如何利用线段中点3

合集下载

线段的和差- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

线段的和差- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

专题6.4 线段的和差模块一:知识清单1.线段的和与差:如下图,有AB +BC =AC ,或AC =a +b ;AD =AB -BD .2.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点. 如下图,有:12AM MB AB ==.①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点. ②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M ,N ,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PNMBA模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·江苏·盐城市大丰区实验初级中学七年级阶段练习)已知点M 在线段AB 上,在①AB =2AM ;②BM =12AB ;③AM =BM ;④AM +BM =AB 四个式子中,能说明M 是线段AB 的中点的式子有( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】根据线段中点的定义,借助图形逐一判断即可. 【详解】解:如图:∵AB =2AM ,∴点M 是线段AB 的中点, ∵BM =12AB ,∴点M 是线段AB 的中点, ∵AM =BM ,∴点M 是线段AB 的中点, 故①②③都能说明点M 是线段AB 的中点,根据:④AM +BM =AB ,不能判断点M 是线段AB 的中点,故选:C .【点睛】本题考查了线段中点的定义,借助图形分析是解题的关键.2.(2022·安徽合肥·七年级期末)如图,已知线段AB=4 cm,延长AB至点C,使AC=11 cm.点D 是AB的中点,点E是AC的中点,则DE的长为()A.3 cm B.3.5 cm C.4 cm D.4.5 cm【答案】B【分析】根据线段中点得出AD=2cm,AE=5.5cm,结合图形即可得出结果.【详解】解:∵AB=4 cm,点D是AB的中点,∴AD=12AB=2cm.∵AC=11cm,点E是AC的中点,∴AE=12AC=5.5 cm.∴DE=AE-AD=5.5-2=3.5cm故选:B.【点睛】题目主要考查线段中点的计算,找准线段间的数量关系是解题关键.3.(2022·浙江·七年级期末)如图,已知A B C D E、、、、五点在同一直线上,点D是线段AB的中点,点E是线段BC的中点,若线段12AC=,则线段DE等于()A.6 B.7 C.8 D.9【答案】A【分析】首先根据D点是线段AB的中点,点E是线段BC的中点,可得AD=BD,BE=CE;然后根据线段AC=12,可得BD+CD=12,据此求出CE+CD=6,即可判断出线段DE等于6.【详解】解:∵D点是线段AB的中点,∴AD=BD,∵点E是线段BC的中点,∴BE=CE,∵AC=12,∴AD+CD=12,∴BD+CD=12,又∵BD=2CE+CD,∴2CE+CD+CD=12,即2(CE+CD)=12,∴CE+CD=6,即线段DE等于6.故选:A.【点睛】此题主要考查了两点间的距离的求法,要熟练掌握,解答此题的关键是要明确线段的中点的性质,并能推得AD=BD,BE=CE.4.(2022·安徽·桐城市第二中学七年级期末)已知线段AB=10cm,线段AC=16cm,且AB、AC在同一条直线上,点B在A、C之间,此时AB、AC的中点M、N之间的距离为()A.13cm B.6cm C.3cm D.1.5cm【答案】C【分析】首先根据题意,结合中点的性质,分别算出AN、AM的长,然后再根据线段之间的数量关系进行计算,即可得出结果.【详解】解:如图,∵16AC=cm,又∵AC 的中点为N ,∴8cm AN =, ∵10AB =cm ,∵AB 的中点为M ,∴5cm AM =,∴853cm MN AN AM =-=-=.故选:C【点睛】本题考查中点的性质、线段的和、差关系,解本题的关键在充分利用数形结合思想解决问题. 5.(2022·浙江·七年级期中)如图,点M 为线段AB 的中点,C 为线段MB 上的任意一点(不与点M ,B 重合).在同一直线上有一点N ,若1223CN AC <<,则( )A .点N 不能在射线AP 上B .点N 不能在线段AM 上C .点N 不能在线段MB 上D .点N 不能在射线BQ 上【答案】A【分析】当N 在C 点的左侧时,根据题意,可知CN AC <,结合图排除B , 当N 在C 点的右侧时,当C 点接近M 点时,111222AC AM MB <=,可排除C ;当C 点接近B 点时,1122AC AB MB <=,则可排除D . 【详解】213CN AC <<,CN AC ∴<, ①当N 在C 点的左侧时,结合图则,点N 不能在射线AP 上,故A 符合题意; N ∴在线段AM 上,故B 错误;②当N 在C 点的右侧时,当C 点接近M 点时,111222AC AM MB <=,此时点N 在线段MB 上;故C 错误;当C 点接近B 点时,1122AC AB MB <=,此时点N 在射线BQ 上,故D 错误故选A . 【点睛】本题考查了线段的和差关系,比例关系,根据C 是动点,分情况讨论是解题的关键. 6.(2022·河北唐山·七年级期末)如图所示,长为12cm 的线段AB 的中点为M ,C 将线段MB 分为MC 和CB ,且:1:3MC MB =,则线段AC 的长为( )A .10B .9C .8D .7【答案】C【分析】根据中点的定义,可求出AM 和BM 的长度,根据MC 和MB 的比例关系,可求出MC 的长度,最后用AM 加上CM 即可求出AC 的长.【详解】∵点M 为AB 中点,∴AM =BM =12AB =6cm , ∵:1:3MC MB =,∴13MC MB ==2cm ,∴AC =AM +MC =8cm ;故选:C【点睛】本题主要考查了中点的定义和成比例线段,熟练地根据中点的定义和线段间的比例关系求出需要线段的长度是解题的关键.7.(2022·重庆·西南大学附中七年级期末)如图,点D 为线段AB 的中点,点C 为DB 的中点,若16AB =,13DE AE =,则线段EC 的长( )A .7B .203C .6D .5【答案】C【分析】应用一条线上的线段和差关系进行计算即可得出答案. 【详解】解:∵点D 为线段AB 的中点, ∴AD =BD =12AB =12×16=8,∵AD =AE +DE ,DE =13AE ,∴AE +13AE =8,∴AE =6,DE =2,∵点C 为DB 的中点,∴CD =12BD =12×8=4, ∴CE =DE +CD =2+4=6,故选:C .【点睛】本题主要考查了一条线上各个线段关系,看清图中线段关系,熟练掌握两点间的距离计算方法进行求解是解决本题的关键.8.(2022·浙江·)定义:当点C 在线段AB 上,AC nAB =时,我们称n 为点C 在线段AB 上的点值,记作A C B d n =※.甲同学猜想:点C 在线段AB 上,若2AC BC =,则23C AB d =※.乙同学猜想:点C 是线段AB 的三等分点,则13C AB d =※ 关于甲乙两位同学的猜想,下列说法正确的是( ) A .甲正确,乙不正确 B .甲不正确,乙正确 C .两人都正确D .两人都不正确【答案】A【分析】本题根据题目所给A C B d n =※的定义对两人的猜想分别进行验证即可得到答案,对于乙的猜想注意进行分类讨论.【详解】解:甲同学:点C 在线段AB 上,且2AC BC =, ∴23AC AB =,∴23C AB d =※,∴甲同学正确.乙同学:点C 在线段AB 上,且点C 是线段AB 的三等分点,∴有两种情况, ①当13AC AB =时,13C AB d =※,②当23AC AB =时,23C AB d =※,∴乙同学错误.故选:A .【点睛】本题主要考查对于新定义和线段的等分点的理解,对于线段的三等分点注意分类讨论即可. 9.(2022·绍兴市柯桥区七年级开学考试)如图,线段 CD 在线段 AB 上,且 CD =1,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .4B .3C .2D .1【答案】A【分析】根据数轴和题意可知,所有线段的长度之和是AC +CD +DB +AD +CB +AB ,然后根据CD =1,线段AB 的长度是一个正整数,可以解答本题.【详解】解:由题意可得,图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和是: AC +CD +DB +AD +CB +AB =(AC +CD +DB )+(AD +CB )+AB =AB +AB +CD +AB =3AB +CD ,∵CD =1,线段AB 的长度是一个正整数,AB >CD ,∴长度之和减1是3的倍数,而只有4-1=3是3的倍数,故选A .【点睛】本题考查两点间的距离,线段的和差,解题的关键是数形结合,找出所求问题需要的条件. 10.(2022•松江区期末)如图,已知点C 为线段AB 的中点,D 为CB 上一点,下列关系表示错误的是( )A .CD =AC ﹣DB B .BD +AC =2BC ﹣CD C .2CD =2AD ﹣ABD .AB ﹣CD =AC ﹣BD【思路点拨】根据图形可以明确线段之间的关系,对线段CD 、BD 、AD 进行和、差转化,即可发现错误选项.【答案】解:∵C 是线段AB 的中点, ∴AC =BC ,AB =2BC =2AC ,∴CD =BC ﹣BD =AB ﹣BD =AC ﹣BD ; ∵BD +AC =AB ﹣CD =2BC ﹣CD ; ∵CD =AD ﹣AC ,∴2CD =2AD ﹣2AC =2AD ﹣AB ;∴选项A 、B 、C 均正确. 而答案D 中,AB ﹣CD =AC +BD ; ∴答案D 错误符合题意.故选:D .【点睛】本题考查的是线段的长度计算,熟练进行线段的和、差、倍、分计算是解决本题的关键. 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·湖北·老河口市第四中学七年级阶段练习)C 是线段AB 上一点,D 是BC 的中点,若12cm AB =,2cm =AC ,则BD 的长为______.【答案】5cm【分析】根据题意画出图形,先求出BC ,再根据线段中点的定义详解. 【详解】解:如图,12cm AB =,2cm =AC ,12210(cm)BC AB AC ∴=-=-=.D 是BC 的中点,11105(cm)22BD BC ∴==⨯=.故答案是:5cm .【点睛】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.12.(2022·浙江丽水·七年级期末)如图,P 是线段MN 上一点,Q 是线段PN 的中点.若MN =10,MP =6,则MQ 的长是____.【答案】8【分析】首先求得NP =4,根据点Q 为NP 中点得出PQ =2,据此即可得出MQ 的长. 【详解】解:∵MN =10,MP =6,∴NP = MN- MP =4, ∵点Q 为NP 中点,∴PQ =QN =12NP =2,∴MQ =MP +PQ =6+2=8,故答案为:8.【点睛】此题主要考查了两点之间的距离,根据中点的定义得出PQ =2是解题关键.13.(2022·宁夏·景博中学七年级期末)如图,点C 为线段AB 的中点,点D 在线段CB 上,AB =10,DB =4,则CD =________.【答案】1【分析】先根据线段中点的定义可得5BC =,再根据CD BC DB =-即可得.【详解】解:点C 为线段AB 的中点,且10AB =,152BC AB ∴==, 4DB =,541CD BC DB =∴=--=,故答案为:1.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.14.(2022·陕西渭南·七年级期末)如图,AD =12BD ,E 是BC 的中点,BE =15AC =2cm ,则线段DB的长为_______cm .【答案】4【分析】根据BE =15AC =2cm 可以求得AC 长,进而得出AB 、BC 的长,即可求得DB 的长.【详解】解:∵BE =15AC =2(cm),∴AC =5BE =10(cm),∵E 是BC 的中点,∴BC =2BE =2×2=4(cm),∴AB =AC -BC =10-4=6(cm), ∵AD =12DB ,∴AD +DB =AD +2AD =6(cm),∴AD =2cm ,∴DB =4cm ,故答案为:4.【点睛】本题主要考查的是线段的和差倍分计算和线段中点的概念,找出线段间的数量关系是解决此类问题的关键.15.(2022·山东威海·期末)如图,点C ,点D 在线段AB 上,点E ,点F 分别为AC ,BD 的中点.若AB m =,CD n =,则EF 的长为________.【答案】12m +12n【分析】先根据中点的定义可得EC =12AC 、DF =12BD ,再根据线段的和差可得AC +BD =AB -CD =m -n ,最后根据EF =EC +CD +DF 求解即可.【详解】解:∵点E 、点F 分别为AC 、BD 的中点∴EC =12AC ,DF =12BD ∵AB m =,CD n =∴AC +BD =AB -CD =m -n∴EF =EC +CD +DF =12AC +CD +12BD =12(AC +BD )+CD =12( m -n )+n =12m +12n .故答案为12m +12n . 【点睛】本题主要考查了中点的定义、线段的和差等知识点,通过识图、明确线段间的关系成为解答本题的关键.16.(2022·浙江·)已知 A B C 、、三点在同一条直线上,且线段4cm,6cm AB BC ==,点D E 、分别是线段AB BC 、的中点点F 是线段DE 的中点,则BF =_______cm .【答案】12或52【分析】根据中点定义求出BD 、BE 的长度,然后分①点C 在AB 的延长线上时,求出DE 的长度,再根据中点定义求出EF 的长,然后根据BF =BE -EF 代入数据进行计算即可得解;②点C 在AB 的反向延长线上时,求出DE 的长度,再根据中点定义求出EF 的长,然后根据BF =BE -EF 代入数据进行计算即可得解. 【详解】解:D 、E 分别是线段AB 、BC 的中点,4AB cm =,6BC cm =,114222BD AB cm ∴==⨯=,116322BE BC cm ==⨯=, ①如图1,点C 在AB 的延长线上时,235DE BD BE cm =+=+=,点F 是线段DE 的中点,1155222EF DE cm ∴==⨯=,此时,51322BF BE EF cm =-=-=; ②如图2,点C 在AB 的反向延长线上时,321DE BE BD cm =-=-=,点F 是线段DE 的中点,1111222EF DE cm ∴==⨯=,此时,15322BF BE EF =-=-=, 综上所述,12BF =或52cm .故答案为:12或52.【点睛】本题考查了两点间的距离,线段中点的定义,难点在于要分情况讨论,作出图形更形象直观. 17.(2022•和平区期末)已知线段AB =12,M 是AB 的中点,点C 是直线AB 上一点,且AC =5BC ,则C 、M 两点间的距离为 .【思路点拨】根据线段中点的性质推出AM =BM =AB =×12=6,并分点C 在点B 左侧和点C 在点B 左侧两种情况进行讨论,由题意作出相关的图形,结合图形当点C 在点B 左侧时,MC =BM ﹣BC ;当点C 在点B 右侧时,MC =BM +BC ,利用线段之间的和差关系进行求解即可. 【答案】解:∵AB =12,M 是AB 的中点, ∴AM =BM =AB =×12=6, 当点C 在点B 左侧时,如图1,∵AC =5BC ,∴AB =AC +BC =6BC ,∴MC=BM﹣BC=AB﹣AB=AB=×12=4;当点C在点B右侧时,如图2,∵AC=5BC,∴AB=AC﹣BC=4BC=12,∴BC=3,∴MC=BM+BC=6+3=9,综上所述,C、M两点间的距离为4或9.故答案为:4或9.【点睛】本题考查两点间的距离及线段的和差,解题的关键是根据题意进行分类讨论(点C在点B 左侧时和点C在点B左侧时),注意结合图形联系线段中点的性质和线段之间的和差关系进行求解.18.(2022·北京海淀区·七年级期末)已知线段6cmAB=,若M是AB的三等分点,N是AM的中点,则线段MN的长度为________.【答案】1cm或2cm【分析】分两种情况考虑点M是AB的三等分点,求出AM的长,由中点定义求出MN即可.【详解】当M是AB的左三等分点,∵AB=6cm,∴AM=11AB=6=233⨯cm,∵N是AM的中点,∴AN=NM=11AM=2=1 22⨯,当M是AB的右三等分点,∵AB=6cm,∴AM=22AB=6=433⨯cm,∵N是AM的中点,∴AN=NM=11AM=4=2 22⨯,线段MN的长度为1cm或2cm.故答案为:1cm或2cm.【点睛】本题考查线段的三等分点,线段的中点计算,掌握线段三等分的性质,线段的中点的性质,会利用分类思想求线段AM是解题关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022·山东郓城县·七年级期末)某摄制组从A市到B市有一天的路程,由于堵车中午才赶到一个小镇(D ),只行驶了原计划的三分之一(原计划行驶到C 地),过了小镇,汽车赶了400千米,傍晚才停下来休息(休息处E ),司机说:再走从C 地到这里路程的二分之一就到达目的地了,问:A ,B 两市相距多少千米.【答案】A ,B 两市相距600千米.【分析】根据题意可知DE 的距离且可以得到12AD DC =,12EB CE =,11()22AD EB DC CE DE +=+=,由1=2AB AD EB DE DE DE =+++计算即可得出结果.【详解】如图,由题意可知,400DE =千米,12AD DC =,12EB CE =, ∴ 111()400200222AD EB DC CE DE +=+==⨯=(千米)∴ 200400600AB AD EB DE =++=+=(千米) 答:A ,B 两市相距600千米.【点睛】本题考查了求解线段长度在实际生活中的应用,能够找出线段之间的等量关系是解题关键. 20.(2022·辽宁大连市·)已知点D 为线段AB 的中点,点C 在线段AB 上.(1)如图1,若8cm,6cm AC BC ==,求线段CD 的长;(2)如图2,若2BC CD =,点E 为BD 中点,18cm AE =,求线段AB 的长. 【答案】(1)1cm ;(2)24cm【分析】(1)先求出AB 的长,再根据中点定义求出BD 的长,进而可求CD 的长; (2)设cm CD x =,用含x 的代数式表示出AE ,然后列方程求出x ,进而可求AB 的长. 【详解】解:(1)∵8cm,6cm AC BC ==,∴8614cm AB AC BC =+=+=, ∵点D 为线段AB 的中点,∴11147cm 22BD AB ==⨯=. ∵CD BD BC =-,∴761cm CD =-=.∴线段CD 的长为1cm . (2)设cm CD x =.∵2BC CD =,∴2cm BC x =∵BD CD BC =+,∴23cm BD x x x =+=.∵E 为BD 中点,∴13cm 22DE BD x ==. 又∵D 为AB 中点,∴3cm AD BD x ==.∵AE AD DE =+,∴393cm 22AE x x x =+=. ∵18cm AE =,∴918,42x x ==,∴2624cm AB BD x ===,∴线段AB 的长为24cm .【点睛】本题考查了线段中点的有关计算,如果点C 把线段AB 分成相等的两条线段AC 与BC ,那么点C 叫做线段AB 的中点,这时AC =BC =12AB ,或AB =2AC =2BC . 21.(2022·浙江·七年级期末)如图,线段8cm AB C =,是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.(1)3cm AC =,求线段CM NM 、的长;(2)若线段AC m =,线段BC n =,求MN 的长度(m n <用含,m n 的代数式表示).【答案】(1)CM =1cm ,NM =2.5cm ;(2)12n【分析】(1)求出AM 长,代入CM =AM -AC 求出即可;分别求出AN 、AM 长,代入MN =AM -AN 求出即可;(2)分别求出AM 和AN ,利用AM -AN 可得MN . 【详解】解:(1)8AB cm =,M 是AB 的中点,142AM AB cm ∴==, 3AC cm =,431CM AM AC cm ∴=-=-=;8AB cm =,3AC cm =,M 是AB 的中点,N 是AC 的中点, 142AM AB cm ∴==,11.52AN AC cm ==,4 1.52.5MN AM AN cm ∴=-=-=;(2)AC m =,BC n =,AB AC BC m n ∴=+=+,M 是AB 的中点,N 是AC 的中点,11()22AM AB m n ∴==+,1122AN AC m ==,111()222MN AM AN m n m n ∴=-=+-=.【点睛】本题考查了两点之间的距离,线段中点的定义的应用,解此题的关键是求出AM 、AN 的长. 22.(2022·平山县七年级期末)已知点A ,B ,C 在同一条直线上,点M ,N 分别是AC ,BC 的中点.(1)如图1,若点C 在线段AB 上,AC =6cm ,CB =4cm ,则线段MN 的长为 cm ; (2)若点C 在线段AB 上,且AC +CB =acm ,则线段MN 的长度为 cm ;(3)如图2,若点C 在线段AB 的延长线上,且AC -BC =bcm ,猜测MN 的长度,写出你的结论,并说明理由.【答案】(1)5,(2)12a ,(3)MN =12b .理由见解析.【分析】(1)根据中点的定义求解;(2)与(1)同理,根据中点的定义求解;(3)根据MN=CM-CN 求解.【详解】解:(1)由题意可得:113222MC AC CN CB====,,∴MN=MC+CN=3+2=5,故答案为5;(2)与(1)同理有:1122MC AC CN CB==,,∴()11112222MC CN AC CB AC CB a+=+=+=,故答案为12a,(3)结论为:MN=12b,理由如下:当点C在线段AB的延长线时,如图:则AC>BC,因为M是AC的中点,所以CM=12AC,因为点N是BC的中点,所以CN=12BC,所以MN=CM-CN=12(AC-BC)=12b.【点睛】本题考查中点的应用,熟练掌握中点的意义、线段的四则运算及准确画图是解题关键.23.(2022·杭州市七年级月考)已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB=.【答案】(1)①AD=7;②AD=203或243;(2)1742或116【分析】(1)根据已知条件得到BC=6,AC=12,①由线段中点的定义得到CE=3,求得CD=5,由线段的和差得到AD=AC﹣CD=12﹣5=7;②当点C线段DE的三等分点时,可求得CE=13 DE=83或CE=23DE=163,则CD=163或83,由线段的和差即可得到结论;(2)当点E在线段BC之间时,,设BC=x,则AC=2BC=2x,求得AB=3x,设CE=y,得到AE=2x+y,BE=x﹣y,求得y=27x,当点E在点A的左侧,设BC=x,则DE=1.5x,设CE=y,求得DC=EC+DE=y+1.5x,得到y=4x,于是得到结论.【详解】解:(1)∵AC=2BC,AB=18,∴BC=6,AC=12,①∵E为BC中点,∴CE=3,∵DE=8,∴CD=5,∴AD=AC﹣CD=12﹣5=7;②∵点C是线段DE的三等分点,DE=8,∴CE=13DE=83或CE=23DE=163,∴CD=163或CD=83,∴AD=AC﹣CD=12﹣163=203或12-83=243;(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∴AB=3x,∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∵32AD ECBE+=,∴0.532x y yx y++=-,∴y=27x,∴CD=1.5x﹣27x=1714x,∴171714342==xCDAB x;当点E在点A的左侧,如图,设BC=x,则DE=1.5x,设CE=y,∴DC=EC+DE=y+1.5x,∴AD=DC﹣AC=y+1.5x﹣2x=y﹣0.5x,∵32AD ECBE+=,BE=EC+BC=x+y,∴0.532y x yx y-+=+,∴y=4x,∴CD=y+1.5x=4x+1.5x=5.5x,BD=DC+BC=y+1.5x+x=6.5x,∴AB=BD﹣AD=6.5x﹣y+0.5x=6.5x﹣4x+0.5x=3x,∴5.51136==CD xAB x,当点E在线段AC上及点E在点B右侧时,无解,综上所述CDAB的值为1742或116.故答案为:1742或116.【点睛】本题考查了两点间的距离,利用了线段中点的性质、线段的和差、准确识图分类讨论DE的位置是解题的关键.24.(2022·浙江·七年级课时练习)小明在学习了比较线段的长短时对下面一道问题产生了探究的兴趣:如图1,点C在线段AB上,M,N分别是AC,BC的中点.若AB=12,AC=8,求MN的长.(1)根据题意,小明求得MN=___________;(2)小明在求解(1)的过程中,发现MN的长度具有一个特殊性质,于是他先将题中的条件一般化,并开始深入探究.设AB=a,C是线段AB上任意一点(不与点A,B重合),小明提出了如下三个问题,请你帮助小明解答.①如图1,M,N分别是AC,BC的中点,则MN=______________;②如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;③若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,则MN=___________;∴MN=12 a;故答案为:12 a;②∵AM=13AC,BN=13BC,∴CM=23AC,CN=23BC,∴MN=CM+CN=23AC+23BC=23AB,∵AB=a,∴MN=23 a;③∵AM=1nAC,BN=1nBC,∴CM=1nn-AC,CN=1nn-BC,∴MN=CM+CN=1nn-AC+1nn-BC=1nn-AB,∵AB=a,∴MN=1nn-a,故答案为:1nn-a.【点睛】本题考查了线段的中点、线段的和差,解题的关键是掌握线段中点的定义及线段和差运算.25.(2022·深圳市高级中学初一期末)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B 出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【答案】(1)4cm;(2)4cm;(3)4cm;(4)4cm或12cm分析:(1) 观察图形可以看出,图中的线段PC和线段BD的长分别代表动点C和D的运动路程. 利用“路程等于速度与时间之积”的关系可以得到线段PC和线段BD的长,进而发现BD=2PC. 结合条件PD=2AC,可以得到PB=2AP. 根据上述关系以及线段AB的长,可以求得线段AP的长.(2) 利用“路程等于速度与时间之积”的关系结合题目中给出的运动时间,可以求得线段PC和线段BD的长,进而发现BD=2PC. 根据BD=2PC和PD=2AC的关系,依照第(1)小题的思路,可以求得线段AP 的长.(3) 利用“路程等于速度与时间之积”的关系可知,只要运动时间一致,点C 与点D 运动路程的关系与它们运动速度的关系一致. 根据题目中给出的运动速度的关系,可以得到BD =2PC . 这样,本小题的思路就与前两个小题的思路一致了. 于是,依照第(1)小题的思路,可以求得线段AP 的长. (4) 由于题目中没有指明点Q 与线段AB 的位置关系,所以应该按照点Q 在线段AB 上以及点Q 在线段AB 的延长线上两种情况分别进行求解. 首先,根据题意和相关的条件画出相应的示意图. 根据图中各线段之间的关系并结合条件AQ -BQ =PQ ,得到AP 和BQ 之间的关系,借助前面几个小题的结论,即可求得线段PQ 的长.【解析】(1) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =1(s),所以111PC =⨯=(cm). 因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以212BD =⨯=(cm).故BD =2PC. 因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP . 因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以122PC =⨯=(cm). 因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以224BD =⨯=(cm).故BD =2PC. 因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP . 因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以PC t =(cm).因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以2BD t =(cm).故BD =2PC. 因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP . 因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为13AP AB =,所以13BQ AP AB ==. 故13PQ AB AP BQ AB =--=.因为AB =12cm ,所以1112433PQ AB ==⨯=(cm).(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②). 因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ . 因为13AP AB =,所以13BQ AP AB ==.故1433AQ AB BQ AB AB AB =+=+=.因为AB=12cm,所以411233PQ AQ AP AB AB AB=-=-==(cm).综上所述,PQ的长为4cm或12cm.点睛:本题是一道几何动点问题. 分析图形和题意,找到代表动点运动路程的线段是解决动点问题的重要环节. 利用速度、时间和路程的关系,常常可以将几何问题与代数运算结合起来,通过运算获得更多的线段之间的关系,从而为解决问题提供有利条件. 另外,分情况讨论的思想也是非常重要的,在思考问题时要注意体会和运用.。

线段的中点定义-概述说明以及解释

线段的中点定义-概述说明以及解释

线段的中点定义-概述说明以及解释1.引言1.1 概述引言部分将对线段的中点进行定义和探讨。

线段是几何学中的基本概念之一,它是由两个端点之间的所有点组成的一条直线部分。

在几何学中,中点是指线段的一个特殊点,它处于线段的正中间位置,将线段平均分成两个相等的部分。

本文将首先对线段的定义进行阐述,然后探讨中点的定义和性质。

通过对线段和中点的研究,我们可以深入理解线段的特征和属性,进一步应用于几何学中的问题求解和证明过程中。

对于读者来说,了解线段的定义和中点的概念对于几何学的学习和应用非常重要。

通过掌握线段的概念和中点的特性,我们能够更好地理解和解决与线段相关的问题,比如计算线段的长度、判断点是否在线段上等。

在本文的正文部分,我们将详细介绍线段的定义,并进一步探讨中点的性质和特点。

通过实例和证明,我们将演示中点的重要性以及与线段其他部分之间的关系。

最后,在结论部分,我们将对本文进行总结,并展望一些未来研究的方向和可能的应用领域。

希望通过本文的阐述,读者能够对线段的中点有一个清晰的了解,并能够应用于实际问题中。

本文将为读者提供一个基础的概念框架,以便在后续的几何学学习和应用中更好地理解和运用线段的中点概念。

让我们一起开始对线段的中点进行深入研究吧!1.2文章结构文章结构部分的内容可以对整篇文章的组织和框架进行介绍和说明。

下面是一个可能的写作方式:在本文中,我们将详细讨论线段的中点定义。

为了提供给读者一个整体的了解,本文将分为引言、正文和结论三个部分。

首先,在引言部分,我们将概述本文的主题和目的。

我们会简要介绍线段的基本概念,并阐述为什么中点的定义对于理解线段的性质和几何关系非常重要。

其次,在正文部分,我们将深入讨论线段的定义以及中点的概念。

我们会探索一些定义中的关键要素,并解释它们的意义。

我们还将通过几个具体的例子和图示来帮助读者更好地理解中点的概念。

此外,我们还将讨论中点的性质和特点,并与其他相关概念进行比较和对比。

四边形拓展—中点应用

四边形拓展—中点应用

四边形拓展练习——中点应用中点,特别是线段的中点是几何图形中的一个特殊点,直角三角形斜边中线、等腰三角形三线合一、中心对称图形、三角形中位线和梯形中位线等都有其身影.那么,如何恰当地利用中点和处理与中点有关的问题呢?关键在于:充分挖掘中点所包含的信息,合理联想构造含中点的图形来解决问题.一、利用中点构造三角形中线例1.如图,在ABC ∆中,AB AC =,90BAC ∠=︒,BD 是中线,AE BD ⊥交BC 于点E .求证:2BE CE =.例2.如图,在ABC ∆中,AB AC =,90BAC ∠=︒,BD 是中线,AM BD ⊥于M ,交BC 于点E .求CDE S ∆.【注】如果是等腰三角形的问题,则腰上的中点即为构造全等三角形创造了条件.三角形中线的性质是分三角形为两个面积相等的小三角形.在涉及求面积时,往往是常用的结论之一.二、利用中点构造中心对称三角形例3.如图,在梯形ABCD 中,90D ∠=︒,M 为AB 中点. 若 6.5CM =,17BC CD DA ++=,求梯形ABCD 的面积.BB例4.如图,在菱形ABCD 中,120ABC ∠=︒,F 是DC 的中点,AF 的延长线交BC 的延长线于点E .求直线BF 与DE 所夹的锐角的度数.【注】:在四边形问题中,若已知条件中有一边的中点,往往可利用中点构造中心对称的全等的三角形,从而把分散的条件相对集中,为解题创造有利条件.三、利用中点构造三角形中位线例5.如图,在ABC ∆中,7AC =,4BC =,D 为AB 的中点,E 为AC 上一点,且1902AED C ∠=︒+∠.求CE 的长.例6.如图,已知AD 为ABC ∆的角平分线,AB <AC ,在AC 上截取CE AB =,M 、N 分别为边BC 、AE 的中点.求证://MN AD .【注】:在四边形问题中,当已知条件中出现四边形对边的两个中点时,常见的方法是:另外作对角线的中点,再利用三角形的中位线来解题.EA四、利用中点构造直角三角形斜边中线和三角形中位线例7.如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为D ,E G 、分别为AD AC 、的中点,DF BE ⊥,垂足为F .求证:FG DG =.例8.如图,在ABC ∆内取一点P ,使PBA PCA ∠=∠,作PD AB ⊥于点D ,PE AC ⊥于点E .求证:DE 的垂直平分线必经过BC 的中点M .【注】:当题目的条件中涉及到三角形一边的中点和直角三角形时,常用的方法是:另取一边(一般取斜边)的中点,为沟通直角三角形斜边中线定理和三角形中位线定理架起一座桥梁.五、利用中点构造梯形中位线例9.在梯形ABCD 中,90ABC DCB ∠=∠=︒,AD 上有一点E 使得BE EC ⊥,且45CED ∠=︒.求证:AB CD BC +=.例10.如图,M N 、分别是四边形ABCD 边AB CD 、的中点,BN 与MC 交于点P ,AN 与MD 交于点Q .求证:BCP ADQ MQNP S S S ∆∆=+四边形.六、利用多个中点构造三角形和四边形例11.如图,在任意五边形ABCDE 中,M N P Q 、、、分别为AB CD BC DE 、、、的中点,K L 、分别为MN PQ 、的中点.求证://KL AE 且1=4KL AE .例12.在六边形ABCDEF 中,//AB DE ,//BC EF ,//CD FA ,AB DE BC EF +=+,1111A B D E 、、、分别是边AB BC DE EF 、、、的中点,且1111A D B E =.求证:CDE AFE ∠=∠.ABE1ADABCD配套练习:1.如图,在菱形ABCD 中,100A ∠=︒,M N 、分别是边AB BC 、的中点,MP CD ⊥于点P ,求NPC ∠的度数.2.如图,在ABC ∆中,D 为边BC 的中点,点E F 、分别在边AC AB 、上,且ABE ACF ∠=∠,BE 与CF 交于点O ,作OP AC ⊥,OQ AB ⊥,P Q 、为垂足.求证:DP DQ =.3.如图,在ABC ∆中,2A B ACB ∠+∠=∠,8BC =,D 为AB 的中点,且CD =,求AC 的长.BBD BAFE MABCDM4.如图,在ABC ∆中,2B C ∠=∠,AD BC ⊥于D ,M 为BC 的中点,求证:12DM AB =5.如图,在ABC ∆中,2ABC C ∠=∠,AD 平分BAC ∠,过BC 的中点M 作AD 的垂线,交AD 的延长线于F ,交AB 的延长线于E ,求证:12BE BD =.6.如图,已知五边形ABCDE 中,90,ABC AED BAC EAD ∠=∠=︒∠=∠。

锈规作图续篇:单用一个只能画单位圆的圆规如何作线段中点

锈规作图续篇:单用一个只能画单位圆的圆规如何作线段中点

锈规作图续篇:单用一个只能画单位圆的圆规如何作线段中点锈规作图续篇:单用一个只能画单位圆的圆规如何作线段中点在这个 Blog 的一篇很老很老的文章里,我曾经讲过一个非常有趣的几何作图问题,这个问题最早是由 D. Pedoe 教授在 1983 年提出的:给定 A 、B 两点,只用一个生锈的圆规(没有直尺),如何找出一个点C ,使得 A 、 B 、C 恰好构成一个等边三角形?所谓“生锈的圆规”,也就是一个被卡住的圆规,它的两脚张角不能改变。

我们不妨假设,它只能画出单位大小的圆。

1987 年,我国的侯晓荣等人成功地解决了这个问题,并借助复平面理论得到了很多一般的结果,其研究成果《锈规作图论》发表在了《中国科学技术大学学报》上。

锈规作出等边三角形的方法非常漂亮:利用锈规作图,我们能构造出两点之间由单位长线段构成的折线段,进而实现平行四边形的构造(已知其中三个点,能够只用锈规找出第四个点),进而完成等边三角形的构造。

刚才提到的那篇“很老很老的文章”里有详细的描述,继续阅读之前,强烈建议先看一看。

事实上,D. Pedoe 教授还提过另外一个问题:给定 A 、 B 两点,只用锈规能否作出 A 、 B 连线的中点?注意,由于没有直尺,线段 AB 实际上是画不出的。

要想“隔空”找出线段的中点,显然并不容易。

前几天翻起张景中的《数学家的眼光》,就是为了查阅这个问题的解决方法。

《数学家的眼光》一书中详细描述了锈规作图找中点的方法,在这里和大家分享。

有了作等边三角形的方法后,有一件很爽的事情,就是我们可以任意地倍长线段了。

如图,给定 A 、 B 两点后,连续作三次等边三角形,我们便能得到 E 点,使得 A 、 B 、 E 在一条直线上,并且 AB = BE 。

接下来的证明过程分成三步。

首先我们将说明,如果线段 AB 的长度正好等于1/√19 ,如何仅用锈规找出线段 AB 的中点。

然后我们将进一步推出,只要线段 AB 的长度小于2/√19 ,我们都能找出 AB 的中点。

数学人教版七年级上册线段的中点

数学人教版七年级上册线段的中点
几何语言:
∵点M、N是线段AB的三等分点,
∴AM=MN=NB= AB
(或AB =3AM=3MN=3NB)
类似地,还有四等分点,五等分点等等.
学生进行尺规作图.
教师在黑板上作图,并标出点M.
通过学案的设计引导学生总结归纳出线段中点的定义.
教师完善线段中点的概念.
结合图形,教师引导学生得到线段中点的几何符号语言的表示方法.
∴CM= AC= ×8=4
∵N是线段BC的中点,CB=6
∴CN = BC= ×6=3
∴MN=CM+CN =4+3=7 cm
(2)若AB=14 cm,则线段MN=7cm.
解:(2)如图,
∵M是线段AC的中点∴CM= AC
∵N是线段BC的中点∴CN = BC
∴MN=CM+CN = AC+ BC= (AC+BC)= AB= ×14=7 cm
教师引导学生类比线段的中点总结线段的三等分点、四等分点的结论,并得到一般的结论.
学生完成学案相应内容.
复习旧知,培养学生动手作图能力,同时培养学生的观察能力和归纳总结能力.
通过对线段中点的图形语言及符号语言的探讨,培养学生的数形结合思想.
通过几何语言表达培养学生严谨的思维过程,学会说理,渗透几何的推理过程.
②如图,当C点在线段AB上时,
则MN=BM-BN =4-3=1
综上所述,MN=7 cm或1 cm
4.综合延伸
如图,CD=2,D是线段AC的中点,点B在线段AC上,AB:BC =3:1,
(1)求线段BC的长.
解:(1)如图,∵D是线段AC的中点,DC=2
∴AC=2DC=2×2=4
∵BC:AB=1:3∴可设BC=x,AB=3x

两点间的距离与线段中点的坐标教案

两点间的距离与线段中点的坐标教案

两点间的距离与线段中点的坐标教案一、教学目标1. 让学生理解两点间的距离的概念,能够运用两点间的距离公式计算两点间的距离。

2. 让学生掌握线段中点的坐标公式,能够运用线段中点的坐标公式求解线段的中点坐标。

3. 培养学生的数学思维能力,提高学生解决实际问题的能力。

二、教学内容1. 两点间的距离两点间的距离是指在平面直角坐标系中,两点之间的长度。

公式:d = √((x2 x1)²+ (y2 y1)²)其中,(x1, y1)和(x2, y2)分别是两点的坐标。

2. 线段中点的坐标线段中点是指线段上的一个点,该点到线段的两个端点的距离相等。

公式:中点横坐标:(x1 + x2) / 2中点纵坐标:(y1 + y2) / 2其中,(x1, y1)和(x2, y2)分别是线段的两个端点的坐标。

三、教学重点与难点1. 教学重点:两点间的距离公式和线段中点的坐标公式的掌握。

2. 教学难点:如何运用两点间的距离公式和线段中点的坐标公式解决实际问题。

四、教学方法1. 采用讲解法,讲解两点间的距离和线段中点的坐标的概念及公式。

2. 采用案例分析法,分析实际问题,引导学生运用两点间的距离和线段中点的坐标公式解决问题。

3. 采用练习法,让学生通过练习题目的形式,巩固所学知识。

五、教学步骤1. 导入新课:引导学生回顾平面直角坐标系的相关知识,为新课的学习做好铺垫。

2. 讲解两点间的距离:介绍两点间的距离的概念,讲解两点间的距离公式,并通过示例演示如何运用公式计算两点间的距离。

3. 讲解线段中点的坐标:介绍线段中点的坐标的概念,讲解线段中点的坐标公式,并通过示例演示如何运用公式求解线段的中点坐标。

4. 案例分析:分析实际问题,引导学生运用两点间的距离和线段中点的坐标公式解决问题。

5. 课堂练习:布置练习题目,让学生巩固所学知识。

7. 课后作业:布置课后作业,让学生进一步巩固所学知识。

六、教学活动设计1. 互动游戏:设计一个互动游戏,让学生在游戏中理解和运用两点间的距离和线段中点的坐标。

专题05 倍长中线问题(解析版)

专题05 倍长中线问题(解析版)

专题05 倍长中线问题【要点提炼】一、【倍长中线法】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)+倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

二、【倍长中线法拓展;两次全等】通常,在倍长中线后的第一组全等只是一个基础,往往还需证明第二组全等,但是难点就在于如何去倍长中线,倍长中线后去连接什么线,这是问题的关键。

这时一般需要去试错,尤其是当有两个中点时,一般是倍长中线后大概率会有另一组的全等。

三、【倍长中线的常见类型】1.基本型如图1,在中,为边上的中线.延长至点E,使得.若连结,则;若连结,则;若连结则四边形是平行四边形.2.中点型如图2, C为AB的中点.若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.总结:在线段AB 外,与中点C 连结的点有E 和D .事实上,EC 和DC 分别是ABE ∆和ABD ∆的中线,只不过是三角形不完整罢了,本质就是隐蔽的“基本型”3.中点+平行线型如图3, //AB CD ,点E 为线段AD 的中点.延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.小结 若按“中点型”来倍长,则需证明点F 在AB 上,为了避免证明三点共线,点F 就直接通过延长相交得到.因为有平行线,内错角相等,故根据“AAS ”或“ASA ”证明全等.这里“中点+平行线型”可以看做是“中点型”的改良版.【专题训练】一、解答题(共14小题)1.小明遇到这样一个问题,如图1,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)(2)AD的取值范围是小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.【答案】【第1空】SAS【第2空】1<AD<6【解答】解:(1)如图2中,延长AD到E,使DE=AD,连接BE.在△BED和△CAD中,,∴△BED≌△CAD(SAS).(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.故答案分别为SAS,1<AD<6.解决问题:如图3中,解:延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.【知识点】四边形综合题2.自主学习,学以致用先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD 和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.【解答】证明:延长AD到G,使DF=DG,连接CG,∵AD是中线,∴BD=DC,在△BDF和△CDG中∴△BDF≌△CDG,∴BF=CG,∠BFD=∠G,∵∠AFE=∠BFD,∴∠AFE=∠G,∵BF=CG,BF=AC,∴CG=AC,∴∠G=∠CAF,∴∠AFE=∠CAF,∴AE=EF.【知识点】全等三角形的判定与性质3.阅读并解答问题.如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.证明:延长AD至E使得DE=AD,连接EC,则AE=2AD ∵AD为△ABC的中线∴BD=CD在△ABD和△CED中,∴△ABD≌△CED∴AB=EC在△ACE中,根据三角形的三边关系有AC+EC AE而AB=EC,AE=2AD∴AB+AC>2AD这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=;(2)把(1)中的结论用简洁的语言描述出来.【答案】>【解答】解:(1)证明:延长CD至E使DE=CD,连接EB,AE.∵CD为Rt△ABC的中线,∴AD=CD,∵CD=DE,∠ADC=∠EDB,∴△ADC≌△EDB,∴∠ACD=∠DEB,AC=BE,∴AC∥BE,∴四边形ACBE是平行四边形,又∵∠ACB=90°,∴平行四边形ACBE是矩形,∴AB=CE,CD=DE=AD=BD,∴CD=AB;(2)直角三角形斜边上的中线等于斜边的一半.【知识点】直角三角形斜边上的中线、全等三角形的判定与性质4.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,AB=2.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=BC.(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接P A、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=BM=7,∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴P A=PD,PB=PC,在Rt△CDF中,∵CD=2,CF=6,∴tan∠CDF=,∴∠CDF=60°∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°=∠CDF易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△P AB的“旋补三角形”,∵AB=2.∴△P AB的“旋补中线”长=AB=.【知识点】四边形综合题5.我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC 与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE 就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.特例感知:(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;①当△ABC是一个等边三角形时,AF与BC的数量关系是:;②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△P AD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.【解答】解:(1)∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夹补中线”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案为:AF=BC;②当△ABC是直角三角形时,∠BAC=90°,∵∠DAE=90°=∠BAC,易证,△ABC≌△ADE,∴DE=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=DE=BC=a,故答案为a;(2)解:猜想:AF=BC,理由:如图1,延长DA到G,使AG=AD,连EG∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=EG,∴AF=BC;(3)证明:如图4,∵△P AD是等边三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四边形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC==,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夹补三角形”,由(2)知,CD=,∴△P AB的“夹补中线”==.【知识点】四边形综合题6.如图1,在△ABC中,点D是BC的中点,延长AD到点G,使DG=AD,连接CG,可以得到△ABD≌△GCD,这种作辅助线的方法我们通常叫做“倍长中线法”.如图2,在△ABC中,点D是BC的中点,点E是AB上一点,连接ED,小明由图1中作辅助线的方法想到:延长ED到点G,使DG=ED,连接CG.(1)请直接写出线段BE和CG的关系:;(2)如图3,若∠A=90°,过点D作DF⊥DE交AC于点F,连接EF,已知BE=3,CF=2,其它条件不变,求EF的长.【答案】BE=CG【解答】解:(1)∵点D是BC的中点,∴BD=CD,在△EBD和△GCD中,∵,∴△EBD≌△GCD(SAS),∴BE=CG,故答案为:BE=CG;(2)如图,连接GF,由(1)知△EBD≌△GCD,∴∠B=∠GCD,BE=CG=3,又∵∠A=90°,∴∠B+∠BCA=90°,∴∠GCD+∠BCA=90°,即∠GCF=90°,∵CG=3,CF=2,∴FG==,∵DF⊥DE,且DE=DG,∴EF=FG=.【知识点】全等三角形的判定与性质7.[方法呈现](1)如图①,△ABC中,AD为中线,已知AB=3,AC=5,求中线AD长的取值范围.解决此问题可以用如下方法:延长AD至点E,使DE=AD,连结CE,则易证△DEC≌△DAB,得到EC=AB=3,则可得AC﹣CE<AE<AC+CE,从而可得中线AD长的取值范围是.[探究应用](2)如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系,并写出完整的证明过程.(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.【答案】2<AD<8【解答】解:(1)由题意知AC﹣CE<AE<AC+CE,即5﹣4<AD<5+3,∴2<AD<8,故答案为:2<AD<8;(2)如图②,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠F AD,∴∠F AD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.(3)如图③,延长AE,DF交于点G,同(2)可得:AF=FG,△ABE≌△GEC,∴AB=CG,∴AF+CF=AB.【知识点】四边形综合题8.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在△ABC中,AB=8,AC=6,D是BC的中点,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB证明:∵延长AD到点E,使DE=AD在△ADC和△EDB中AD=ED(已作)∠ADC=∠EDB()CD=BD(中点定义)∴△ADC≌△EDB()(2)探究得出AD的取值范围是;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,△ABC中,∠B=90°,AB=2,AD是△ABC的中线,CE⊥BC,CE=4,且∠ADE =90°,求AE的长.【答案】【第1空】对顶角相等【第2空】SAS【第3空】1<AD<7【解答】解:(1)证明:延长AD到点E,使DE=AD,在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(对顶角相等),CD=BD(中点定义),∴△ADC≌△EDB(SAS),故答案为:对顶角相等,SAS;(2)∵△ADC≌△EDB,∴BE=AC=6,8﹣6<AE<8+6,∴1<AD<7,故答案为:1<AD<7;(3)延长AD交EC的延长线于F,∵AB⊥BC,EF⊥BC,∴∠ABD=∠FCD,在△ABD和△FCD中,,∴△ABD≌△FCD,∴CF=AB=2,AD=DF,∵∠ADE=90°,∴AE=EF,∵EF=CE+CF=CE+AB=4+2=6,∴AE=6.【知识点】三角形综合题9.我们定义:在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'叫△ABC的“旋补三角形”,△AB'C'的边B'C'上的中线AD叫做△ABC的“旋补中线”.下面各图中,△AB'C'均是△ABC的“旋补三角形”,AD均是△ABC的“旋补中线”.(1)如图1,若△ABC为等边三角形,BC=8,则AD的长等于;(2)如图2,若∠BAC=90°,求证:AD=BC;(3)如图3,若△ABC为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC=4,(2)证明:如图2中,∵AB绕点A旋转得到AB',AC绕点A旋转得到AC',∴AB′=AB,AC'=AC,∵∠BAC=90°,α+β=180°,∠B′AC′=360°﹣(α+β)﹣∠BAC,∴∠B′AC′=360°﹣180°﹣90°=90°,∴∠BAC=∠B′AC′,∴△BAC≌△B′AC′(SAS)∴BC=B′C′,∵AD是△AB'C'边B'C'上的中线,∠B′AC′=90°.∴AD=B′C′.∴AD=BC.(3)结论AD=BC成立.理由:如图3中,延长AD到A′,使得AD=DA′,连接B′A′,C′A′.∴AD=AA′,∵B′D=DC′,AD=DA′,∴四边形AB′A′C′是平行四边形,∴AC′=B′A′=AC,∵∠BAC+∠B′AC′=360°﹣180°=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠AB′A′,∵AB=AB′,∴△BAC≌△AB′A′(SAS)∴BC=AA′,∴AD=BC.【知识点】几何变换综合题10.阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A (﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.【解答】解:(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=2AE2+(x+y)2+(x﹣y)=2AE2+2x2+2y2、=2AE2+2BD2+2DE2=2AD2+2BD2.(2)①∵AB2+AC2=2AD2+2BD2,∴62+42=2AD2+2×42,∴AD=②如图3中,∵AF是△ABC的中线,EF是△AEO的中线,OF是△BOC的中线,∵2EF2+2AE2=AF2+OF2,2AF2+2BF2=AB2+AC2,OF2=OB2﹣BF2,∴4EF2=2OB2﹣4AE2=2OB2﹣OA2,∴EF2=OB2﹣OA2=16,∴EF=4(负根以及舍弃),故答案为.4.(3)如图4中,连接OA,取OA的中点E,连接DE.由(2)的②可知:DE═OB2﹣OA2=,在△ADE中,AE=,DE=,∵AD≤AE+DE,∴AD长的最大值为+=10.【知识点】圆的综合题11.[问题提出]如图①,在△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.[问题解决]解决此问题可以用如下方法,延长AD到点E使DE=AD,再连结BE(或将△ACD绕着点D逆时针装转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断,由此得出中线AD的取值范围是[应用]如图②,如图,在△ABC中,D为边BC的中点,已知AB=5,AC=3,AD=2.求BC的长[拓展]如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作DF⊥DE交边AC于点F,连结EF,已知BE=4,CF=5,则EF的长为【解答】解:(1)在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=4,∵AB﹣BE<AE<AB+BE,AB=6,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)延长AD到E,使得AD=DE,连接BE,如图②,在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=3,∵AE=2AD=4,AB=5,∴BE2+AE2=AB2,∴∠AEB=90°,∴BD=,∴BC=2BD=2;(3)延长FD到G,使得DG=FD,连接BG,EG,如图③,在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=CF=5,DG=DF,∠DBG=∠DCF,∵DE⊥DF,∴EG=EF,∵∠A=90°,∴∠ABC+∠ACB=90°,∴∠ABC+∠DBG=90°,∴EG=,∴EF=,故答案为:.【知识点】全等三角形的判定与性质、直角三角形斜边上的中线、垂线段最短、三角形三边关系、解直角三角形12.我们定义:如图1,在△ABC看,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.【解答】解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;理由:∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3,当∠BAC=90°,BC=8时,则AD长为4.理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)猜想.证明:如图,延长AD至点Q,则△DQB'≌△DAC',∴QB'=AC',QB'∥AC',∴∠QB'A+∠B'AC'=180°,∵∠BAC+∠B'AC'=180°,∴∠QB'A=∠BAC,又由题意得到QB'=AC'=AC,AB'=AB,∴△AQB'≌△BCA,∴AQ=BC=2AD,即.【知识点】几何变换综合题13.如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除外)上时,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)判断AD与BE是否相等,请说明理由;(2)如图2,若AB=8,点P、Q两点在直线BE上且CP=CQ=5,试求PQ的长;(3)在第(2)小题的条件下,当点D在线段AM的延长线(或反向延长线)上时.判断PQ的长是否为定值,若是请直接写出PQ的长;若不是请简单说明理由.【解答】解:(1)AD=BE.理由如下:∵△ABC,△CDE都是等边三角形,∴AC=BC,CD=CE,∵∠ACD+∠BCD=∠ACB=60°,∠BCE+∠BCD=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图,过点C作CN⊥BQ于点N,∵CP=CQ,∴PQ=2PN,∵△ABC是等边三角形,AM是中线,∴CM⊥AD,CM=BC=×8=4,∴CN=CM=4(全等三角形对应边上的高相等),∵CP=CQ=5,∴PN===3,∴PQ=2PN=2×3=6;(3)PQ的长为定值6.∵点D在线段AM的延长线(或反向延长线)上时,△ACD和△BCE全等,∴对应边AD、BE上的高线对应相等,∴CN=CM=4是定值,∴PQ的长是定值.【知识点】全等三角形的判定与性质、等边三角形的性质14.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)并缩短一半得到AB',把AC绕点A逆时针旋转β并缩短一半得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋半三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋半中线”,点A 叫做“旋半中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=4时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用:(3)如图4,在平面直角坐标系中,△ABC的坐标分别是A(4,3),B(1,0),C(5,0),△AB′C′是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”,连结OD,求OD的最大值是多少?并请直接写出当OD最大时点D的坐标.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=2AB′=2AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为:.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC∽△B′AC′,∴BC=2B′C′,∵B′D=DC′,∴AD=B′C′=BC==1,故答案为:1;(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC∽△AB′M,∴BC=2AM,∴AD=BC.(3)如图4,∵AD=BC,BC=4,∴AD=1,∴D在以A为圆心,以1为半径的圆上,∴当D运动到直线OA与半圆相交时OD最大,∵A(4,3),∴OA=5,∵AD=1,∴OD的最大值是6.过A作AE⊥x轴于E,过D作DF⊥x轴于F,∴AE∥DF,∴△AOE∽△DOF,∴==,∵OE=4,AE=3,∴OF=,DF=,∴D(,).【知识点】几何变换综合题。

专题26 线段中的常见思想方法的应用(师)

专题26 线段中的常见思想方法的应用(师)

专题26线段中的常见思想方法的应用【题型1 线段中的整体思想】 【题型2 线段中的方程思想】 【题型3 线段中的分类讨论思想】 【题型4 线段中的数形结合思想】【题型1 线段中的整体思想】【例1】(2022·全国·七年级专题练习)线段AB =16,C ,D 是线段AB 上的两个动点(点C 在点D 的左侧),且CD =2,E 为BC 的中点.(1)如图1,当AC =4时,求DE 的长.(2)如图2,F 为AD 的中点.点C ,D 在线段AB 上移动的过程中,线段EF 的长度是否会发生变化,若会,请说明理由;若不会,请求出EF 的长. 【答案】(1)DE =4 (2)EF =7【分析】(1)首先根据题意求出BC 的长度,然后由E 为BC 的中点求出BE 的长度,最后即可求出DE 的长;(2)由题意可得AD +BC =AB +CD ,由F 为AD 的中点和E 为BC 的中点表示出FD +CE =12(AD +BC ),代入EF =FD +CE −CD ,即可求出EF 长.【详解】(1)∵AB =16,CD =2,AC =4,∵BC =AB −AC =16−4=12,AD =AC +CD =6,∵E 为BC 的中点,∵BE =12BC =6,∵DE =AB −AD −BE =16−6−6=4; (2)线段EF 的长度不会发生变化,EF =7, ∵AB =16,CD =2,∵AD +BC =AB +CD =16+2=18,∵F 为AD 的中点,E 为BC 的中点, ∵FD +CE =12(AD +BC )=12×18=9,∵EF =FD +CE −CD =9−2=7.【点睛】此题考查了线段的和差计算以及有关线段中点的计算问题,解题的关键是正确分析题目中线段之间的数量关系.【变式1-1】(2022·黑龙江大庆·期末)如图1,已知点C 在线段AB 上,且AM =13AC ,BN =13BC .(1)若AC =12,CB =6,求线段MN 的长. (2)若C 为线段AB 上任意一点,且满足AC +BC =a ,其他条件不变,求线段MN 的长.【答案】(1)12;(2)23a【分析】(1)若AC =12,CB =6,求线段MN 的长; (2)若点C 为线段AB 上任意一点,且满足AC +BC =a ,请直接写出线段MN 的长;(1)解:因为AM =13AC ,BN =13BC ,AC =12,CB =6,所以AM =13×12=4,BN =13×6=2.AB =AC +BC =12+6=18.所以MN =AB −AM −NB =18−4−2=12. (2)解:因为AM =13AC ,BN =13BC ,AC +BC =a , 所以:AM +BN =13(AC +BC )=13a , 所以MN =AB −(AM +BN )=AC +BC −(AM +BN )=a −13a =23a .【点睛】本题考查了两点间的距离,利用AM =13AC .BN =13BC ,得出AM 的长,BN 的长是解题关键.点C 是线段AB 上的一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.(1)若AB =10cm ,求线段MN 的长; (2)若AC =3cm ,CP =1cm ,求线段PN 的长. 【答案】(1)MN =5cm ;(2)PN =32cm【分析】(1)根据线段中点的性质可得MC =12AC ,CN =12BC .再根据MN =MC +CN =12AC +12BC =12(AC +BC )代入计算即可得出答案;(2)先根据题意可计算出AP 的长度,由线段中点的性质可得AB =2AP ,CB =AB ﹣AC ,CN =12CB ,再根据PN =CN ﹣CP 代入计算即可得出答案. (1)解:∵M 、N 分别是AC 、BC 的中点, ∵MC =12AC ,CN =12BC ,∵MN =MC +CN =12AC +12BC =12(AC +BC )=12AB =12×10=5(cm ).(2)解:∵AC =3,CP =1,∵AP =AC +CP =4, ∵点P 是线段AB 的中点, ∵AB =2AP =8,CB =AB -AC =5,∵点N 是线段CB 的中点,∵C N =12CB =52(cm ),∵PN =CN -CP =52-1=32(cm ).【点睛】本题主要考查了两点间距离的计算,熟练掌握两点间的距离计算方法进行求解是解决本题的关键.已知B 、C 在线段AD 上,M 是AB 的中点,N 是CD 的中点,且AB =CD .(1)如图线段AD 上有6个点,则共有______条线段;(2)比较线段的大小:AC ______BD (填“>”、“=”或“<”);(3)若AD=12,BC =8,求MN 的长度. 【答案】(1)15;(2)=;(3)10【分析】(1)根据线段有两个端点,得出所有线段的条数;(2)依据AB =CD ,即可得到AB +BC =CD +BC ,进而得出AC =BD ;(3)依据线段的和差关系以及中点的定义,即可得到MN 的长度.(1)∵线段AD 上有6个点,∵图中共有线段条数为6×(6−1)÷2=15; 故答案为:15;(2)∵AB =CD ,∵AB +BC =CD +BC , 即AC =BD ;故答案为:=; (3)∵AD =12,BC =8, ∵AB +CD =AD −BC =4, ∵M 是AB 的中点,N 是CD 的中点, ∵BM =12AB ,CN =12CD ,∵BM +CN =12(AB +CD )=12×4=2,∵MN =BM +CN +BC =2+8=10.【点睛】本题主要考查了两点间的距离以及线段的和差关系,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.【题型2 线段中的方程思想】【例2】(2022·河南信阳·七年级期末)如图,A ,B ,C ,D 四点在同一条直线上.(1)若AB =CD ,①比较线段的大小:AC ______BD ;(填“>”“=”或“<”)②若BC =34AC ,且AC =24cm ,则AD 的长为______cm ;(2)若线段AD被点B,C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是20cm,求AD的长.【答案】(1)①=;②30;(2)30cm【分析】(1)①根据等式的性质,得出答案;②求出BC的值,再求出AB、CD的长,进而求出AD 的长即可;(2)根据线段的比,线段中点的意义,设未知数,列方程求解即可.(1)①∵AB= CD,∵AB+ BC= CD+ BC,即,AC= BD,故答案为:=;②∵BC=34AC,且AC = 24cm,∵BC=34×24= 18(cm),∵AB=CD=AC-BC=24-18=6 (cm)∵AD= AC+CD= 24+6= 30 (cm);故答案为:30;(2)解:如图1所示,∵线段AD被点B,C分成了3:4:5三部分,设AB=3x,则BC=4x,CD=5x,因为M是AB的中点,N是CD的中点,所以BM=12AB=32x,CN=12CD=5x2,所以32x+4x+52x=20;得x=52;所以AD=3x+4x+5x=12x=12×52=30cm.【点睛】本题考查线段的和差及其中点的有关计算,理解线段中点的意义是正确计算的前提,以及根据已知,用方程思想解决问题是解题关键.阶段练习)如图,点A、B在线段EF上,点M、N分别是线段EA、BF的中点,EA:AB:BF=1:2:3,若MN=6cm,求线段EF的长.【答案】EF的长为9cm.【分析】由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=6cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.【详解】解:设EA=xcm,∵EA:AB:BF=1:2:3,∵AB=2xcm,BF=3xcm,而M、N分别为EA、BF的中点,∵MA=12EA,NB=12BF,∵MN=MA+AB+BN=12x+2x+32x=4xcm,∵MN=6cm,∵4x=6,∵x=32,∵EF=EA+AB+BF=6x=9cm.∵EF的长为9cm.【点睛】本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.【变式2-2】(2022·山东泰安·期中)如图,已知数轴上有两点A,B,它们的对应数分别是a,b,其中a=12.(1)在B左侧作线段BC=AB,在B的右侧作线段BD=3AB(要求尺规作图,不写作法,保留作图痕迹)(2)若点C对应的数是c,点D对应的数是d,且AB=40,求c,d的值.(3)在(2)的条件下,设点M是BD的中点,N是数轴上一点,且CN=4DN,请直接写出MN的长.【答案】(1)见解析;(2)c=-68,d=92;(3)MN=28或3403【分析】(1)利用圆规量得AB的长度,以点B为圆心,AB为半径画弧,交点B左边的坐标轴于一点,即为点C;再点A为圆心,AB为半径画弧,交点A右边的坐标轴于一点,再以此点为圆心,AB为半径画弧,交圆心右边的坐标轴于另一点,则此交点为点D ;(2)根据线段之间的等量关系求得AC 、AD 的长度,从而得出点所表示的数;(3)分两种情况分析:①点N 在线段CD 上;②点N 在线段CD 的延长线上.【详解】(1)解:线段BC 、BD 为所求线段,如图所示:(2)解:∵AB =40,BC =AB ,∵AC =2AB =80, ∵a =12,∵c =12-80=-68, ∵BD =3AB ,∵BD =120,∵AD =80,设d 为x 则,x -12=80,解得:x =92,∵d =92. (3)解:①当点N 在线段CD 上时,由(2)得CD =92﹣(﹣68)=160,点B 对应的数为12﹣40=﹣28,∵BD =92﹣(﹣28)=120, ∵点M 是BD 的中点,∵点M 对应的数为92﹣60=32, ∵CN =4DN ,∵DN =15CD =32, ∵点N 对应的数为92−32=60, ∵MN =60−32=28;②当点N 在线段CD 的延长线上时,∵CN =4DN ,∵CD =3DN =160, ∵DN =1603,∵点N 对应的数为92+1603=4363,∵MN =4363−32=3403; 故MN 的长为28或3403.【点睛】本题主要考查了数轴与有理数的关系和线段中点的有关计算,解题关键是抓住线段之间的关系,体现了数形结合思想.【变式2-3】(2022·山西晋城·七年级期末)如图,数轴上点A 、B 对应着数10、15.C 、D 两点同时从点A 、原点O 出发分别以1cm/s 和2cm/s 的速度沿数轴向右运动.设运动时间为ts .(1)当t =2时,请说明BC =12AD ; (2)当t >5,且CD =AB 时,求t 的值;(3)取线段CD 的中点M ,当BM =14OA 时,求t 的值. 【答案】(1)BC =12AD ;(2)t =15;(3)t =5或t =253【分析】(1)分别计算出BC 和AD 即可等到BC =12AD ;(2)先计算得到CD 的关于t 的表达式,再根据CD =AB 求出t 即可;(3)根据M 在点B 前面和后面两种情况分别计算出BM 关于t 的表达式,再根据BM =14OA 即可计算出t .(1)当t =2时,AC =1×t =2,BC =OB −(OA +AC)=15−10−2=3 ,OD =2×t =4,AD =OA −OD =10−4=6,∵BC =12AD ; (2)当D 在C 后面时,如下图所示,OD =2t ,OC =OA +AC =10+t ,CD =OC −OD =10−t ,AB =15−10=5∵CD =AB ,∵10−t =5,∵t =5(舍去), 点D 在点C 的前面时,如下图所示,CD =OD −OC =2t −(10+t )=t −10, ∵CD =AB ,∵t −10=5,即t =15.(3)当点M 在点B 左边时,BM =OB −OM =OB −OD −DM =15−2t −12(10+t −2t)=10−32t又∵BM =14OA ,∵10−32t =14×10即t =5; 当点M 在点B 右边时,BM =OM −OB =OD +DM −OB=2t +12(10+t −2t)−15=32t −10又∵BM =14OA ,32t −10=14×10 即t =253,∵t =5或t =253.【点睛】本题考查数轴上的点及线段的长度,解题的关键是根据题意建立等式. 【例3】(2022·全国·七年级专题练习)已知线段AB 上有两点C 、D ,使得AC ∶CD ∶DB =1∶2∶3,M 是线段AC 的中点,点N 是线段AB 上的点,且满足DN =14DB ,AB =24,求MN 的长.【答案】7或13【分析】设AC =x ,则CD =2x ,DB =3x ,根据题意得x +2x +3x =24,计算得x =4,即可得AC =4,CD =8,DB =12,CB =20,根据点M 是线段AC 的中点得MC =12AC =2,根据DB =12,DN =14DB 得DN =3,分以下两种情况:①当点N 在线段CD 上时, ②当点N 在线段DB 上时,进行计算即可得.【详解】解:设AC =x ,则CD =2x ,DB =3x , ∵AB =24,∵x +2x +3x =24,6x =24解得x =4,∵AC =4,CD =8,DB =12,CB =20, ∵点M 是线段AC 的中点,∵MC =12AC =2, ∵DB =12,DN =14DB ,∵DN =14×12=3, 分以下两种情况:①当点N 在线段CD 上时,MN =MC +CD −DN =2+8−3=7,②当点N 在线段DB 上时,MN =MC +CD +DN =2+8+3=13,综上所述,线段MN 的长度为7或13.【点睛】本题考查了一元一次方程的应用,两点间的距离的计算,线段的中点的性质,解题的关键是掌握线段中点的性质,分类讨论.【变式3-1】(2022·福建省永春第一中学七年级阶段练习)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,且a 、b 满足(a +1)2+|b −3|=0.(1)填空:a = ,b = ,AB = ;(2)若数轴上存在一点C ,且AC =2BC ,求C 点表示的数;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒). ①分别表示甲、乙两小球到原点的距离(用t 表示); ②求甲、乙两小球到原点的距离相等时经历的时间.【答案】(1)-1,3,4;(2)53或7(3)①甲:t +1;乙:3−2t 或2t −3;②t =23秒或t =4秒【分析】(1)先根据非负数的性质求出a 、b 的值,再根据两点间的距离公式求得A 、B 两点之间的距离;(2)分C 点在线段AB 上和线段AB 的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:(∵)当0<t ≤32时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;(∵)当t >32时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离;②分两种情况:(∵)0<t ≤32,(∵)t >32,根据甲、乙两小球到原点的距离相等列出关于t 的方程,解方程即可.(1)因为(a+1)2+|b−3|=0,所以a+1=0,b−3=0,所以a=−1,b=3;所以AB的距离=|b−a|=4,故答案为:-1,3,4;(2)设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+1|=2|c−3|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−1<c<3,得c+1=2(3−c),解得c=53;②当C点在线段AB的延长线上时,则有c>3,得c+1=2(c−3),解得c=7.故当AC=2BC时,c=53或c=7;(3)①因为甲球运动的路程为:1×t=t,OA=1,所以甲球与原点的距离为:t+1;乙球到原点的距离分两种情况:(I)当0<t≤32时,乙球从点B处开始向左运动,一直到原点O,因为OB=3,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:3−2t;(I I)当t>32时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−3;②当0<t≤32时,得t+1=3−2t,解得t=23;当t>32时,得t+1=2t−3,解得t=4.故当t=23秒或t=4秒时,甲乙两小球到原点的距离相等.【点睛】本题考查了一元一次方程的应用,非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.【变式3-2】(2022·全国·七年级专题练习)如图,点C是线段AB上的一点,线段AC=8m,AB=32BC.机器狗P从点A出发,以6m/s的速度向右运动,到达点B后立即以原来的速度返回;机械猫Q从点C出发,以2m/s的速度向右运动,设它们同时出发,运动时间为xs.当机器狗P与机械猫Q 第二次相遇时,机器狗和机械猫同时停止运动.(1)BC=______m,AB=______m;(2)试通过计算说明:当x为何值时,机器狗P在点A与机械猫Q的中点处?(3)当x为何值时,机器狗和机械猫之间的距离PQ =2m?请直接写出x的值.【答案】(1)16,24.(2)当x=45,即运动45秒时,机器狗P在点A与机械猫Q的中点处.(3)当x=32或x=52或x=194,即运动x=32或x=52或x=194秒时,机器狗和机械猫之间的距离PQ=2m.【分析】(1)由AB=32BC且AC=8cm得8+BC=32BC,先求出BC的长,然后再求出AB的长即可;(2)先确定机器狗P在点A与机械猫Q的中点处只存在一种情况,即机器狗P与机械猫Q第一次相遇之前,再根据线段AP=12AQ列方程求出x的值即可;(3)分三种情况,一是点P在线段AQ上,可根据AP+2=AQ列方程求出x的值;二是点P在线段BQ 上且点P到达点B之前,可根据AP-2=AQ列方程求出x的值;三是点P在线段BQ上且点P从点B 返回时,可根据2AB减去点P运动的距离等于AQ+2列方程求出x的值即可.【详解】(1)解:∵AB =32BC ,AB =AC +BC ,AC =8m , ∵8+BC =32BC ,解得:BC =16m ,∵AB =32×16=24m .故答案为:16,24.(2)解:由题意可得::机器狗P 在点A 与机械猫Q 的中点处只存在一种情况,即机器狗P 与机械猫Q 第一次相遇之前,∵6x =12{8+2x ),解得x =45. 答:当x =45,即运动45秒时,机器狗P 在点A 与机械猫Q 的中点处.(3)解:当点P 在线段AQ 上且PQ =2m 时,则6x +2=8+2x ,解得x =32;当点P 在线段BQ 上且PQ =2m 时,则6x -2=8+2x 或24×2-6x =8+2x +2,解得x =52或x=194.答:当x =32或x =52或x =194,即运动x =32或x =52或x =194秒时,机器狗和机械猫之间的距离PQ =2m . 【点睛】本题主要考查了解一元一次方程、一元一次方程的应用、线段上的动点问题的求解等知识点,正确地用含x 的代数式表示线段A P 和AQ 的长是解答本题的关键.江西省丰城中学七年级期中)已知数轴上A 点表示的数是a ,B 点表示的数是b ,且a ,b 满足式子(a +3)2+|b −6|=0. (1)写出a =______,b =______.(2)将数轴上线段AB 剪下来,并把AB 这条线段沿着某点折叠,然后在重叠部分某处剪一刀得到三条线段,若这三条线段的长度之比为1:2:2,求折痕处对应的点所表示的数. 【答案】(1)−3;6;(2)35或32或125【分析】(1)根据绝对值的非负性与偶次方的非负性,非负数的性质得出a +3=0,b −6=0,再解方程即可求解.(2)设折痕处点表示数为x ,被剪处为点C 、D ,分三种情况:①当AC:CD:DB =1:2:2时,②当AC:CD:DB =2:1:2时,③当AC:CD:DB =2:2:1时,分别求解好戏可.(1)解:∵(a +3)2+|b −6|=0, 又∵(a +3)2≥0,|b −6|≥0,∵a +3=0,b −6=0,∵a =−3,b =6. 故答案为:−3;6.(2)解:设折痕处点表示数为x , ①当AC:CD:DB =1:2:2时,AB =5AC =9,∵AC =95, ∵x =−3+2×95=35.②当AC:CD:DB =2:1:2时,则AB =5CD =9,∵CD =95, ∵AC +12CD =52CD =52×95=92,∵x =−3+92=32.③当AC:CD:DB =2:2:1时,则AB =5DB =9,∵DB =95,∵AC +12CD =3DB =3×95=275.∵x =−3+275=125.∵综上,折痕处表示的数为:35或32或125.【点睛】本题考查用数轴上的点表示有理数,非负数的性质,线段和差倍分,熟练掌握偶次方与绝对值的非负性,分类讨论思想的应用是解题的关键. 【例4】(2022·广东东莞·七年级期末)如图,C 是线段AB 上一点,AB =12cm ,AC =4cm ,P 、Q 两点分别从A 、C 出发以1cm/s 、2cm/s 的速度沿直线AB向右运动,运动的时间为ts.(1)当t=1s时,CP=cm,QB=cm;(2)当运动时间为多少时,PQ为AB的一半?(3)当运动时间为多少时,BQ=AP?【答案】(1)3,6;(2)运动时间为2s时,PQ为AB的一半;(3)运动时间为83s或8s时,BQ=AP【分析】(1)根据CP=AC−AP,QB=AB−AQ 的关系,由P、Q两点分别从A、C出发以1cm/s、2cm/s的速度沿直线AB向右运动,求解当t=1s对应的长度即可;(2)通过建立一元一次方程进行求解即可;(3)通过分类讨论的思想,当点Q到点B的左边或右边时,通过建立一元一次方程进行求解.(1)解:∵CP=AC−AP,当t=1s,AP=1cm,∴CP=4−1=3cm,∵QB=AB−AQ,当t=1s,CQ=2cm,∴QB=12−4−2=6cm,故答案为:3,6;(2)解:设运动t秒时,PQ是AB的一半,当点P到点C的左边时,∴PQ=PC+CQ=4−t+ 2t=6,解得:t=2,当点P到点C的右边时,PQ的距离大于AB的一半,不满足题意,故运动时间为2s时,PQ是AB的一半;(3)解:当点Q到点B的左边时,设运动t秒时,BQ=AP,则8−2t=t,解得:t=83,当点Q到点B的右边时,设运动t秒时,BQ=AP,则2t−8=t,解得:t=8,故运动时间为83s或8s时,BQ=AP.【点睛】本题考查了数轴上的动点问题,一元一次方程,两点间的距离,解题的关键是通过数形结合及分类讨论的思想进行求解.【变式4-1】(2022·山东德州·七年级期末)已知,线段AB=20,M是线段AB的中点,P是线段AB上任意一点,N是线段PB 的中点.(1)当P是线段AM的中点时,求线段NB的长;(2)当线段MP=1时,求线段NB的长;(3)若点P在线段BA的延长线上,猜想线段PA与线段MN的数量关系,并画图加以证明.【答案】(1)7.5;(2)4.5或5.5;(3)PA=2MN,画图证明见解析.【分析】(1)画出符合题意的图形,先求解AM= 10,再求解AP=5,可得PB=15,再利用中点的含义可得答案;(2)分两种情况讨论:当P在M左边时,当P在M右边时,先求解PB,再利用中点的含义可得答案;(3)当P在线段BA延长线上时,如图,设PA=t,求解NB=10+12t,再求解MN=NB−MB=12t,从而可得结论.【详解】解:(1)如图,∵M是线段AB的中点,AB= 20∵MA=12AB=10∵P是线段AM的中点,∵AP=12AM=5∵PB=AB−AP=20−5=15∵N是线段PB的中点,∵NB=12PB=7.5(2)∵MP=1,∵当P在M左边时,如图,BP=MB+MP=11,∵N是线段PB的中点,∵NB=12PB=5.5,如图,当P在M右边时,BP=MB−MP=9,∵N是线段PB的中点,∵NB=12PB=4.5.(3)线段PA和线段MN的数量关系是:PA=2MN,理由如下:当P在线段BA延长线上时,如图,设PA= t,则PB=20+t∵N是线段PB的中点,∵NB=12PB=10+12t∵M是线段AB的中点,AB=20,∵MB=12AB=10∵MN=NB−MB=12t又∵PA=t,∵PA=2MN【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.【变式4-2】(2022·全国·七年级专题练习)如图,已知直线l上有两条可以左右移动的线段:AB=m,CD=n,且m,n满足|m−4|+(n−8)2=0,点M,N分别为AB,CD中点.(1)求线段AB,CD的长;(2)线段AB以每秒4个单位长度向右运动,线段CD 以每秒1个单位长度也向右运动.若运动6秒后,MN=4,求此时线段BC的长;(3)若BC=24,将线段CD固定不动,线段AB以每秒4个单位速度向右运动,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.【答案】(1)线段AB的长是4,线段CD的长是8(2)16或8(3)当7.5≤t≤9时,MN+AD为定值,定值为6【分析】(1)利用绝对值和平方的非负性求出m 和n的值即可;(2)分M′在N′的左侧和M′在N′的右侧两种情况,根据线段的和差关系列出方程,即可求解;(3)由题意,运动t秒后,MN=|30−4t|,AD= |36−4t|,分段讨论即可求解.(1)解:∵|m−4|+(n−8)2=0,∵|m−4|=0,(n−8)2=0,∵m=4,n=8,∵AB=4,CD=8,即线段AB的长是4,线段CD的长是8;(2)解:∵AB=4,CD=8,∵MB=12AB=2,CN=12CD=4,设运动后点M对应点为M′,点N对应点为N′,分两种情况,若6秒后,M′在N′的左侧时:MN+ NN′=MM′+M′N′,∵MB+BC+CN+NN′=MM′+M′N′,即2+BC+4+6×1=6×4+4,解得BC=16.若6秒后,M′在N′的右侧时:MM′=MN+NN′+ M′N′,∵MM′=MB+BC+CN+NN′+M′N′,即6×4=2+BC+4+6×1+4,解得BC=8.即线段BC的长为16或8;(3)解:∵BC=24,AB=4,CD=8,∵MN=BC+12AB+12CD=24+2+4=30,AD=BC+AB+CD=24+4+8=36,∵线段CD固定不动,线段AB以每秒4个单位速度向右运动,∵运动t秒后,MN=|30−4t|,AD=|36−4t|,当0≤t<7.5时,MN+AD=30−4t+36−4t= 66−8t;当7.5≤t≤9时,MN+AD=4t−30+36−4t= 6;当t>9时,MN+AD=4t−30+4t−36=8t−66;故当7.5≤t≤9时,MN+AD为定值,定值为6.【点睛】本题考查非负数的性质,一元一次方程的应用,线段的和差关系,以及数轴上的动点问题,解题的关键是掌握分类讨论思想.【变式4-3】(2022·河南周口·七年级期末)学习了线段的中点之后,小明利用数学软件GeoGebra做了n次取线段中点实验:如图,设线段OP0=1.第1次,取OP0的中点P1;第2次,取P0P1的中点P2;第3次,取P1P2的中点P3,第4次,取P2P3的中点P4;…(1)请完成下列表格数据.(2)小明对线段OP4的表达式进行了如下化简:因为OP4=1−12+122−123+124,所以2OP4=2(1−12+122−123+124)=2−1+12−1 22+123.两式相加,得3OP4=2+124.所以OP4=23+13×24.请你参考小明的化简方法,化简OP5的表达式.(3)类比猜想:P n−1P n=__________,OP n=_________________,随着取中点次数n的不断增大,OP n的长最终接近的值是__________.【答案】(1)P4P5=125,OP5=OP4−P4P5=1−12+1 22−123+124−125(2)OP5=23−13×25(3)12n,23+(−1)n3×2n,23【分析】(1)根据表中的规律可求出P4P5,根据OP5=OP4−P4P5可得出答案;(2)参照小明对线段OP4的表达式的化简可得OP5的表达式;(3)根据类比猜想可得答案.(1)解:P4P5=125,OP5=OP4−P4P5=1−12+122−123+124−125;故答案为:P4P5=125,OP5=OP4−P4P5=1−12+122−123+124−125;(2)解:因为OP5=1−12+122−123+124−125,所以2OP5=2(1−12+122−123+124−125)=2−1+12−122+123−124.两式相加,得3OP5=2−125.所以OP5=23−13×25;(3)解:P n−1P n=12n,OP n=23+(−1)n3×2n,随着取中点次数n的不断增大OP n的长最终接近的值是23.故答案为:12n,23+(−1)n3×2n,23.【点睛】本题考查规律型:图形的变化类,找到规律并会表现出来是解题关键.次数Pi-1Pi线段OPi的长第1次P0P1=12OP1=OP0−P0P1=1−12第2次P1P2=122OP2=OP1+P1P2=1−12+122第3次P2P3=123OP3=OP2−P2P3=1−12+122−123第4次P3P4=124OP4=OP3+P3P4=1−12+122−123+124第5次………。

三角形中位线定理的多种证明

三角形中位线定理的多种证明

2023年5月下半月㊀解法探究㊀㊀㊀㊀三角形中位线定理的多种证明◉青岛市即墨区实验学校㊀孙㊀凯㊀㊀摘要:三角形中位线定理是初中几何重要的结论,为解题提供了线段的位置与长度关系.教材中对该定理的证明耐人寻味 通过辅助线,将三角形转化为平行四边形,再运用平行四边形的性质进行证明.这样的辅助线,与以前的 将四边形转化为三角形 完全不一样,进一步丰富了学生对转化思想更深层次的认识,也完善了对辅助线作法的认知.基于八年级学生的基础,本文中给出了其他几种解法,以培养学生的理性思考能力,提高学生的数学素养.关键词:三角形中位线;多角度解答;辅助线㊀㊀三角形中位线定理是初中数学的一个重要定理,因为只有中点的条件,而要证明两个不同类型的结论,对学生而言,有一定的难度.人教版数学教材八年级下册第48页是通过构造平行四边形,运用平行四边形的判定与性质来进行证明的.除此之外,学生对其他证法知之甚少.其实,三角形中位线定理的证明方法有很多种,现仅基于八年级知识范围补充几种不同的证法,供大家参考.1例题呈现图1已知:如图1,әA B C 中,D ,E 分别是边A B ,A C 的中点.求证:D E ʊB C ,D E =12B C .2多法探究思路一:从面积入手.分析:由三角形中线性质可知,三角形的中线把三角形分成面积相等的两部分,因此易证әB C D 与әB C E 面积相等,则D E ʊB C .那么如何证明D E =12B C 呢?由S әB D E =12S әB E C ,运用三角形的面积公式即可证得.证法一:面积法.图2证明:如图2,过点D 作D F ʅB C 于点F ,过点E 作E G ʅB C 于点G ,连接B E ,C D .ȵA D =B D =12A B ,A E =C E =12A C ,ʑS әB D C =12S әA B C ,S әC E B =12S әA B C .ʑS әB D C =S әC E B ,即12B C D F =12B C E G .ʑD F =E G .又D F ʊE G ,ʑ四边形D F G E 是平行四边形.ʑD E ʊB C .ȵS әD B E =12S әA E B ,S әA E B =S әB E C ,ʑS әD B E =12S әB E C ,即12D E E G =14B C E G .ʑD E =12B C .点评:证法一利用面积相等的两个三角形证得线段平行,又运用三角形面积公式推导出线段的倍分关系,是三角形面积的正逆运用.用三角形面积的性质解题,显得灵动㊁直观,更具创造性.思路二:从等长线段入手,构造平行线.证法二:重合法.分析:本题中已有 中点 条件,要想出现三角形全等,必须出现对应角相等,可过点E 分别作B C ,A B 的平行线,出现一对全等三角形,再运用平行四边形性质证明.图3证明:如图3,过点E 作A B 的平行线交B C 于点F ,过点E 作B C 的平行线交A B 于点G .ȵG E ʊB C ,E F ʊA B ,ʑøA E G =øC ,øA =øF E C .又ȵA E =E C ,ʑәA E G ɸәE C F (A S A ).ʑA G =E F ,G E =C F .由辅助线作法可知四边形B F E G 是平行四边形,ʑA G =E F =G B =12A B .又ȵA D =D B =12A B ,ʑ点G 与点D 重合.ʑD E ʊB C ,C F =D E =B F .ʑD E =12B C .点评:运用好题目的核心条件是解题关键.证法二利用线段中点去证明线段的平行及大小关系,既可用57Copyright ©博看网. All Rights Reserved.解法探究2023年5月下半月㊀㊀㊀全等,又可以用平行四边形的性质或二者兼施,达到目的.证法三:旋转法.分析:一组对边平行且相等的四边形是平行四边形.基于这个判定定理,只需把әA D E 绕点E 旋转180ʎ便可得到C F ʊB D 且C F =B D ,再运用平行四边形性质解答即可.图4证明:如图4,将әA D E 绕点E 顺时针旋转180ʎ到әC F E 的位置,此时әA D E ɸәC F E .ʑC F ʊB D ,且C F =B D .ʑ四边形B D F C 为平行四边形.ʑD F ʊB C ,且D F =B C .ʑD E ʊB C ,且D E =12B C .点评:旋转是重要的图形变换方式之一,根据题目特点,运用旋转的性质构造解题模型,显得明快,富有生机.证法四:平移法.分析:如何利用 点E 是A C 中点 并运用三角形全等㊁平行四边形性质是解题关键.为此,可以过点E 作A B 平行线,过点A 作B C 平行线.图5证明:如图5,过点E 作A B 的平行线交B C 于点F ,过点A 作B C 的平行线交F E 的延长线于点G (即平移线段A B ,D E ).ȵA G ʊB C ,ʑøG =øE F C .又ȵA E =E C ,øA E G =øC E F ,ʑәA E G ɸәC E F (A A S ).ʑE G =E F ,A G =F C .由辅助线作法易知四边形A B F G 是平行四边形,ʑA B =G F .ȵD ,E 分别是A B ,A C 的中点,ʑB D ʊE F 且B D =E F ,E G ʊA D 且E G =A D .ʑ四边形A D E G ,D B F E 都是平行四边形.ʑD E ʊB C ,B F =D E =A G =F C .ʑD E =12B C .点评:证法四是继证法二㊁证法三之后,再一次灵活运用中点,构造全等模型并运用平行四边形性质进行解答.合理运用题目条件,并添置辅助线,构造解题模型,是学生综合运用基础知识㊁基本技能的表现.思路三:从中点入手,建立坐标系.证法五:坐标法.分析:D ,E 分别为A B ,A C 中点,可以建立平面直角坐标系,用中点坐标公式解答.证明:如图6,以B C 所在直线为x 轴,过点A 作B C 的垂线,以该垂线所在直线为y 轴,建立平面直角坐标系.图6设点A ,B ,C 的坐标分别为(0,a ),(b ,0),(c ,0).因为D ,E 分别是A B ,A C 的中点,所以由中点坐标公式,得D(b 2,a 2),E(c 2,a2).易得直线D E 的解析式为y =a2,与x 轴平行,即D E ʊB C .又D E =c -b 2,B C =c -b ,所以D E =12B C .点评:建立适当的平面直角坐标系,用坐标或函数关系式表示问题中的几何元素,用代数方法解决几何问题,是全新的视角,有助于深入了解问题㊁剖析问题,可以拓展学生数学思维.当然,三角形中位线定理的证明方法还有多种,比如,用相似,过点A ,B ,C 分别作直线D E 的垂线,等等.以上只是起抛砖引玉作用,相信大家在教学中还会有更多更好的方法.3类比探究问题1㊀已知:如图1,әA B C 中,D 是边A B 的中点,点E 在边A C 上,D E ʊB C .求证:E 为A C 的中点,D E =12B C .问题2㊀已知:如图1,әA B C 中,D E ʊB C ,D E =12B C .求证:D ,E 分别是边A B ,A C 的中点.以上两个问题,实际上是三角形中位线定理的逆定理,可以参考例题证法进行证明.类似的问题,还有梯形中位线定理,梯形中位线的逆定理,不再赘述.4教学启示教材是根据«义务教育数学课程标准(2022年版)»编写而成的,充分反映了课标的各种目标及要求,是理解数学㊁理解学生㊁理解教学的有力保证,是强有力的资源.课本的例习题为学生的学习活动提供了基本素材,具有普适性,但往往只呈现某一方面,其他很多方面还需要教师带领学生去开发.教师只有理解教材的深刻用意,才能更好地开发教材㊁用好教材.在平时课堂教学中,教师要利用课本中 有意义且不复杂 的问题去帮助学生发现问题的各个方面,让学生体会到 自己是一个发现者㊁研究者㊁探索者 ,这也是 人的心灵深处都有的一种根深蒂固的需要 .让学生带着问题去自由探究,探究问题的多种解法㊁问题变式及应用㊁问题的关联与内在联系,从而感受到数学的思考方法,处理问题的理性思维, ,从而把这些经验迁移应用到以后的学习中去,提升数学素养.Z67Copyright ©博看网. All Rights Reserved.。

七年级数学上册《线段的比较》教案、教学设计

七年级数学上册《线段的比较》教案、教学设计
2.注重直观,引导探究:利用教具、多媒体等教学手段,展示线段的实物模型,帮助学生形成直观的认识。在此基础上,引导学生通过小组合作、讨论交流等方式,自主探究线段比较的方法。
3.分层教学,关注个体差异:针对学生的不同水平,设计难易程度不同的练习题,使每个学生都能在原有基础上得到提高。对于学习困难的学生,给予个别辅导,帮助他们克服难点。
3.拓展提高题:
a.如果一条线段的长度是另一条线段的两倍,如何求出这两条线段的中点?
b.在一个平面直角坐标系中,给出两个点的坐标,求这两个点所连线段的长度。
4.思考题:
a.除了本节课学到的比较线段长度的方法,你还能想到其他方法吗?请尝试提出一种新的方法,并说明其原理。
b.结合生活实际,谈谈线段比较在解决问题过程中的作用和价值。
(一)导入新课
1.教学活动:教师出示一张地图,上面标有两条路线,一条是直线,另一条是曲线。让学生观察并思考:如果要选择其中一条路线走到目的地,你会选择哪一条?为什么?
2.学生回答:学生会根据自己的直观判断选择直线路线,因为直线更短,省时省力。
3.教师引导:是的,直线确实是最短的路线。那么,如何判断两条线段的长度呢?今天我们将学习线段的比较。
在教学过程中,教师还需关注学生的情感态度,激发他们对数学的兴趣,帮助他们树立信心,克服学习中可能遇到的困难。通过多样化的教学手段和人性化的评价方式,鼓励学生积极参与课堂,发挥他们的主观能动性,使他们在轻松愉快的氛围中掌握线段的比较知识。
三、教学重难点和教学设想
(一)教学重点
1.线段的概念及其表示方法。
3.教师指导:在学生讨论过程中,教师巡回指导,引导学生深入思考,及时解答学生的疑问。
(四)课堂练习
1.教学活动:教师出示几道关于线段比较的练习题,让学生独立完成。

线段的计算3

线段的计算3

线段的计算学生/课程七年级-初一-数学年级初一学科数学授课教师日期时段核心内容线段的计算课型一对一教学目标1.结合具体图形理解直线、射线、线段的含义、表示方法及性质;会应用直线、线段的基本性质解决实际问题;2.能进行线段的长短比较;能运用线段的中点进行线段长度的计算。

重、难点直线、射线、线段的区别和联系;线段的中点及计算课首沟通1、上周的作业做得怎么样,有没有哪里不是很理解?2、这周学校学了什么内容,觉得有哪些是比较难的,有没有哪些题型觉得很难做?3、会不会用画一条线段等于一条已知线段吗?有多少种方法,如何画?4、线段的和差倍分的计算掌握得如何?5、线段的性质是什么呢?知识导图课首小测1.如图,已知三点A,B,C.读下列语句,用尺规作图:(1)画直线AB;(2)画射线AC;(3)连接BC;(4)在射线AC上,作线段CD=2BC﹣AC.2.如图,已知AC=5.5cm,BC=3cm,BD=AC,求线段AB和AD的长。

3.[单选题] 如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1cm,则线段AB=( )cmA. 1B. 2C. 4D. 84.如图,C为线段AB的中点,D在线段CB上,DA=6,DB=4,求CD的长.5.如图,已知线段AB=14,在AB上有C,D,M,N四点,且满足AC:CD:DB=1:2:4,AC=2AM,DB=4DN,求MN的长度。

导学一:线段的作图和长短比较知识点讲解 1:尺规作图画一条线段等于已知线段1、画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AC,在这条射线上截取(用圆规)AB=a.2、画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.例 1. 作图题。

2021年人教版数学中考第一轮专题练习 线段中点的模型应用

2021年人教版数学中考第一轮专题练习    线段中点的模型应用

线段中点的模型应用类型1 倍长中线或类中线(与中点有关的线段)构造全等三角形) 如图,已知在△ABC中,AD是BC边上的中线,F是AD上的一点,延长BF 交AC于点E,且AE=EF,求证:BF=AC.类型2 已知等腰三角形底边的中点,可以考虑与顶点连接用“三线合一”) 如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,求MN的长.类型3 已知三角形一边的中点,可以考虑中位线定理)如图,在四边形ABCD中,AC与BD相交于点O,AC=BD,E,F分别是AB,CD的中点,连接EF,分别交AC,BD于点N,M,试判断△OMN的形状.类型4 已知直角三角形斜边的中点,可以考虑构造斜边的中线) 已知:如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,M为BC的中点,求证:AB=2DM.1.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.2.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可求出中线AD的取值范围是________________________________________________________________________;图①图②图③(2)问题解决:如图②,在△ABC中,D是BC边的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C 为顶点作一个50°的角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.3.如图,在△ABC中,AB=AC,D为BC的中点,点E是BA延长线上的一点,点F是AC上的一点,连接EF并延长交BC于点G,且AE=AF.(1)若∠ABC=50°,求∠AEF的度数;(2)求证:AD∥EG.4.如图,在四边形ABCD 中,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长分别与BA ,CD 的延长线交于点M ,N ,求证:∠BME=∠CNE.5.【感知】如图①,BD ,CE 分别是△ABC 的外角平分线,过点A 分别作AM⊥BD 于点M ,AN⊥CE 于点N ,连接MN ,易证:MN =12(AB +BC +AC)(不需要证明);【探究】如图②,若BD ,CE 分别是△ABC 的两个内角的平分线,且AM⊥BD 于点M ,AN⊥CE 于点N ,连接MN.试猜想MN 与边AB ,AC 和BC 之间的数量关系,并证明你的结论;【应用】如图③,在四边形ABCD中,∠ABC=∠ADC=90°,射线BE平分∠ABC,AM⊥BE于点M,连接MD,延长BC至点F,若∠DCF=∠ACD=75°,AB=2,直接写出MD的长度.图①图②图③6.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于点G,CD=AE.(1)求证:CG=EG;(2)已知BC=13,CD=5,连接ED,求△EDC的面积.7.如图①,已知在锐角△ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC,DE的中点.(1)求证:MN⊥DE;(2)连接DM,ME,猜想∠A与∠DME之间的数量关系,并证明你的猜想;(3)当∠A变为钝角时,如图②,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,请说明理由.图①图②参考答案【例1】证明:如图,延长FD到点G,使DG=DF,连接CG,∵AD是BC边上的中线,∴BD=CD.在△BDF 和△CDG 中, ∵⎩⎪⎨⎪⎧BD =CD ,∠BDF=∠CDG DF =DG ,, ∴△BDF≌△CDG(SAS), ∴BF=CG ,∠BFD=∠G.∵AE=EF ,∴∠EAF=∠EFA=∠BFD, ∴∠G=∠CAG, ∴AC=CG ,∴BF=AC. 【例2】解:如图,连接AM.∵AB=AC ,点M 为BC 的中点, ∴AM⊥BC,BM =CM =3,∴根据勾股定理,得AM =AB 2-BM 2=52-32=4. ∵S △AMC =12MN·AC=12AM·MC,∴MN=AM·CM AC =4×35=125.【例3】解:△OMN 是等腰三角形,理由如下: 如图,取BC 的中点H ,连接EH ,FH ,∵E 是AB 的中点,H 是BC 的中点,∴EH 平行且等于12AC.同理可证FH 平行且等于12BD.∵AC=BD ,∴HE=HF ,∴∠HEF=∠HFE.又∵EH∥AC,FH∥BD,∴∠HEF=∠ONM,∠OMN=∠HFE, ∴∠OMN=∠ONM,∴OM=ON ,∴△OMN 是等腰三角形.【例4】证明:如图,取AC 的中点N ,连接MN ,DN ,∵M,N 分别为BC ,AC 的中点, ∴MN 为△ABC 的中位线, ∴MN=12AB ,MN∥AB,∴∠B=∠NMC. ∵∠B=2∠C, ∴∠NMC=2∠C.又∵∠NMC 为△DMN 的外角, ∴∠NMC=∠MDN+∠MND=2∠C. ∵DN 为Rt△ADC 斜边上的中线, ∴DN=NC =AN =12AC ,∴∠MDN=∠C,∴∠MND=∠C=∠MDN, ∴DM=MN =12AB ,∴AB=2DM. 1.解:如图,延长AD 到点E ,使AD =DE ,连接CE , 在△ABD 和△ECD 中, ∵⎩⎪⎨⎪⎧AD =DE ,∠ADB=∠EDC BD =CD ,, ∴△ABD≌△ECD(SAS),∴AB=CE =5,AD =DE =6,∴AE=12. 在△AEC 中,∵AC=13,AE =12,CE =5, ∴AC 2=AE 2+CE 2, ∴∠E=90°,∴由勾股定理,得CD =DE 2+CE 2=62+52=61, ∴BC=2CD =261, ∴BC 的长是261.2.(1)解:将△ACD 绕着点D 逆时针旋转180°得到△EBD,则△ACD≌△EBD,∴AD=DE ,BE =AC =5.∵在△ABE 中,AB -BE<AE<AB +BE ,即3<AE<13, ∴3<2AD <13,∴1.5<AD<6.5.(2)证明:如图①,延长FD 至点N ,使DN =DF ,连接BN ,EN ,在△CDF 和△BDN 中, ∵⎩⎪⎨⎪⎧FD =ND ,∠CDF=∠BDN CD =BD ,, ∴△CDF≌△BDN(SAS),∴BN=FC. ∵DF=DN ,DE⊥DF,∴EF=EN.在△EBN 中,∵BE+BN>EN ,∴BE+CF>EF.(3)BE +DF =EF ,理由如下:如图②,延长AB 至点H ,使BH =DF ,连接CH.∵∠ABC+∠D=180°,∠HBC+∠ABC=180°, ∴∠HBC=∠D. 在△CBH 和△CDF 中, ∵⎩⎪⎨⎪⎧DF =BH ,∠D=∠CBH CD =CB ,, ∴△CBH≌△CDF(SAS),∴CH=CF ,∠HCB=∠FCD.又∵∠BCD=100°,∠ECF=50°,∴∠BCE+∠FCD=50°, ∴∠ECH=∠BCE+∠HCB=50°=∠ECF. 在△HCE 和△FCE 中,∵⎩⎪⎨⎪⎧CF =CH ,∠ECF=∠ECH CE =CE ,,∴△HCE≌△FCE(SAS),∴EH=EF ,即BE +BH =EF ,∴BE+DF =EF.3.(1)解:∵AB=AC ,∴∠ABC=∠C=50°,∴∠BAC=180°-50°-50°=80°.又∵点D 为BC 的中点,∴AD⊥BC,AD 平分∠BAC,∴∠BAD=∠CAD=12∠BAC=12×80°=40°. ∵AE=AF ,∴∠E=∠AFE.又∵∠BAC=∠E+∠AFE,∴∠AEF=∠BAD=40°.(2)证明:∵AD 平分∠BAC,∴∠BAD=∠CAD=12∠BAC. ∵AE=AF ,∴∠E=∠AFE.∵∠BAC=∠BAD+∠CAD=∠E+∠AFE,∴∠AEF=∠BAD,∴AD∥EG.4.证明:如图,连接BD ,取BD 的中点H ,连接HE ,HF ,∵E,F ,H 分别是BC ,AD ,BD 的中点,∴FH∥AB 且FH =12AB ,EH∥CD 且EH =12CD , ∴∠BME=∠HFE,∠CNE=∠HEF.又∵AB=CD ,∴FH=EH ,∴∠HFE=∠HEF,∴∠BME=∠CNE.5.解:【感知】如图①中,设AM 的延长线交CB 的延长线于点J ,AN 的延长线交BC 的延长线于点K.∵AM⊥BD,∴∠AMB=∠BMJ=90°.又∵∠ABM=∠JBM,∴∠BAM=∠J,∴BA=BJ.同理可证CA =CK ,又∵BD⊥AJ,CE⊥AK,∴AM=MJ ,AN =NK ,∴MN=12JK =12(JB +BC +CK)=12(AB +BC +AC). 【探究】结论:MN =12(AB +AC -BC).证明如下:如图②中,延长AM 交BC 于点F ,延长AN 交BC 于点G. ∵AM⊥BD,∴∠AMB=∠BMF=90°.又∵∠ABM=∠FBM,∴∠BAM=∠BFM,∴BA=BF.同理可证CA =CG ,又∵AM⊥BD,AN⊥CE,∴AM=MF ,AN =NG ,∴MN=12FG =12(BF +CG -BC)=12(AB +AC -BC). 【应用】DM 的长度为1+ 3.提示:如图③中,延长AM 交BC 于点J ,延长AD 交BC 的延长线于点K ,由题意得∠ACB=180°-∠ACD-∠DCF=30°.又∵∠ABC=90°,AB =2,∴AC=2AB =4,BC =3AB =2 3.∵AM⊥BE,∴∠AMB=∠JMB=90°.又∵BE 平分∠ABJ,∴∠ABM=∠JBM,∴∠BAM=∠BJM,∴AB=BJ.同理可证AC =KC ,又AM⊥BE,CD⊥AK,∴AM=JM ,AD =KD ,∴DM=12JK =12(CK +BC -BJ)=12(AC +BC -AB)=12×(4+23-2)=1+ 3. 6.(1)证明:如图,连接DE.∵AD 是△ABC 的边BC 上的高,∴AD⊥BC.在Rt△ADB 中,∵点E 是AB 的中点,∴DE=12AB =AE.∵CD=AE ,∴DE=DC.又∵DG⊥CE,∴CG=EG.(2)解:如图,过点E 作EF⊥BC 于点F.∵BC=13,CD =5,∴BD=BC -CD =13-5=8.∵DE=BE ,EF⊥BC,∴DF=BF =4, ∴EF=DE 2-DF 2=52-42=3,∴S △EDC =12CD·EF=12×5×3=7.5. 7.(1)证明:如图①,连接DM ,ME.∵在△ABC 中,CD ,BE 分别是AB ,AC 边上的高,∴CD⊥AB,BE⊥AC.图①又∵M 是BC 的中点,∴DM=12BC ,ME =12BC , ∴DM=ME.又∵N 为DE 的中点,∴MN⊥DE.(2)解:在△ABC中,∠ABC+∠ACB=180°-∠A.∵DM=ME=BM=MC,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠BMD+∠CME=(180°-∠ABC-∠BDM)+(180°-∠ACB-∠CEM)=(180°-2∠ABC)+(180°-2∠ACB)=360°-2(∠ABC+∠ACB)=360°-2(180°-∠A)=2∠A,∴∠DME=180°-2∠A.(3)解:结论(1)成立,结论(2)不成立,理由如下:如图②,结论(1)的证法同(1),结论(2)不成立.理由如下:图②在△ABC中,∠ABC+∠ACB=180°-∠BAC.∵DM=ME=BM=MC,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠CMD=∠ABC+∠BDM=2∠ABC,∠BME=∠ACB+∠CEM=2∠ACB,∴∠BME+∠CMD=2∠ACB+2∠ABC=2(180°-∠BAC)=360°-2∠BAC,∴∠DME=180°-(360°-2∠BAC)=2∠BAC-180°.。

部编数学七年级上册专题有关线段中点的计算问题大题专项提升训练(重难点培优)同步培优含答案

部编数学七年级上册专题有关线段中点的计算问题大题专项提升训练(重难点培优)同步培优含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题4.5有关线段中点的计算问题大题专项提升训练(重难点培优)一、解答题1.(2022·山东潍坊·七年级期中)已知点C在直线AB上,点M,N分别为AC,BC的中点.(1)如图所示,若C在线段AB上,AC=6厘米,MB=10厘米,求线段BC,MN的长;(2)若点C在线段AB的延长线上,且满足AC―BC=a厘米,请根据题意画图,并求MN的长度(结果用含a的式子表示).∵M是AC的中点,∵M是AC的中点,cm,CB=8cm,D、E分别是AC、AB的中点.求:(1)求AD的长度;(2)求DE的长度;(3)若M在直线AB上,且MB=6cm,求AM的长度.∴AM的长度为26cm或14cm.【点睛】本题考查了关于线段的中点的计算,线段的和与差的计算,读懂题意熟练运用线段的和差倍分是解本题的关键.3.(2022·全国·七年级专题练习)如图,已知,C为线段AB上一点,D为AC的中点,E为BC 的中点,F为DE的中点(1)如图1,若AC=4,BC=6,求CF的长;(2)若AB=16CF,求AC的值;CB(3)若AC>BC,AC―BC=a,取DC的中点G,CE的中点H,GH的中点P,求CP的长(用含a 的式子表示).设AC=x,BC=y,即x―y=a,则DC 的中点,如果CD=4cm,(1)求AC的长度;(2)若点E是线段AC的中点,求ED的长度.分别是线段AB、BP的中点.(1)如图1,点B在线段AP上一点,AP=15,求MN的长;(2)如图2,点B在线段AP的延长线上,AM-PN=3.5,点C为直线AB上一点,CA+CP=13,求CP长.CP+CA=CP+(CP+AP)=13,即CP+(CP+7)=13,解得CP=3;当点C在点A的左侧时,CA+CP=CA+(CA+AP)=13,即CA+(CA+7)=13,解得CA=3,∴CP=CA+AP=3+7=10.综上所述,CP的长为3或10.【点睛】本题考查中点的定义和线段的和差关系,解题的关键是熟练运用分类讨论思想,避免漏解.6.(2021·湖北·十堰市郧阳区教学研究室七年级期末)如图,已知线段AB=24,动点P从A 出发,以每秒2个单位的速度沿射线AB方向运动,运动时间为t秒(t>0),点M为AP的中点.(1)若点P在线段AB上运动,当t为多少时,PB=AM?(2)若点P在射线AB上运动,N为线段PB上的一点.①当N为PB的中点时,求线段MN的长度;②当PN=2NB时,是否存在这样的t,使M,N,P三点中的一个点是以其余两点为端点的线段的中点?如果存在,请求出t的值;如不存在,请说明理由.7.(2022·河南郑州·七年级期末)如图,点A,C,E,B,D在同一条直线上,且AB=CD,点E是线段AD的中点.(1)点E是线段BC的中点吗?说明理由;(2)若AB=11,CE=3,求线段AD的长.【答案】(1)点E是线段BC的中点.理由见解析(2)16【分析】(1)先根据线段和差可得AC=BD,再根据线段中点的定义可得AE=DE,然后根据线段和差即可得出结论;(2)先根据(1)的结论可得BC=CE+BE=6,从而可得AC=5,再根据CD=AB可得CD=11,然后根据AD=AC+CD即可得.(1)解:点E是线段BC的中点.理由如下:因为AB=CD,所以AB―BC=CD―BC,即AC=BD,又因为E是线段AD的中点,所以AE=DE,所以AE―AC=DE―BD,即CE=BE,所以点E是线段BC的中点.(2)解:因为CE=3,CE=BE,所以BC=CE+BE=3+3=6,又因为AB=11,所以AC=AB―BC=11―6=5,又因为CD=AB=11,所以AD=AC+CD=5+11=16.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.8.(2021·江西鹰潭·七年级期中)已知,点A,B,C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点,(1)如图,当点C在线段AB上时;①若线段AB=10,BC=4,求MN的长度;②若AB=a,则MN=_______.(2)若AC=10,BC=n,直接写出MN的长度.(用含n的代数式表示)点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10)(1)线段BA的长度为____,当t =3时,点P所表示的数是____;(2)求动点P所表示的数(用含t的代数式表示);(3)在运动过程中,当PB=2时,求运动时间t.∴|20―2t―5|=2,∴20―2t―5=2,或20―2t―5=―2,解得t=6.5,或t=8.5.综上所述,所求t的值为1.5或3.5或6.5或8.5.【点睛】此题主要考查了一元一次方程的应用以及数轴上点的位置关系,根据P点位置的不同正确进行分类讨论,进而列出方程是解题的关键.10.(2022·黑龙江·绥棱县绥中乡学校七年级期末)已知:如图,点C、D 在线段AB上,AB,AB=12.点D是AB中点,AC=13(1)求线段CD的长;(2)E是线段BD上一点,且DE=CD,请在图中画出点E,并证明C是AE的中点.CD的长为1.(1)求AB的长度;(2)若点E为BC中点,试求DE的长度.【答案】(1)10(2)3【分析】(1)根据AC和CD得到AD,再根据中点的定义求出AB;(2)先求出BC,根据中点的定义得到CE,再加上CD即可得到DE.(1)解:∵AC=6,CD=1,∴AD=AC-CD=5,∵点D为AB中点,∴AB=2AD=10;(2)∵AB=10,AC=6,∴BC=AB-AC=4,∵E为BC中点,∴BE=CE=2,∴DE=CD+CE=1+2=3.【点睛】本题考查了中点的定义,线段的和差,解题的关键是掌握中点平分一条线段.12.(2022·山东东营·期末)如图,点C为线段AB的中点,点E为线段AB上的点,点D 为线段AE的中点.(1)若线段AB=a,CE=b且(a―16)2+|2b―8|=0,求a,b的值;(2)在(1)的条件下,求线段CD的长,【答案】(1)a=16,b=4;(2)CD=2.【分析】(1)根据非负数的性质即可推出a、b的值;(2)根据(1)所推出的结论,即可推出AB和CE的长度,根据图形即可推出AC=8,然后由AE=AC+CE,即可推出AE的长度,由D为AE的中点,即可推出DE的长度,再根据线段的和差关系可求出CD的长度.(1)BC的中点.(1)若AM=2,BC=8,求MN的长度;(2)若AB=14,求MN的长度.【点睛】此题考查了两点间距离,解题的关键是熟练掌握线段的中点性质.14.(2021·贵州毕节·七年级阶段练习)(1)如图,已知平面内A、B两点用没有刻度的直尺和圆规按下列要求尺规作图,并保留作图痕迹①连接AB;②反向延长线段AB到C,使AC =AB;③延长线段AB到D,使AD=3AB.(2)若点E是线段AC的中点,点F是线段AD中点,AB=4cm,求线段EF、CD的长度,并说明线段EF、CD的数量关系.【答案】(1)①见解析;②见解析;③见解析;(2)EF=8cm,CD=16cm,CD=2EF【分析】(1)根据要求作图即可.(2)根据线段中点的定义可得出答案.【详解】解:(1)①如图,线段AB即为所求.②如图,线段AC即为所求.③如图,线段AD即为所求.(2)∵AB=AC=4cm,AD=3AB=12cm,点E是线段AC的中点,点F是线段AD中点,∴AE=2cm,AF=6cm,∴EF=AE+AF=8cm,CD=AC+AD=16cm,∴CD=2EF.【点睛】本题考查作图-复杂作图、直线、射线、线段等知识,解题的关键是掌握直线、射线、线段的定义.15.(2022·全国·七年级专题练习)已知A,B,C,D四点在同一条直线上,点C是线段AB 的中点.BC,求线段CD的长度;(1)点D在线段AB上,且AB=6,BD=13(2)若点E是线段AB上一点,且AE=2BE,当AD:BD=2:3时,线段CD与CE具有怎样的数量关系,请说明理由.【答案】(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【分析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.【详解】(1)解:如图1,∵点C是线段AB的中点,AB=6 AB=3,∴BC=12设AD=2x,则BD=3x,∴AB=AD+BD=5x,设AD=2a,则BD=3a,∴AB=BD-AD=a,M是AB的中点,N是AC的中点.求:(1)线段CM的长;(2)求线段MN的长.【答案】(1)1cm(2)3cm【分析】(1)根据M是AB的中点,求出AM,再利用CM=AM−AC求得线段CM的长;(2)根据N是AC的中点求出NC的长度,再利用MN=CM+NC即可求出MN的长度.(1)解:∵AB=10,M是AB的中点,∴AM=5,又∵AC=4,∴CM=AM﹣AC=5﹣4=1(cm).∴线段CM的长为1cm;(2)解:∵N是AC的中点,∴NC=2,∴MN=NC+CM,2+1=3(cm),∴线段MN的长为3cm.【点睛】本题主要考查两点间的距离,线段中点的运用,知道线段的中点把线段分成两条相等的线段是解题的关键.17.(2021·山东·高青县教学研究室期中)如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.【答案】(1)BC=2在线段AD上.(1)图中共有条线段;(2)若AB=CD.①比较线段的大小:AC BD(填:“>”、“=”或“<”);②如图2,若AD=20,BC=12,M是AB的中点,N是CD的中点,求MN的长度.【答案】(1)6(2)①=;②16【分析】(1)依据B、C在线段AD上,即可得到图中共有线段AB,AC,AD,BC,BD,CD;题)如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);AC,且AC=12cm,则AD的长为cm;②若BC=34(2)若线段AD被点B、C分成了3∶4∶5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.【答案】(1)①=;②15(2)24cm【分析】(1)①由已知同加BC即得答案;②求出BC和AB,根据AB=CD得到CD,即可得到AD;(2)根据题意画出图形,设AB=3x,BC=4x,CD=5x,根据线段的和差关系求得MN,根据题意列出方程进而即可求解.(1)①∵AB=CD,∴BM=AM=32x,CN点C在线段AB上,线段AC=15,BC=5,点M、N分别是AC、BC的中点,求MN的长度;(2)已知:如图2,点C在线段AB上,点M、N分别是AC、BC的中点,AC+CB=a,求MN的长度;(3)已知:如图3,点C在直线AB上,线段AC=15,BC=5,点M、N分别是AC、BC的中点,求MN的长度.∵点M、N分别是AC,BC中点,11(苏科版))如图,O为数轴原点,点A原点左侧,点B在原点右侧,且OB=2OA,AB=18.(1)求A、B两点所表示的数各是多少;(2)P、Q为线段AB上两点,且QB=2PA,设PA=m,请用含m的式子表示线段PQ;(3)在②的条件下,M为线段PQ的中点,若OM=1,请直接写出m的值.【答案】(1)A表示的数为﹣6,B表示的数为12(2)18﹣3m或3m﹣18(3)m=4或m=8【分析】(1)由题意可求得OB=12,OA=6,从而可表示出点A,B所表示的数;(2)分两种情况进行讨论:①点P在点Q的左侧;②点P在点Q的右侧,再利用相应的线段的关系可以求解;PQ=AB﹣PA﹣BQ=18﹣3m;②当点P在点Q的右侧时,如图,PQ=QB﹣(AB﹣PA)=3m﹣18,∴线段PQ的长是18﹣3m或3m﹣18.直线l上,且AB=18cm,点C是AB的中点.(1)若点P 是直线l 上的动点,且PB =5cm ,则CP = cm ;(2)若点Q 是AB 的延长线上一点,点M 、N 分别是AQ 、BQ 的中点,求线段MN 的长.【点睛】本题考查两点间的距离,线段的和差关系,熟练掌握线段中点的定义与线段的和差直线l 上的两点,点C 、D 在直线l 上且点C 在点D 的左侧,点D 在点B 的右侧,且AC =13BC ,BD =12AB .(1)若AB =8,求线段CD 的长;(2)若CD =m ,则线段AB 的长为(用含m 含的代数式表示).∵AC=1BC,AB=8,∵AC=1BC,AB=8,∵AC=1BC,∵AC=1BC,四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC________BD(填“>”、“=”或“<”);AC,且AC=16cm,则AD的长为________cm;②若BC=34(2)若线段AD被点B、C分成了2:3:4三部分,且AB的中点M和CD的中点N之间的距离是18cm,求AD的长.(2)解:如图所示,设每份为x,则AB=2x,BC=3x,CD=4x,AD=9x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=2x又∵MN=18,∴x+3x+2x=18,解得,x=3,∴AD=9x=27(cm).【点睛】本题考查线段及其中点的有关计算,解题的关键是理解线段中点的意义.25.(江苏省苏州市振华中学校2021-2022学年七年级上学期期末数学试题)已知线段AB= a,小明在线段AB上任意取了点C然后又分别取出AC、BC的中点M、N的线段MN(如图1);小红在线段AB的延长线上任意取了点D,然后又分别取出AD、BD的中点E、F的线段EF(如图2)(1)试判断线段MN与线段EF的大小,并说明理由.(2)若EF=x,AD=4x+1,BD=x+3,求x的值.a;∴MN=12如图2,得EF=ED-FD=1AD―1BD=1(AD―BD),AB,D为线段BC的中点.(如图),C是AB反向延长线上的点,且AC=13(1)将CD的长用含a的代数式表示为________;(2)若AD=3cm,求a的值.cm,C是线段AB上一点,AC=6cm,D、E分别是AB、BC的中点.(1)求线段CD的长;(2)求线段DE的长.28.(江苏省盐城市射阳县第六中学2021-2022学年七年级上学期期末数学试题(b卷))如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=10cm,BD=4cm.(1)求线段CD的长;BD,求线段AE的长.(2)若点E是线段AB上一点,且BE=12BD=2cm∵BE=12∴AE=AB线段AB上一点,AB=m,BC=n,M、N分别为AB、BC的中点.(1)若m=10,n=3,求MN的长;(2)若m=3n,求CN的值.MN已知数轴上A,B两点表示的数分别为-9和7.(1)AB= ;(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q 的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位,线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t 秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.。

2023年中考数学总复习—几何模型02—中点—中线—中垂线—中线定理附解析

2023年中考数学总复习—几何模型02—中点—中线—中垂线—中线定理附解析

中线定理下面的那个点)图1一半,面积是原三角形面积的四分之一。

①连接任意四边形四边的中点得到的四边形是平行四边形。

②连接矩形四边的中点得到的四边形是菱形。

③连接菱形四边的中点得到的四边形是矩形。

④连接正方形四边的中点得到的四边形是正方形。

以上四边形各中点的连线所得到的四边形的形状其证明的方法是大家学习过程当中的重点与难点,在证明过程当中要明白。

不管是三角形还是四边形在实际的应用过程当中,问题转化为三角形内中位线的实际应用,所以在题目条件当中出现边的中点时,我们优先考虑利用三角形中位线来做辅助线。

具体做辅助线的方法归纳为以下三个方面:已知三角形两边的中点,可以连接这两个中点构造中位线;已知三角形一边的中点,可以在另一边上取中点,连接两中点构造中位线;已知三角形一边的中点,过中点作其他两边任意一边的平行线可构造相似三角形。

中点四边形是什么样的形状取决于四边形对角线之间的关系,有ABCD ABCD AC BD ABCD AC BD AC BD ABCD AC BD ìÞïïïï=Þïïï^Þíïï禳ï^镲ï镲Þï睚ï镲=ï镲铪ïî四边形中点四边形是平行四边形四边形对角线中点四边形是菱形四边形对角线中点四边形是矩形四边形对角线中点四边形是正方形梯形中位线—1.定义:连接梯形两腰中点的线段叫做梯形的中位线。

梯形的中位线平行于上底和下底,其长度为上、下底长度和的一半,可将梯形旋转180°、将其补齐为平行四边形后易证。

其逆定理正确与否与上相仿。

梯形的中位线平行于两底,并且等于两底和的一半。

注意:(1)要把三角形的中位线与三角形的中线区分开。

三角形垂直于弦的直径平分这条弦,并且平分弦所对的弧。

初中数学几何中点问题题型总结

初中数学几何中点问题题型总结

初中数学几何中点问题题型总结1、还原中心对称图形(倍长中线法)中心对称与中心对称图形知识:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

(一个图形)线段本身就是中心对称图形,中点就是它的对称中心,所以遇到中点问题,依托中点借助辅助线还原中点对称图形,可以把分散的条件集中起来(集散思想)。

例 如图,D 是△ABC 的边BC 上的点,且CD=AB ,∠ADB=∠BAD ,AE 是△ABD的中线。

求证:AC=2AE练习 1、已知:如图,梯形ABCD 中,AD ∥BC ,∠ABC=90°.若BD=BC ,F 是CD的中点,试问:∠BAF 与∠BCD 的大小关系如何?请写出你的结论并加以证明;A BCDF2、Rt △ABC 中,∠BAC=90°,M 为BC 的中点,过A 点作某直线l ,过B 作BD l ⊥于点D ,过C 作CE l ⊥于点E 。

(1)中的结论是否任然成立?2、两条平行线间线段的中点(“八字型”全等)如图,1l ∥2l ,C 是线段AB 的中点,那么过点C 直线都可以和AB 构造“8字型”全等例 已知梯形ABCD ,AD ∥BC ,点E 是AB 的中点,连接DE 、CE 。

求证:ABCD 12DECSS =梯 分析:如果直接证明,是不容易,联想到AD ∥BC ,点E 是AD 的中点 ,我们延长DE ,与CB 的延长线交于点F ,这样,我们就构造出一对八 字型的三角形,并且这对三角形是全等的。

第四节 线段中点的应用(含答案)...八年级数学 学而思

第四节 线段中点的应用(含答案)...八年级数学 学而思

第四节 线段中点的应用线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:1. 倍长中线或类中线(与中点有关的线段)构造全等三角形与平行线,如图8-4-1①,②,③,④,所示2. 作直角三角形斜边中线,如图8-4-1⑤所示148--3. 构造中位线如图8-4-1⑥⑦⑧所示4. 构造等腰三角形三线合一,如图8-4-⑨所示5. 三角形的中线可以等分三角形的面积。

如图8-4-1-⑩所示 若D 是BC 边上的中点,则ACD ABD S S ∆∆= 6.中点四边彩(1)定义:顺次连接四边形四边中点所得的四边形叫做中点四边形. (2)常见的中点四边形:①任意四边形的中点四边形是平行四边形;②平行四边形的中点四边形是平行四边形; ③矩形的中点四边形是菱形; ④菱形的中点四边形是矩形; ⑤等腰梯形的中点四边形是菱形.1.一个中点(1)等腰三角形:三线合一. (2)直角三角形:斜边中线.(3)已知任意一边中点:普通中线平分面积倍长中线 (4)平行线间所截线段的中点:构造八字形全等三角形. 2.两个中点(1)三角形两边的中点:中位线定理 (2)梯形的中位线,例1.如图8-4-2所示,已知P AB ,10=是线段AB 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△ACP 和等边△PDB,连接CD ,设CD 的中点为G ,当点P 从点A 运动到点B 时,则点G 移动路径的长是检测1.已知8-4-3所示,如图矩形ABCD 中,延长CB 到E ,使F AC CE ,=是AE 中点,求证:.DF BF ⊥ 例2.(四川宜宾中考)如图8-4-4所示,在△ABC 中,BD ABC ,90ο=∠为AC 的中线,过点C 作BD CE ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取,BD FG =连接BG ,DF.若,6,13==CF AG 则四边形BDFG 的周长为248-- 348-- 448--检测2.如图8-4-5所示,等腰梯形ABCD 中,,,,//BC AD CD AB AB DC =>AC 和BD 交于0,且所夹的锐角为M F E ,,,60ο分别为BC OA OD ,,的中点.求证:三角形EFM 为等边三角形,例3.如图8-4-6所示,△ABC 中,M AC AB ,7,4==是BC 的中点,AD 平分,BAC ∠过M 作AD FM //交AC 于F ,则FC 的长为548-- 648-- 748-- 848--检测3.如图8-4-7所示,□ABCD 中,F AB AD ,2=是AD 的中点,作,AB CE ⊥垂足E 在线段AB 上,连接,,CF EF则下列结论;21BCD DCF ∠=∠①;CF EF =②③;2S CEF BEC S ∆∆=AEF DFE ∠=∠3④中一定成立的是( )①②.A ①②④.B ①③④.C ①②③④.D例4.如图8-4-8所示,边长为1的正方形EFGH 在边长为3的正方形ABCD 所在的平面上移动,且始终保持.//AB EF设线段CF ,DH 的中点分别为M ,N ,则线段MN 的长为210.A 217.B 317.C 3102.D检测4.(灌云县模拟)如图8 -4 - 10所示,在四边形ABCD 中,对角线BD AC ⊥且F E BD AC ,,8,6==分别是边AB ,CD 的中点,则=EF第四节 线段中点的应用(建议用时30分钟)实战演练1.如图8-4-1所示,矩形ABCD 中,R 是CD 的中点,点M 在BC 边上运动,E ,F 分别是AM ,MR 的中点,则EF 的长随着M 点的运动( )A .变短B .变长 C.不变 D .无法确定2.(河北中考)如图8-4-2所示,点A ,B 为定点,定直线P AB l ,//是L 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离,⑤∠APB 的大小,其中会随点P 的移动而变化的是( )②③.A ②⑤.B ①③④.C ④⑤.D148-- 248-- 348--3.如图8-4-3所示,M ,P 分别为△ABC 的AB ,AC 上的点,且,2,CP AP BM AM ==BP 与CM 相交于点N .已知,1=PN 则PB 的长为( )2.A3.B4.C5.D4.如图8-4-4所示,梯形ABCD 中,EF AB DC ,//是梯形的中位线,对角线BD 交EF 于G .若,8,10==EF AB 则GF 的长等于5.(辽宁鞍山中考)如图8-4-5所示,D 是△ABC 内一点,,6,=⊥AD CD BD ,4=BD H G F E CD ,,,,3=分别是BD CD AC AB ,,,的中点,则四边形EFGH 的周长是448-- 548-- 648--6.一个等腰梯形的周长为100 cm ,如果它的中位线与腰长相等,它的高为20 cm ,那么这个梯形的面积是 .2cm 7.如图8-4-6所示,AD ,BE 为△ABC 的中线,交于点===∠OE OD AOE O ,23,60,ο,25求=AB8.如图8-4-7所示,梯形ABCD 中,,//BC AD 且,5:3:=BC AD 梯形ABCD 的面积是,82cm 点M .N 分别是AD 和BC 上一点,E ,F 分别是BM ,CM 的中点,则四边形MENF 的面积是 .2cm9.如图8-4-8所示,在△ABC 中,E ,F 分别为AB ,AC 上的点,且N M CF BE ,.=分别为BF ,CE 的中点,过M ,N 的直线交AB 于点P ,交AC 于点Q.已知,70ο=∠A 那么,APQ ∠的度数是10.如图8-4-9所示,在梯形ABCD 中,,//CD AB 并且N M CD AB ,,2=分别是对角线BD AC ,的中点,设梯形ABCD 的周长为,1L 四边形CDMN 的周长为,2L 求:1L =2L748-- 848-- 948--11.如图8 -4 - 10所示,已知AD 为△ABC 的角平分线,,AC AB <在AC 上截取,AB CE =M .N 分别为BC ,AE的中点.求证:.//AD MN12.如图8-4-11所示,在△ABC 中,AD C ABC ,∠=∠2平分,BAC ∠过BC 的中点M 作,AD ME ⊥交AB 的延长线于点E ,交AD 的延长线于点F.求证:.21BD BE =1048-- 1148--13.(北京西城一模)在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q.(l)如图8-4 - 12所示,当点P 与点B 重合时,△QPM 的形状是(2)当点P 在线段CB 的延长线上时,如图8-4 -13所示,①依题意补全图8-4—13;②判断△QPM 的形状,并加以证明.1248-- 1348-- 拓展创新14.如图8-4 - 14所示,在四边形ABCD 中,F E CD AB ADC ,,,180=>∠ο分别为BC ,AD 中点.BA 交EF 延长线于点G ,CD 交EF 于点H.求证:.CHE BGE ∠=∠1448--拓展1.如图8 -4 -15所示,在△ABC 中,D AB AC ,>点在AC 上,F E CD AB ,,=分别是 BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若,60ο=∠EFC 连接GD ,判断△AGD 的形状并证明.1548--拓展2.如图8 -4 -16所示,P 是△ABC 内的一点,,PBC PAC ∠=∠过点P 分别作⊥PM AC 于点BC PL M ⊥,于点L ,D 为线段AB 的中点,求证:.DL DM =1648--极限挑战15.如图8-4 - 17所示,在△ABC 的两边AB ,AC 向形外作正方形ABDE 和ACFG ,取,BE CG BC ,的中点M ,Q ,N.判断△MNQ 的形状并证明,1748--答案11。

人教版八年级数学下册18.1.3三角形中位线(教案)

人教版八年级数学下册18.1.3三角形中位线(教案)
五、教学反思
在今天的教学中,我尝试通过不同的教学活动和实际案例,让学生们理解和掌握三角形中位线的概念及其应用。从课堂的反应来看,大部分同学能够跟随我的讲解,对中位线的性质有了基本的认识。然而,我也注意到了一些需要反思和改进的地方。
在导入新课的环节,我发现通过提问的方式吸引学生的兴趣是有效的,但问题的设置可以更加贴近学生的生活实际,让他们更有代入感。这样,学生可能会更积极地参与到课堂讨论中来。
在小组讨论时,我发现有些学生不太愿意发表自己的意见。这可能是因为他们对自己的答案不够自信,或者是不习惯在小组中分享想法。今后,我需要更多地鼓励这些学生,创造一个更加包容和鼓励表达的教学环境。
此外,我也注意到在学生分享讨论成果时,其他学生的倾听态度有待提高。为了增强课堂互动,我可以在这一环节设置一些互动规则,比如要求学生在听完分享后提出至少一个问题或者给出一个评价。
-空间想象能力的培养:对于较复杂的几何图形,学生可能难以在脑海中形成清晰的中位线图像。
举例解释:
-对于中位线定理的证明,教师可以采用分步讲解,使用模型或动画辅助,帮助学生理解证明过程中的每一步。
-在应用中位线性质解决几何问题时,教师应提供多个不同类型的例题,指导学生如何识别问题、运用定理。
-为了培养学生的空间想象能力,教师可以设计一些需要折叠和剪切的动手活动,让学生在实际操作中感受中位线的存在和性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形中位线的基本概念。三角形的中位线是连接三角形两边中点的线段,它具有特殊的性质。这些性质在解决几何问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个三角形,我们将展示如何找到中位线,并解释它如何帮助我们解决几何问题。

线段中点坐标公式和定比分点坐标公式

线段中点坐标公式和定比分点坐标公式

线段中点坐标公式和定比分点坐标公式线段中点坐标公式和定比分点坐标公式是几何学中常用的计算坐标的公式,用于确定线段上点的位置。

它们在许多实际应用中都有重要的作用,如建筑设计、工程测量等。

本文将分别介绍线段中点坐标公式和定比分点坐标公式,并举例说明其应用。

设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),则线段AB的中点C的坐标可通过以下公式计算:Cx=(x1+x2)/2Cy=(y1+y2)/2其中,Cx和Cy分别代表中点C的横坐标和纵坐标。

例如,若给定线段AB的两个端点分别为A(4,2)和B(8,6),则线段AB的中点C的坐标可通过以下计算得到:Cx=(4+8)/2=12/2=6Cy=(2+6)/2=8/2=4因此,线段AB的中点C的坐标为(6,4)。

线段中点坐标公式的应用十分广泛。

例如,在建筑设计中,我们常常需要确定一个房间或一个场地的中心点,以便布置家具或进行其他相应的规划工作。

在这种情况下,我们可以利用线段中点坐标公式计算出房间或场地的中心点的坐标。

除了线段的中点,我们还经常需要确定线段上的其他分点位置。

这时,我们可以使用定比分点坐标公式。

定比分点坐标公式:设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),若在AB上有一点P将AB分为内部比例m:n(m+n>0)的两部分,那么点P的坐标可以通过以下公式计算:Px = (nx1 + mx2) / (m + n)Py = (ny1 + my2) / (m + n)其中,Px和Py分别代表点P的横坐标和纵坐标。

例如,若给定线段AB的两个端点分别为A(2,4)和B(6,8),且要在AB上以内部比例2:1将其分割,即将AB分为两段,其中一段长度为整体长度的2/3,另一段长度为整体长度的1/3、那么按照定比分点坐标公式,点P的坐标可通过以下计算得到:Px=(2*2+1*6)/(2+1)=(4+6)/3=10/3≈3.33Py=(2*4+1*8)/(2+1)=(8+8)/3=16/3≈5.33因此,点P的坐标为(3.33,5.33)。

线段双中点解题技巧

线段双中点解题技巧

线段双中点解题技巧
线段的中点是线段上的一点,它把线段分成两个相等的部分。

当我们面对一个几何问题,特别是涉及到线段的问题时,利用中点的性质往往能简化问题,找到解题的突破口。

线段双中点解题技巧主要包括以下步骤:
1. 确定中点:首先确定题目中的两个中点,并理解它们的位置和性质。

2. 利用中点性质:利用中点的性质,如“中位线定理”或“中点四边形”等,这些性质可以帮助我们快速找到解题方向。

3. 建立数学模型:根据题目的具体要求,建立适当的数学模型,如方程、不等式或几何图形等。

4. 求解问题:通过计算或推理,求解出问题。

下面是一个具体的例子,说明如何使用线段双中点解题技巧。

题目:在三角形ABC中,D和E分别是AB和AC的中点,F是BC的中点。

DE = 2EF。

求证:BD = 2DC。

证明:
第一步,由题目信息,D和E是AB和AC的中点,所以DE是三角形ABC 的中位线。

第二步,根据中位线的性质,DE = ,且DE平行于BC。

第三步,同样由题目信息,F是BC的中点,所以BF = FC = 。

第四步,由第二步和第三步的信息,我们可以得出DE = 2EF。

第五步,由于DE平行于BC并且D是AB的中点,所以BD = 2DC(平行线性质和线段的比例性质)。

综上,我们证明了BD = 2DC。

两点间的距离与线段中点的坐标教学反思

两点间的距离与线段中点的坐标教学反思

两点间的距离与线段中点的坐标教学反思在数学中,我们经常会遇到计算两点间的距离和线段中点的坐标的问题。

这些问题在几何学和代数学中都有广泛的应用。

在教学过程中,我注意到学生们对于这些概念和计算方法的理解存在一些困惑。

因此,我决定对这些问题进行反思,并思考如何更好地教授这些内容。

让我们来看看两点间的距离的计算。

对于平面上的两个点A(x1, y1)和B(x2, y2),我们可以利用勾股定理来计算它们之间的距离。

勾股定理表达了直角三角形斜边的长度与两个直角边长度的关系,即c² = a² + b²。

在这个问题中,我们可以将两点间的距离作为斜边,将x轴和y轴上的距离作为直角边,来应用这个定理。

然而,我发现学生们对于如何应用勾股定理来计算距离存在一些混淆。

他们常常容易忽略平方根的操作,或者将直角边的长度写错。

为了解决这个问题,我引入了一些实际应用例子,帮助学生们理解勾股定理的原理和使用方法。

例如,我给学生们展示了一个直角三角形的例子,其中两个直角边的长度分别为3和4,要求他们计算斜边的长度。

通过这个例子,学生们能够观察到勾股定理的实际应用,并且在计算过程中逐步掌握平方根和平方的操作。

我还引入了一些实际生活中的应用例子,如计算两个城市之间的直线距离、计算直角房间的对角线长度等。

通过将这些抽象的数学概念与实际问题相结合,学生们更容易理解和掌握计算两点间距离的方法。

接下来,让我们来探讨线段中点的坐标的计算。

对于平面上的一条线段AB,线段中点的坐标可以通过以下公式来计算:中点的x坐标为(x1 + x2) / 2,中点的y坐标为(y1 + y2) / 2。

这个公式可以通过将线段的两个端点的x坐标和y坐标相加再除以2来得到。

然而,我发现学生们在计算线段中点坐标时经常出错。

他们容易将x坐标和y坐标分别相加,而忽略了除以2这个步骤。

为了帮助学生们理解和记忆这个公式,我引入了一些图形辅助工具,如坐标轴和图形示意图。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:如何利用线段中点(三)
教学目标:
知识与技能:综合运用中点问题的处理方法,灵活地解决问题.
过程与方法:通过一题多解,发散学生的思维.
情感态度与价值观:渗透数学方法的统一美;培养学生学好数学的自信心. 教学重难点:通过一题多解, 培养学生的思维能力和解决综合问题的能力. 教学用具:直尺,三角板,投影仪.
教学过程:
(一)引入:上两节课我们研究了中点问题的一般方法.接下来,我们研究如何灵活地利用中点用多种方法构造中心对称图形或多角度构造中位线来解决问题.
(二)例题:
例1如图1,在△ABC中,D是AB的中点,
AC CD
⊥,tan∠BCD=1
3
,求∠A的正切值.
设计思想:本题首先是要巩固上两节课
中点问题的一般方法,然后学会灵活地利用中点用多种方法构造中心对称图形或多角度构造中位线来解决问题.
本题由于要为tan∠BCD的利用创造直角,由于平行线有移角的功能,考虑到D是AB的中点,因此可以利用中位线或构造中心对称图形,把∠BCD移到直角三角形中,或把直角移到∠BCD所在的三角形中来.
方法一:如图2,延长CD至F,使DF=CD,连结BF

易证:△ACD≌△BFD中,
在Rt△CBF中,tan∠BCD= =
BF
CF
,设BF=2x,则CF=6x,
则:CD=3x,AC=BF=2x.得tan∠A=
CD
AC
=
33
22
x
x
=.
方法二:如图3,取BC的中点E,连结DE.
得:∠CDE=∠ACD=90°.
在Rt△CDE中,tan∠BCD=
1
3
=,
设DE=x,则CD=3x,
∴AC=2DE=2x,
∴tan∠A= =
方法三:如图4,,取AC的中点G,连结DG.
图1
C
A B
D
C
A B
F
D
图2
C
A B
D
E
图3
C
A B
D
G
图4
DE
CD
33
22
x
x
=
CD
AC
1
2方法四:如图5,延长AC 至N ,使AC=CN ,连结BN.
方法五:如图6, 延长BC 至I ,使BC=CI ,连结AI.
例2已知:如图1,△ABC 中,AB=AC ,在AB 上取点D ,在AC 延长线上取点E ,连结DE 交BC 于点F ,若F 是DE 中点,求证:BD=CE .
设计思想:学会灵活地利用中点用多种方法构造中心对称图形或多角度构
造中位线来解决问题.
分析:要证的BD ,CE 不在同一个三角形中,而它们所在的三角形又不是同类三角形,无法证明它们全等,由于F 是DE 的中点,想到利用中点构造中心对称图形或中位线来移动BD 或CE 的位置,把它们集中到同一个三角形中或把不同类三角形转化为同类三角形,使问题得以解决.
方法一:如图2,过D 作DM//CE 交BC 于M ,
易证ΔDMF ≌ΔECF,
再证:BD=DM.
方法二:如图3 , 过E 作EG//AB 交BC 的延长线于G.
易证ΔBDF ≌ΔGEF,
再证:EC=EG.
方法三:如图4,在AC 取点H,使CH=CE,连结DH .
则CF 为△EDH 的中位线.再证BD=CH.
方法四: 如图5,在AB 的延长线上取点N,使BN=BD,
连结NE.
则FB 为△DNE 的中位线. 再证BN=CE.
方法五: 如图6, 连结BE,取BE 的中点K ,取BC 的中点M ,
C
A
B
N
D
图5
C
A
B
I
D
图6
图2
F
A
B
C
E
D
M
图5
F
A
B C E
N D
图1
F
B
C
A
D
E
F A
B C
D
K
M
图3
A
B
C
E
G
D
F
3连结MK,KF.
则MK,KF 分别为中位线. 再证KM=KF,得BD=CE.
方法六: 如图7, 连结CD,取CD 的中点H ,取BC 的中点I , 连结HI,HF.
则HI,HF 分别为中位线. 再证HI=HF,得BD=CE.
(三)练习:
1.已知如图1,△ABC 中,D 是BC 边的中点,E 是AD 边的中点,连结BE 并延长交AC 于点F. 求证:FC=2AF .
2.如图1所示,已知D 为BC 中点,点A 在DE 上,且AB =CE ,
求证:∠1=∠2.
3.如图1,△ABC 中,D 是BC 边的中点,BE ⊥AC 于点E ,若 ,
4. 30DAC ∠=︒ , 求证:AD BE =.
4.如图1,在四边形ABCD 中,AB=CD , E 、F 分别是BC 、
AD 的中点,BA 、CD 的延长线分别交EF 的延长线G 、H.
求证:∠BGE=∠CHE.
练习答案:(每题都有多种解法,请仿照例题进行解答)
1. 提示:证法一(其余方法略):如图1,过点D 做DG ∥BF ,交AC 于G
∵D 是BC 边的中点,DG ∥BF . ∴FG=GC . 同理,AF=FG ,
∴2AF=2FG=FG+GC=FC .
即 FC=2AF.
2. 提示:证法一:如图1,延长ED 到F,使DF=AD ,连结C F. 30︒
E
D B
C
A
图1
图1
图1
A
B
C
D F
E 1
2
A
B
C
E
D 图1
F
G
B
C
H E
A
D
2
1A
D
B
C
E
图1
A
B C
E
D
F
H
I
图7
4易证△ABD ≌△FCD .∴AB=CF ,∠1=
∠F.
∵AB=CE,∴CE=CF ∴∠F =∠2,. ∴∠1=∠2.
(证法二:如图2,取AC 的中点G,取AE 的中点H,
连结DG.GH,利用中位线来证明.) (其余方法略)
3.提示:证法一:如图1,取CE 的中点G, 连结DG ,
所以,DG 为中位线,得
DG
BE, 由BE AC ⊥得∠AGD=90°,
在△ADG 中,30DAC ∠=︒,得DG=AD,于是AD=BE.
(证法二:如图2,取BE 的中点M, 连结DM ,
类似法一可证AD=BE. (其余方法略))
4.提示:证法一:如图1:连结BD ,并取BD 的中点为M ,连结ME 、MF ,
则 ME 是ΔBCD 的中位线, ∴
ME CD , ∴ ∠MEF=∠CHE ,
由MF 是ΔABD 的中位线, ∴
MF
AB , ∴ ∠MFE=∠BGE ,
∵ AB=CD , ∴ ME=MF ,∴ ∠MEF=∠MFE , 从而∠BGE=∠CHE.
(证法二:如图2,延长GE 到K,使EK=EH ,连结BK.略. 或者延长GE 到K,使EK=GE ,连结CK 也行. (其余方法略))
(四)总结:通过这两道例题和习题,使学生熟练地掌握中点问题的一般方法,
并在此基础上灵活地进行一题多解,提高他们的解题能力.习题中的每道题都
有多种方法,希望同学们能仿照例题逐一进行尝试,逐渐形成一种解题能力. 图2
1
2A
B
C
E G
H D
图1
F G B
C
H
E
A D
M 图2
F
G B
C
H k
E
A
D
A
B
C
E D
G
图1
图2
A
B
C
E
D
M
5
1. 如图,在△ABC 中,D 是AB 的中点, AC CD ⊥,tan ∠BCD=
1
3
,求∠A 的正切值.
2. 已知:如图,△ABC 中,AB=AC ,在AB 上取点D ,在AC 延长线上取点E ,连结DE 交BC 于点F ,若F 是DE 中点,求证:BD=CE .
练习(三)
姓名: 日期: 指导教师: 成绩:
1.已知如图1,△ABC 中,D 是BC 边的中点,E 是AD
边的中点,连结BE 并延长交AC 于点F. 求证:FC=2AF .
2.如图1所示,已知D 为BC 中点,点A 在DE 上,且AB =CE , 求证:∠1=∠2.
3. 如图1,△ABC 中,D 是BC 边的中点,BE ⊥AC 于点E ,若 ,30DAC ∠=︒ , 求证:AD BE =.
4.如图1,在四边形ABCD 中,AB=CD , E 、F 分别是BC 、AD 的中点,BA 、
CD 的延长线分别交EF 的延长线G 、H.
求证:∠BGE=∠CHE.
30︒
E
D B
C
A
图1
A
F E 图1
F
G
B
C
H E
A
D
2
1
A
D B
C
E
图1
C
A
B
D
F
B
C
A
D
E
6。

相关文档
最新文档