优秀电子技术课程设计+数字频率计
电子技术设计报告频率计
电子技术设计报告频率计引言频率计是一种广泛使用的电子设备,它可以测量电子设备中信号的频率。
频率计广泛应用于各种领域,包括无线通信、音频、雷达、测量和控制等领域。
本文将介绍一种电子技术设计报告频率计,包括其原理、设计步骤、测试和评估。
原理频率计的基本原理是计算输入信号的周期,然后通过周期计算频率。
为了计算周期,频率计使用一个计数器,并将其与输入信号同步。
当输入信号的一个完整周期结束时,计数器将计数器加1。
通过频率计算器和计算时间,可以计算出输入信号的频率。
设计步骤1. 选择信号源:频率计需要一个信号源,该信号源可以是一个放大器、一个信号发生器或一个电路板的特定部分。
选择的信号源应该产生一个稳定的、固定频率的信号。
2. 选择计数器:根据所测量的频率范围选择计数器类型。
如果需要测量高频,可以选择快速计数器,而对于低频测量,则应选择慢速计数器。
3. 选择计数器时基:选择计数器的时基可以是信号源的参考时钟、一个晶体时钟或一个精密时基。
4. 选择显示器:频率计需要一个显示器来显示测量结果。
可以选择数字或模拟显示器,也可以选择通过计算机软件实现的图形显示器。
5. 设计频率计电路:根据选择的组件和设计要求,设计频率计电路。
6. 构建电路:将设计好的电路板组装到一个适当的机箱中,并进行初始测试。
确保电路板工作正常,并且测量结果准确。
测试和评估1. 实际测量:使用测量仪器测量信号源的频率,并将其与频率计测量的结果进行比较。
确保频率计的测量误差在合理范围内。
2. 稳定性测试:通过让信号源的频率变化来测试频率计的稳定性。
确保频率计以稳定和准确的方式测量变化的频率。
3. 精度测试:使用一个校准信号源来测试频率计的精度。
确保频率计测量的频率与校准信号源产生的频率误差在合理范围内。
总结本文介绍了一种电子技术设计报告频率计,包括其原理、设计步骤、测试和评估。
频率计是一种广泛使用的电子设备,用于测量电子设备中信号的频率。
通过选择适当的信号源、计数器和显示器以及设计频率计电路,可以构建一个稳定准确的频率计。
电子技术课程设计(数字频率计的设计)
一课程设计题目:数字频率计的设计二、功能要求(1)主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。
(2)率范围:分四1Hz~999Hz、01kHz~9.99kHz、1kHz~99.9kHz、10~999KHZ(3)周期范围:1ms~1s。
(4)用3个发光二极管表示单位,分别对应3个高档位。
三频率计设计原理框图正弦波数字频率计原理框图1测试电路原理:在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。
改闸门信号控制闸门电路的导通与开断。
让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。
测量频率的误差与闸门信号的精度直接相关。
被测信号频率测量算法对应的方框图四、各部分电路及仿真1 整形电路部分整形电路的目的是将三角波、正弦波变成方便计数的脉冲信号。
整形电路可以直接用555定时器构成施密特触发。
本次设计采用555定时器,适当连接若干个电阻就可以构成触发器图1-1 整形电路将555定时器的THR和TR1两个输入端连在一起作为信号输入端,则可得到显示电路闸门产生输入电路闸门计数电路施密特触发器,为了提高其稳定性通常要在要在CON端口接入一个0.01uf左右的滤波电容。
但使用555定时器的时候输入的电压应该要大于5V,本次设计直接用信号源来做输入信号,并且信号源的振幅为10V,没有用放大电路将信号放大。
2 时基电路时基电路时用来控制闸门信号选通的时间,由于本次设计的频率计测试范围是0到999KHz,故时基信号要有1ms 10ms 100ms 1s,基于上述,还需要一个分频器分出不同的频率。
设计过程如下:可用一个多谐振电路产生频率为1KHz的脉冲信号(即T=1ms),然后使用分频器产生10ms 100ms 1s。
课程设计数字频率计
课程设计数字频率计一、课程目标知识目标:1. 理解并掌握数字频率计的基本原理与功能,了解其在实际生活中的应用。
2. 学会使用特定软件或工具进行数字频率计的设计与仿真。
3. 掌握基本的计数、计时方法,并将其应用于数字频率计的搭建。
技能目标:1. 能够运用已学知识,设计并搭建一个简单的数字频率计,培养动手操作能力和问题解决能力。
2. 能够运用逻辑思维,分析并优化数字频率计的设计方案,提高创新意识和团队协作能力。
3. 能够熟练运用相关软件或工具进行数字频率计的仿真实验,提高计算机操作技能。
情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发学习热情,形成积极的学习态度。
2. 培养学生的团队合作精神,学会倾听、交流、分享,增强集体荣誉感。
3. 使学生认识到科技对社会发展的作用,提高社会责任感和使命感。
本课程针对初中年级学生,结合电子技术课程内容,以数字频率计为主题,旨在培养学生的动手操作能力、问题解决能力和创新意识。
在教学过程中,注重理论与实践相结合,让学生在实际操作中掌握知识,提高技能,同时注重情感态度价值观的培养,使学生在学习过程中形成积极向上的人生态度。
通过本课程的学习,学生能够达到上述课程目标,为后续相关知识的学习奠定基础。
二、教学内容1. 理论知识:- 数字频率计的基本原理与功能- 频率的定义及测量方法- 计数器、定时器的工作原理2. 实践操作:- 数字频率计的硬件组成与电路设计- 软件仿真工具的使用方法- 设计并搭建数字频率计的实验步骤3. 教学大纲:- 第一阶段:数字频率计基本原理学习(1课时)- 理解频率概念,掌握频率测量方法- 了解数字频率计的基本原理与功能- 第二阶段:硬件组成与电路设计(2课时)- 学习数字频率计的硬件组成- 掌握计数器、定时器的工作原理- 分析并设计数字频率计电路- 第三阶段:软件仿真与实验操作(2课时)- 学习并掌握软件仿真工具的使用方法- 设计实验方案,搭建数字频率计- 进行仿真实验,验证设计效果4. 教材关联:- 本教学内容与教材中“电子技术基础”、“数字电路设计与应用”等章节相关。
大学电子技术综合设计四 数字频率计
综合设计四 数字频率计一、设计任务设计一台简易的数字频率计,其技术指标和要求:1、频率测量范围:1~10HZ KHZ ,10~100HZ KHZ ,100~1HZ MHZ ;2、频率准确度:3210xxf f -∆≤±⨯ ; 3、被测信号幅度:0.2~5xm V V V =(正弦波、三角波、方波);4、显示及工作方式:4位十进制数显示,小数点自动定位,单位指示灯自动显示。
5、画出数字频率计的整体设计电路图,并完成电路的调试。
6、写出实验报告和体会。
二、设计提示及参考电路所谓频率,就是周期性信号在单位时间(1S )内变化的次数。
若在一定时间间隔T 内侧的这个周期性信号的重复变化次数为N ,则其频率可表示为:NTf =频率准确度:一般用相对误差来表示,即: 1x xx f f f T f f c c ⎛⎫∆∆=±+ ⎪ ⎪⎝⎭ 式中的11x N Tf N N∆±==为量化误差(即±1个字的误差),是数字仪器所特有的误差。
当闸门时间T 选定之后,x f 越低,量化误差就越大。
f Tf Tc c ∆∆=为闸门时间相对误差,主要有时基电路标准频率的准确度决定,1xf f Tf c c ∆<<。
1、数字频率计测频的基本原理数字频率计的组成框图见图4-1所示。
当被测信号x U 经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号x f 相同。
时基电路提供标准时间基准信号Ⅱ,其高电平持续时间1t S =,当1S 信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到1S 信号结束时闸门关闭,停止计数。
若在闸门时间1S 内计数器计得的脉冲个数为N ,则被测信号频率()x f N Hz =。
逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生清零脉冲Ⅴ,使计数器每次测量从0开始计数。
各信号之间的时序关系见图4-2。
2、基本电路设计(1)放大整形电路:是由晶体管和与非门等器件组成,其中3DG100组成放大器将输入频率为x f 的周期信号如正弦波、三角波等进行放大。
数电课程设计_数字频率计(终稿)
数电课程设计_数字频率计(终
稿)
本次数电课程设计主要实现一个数字频率计,它可以测量输入信号的频率。
该设备使用一块单片机作为控制器,它可以记录输入信号的周期数和时间,并将其显示在LCD上。
此外,还可以将测量出来的频率储存在EEPROM 中,方便以后使用。
实验原理:在这个频率计中,使用一个电容来检测输入信号的频率。
当电容的电荷量达到一定程度时,即可得出输入信号的一个周期。
单片机通过记录每个周期花费的时间,就可以确定信号的频率。
硬件组成:1.单片机AT89S52;2. LCD1602显示屏;
3. EEPROM24C04;
4. 电容C1。
软件编程:单片机的程序主要由三部分构成,分别是初始化程序、按键处理程序和频率测量程序。
初始化程序:主要用于初始化硬件设备,包括LCD、EEPROM、电容等。
按键处理程序:主要是用于处理用户按键操作,如开始、暂停、结束等操作。
频率测量程序:主要是用于测量输入信号的频率,将测量结果显示在LCD上,并且将结果存储在EEPROM中。
本次课程设计的实现,已经能够完成测量输入信号的频率,并将测量结果显示在LCD上,并将结果存储在EEPROM中。
数字频率计课程设计
数字频率计课程设计引言数字频率计是一种用来测量波形信号频率的仪器。
在本次课程设计中,我们将设计并实现一个基于微控制器的数字频率计。
在设计过程中,我们将使用Arduino开发板以及相应的传感器和电路组件。
本文档将介绍该课程设计的目标、设计思路、实现步骤以及预期的结果。
目标本次课程设计的目标是通过设计一个数字频率计来实现以下功能: 1. 测量输入的波形信号的频率。
2. 将测量结果以数字形式在液晶显示屏上显示。
设计思路1.硬件设计:•使用Arduino开发板作为主控制器。
•使用一个脉冲传感器作为输入信号源。
•使用一个液晶显示屏来显示测量结果。
2.软件设计:•使用Arduino编程语言编写程序。
•通过读取脉冲传感器的信号来计算输入信号的频率。
•将计算得到的频率值通过串口传输给液晶显示屏。
实现步骤1.硬件连接:•将脉冲传感器的输出引脚连接到Arduino开发板的数字输入引脚。
•将液晶显示屏的控制引脚连接到Arduino开发板的对应输出引脚。
2.软件编程: ```c // 引入LiquidCrystal库 #include<LiquidCrystal.h>// 定义液晶显示屏的引脚 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);// 定义脉冲传感器的引脚 int pulsePin = 7;// 定义变量存储频率值 float frequency = 0;void setup() { // 初始化液晶显示屏 lcd.begin(16, 2);// 设置脉冲传感器引脚为输入状态 pinMode(pulsePin, INPUT);// 设置波特率为9600 Serial.begin(9600); }void loop() { // 定义变量存储脉冲计数值 int pulseCount = 0;// 计算脉冲计数值 while (pulseCount < 1000) { if (digitalRead(pulsePin) == HIGH) { pulseCount++; delayMicroseconds(100); } }// 计算频率值 frequency = pulseCount / 1000.0;// 在串口上发送频率值 Serial.println(frequency);// 清除液晶屏内容 lcd.clear();// 在液晶屏上显示频率值 lcd.setCursor(0, 0); lcd.print(。
数字频率计课程设计
课程设计任务书一、设计题目数字频率计设计二、设计任务频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。
其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。
用中小规模数字集成电路和半导体显示器件实现以下技术指标:频率测量范围:10~9999Hz输入电压幅度:300mV~3V输入信号波形:任意周期信号显示位数: 4位电源: 220V50Hz三、设计计划电子技术课程设计共1周:第1天:针对选题查阅资料,确定设计方案;第2天:电路原理设计,进行元器件及参数选择;第3~4天:电路仿真,画电路原理图;第5天:编写整理设计说明书。
四、设计要求1. 系统工作原理说明;2. 画出系统电路原理图;3. 对所设计的电路全部或部分进行仿真,使之达到设计任务要求;4. 写出设计说明书。
指导教师:时间:年月日目录0综述 (1)1 方案论证 (5)2 原理及技术指标 (6)3 单元电路设计及参数计算 (8)3.1时基电路 (8)3.2放大整形电路 (9)3.3逻辑控制电路 (9)3.4计数器 (10)3.5锁存器 (12)3.6译码电路 (13)4 仿真 (13)5 设计小结 (14)5.1 设计任务完成情况 (14)5.2 问题及改进 (15)5.3 心得体会 (15)6 参考书目 (15)摘要数字频率计是一种用十进制数字,显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号,方波信号以及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,显示直观,所以经常要用到数字频率计。
频率测量中直接测量的数字频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。
在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成方波信号,加到与非门的另一个输入端上.该与非门起到主阀门的作用,在与非门第二个人输入端上加阀门控制信号,控制信号为低电平时阀门关闭,无信号进入计数器;控制信号为高电频时,阀门开启整形后的信号进入计数器,若阀门控制信号取1s,则在阀门时间1s内计数器得到的脉冲数N就是被测信号的频率.在普通的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。
数字电子技术课程设计数字频率计
设计内容及要求错误!未找到引用源。
技术要求测量频率范围:1000Hz~10000Hz;被测信号:方波或正弦波峰峰值为3V~5V(与TTL 兼容);显示方式:4位十进制数显示。
错误!未找到引用源。
设计步骤及要求错误!未找到引用源。
拟定数字频率计的组成框图,设计各单元电路,并用Multisim仿真;错误!未找到引用源。
在通用电路板上安装、调试电路,并测试技术指标;错误!未找到引用源。
拟写设计报告。
内容包括:整机框图及工作原理、各单元电路设计说明及实验测试数据与波形、总电路图和设计心得与体会。
错误!未找到引用源。
选做内容错误!未找到引用源。
用计数法测量周期;错误!未找到引用源。
扩展测频范围10KHz~100KHz。
摘要:本次课程设是针对简易频率计的设计,在设计过程中,所有电路仿真均基于multisim仿真软件。
multisim软件的仿真功能十分强大,可以几乎100%地仿真出真实电路的结果,而且它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器等工具,它的器件库中则包含了许多大公司的晶体管元器件、集成电路和数字门电路芯片,器件库中没有的元器件,还可以由外部模块导入,利用它可以直接从屏幕上看到各种电路的输出波形。
本课程设计介绍了简易频率计的设计方案及其基本原理,并着重介绍了频率计各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。
整个设计配以仿真电路图和波形图加以辅助说明。
设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是仿真结果及分析,这部分是为了分析电路是否按理论那样正常工作,便于理解。
三是性能测试,这部分用于测试设计是否符合任务要求。
最后是对本次课程设计的总结。
关键字:频率计、时基电路、逻辑控制、分频、计数、逻辑显示。
一、设计方案的选择信号的频率就是信号在单位时间内所产生的脉冲个数,其表达式为f=N/T,其中f为被测信号的频率,N为技术其所累计的脉冲个数,T为产生N个脉冲所需的时间。
电子线路课程设计报告-数字频率计
课程设计课题:数字频率计指导老师:设计组员:时间:【课题名称】:数字频率计【课题名称任务及要求】:数字频率计用于测量正弦信号,矩形信号等波形的频率,其概念是单位时间里的脉冲个数,如果用一个定时时间T控制一个闸门电路,时间T内闸门打开,让被测信号通过而进入计数译码,可得到被测信号的频率fx=N/T,若T=1秒,则fx=N.设计要求:1.基本部分(1)被测信号的频率范围为1HZ-100KHZ,分成两个频段,即1HZ-999HZ,1-100KHZ.(2)具有自检功能,即用仪器内部的标准脉冲校准测量精度。
(3)用3为数码管显示测量数据,测量误差小于10%。
2.发挥部分(1)用发光二极管表示单位,当绿灯亮时表示HZ,红灯亮时表示KHZ。
(2)具有超量程报警功能,在超出当前量程挡的测量范围时,发出红光和音响信号。
(3)测量误差小于5%。
(4)其它.【指导老师】:张龙滨老师【课题组成员】:陈仪发、刘甲海、袁其银(按姓氏笔画排序)【成员分工】:【课题计划】:【内容摘要】:本数字频率计主要应用2个EN555分别构成时钟电路,整形电路,7809稳压电源电路CD4017分频3片CD40110计数锁存译码,3个7断数码显示器。
【作品设计】:将电路分成十大模块,即整形电路,电源电路,时钟电路,10进制分频电路,闸门电路,控制电路,计数/锁存/译码电路,显示电路。
电路方框图如下:正弦波数字频率计原理框图一、单元电路的设计: (1)电源电路平使CD4017清零,Q1、Q2、Q3Q4端全变为低电平CD4017的输出端出现的瞬时高电平信号通过二极管D4加到CD40110(1-3)的清零端R使计数器及数显清零,以便从新计数当开关打到1S档时频率计的检测周期为4S 每检测一次计数累积时间为1S数据保持为2S清零后又保持约1S,当开关打到0.001S 档时由于检测周期很短所以数显一值显示被检测结果。
.当开关打至0。
1档,计数为999HZ时,再来一个脉冲,则A6的进位输出一个高电平送入报警电路从而实现起量程报警同时送入40110的清0端计数清0及数量清0当开关打至0.001s档时当计数至1..KHZ时,再来一个脉冲则A940110的a、b输入高电平A5、A2、A4、A1 打开,从而实现100KHZ超量程报警。
数字频率计课程设计
数字频率计课程设计
一、课程背景
数字频率计,又称计数频率,是一种统计运算工具,能根据数据中某一个特定值的出现频率来进行统计分析。
它能够快速分析出现在数据集中的相同值的出现次数,以及每种值的贡献出现的百分比。
数字频率计应用广泛,如在统计数据分析、市场营销中用于调研数据等,但由于它需要相当复杂的数学计算,它是一种极具挑战性的课题。
二、课程内容
1. 数字频率计的统计理论:介绍数字频率计学领域的基本概念、计算公式及可能出现的误差,以及假设检验等内容;
2. 数字频率计的应用举例:讨论典型场景下的应用实例,如抽市场调研抽样的计算方法以及相关的统计推导等;
3. 数字频率计的实战操作:掌握如何使用计算机处理数据,并实现数字频率计的计算;
4. 数字频率计的数学证明:引用数学原理及推导数学证明,以便深入理解数字频率计的原理。
三、教学与考核
1. 教学模式:以讲授、展示、实验、课堂练习等多种形式进行授课,以及通过学习资料、习题、在线课程等形式进行辅助教学;
2. 考试形式:结合课堂教学及辅助教学材料,在授课结束后举行考试,综合考查学生掌握的理论知识点和实际应用能力;
3. 教学评价:参与课堂的讨论及作业的提交,是对学生学习情况的重要指标。
良好考试成绩及活跃参与讨论的同学将获得较高分数。
数字电路课程设计--自动换挡型1Hz-9.99KHz频率计
数字电子技术课程设计(频率计设计)姓名:学号:班级:成绩:指导老师:设计时间:一.设计题目自动换挡型1Hz-9.99KHz频率计二.设计要求1设计一个能测量1Hz—9.99KHz、TTL电平的频率计,具有自动换挡功能。
要求用三位数字显示,1—999Hz显示单位为Hz、1KHz—9.99KHz显示单位为0.01KHz。
画出完整的电路图,说明电路的工作原理。
2根据所给参考电路分析其工作原理并解答思考题。
3 根据上述原理电路图,在印刷电路图中标出元器件的位置及代号,并完成跳线,使连接完整。
4 组装、调试频率计;写出实验、调试报告。
选作内容:1频率计输入接口,可以测量5mV—10V的正弦波、三角波方波信号。
2让频率计具有以下精度:1—99Hz精度为0.2Hz100—999Hz精度为0.5Hz1KHz—9.99KHZ精度为1Hz三.题目分析:所谓频率,就是周期性信号在单位时间(1s)里变化的次数。
根据频率计的测频原理,可以选择合适的基准信号即闸门时间,对输入被测信号脉冲进行计数,实现测频的目的。
并且当频率超过一定值后,电路能够自动换挡。
四.整体构思:本数字频率计的设计思路是:1 数字频率计的主要功能是测量周期信号的频率。
频率是单位时间( 1S )内信号发生周期变化的次数。
如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
2 数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
值了。
此时的时基信号为输入信号。
3 自动换挡,由于此频率计只有三个数码管显示,故数字频率即必须采用自动换挡的方式工作,当所测频率超过999Hz时自动换挡,借助分频器分频后通过数码管显示。
五.具体实现:画出总体方框图和原理图并给出说明。
原理图必须电脑画。
课程设计数字频率计
课程设计数字频率计一、教学目标本课程旨在通过数字频率计的学习,让学生掌握以下知识目标:理解数字频率计的基本原理和构成;掌握数字频率计的各部分电路及其功能;了解数字频率计在工程和科学研究中的应用。
技能目标为:能够熟练使用数字频率计进行频率测量;能够分析并解决数字频率计使用中遇到的问题。
情感态度价值观目标为:培养学生对电子技术的兴趣和好奇心,激发学生探索科学的热情。
二、教学内容本课程的教学内容主要包括数字频率计的基本原理、构成及其各部分电路的功能,数字频率计的使用方法,以及数字频率计在实际工程和科学研究中的应用。
具体涉及教材的第三章“数字频率计”,内容涵盖数字频率计的定义、分类、工作原理、主要技术指标、使用方法等。
三、教学方法为了提高教学效果,将采用多种教学方法相结合的方式进行教学。
包括:讲授法,用于讲解数字频率计的基本原理、构成及使用方法;讨论法,用于分析数字频率计在实际应用中遇到的问题;实验法,用于让学生亲自动手操作数字频率计,加深对知识的理解。
四、教学资源教学资源包括教材、实验设备、多媒体资料等。
教材为《电子技术基础》第三版,实验设备包括数字频率计、示波器等,多媒体资料包括教学PPT、视频等。
这些资源将有助于支持教学内容和教学方法的实施,提高学生的学习兴趣和效果。
五、教学评估本课程的评估方式包括平时表现、作业、考试等。
平时表现主要评估学生在课堂上的参与度、提问回答等情况;作业包括课堂练习和课后作业,主要评估学生的理解和应用能力;考试包括期中考试和期末考试,主要评估学生对课程知识的掌握程度。
评估方式将客观、公正,全面反映学生的学习成果。
六、教学安排本课程的教学安排如下:共32课时,每周2课时,共计16周。
教学地点为教室。
教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。
同时,教学安排还考虑学生的实际情况和需要,如学生的作息时间、兴趣爱好等,以提高学生的学习效果。
七、差异化教学根据学生的不同学习风格、兴趣和能力水平,本课程将设计差异化的教学活动和评估方式。
电子线路课程设计之数字频率计设计
PPT 1电子线路课程设计(一)——数字频率计设计PPT 2一、课程设计的目的通过“数字频率计”设计,学习小型电子系统的设计方法。
初步掌握整机方案拟定、单元电路设计、整机电路安装、调试、性能指标测试等基本方法。
PPT 3二、设计任务设计并实现一个具有四位十进制数字显示功能的频率计。
基本要求:1、频率测量范围:1Hz ~99.99kHz2、频率测量准确度:Δfx/fx ≤∣±10-2∣3、被测信号类型及幅度:正弦波、三角波、方波,Uspp ≥0.5V 。
4、闸门时间及显示要求:1)闸门时间为10S 时,显示001.0~999.9Hz 2)闸门时间为1S 时,显示0001~9999Hz 3)闸门时间为0.1S 时,显示10.00~99.99KHzPPT 4三、设计原理1、测量频率的基本原理所谓“频率”就是周期性信号在单位时间(1S )内变化的次数。
数字频率计测频原理框图及工作波形图①②③④⑤PPT 52、数字频率计的基本组成及工作过程如图是本次所设计数字频率计的基本组成框图,它由时 基电路、脉冲形成电路、闸门电路、计数器、锁存器、 逻辑控制电路和译码显示器组成。
PPT 6工作过程:被测信号fx 经脉冲形成电路整形,变成边沿陡峭的脉冲信号,如图中①所示,其周期Tx 与被测信号的周期相同。
时基电路产生标准时间信号②,设其高电平持续时间T1=1S ,在T1时间内将闸门电路打开,使脉冲信号①通过,至计数器计数,计数器在T1=1S 时间内计得的脉冲信号①的周期数③就是被测信号的频率。
逻辑控制电路的作用有两个:一个是在计数结束时产生锁存信号④,将计数值N 存入锁存器,使显示器上的数字稳定显示。
另一个作用是锁存完成后产生清零脉冲⑤,使计数器每次从零开始计数。
这些信号之间的时序关系如图所示。
这里锁存和清零均在时间T4内完成,故测量时间T ∑= T1+T4 。
……………①②③④⑤T1T4NN锁存T2T3清零PPT 7 3、频率测量的主要技术指标(1)频率准确度数字频率计测量频率fx时的测量误差称为频率准确度,常用相对误差Δfx/fx来表示。
课程设计数字频率计
课程设计 数字频率计一、课程目标知识目标:1. 学生能理解数字频率计的基本原理,掌握其电路组成和工作方式。
2. 学生能运用数学知识,计算出数字频率计的测量范围,并解释相关计算公式。
3. 学生能运用物理知识,解释数字频率计测量频率时的误差来源。
技能目标:1. 学生能够独立完成数字频率计的搭建,并进行简单的调试和测量。
2. 学生能够运用所学知识,解决实际测量中遇到的问题,提高动手操作能力和问题解决能力。
3. 学生能够通过小组合作,进行数字频率计的优化设计和创新改进。
情感态度价值观目标:1. 学生能够认识到数字频率计在实际应用中的重要性,激发对电子技术的学习兴趣。
2. 学生通过动手实践,培养团队协作意识,增强克服困难的信心和勇气。
3. 学生能够养成严谨的科学态度,注重实验数据的准确性和实验过程的完整性。
课程性质:本课程属于电子技术实践课程,以项目式教学为主,结合理论教学和动手实践。
学生特点:学生处于八年级,具有一定的数学、物理基础和动手能力,对电子技术有一定的好奇心和兴趣。
教学要求:注重理论与实践相结合,引导学生主动探究,培养创新意识和实践能力。
在教学过程中,关注学生的个体差异,因材施教,确保每个学生都能在课程中收获成果。
通过课程学习,使学生能够将所学知识应用于实际生活和未来学习。
二、教学内容1. 数字频率计基本原理:介绍频率计的作用,原理及其在电子测量中的应用,对应教材第3章第2节。
- 电路组成和工作方式- 频率测量方法及误差来源2. 数字频率计电路分析与搭建:分析数字频率计的电路结构,进行实际操作搭建,对应教材第3章第3节。
- 电路元件的识别与选用- 电路搭建步骤及注意事项3. 数字频率计的测量与调试:学习测量原理,进行实际测量和调试,对应教材第3章第4节。
- 测量范围计算与公式解释- 调试方法及技巧4. 数字频率计的优化与创新:针对现有频率计进行优化设计和创新改进,对应教材第3章第5节。
- 小组合作,讨论设计方案- 创新改进,提高测量精度和稳定性教学大纲安排:第1课时:数字频率计基本原理学习第2课时:数字频率计电路分析与搭建第3课时:数字频率计的测量与调试第4课时:数字频率计的优化与创新设计教学内容进度:第1-2周:学习基本原理,进行电路分析与搭建第3周:进行测量与调试,总结问题与经验第4周:优化设计与创新改进,展示成果与评价反思三、教学方法1. 讲授法:教师通过生动的语言和形象的表达,讲解数字频率计的基本原理、电路组成和测量方法,使学生系统地掌握理论知识,对应教材第3章第2-3节。
数字频率计课程设计
数字频率计 课程设计一、课程目标知识目标:1. 学生能理解数字频率计的基本原理,掌握其工作流程和计算方法。
2. 学生能掌握频率、周期、频率分辨率等基本概念,并运用这些概念分析实际问题。
3. 学生能通过实际操作,学会使用数字频率计进行频率测量,并准确读取数据。
技能目标:1. 学生能够运用所学知识,设计简单的数字频率计电路,提高动手实践能力。
2. 学生能够运用频率测量方法,解决实际生活中的问题,培养解决问题的能力。
3. 学生能够通过小组合作,进行数字频率计的搭建和调试,提高团队协作能力。
情感态度价值观目标:1. 学生通过学习数字频率计,培养对电子技术的兴趣,激发创新精神。
2. 学生在学习过程中,养成积极思考、主动探究的良好学习习惯。
3. 学生能够认识到数字频率计在实际应用中的重要性,增强社会责任感和使命感。
课程性质:本课程属于电子技术实践课程,注重理论与实践相结合,培养学生的动手能力和实际操作技能。
学生特点:六年级学生具有一定的电子技术基础,好奇心强,喜欢动手实践,但需加强对理论知识的学习。
教学要求:教师应注重启发式教学,引导学生主动探究,关注学生的个体差异,提高学生的实践能力和综合素质。
在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 理论知识:- 频率、周期、频率分辨率等基本概念及其相互关系;- 数字频率计的原理、工作流程和计算方法;- 数字频率计的电路组成和功能。
2. 实践操作:- 数字频率计的搭建与调试;- 频率测量方法及其在实际生活中的应用;- 小组合作进行数字频率计电路设计与优化。
3. 教学大纲安排:- 第一课时:回顾频率、周期等基本概念,介绍数字频率计原理及计算方法;- 第二课时:分析数字频率计的电路组成和功能,进行电路搭建与调试;- 第三课时:学习频率测量方法,开展实践操作,解决实际问题;- 第四课时:小组合作,设计并优化数字频率计电路,展示与交流。
课程设计 频率计的设计
学生姓名(学号) )课程名称数字电子技术设计题目数字频率计设计完成期限自 2009 年 6 月 24至 2009 年 6月 30 共 1 周设计依据已学过电路分析、模拟电子技术、数字电子技术,按照教学计划要求进行《数字电子技术课程设计》。
设计要求及主要内容1、设计一个3位十进制频率计,其测量范围为1MHz。
量程分为10KHz、100KHz、1MHz三档(最大读数分别为9.99KHz、99.9KHz、999KHz),量程转换规则如下:(1)当读数大于999时,频率计处于超量程状态,此时显示器发出溢出指示。
下一次测量时,量程自动增大一档。
(2)当读数小于099时,频率计处于欠量程状态,下一次测量时,量程自动减小一档。
2、显示方式如下:(1) 采用记忆显示方式。
即计数过程中不显示数据,等到计数过程结束以后,显示计数结果,并将此计数结果保持到下一次计数结束。
显示时间不小于1s。
(2) 小数点位置随量程变换自动移位。
3、对电路进行仿真。
参考资料[1]MAXPLUSII 及 VHDL 使用教程.东南大学[2]康华光.电子技术基础数字部分.高等教育出版社.指导教师签字日期目录一、设计任务 (4)二、设计条件 (4)三、设计要求 (4)四、总体概要设计 (4)五、各单元模块设计和分析 (5)六、元器件清单 (7)七、设计总结 (7)八、参考文献 (7)九、附数字钟课程设计仿真图 (8)十、实验心得 (9)引言:数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
一、设计任务:频率计设计二、设计条件:本设计基于Multisim仿真软件的调试三、设计要求:1、设计一个3位十进制频率计,其测量范围为1MHz。
量程分为10KHz、100KHz、1MHz三档(最大读数分别为9.99KHz、99.9KHz、999KHz),量程转换规则如下:(1)当读数大于999时,频率计处于超量程状态,此时显示器发出溢出指示。
数电课程设计数字频率计
1.概述数字频率计是通过一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常是计算每秒内的脉冲个数,也就是我们所称的闸门时间为1秒。
闸门时间不定,但闸门时间影响频率计的准确度,闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
本次课程设计中画图与仿真主要用到了Proteus软件,Proteus是一款电路分析实物仿真系统,可仿真各种电路和IC,元件库齐全,有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器。
具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真,使用和操作起来非常方便。
2.数字频率计原理与框图所谓频率,就是周期性信号在单位时间内变化的次数.若在一定时间间隔t 内测得这个周期性信号的重复变化次数为n,则其频率可表示为nft若在闸门时间1S内计数器计得的脉冲个数为n,则被测信号频率等于nHz。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
它一般由放大整形电路、时基电路、逻辑控制电路、闸门电路、计数器、锁存器、译码器、显示器等几部分组成。
其基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。
计数信号并与锁存信号和清零复位信号共同控制计数、锁存和清零三个状态,然后通过数码显示器件进行显示。
图2-1 数字频率计整体框图2武汉理工大学《数字电子技术》课程设计说明书33.数字频率计的设计3.1 放大整形电路放大整形电路由晶体管 放大器与74LS00等组成,放大器将输入频率为的周期信号如正弦波、三角波等进行放大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长安大学电子技术课程设计数字频率记的设计专业:通信工程班级:24040601姓名:指导教师:邓秋霞/高云霞日期:2008年12月11日目录题目摘要第一章系统概述一、设计方案的选择1、计数法2、计时法二、整体方框图及原理第二章单元电路设计一、时基电路设计二、闸门电路设计三、控制电路设计四、整形电路设计五、整体电路图六、整机元件清单第三章设计小结一、设计任务完成情况二、问题及改进三、心得体会附录鸣谢题目:初始条件:本设计可以使用在数模电理论课上学过或没学过的集成器件和必要的门电路构建简易频率计,用数码管显示频率计数值。
要求完成的主要任务:①设计一个频率计。
要求用4位7段数码管显示待测频率,并用发光二极管表示单位。
②测量频率的范围:100hz—100kz。
③测量信号类型:正弦波和方波。
④具有超量程报警功能。
摘要:本次课程设是针对简易频率计的设计,在设计过程中,所有电路仿真均基于multisim仿真软件。
multisim软件的仿真功能十分强大,可以几乎100%地仿真出真实电路的结果,而且它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器等工具,它的器件库中则包含了许多大公司的晶体管元器件、集成电路和数字门电路芯片,器件库中没有的元器件,还可以由外部模块导入,利用它可以直接从屏幕上看到各种电路的输出波形。
本课程设计介绍了简易频率计的设计方案及其基本原理,并着重介绍了频率计各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。
整个设计配以仿真电路图和波形图加以辅助说明。
设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是仿真结果及分析,这部分是为了分析电路是否按理论那样正常工作,便于理解。
三是性能测试,这部分用于测试设计是否符合任务要求。
最后是对本次课程设计的总结。
关键字:频率计、时基电路、逻辑控制、分频、计数、逻辑显示。
第一章系统概述一、设计方案的选择信号的频率就是信号在单位时间内所产生的脉冲个数,其表达式为f=N/T,其中f为被测信号的频率,N为技术其所累计的脉冲个数,T为产生N个脉冲所需的时间。
技术其所记录的结果,就是被测信号的频率。
如在1s内记录1000个脉冲,则被测信号的频率为1000HZ。
测量频率的基本方法有两种:计数法和计时法,或称测频法和测周期法。
1、计数法计数法是将被测信号通过一个定时闸门加到计数器进行计数的方法,如果闸门打开的时间为T,计数器得到的计数值为N1,则被测频率为f=N1/T。
改变时间T,则可改变测量频率范围。
如图1-1所示。
图1-1测频法测量原理设在T期间,计数器的精确计数值应为N,根据计数器的计数特性可知,N1的绝对误差是N1=N+1,N1的相对误差为δN1=(N1-N)/N=1/N。
由N1的相对误差可知,N的数值愈大,相对误差愈小,成反比关系。
因此,在f以确定的条件下,为减少N的相对误差,可通过增大T的方法来降低测量误差。
当T为某确定值时(通常取1s),则有f1=N1,而f=N,故有f1的相对误差:δf1=(f1-f)/f=1/f从上式可知f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。
因此测频法适合用于对高频信号的测量,频率越高,测量精度也越高。
2、计时法计时法又称为测周期法,测周期法使用被测信号来控制闸门的开闭,而将标准时基脉冲通过闸门加到计数器,闸门在外信号的一个周期内打开,这样计数器得到的计数值就是标准时基脉冲外信号的周期值,然后求周期值的倒数,就得到所测频率值。
首先把被测信号通过二分频,获得一个高电平时间是一个信号周期T的方波信号;然后用一个一直周期T1的高频方波信号作为计数脉冲,在一个信号周期T的时间内对T1信号进行计数,如图1-2所示。
图2-2计时法测量原理图1-2计时法测量原理若在T时间内的计数值为N2,则有:T2=N2*T1f2=1/T2=1/(N2*T1)=f1/N2N2的绝对误差为N2=N+1。
N2的相对误差为δN2=(N2-N)/N=1/NT2的相对误差为δT2=(T2-T)/T=(N2*T1-T)/T=f/f1从T2的相对误差可以看出,周期测量的误差与信号频率成正比,而与高频标准计数信号的频率成反比。
当f1为常数时,被测信号频率越低,误差越小,测量精度也就越高。
根据本设计要求的性能与技术指标,首先需要确定能满足这些指标的频率测量方法。
有上述频率测量原理与方法的讨论可知,计时法适合于对低频信号的测量,而计数法则适合于对较高频信号的测量。
但由于用计时法所获得的信号周期数据,还需要求倒数运算才能得到信号频率,而求倒数运算用中小规模数字集成电路较难实现,因此,计时法不适合本实验要求。
测频法的测量误差与信号频率成反比,信号频率越低,测量误差就越大,信号频率越高,其误差就越小。
但用测频法所获得的测量数据,在闸门时间为一秒时,不需要进行任何换算,计数器所计数据就是信号频率。
因此,本实验所用的频率测量方法是测频法。
二、整体方框图及原理由测频法构成的数字频率计的原理框图如图1-3所示图1-3数字频率计原理图输入电路:由于输入的信号可以是正弦波,三角波。
而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。
在整形之前由于不清楚被测信号的强弱的情况。
所以在通过整形之前通过放大衰减处理。
当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。
当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。
频率测量:被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。
时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。
被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。
时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态时间分别为T1=0.7(Ra+Rb)C T2=0.7RbC重复周期为T=T1+T2 。
由于被测信号范围为100Hz~100kHz,如果只采用一种闸门脉冲信号,则只能是10s脉冲宽度的闸门信号,若被测信号为较高频率,计数电路的位数要很多,而且测量时间过长会带来不便,所以可将频率范围设为几档:1Hz~999Hz档采用1s闸门脉宽;0.01kHz~9.99kHz档采用0.1s闸门脉宽;0.1kHz~99.9kHz档采用0.01s闸门脉宽,1kHz~100kHz。
多谐振荡器经二级10分频电路后,可提取因档位变化所需的闸门时间1s、0.1s、0.01s、1ms。
闸门时间要求非常准确,它直接影响到测量精度,在要求高精度、高稳定度的场合,通常用晶体振荡器作为标准时基信号。
在实验中我们采用的就是前一种方案。
为使产生的脉冲波的占空比为50%,在电路中引进二极管来将充放电回路分开,具体说明放到单元电路得分析中。
计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。
在计数的时候数码管不显示数字。
当计数完成后,此时要使数码管显示计数完成后的数字。
控制电路:控制电路里面要产生计数清零信号和锁存控制信号。
控制电路工作波形的示意图如图2-5.第二章单元电路设计一、时基电路设计它由两部分组成:如图3-1所示,第一部分为555定时器组成的振荡器(即脉冲产生电路),要求其产生100kHz 的脉冲.振荡器的频率计算公式为:f=1.43/((R1+2*R2)*C),因此,我们可以计算出各个参数通过计算确定了R5取71.5欧姆,R6取71.5欧姆,电容取10nF.这样我们得到了比较稳定的脉冲。
在管脚2和7之间加了两个反方向的二极管,这样就将原来由R5、R6、C6构成的充电回路和由R6、C6构成的放电回路的重合部分分开,得到由R5、D2构成的充电回路和由R6、C1构成的放电回路,当R5、R6的取值在符合周期要求的前提下,取相等的值,由占空比=充电时间/周期可得到占空比为50%的脉冲波形。
第二部分为分频电路,主要由74LS90组成(74LS90的管脚图,功能表及波形图详见附录),因为振荡器产生的是100KHz的脉冲,也就是其周期是0.00001s,而时基信号要求为0.001、0.01s、0.1s和1s。
4518为双BCD加计数器,由两个相同的同步4级计数器构成,计数器级为D型触发器,具有内部可交换CP和EN线,用于在时钟上升沿或下降沿加计数,在单个运算中,EN输入保持高电平,且在CP上升沿进位,CR线为高电平时清零。
计数器在脉动模式可级联,通过将Q³连接至下一计数器的EN输入端可实现级联,同时后者的CP输入保持低电平。
如图3-2所示,555产生的1kHz的信号经过三次分频后得到3个频率分别为100Hz、10Hz 和1Hz的方波。
图3-2 1kHz的方波分频后波形图二、闸门电路设计如图3-3所示,通过74151数据选择器来选择所要的10分频、100分频和1000分频。
74151的CBA接拨盘开关来对选频进行控制。
当CBA输入001时74151输出的方波的频率是1Hz;当CBA输入010时74151输出的方波的频率是10Hz;当CBA输入011时74151输出的方波的频率是100Hz;这里我们以输出100Hz的信号为例。
分析其通过7474后出现的波形图(7474的管脚图、功能表和波形图详见附录)。
7474是5位计数器,具有10个译码输出端,CP,CR,INH输入端,时钟输入端的施密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制,INH为低电平时,计数器清零。
100Hz的方波作为4017的CP端,如图3-3,信号通过4017后,从Q1输出的信号高电平的脉宽刚好为100Hz信号的一个周期,相当于将原信号二分频。
也就是Q1的输出信号高电平持续的时间为10ms,那么这个信号可以用来导通闸门和关闭闸门。
控制电路图1图3-4三、控制电路设计通过分析知道控制电路这部分是本实验的最为关键和难搞的模块。
其中控制模块里面又有几个小的模块,通过控制选择所要测量的东西。
比如频率,周期,脉宽。
同时控制电路还要产生74Ls90的清零信号,74Ls374的锁存信号。
控制电路、计数电路和译码显示电路详细的电路如上图所示。
当74151的CBA接001、010、011的时候电路实现的是测量被测信号频率的功能。
图3-6是测试被测信号频率时的计数器CP信号波形、CLK0端输入波形、R0段清零信号波形、74LS374锁存端波形图。
其中第一个波形是被测信号的波形图、第二个是CLK0端输入信号的波形图、第三个是计数器的清零信号。