π]的单调递增区间.(3)设函数h (x )=f (x )-k (k ∈R )在区间[-π,π]上的零点的个数为a ,试探求a 的值及对应的k 的取值范围.[解析] (1)f (x )=m·n =43sin 12x cos 12x +2cos x=23sin x +2cos x =4sin(x +π6). (2)由(1),知f (x )=4sin(x +π6),x ∈[-π,π],所以x +π6∈[-5π6,7π6],由-π2≤x +π6≤π2,解得-2π3≤x ≤π3,所以函数f (x )的单调递增区间为[-2π3,π3].(3)当x ∈[-π,π]时,函数h (x )=f (x )-k 的零点讨论如下: 当k >4或k <-4时,h (x )无零点,a =0; 当k =4或k =-4时,h (x )有一个零点,a =1; 当-4<k <-2或-2<k <4时,h (x )有两个零点,a =2; 当k =-2时,h (x )有三个零点,a =3.。