2019届江苏省高考数学模拟试卷(15)(含附加及详解)
2019年江苏省高考数学模拟试卷(含详细解析)
2019年江苏省高考数学模拟试卷一.填空题(共14小题,满分70分,每小题5分)1.(5分)已知集合{0A =,1,2,3},2{|20}B x x x =--<,则AB = .2.(5分)已知复数z 满足(1)2z i -=,其中i 为虚数单位,则z 的实部为 .3.(5分)如图是某班8位学生诗朗诵比赛得分的茎叶图,那么这8位学生得分的平均分为 .4.(5分)运行如图所示的伪代码,其结果为 .5.(5分)函数2()f x x=的定义城为 . 6.(5分)五位同学任意站成一排,其中甲不站两边的概率为 . 7.(5分)已知函数sin(2)()22y x ππϕϕ=+-<<的图象的对称中心为(,0)12π,则ϕ的值是 . 8.(5分)设双曲线22221(0,0)x y a b a b-=>>的左、右顶点分别为A 、B ,点P 在双曲线上且异于A 、B 两点,O 为坐标原点,若直线PA 与PB 的斜率之积为79,则双曲线的离心率为 .9.(5分)设函数23(1)()4(1)x x f x x x <⎧=⎨-⎩…,则[f f (2)]= . 10.(5分)记棱长都为1的正三棱锥的体积为1V ,棱长都为1的正三棱柱的体积为2V ,则12V V = . 11.(5分)已知函数()f x xlnx =的图象与2()2g x x ax =-+-的图象恰有一个公共点,则实数a 的值为 .12.(5分)已知向量(1,1)a =,(,2)b m =,且1a b =,则m 的值为 ,a 与b 夹角的余弦值等于 .13.(5分)若实数x ,y 满足222(1)(1)22cos (1)1x y xyx y x y ++--+-=-+,则xy 的最小值为 . 14.(5分)已知数列{}n a 是各项正数首项1等差数列,n S 为其前n项和,若数列也为等差数列,则81n n S a ++的最小值是 . 二.解答题(共6小题,满分90分)15.(14分)如图所示的多面体111ABCDA B C 中,上底面ABCD 与下底面111A B C 平行,四边形ABCD 为平行四边形,且111////AA BB CC ,已知111122AB A B AA AC ===,113AAC π∠=,且1111AC B C ⊥.(1)求证:平面11ACC A ⊥平面111A B C ;(2)若点M 为11B C 的中点,求直线1C D 与CM 所成角的余弦值.16.(14分)若5sin cos 1cos sin αααα-=+.(1)求tan α的值; (2)求cos sin sin cos cos sin αααααα++-的值.17.(14分)若函数()f x 在定义域D 内的某个区间I 上是增函数,且()()f x F x x=在I 上也是增函数,则称()y f x =是I 上的“完美增函数”.已知()x f x e x =+,()1g x lnx =-. (1)判断函数()f x 是否为区间(0,)+∞上的“完美增函数”;(2)若函数()g x 是区(0,]m 上的“完美增函数”,求整数m 的最大值.18.(16分)设有三点A ,B ,P ,其中点A ,P 在椭圆2222:1(0)x y C a b a b+=>>上,A (0,2),B (2,0),且6OA OB OP +=. (1)求椭圆C 的方程;(2)若过椭圆C 的右焦点的直线l 倾斜角为45︒,直线l 与椭圆C 相交于E 、F ,求三角形OEF 的面积.19.(16分)已知函数y =在0x x =处附近有定义,且01|2x x y ='=,求x 的值.20.(16分)已知数列{}n a 前n 项和为n S ,首项为1a ,且1,2n a ,n S 构成等差数列.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足221223(log )(log )n n n b a a ++=,求证:123111112n b b b b +++⋯+<.三.解答题(共1小题,满分10分,每小题10分)21.(10分)如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径; (2)若AC BD =,求证:AB ED =.。
2019届高考数学(江苏卷)模拟冲刺卷(含附加及详细解答,共8套)
2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={1,2},B ={a ,a 2-3},若A ∩B ={1},则实数a 的值为________.2. 若命题“∀t ∈R , t 2-at -a ≥0”是真命题,则实数a 的取值范围是________.3. 已知复数z 满足z (1-i)=2+i ,其中i 为虚数单位,则复数z 的模|z |=________.4. 根据如图所示的伪代码,当输出y 的值为1时,则输入的x 的值为________. Read xIf x ≤0 Then y ←x 2+1 Elsey ←ln x End If Print y5. 若函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥4,f (x +3),x <4,则f (log 238)=________.6. 盒子中有2个白球、1个黑球,一人从盒中抓出两球,则两球颜色不同的概率为________.7. 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x -y -2≤0,x +y -2≥0,则z =3x -y 的最大值为________.8. 如图,F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若△AF 1F 2为等腰三角形,则C 2的离心率是________.9. 已知α,β∈(3π4,π),sin(α+β)=-35,sin(β-π4)=13,则cos(α+π4)=________.10. 如图,在△ABC 中,AB =3,BC =2,D 在边AB 上,BD →=2DA →,若DB →·DC →=3,则边AC 的长为__________.11. 设正四面体ABCD 的棱长为6,P 是棱AB 上的任意一点(不与A ,B 重合),且P 到平面BCD 、平面ACD 的距离分别为x ,y ,则3x +1y的最小值是________.12. 已知数列{a n }的前n 项和S n =-a n -(12)n -1+1(n 为正整数),则数列{a n }的通项公式为________.13. 已知函数f (x )(x ∈R )的图象关于点(1,2)对称,若函数y =2xx -1-f (x )有四个零点x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.14. 已知函数f (x )=1e x -ae x(x >0,a ∈R ),若存在实数m ,n ,使得f (x )≥0的解集恰为[m ,n ],则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.如图,在三棱柱ABCA 1B 1C 1中,M ,N 分别为线段BB 1,A 1C 的中点,MN ⊥AA 1,且MA 1=MC .求证:(1)平面A 1MC ⊥平面A 1ACC 1; (2)MN ∥平面ABC .16. (本小题满分14分)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且2cos 2B2=3sin B ,b =1.(1)若A =5π12,求边c 的大小;(2)若sin A =2sin C ,求△ABC 的面积.学校A,B两餐厅每天供应1 000名学生用餐(每人每天只选一个餐厅用餐),调查表明:开学第一天有200人选A餐厅,并且学生用餐有以下规律:凡是在某天选A餐厅的,后面一天会有20%改选B餐厅,而选B餐厅的,后面一天则有30%改选A餐厅.若用a n,b n分别表示在开学第n天选A餐厅、B餐厅的人数.(1)求开学第二天选择A餐厅的人数;(2)若某餐厅一天用餐总人数低于学校用餐总数的920,则该餐厅需整改,问B餐厅在开学一个月内是否有整改的可能,如果有可能,请指出在开学后第几天开始整改;如果没有可能,请说明理由.18. (本小题满分16分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数,直线l:x-y+2=0与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,m=(k1-2,1),n=(1,k2-2),若m⊥n,求证:直线AB过定点.在等比数列{a n }中,a 2=14,a 3·a 6=1512.设b n =log2a 2n 2·log2a 2n +12,T n 为数列{b n }的前n 项和. (1)求a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n -2(-1)n 恒成立,求实数λ的取值范围.20. (本小题满分16分)已知函数f (x )=ln x +ke x(其中k ∈R ,e =2.718 28…是自然对数的底数).(1) 当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2) 若x e x f (x )>m 对x ∈[1,e]恒成立,求k 的取值范围;(3) 若f ′(1)=0,求证:对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤12c d (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.B. (选修44:坐标系与参数方程)在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R ),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.C. (选修45:不等式选讲)已知x ,y ,z ∈R ,且x +2y +3z +8=0.求证:(x -1)2+(y +2)2+(z -3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1)求异面直线BA1与CB1夹角的余弦值;(2)求二面角BAB1C平面角的余弦值.23. 在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1)当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2)求出所有的正整数n,使得5a n+1a n+1为完全平方数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)1. 1或-2 解析:∵ A ∩B ={1},∴ 1∈B ,∴ a =1或a 2-3=1,∴ a =1或a =±2,但a =2 不合题意,舍去.2. [-4,0] 解析:∵ Δ=a 2+4a ≤0,∴ -4≤a ≤0.3. 102 解析:z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=12+32i ,|z |=14+94=102.4. e 或0 解析:y =⎩⎪⎨⎪⎧x 2+1,x ≤0,ln x ,x >0,令y =1,则x =0或x =e .5. 24 解析:∵ log 238=log 23-3<4,log 23<4,又x <4时,f (x )=f (x +3),∴ f ⎝⎛⎭⎫log 238=f (log 23-3)=f (log 23+3).∵ log 23+3>4,∴ f (log 23+3)=2log 23+3=2log 23·23=24. 6. 23 解析:从盒中抓出两球共有3种方法,其中颜色不同的有2种,故概率为23. 7. 6 解析:作出如图所示可行域,当直线经过最优点(4,6)时,z 取得最大值6.8. 23 解析:∵ AF 2=F 1F 2=2c =4,AF 2-AF 1=2,∴ AF 1=2,∴ a =3,∴ e =23. 9. -82+315 解析:由于α,β∈⎝⎛⎭⎫3π4,π,∴ 3π2<α+β<2π,∴ π2<β-π4<3π4,∴ cos(α+β)=45,cos ⎝⎛⎭⎫β-π4=-223,∴ cos ⎝⎛⎭⎫α+π4=cos[(α+β)-⎝⎛⎭⎫β-π4]=45×⎝⎛⎭⎫-232+⎝⎛⎭⎫-35×13=-82+315. 10. 10 解析:∵ DB →·DC →=3,∴ DB →·(BC →-BD →)=3,∴ DB →·BC →-DB →·BD →=3.又|BD →|=2,∴ BD →·BC →=1,∴ cos B =14,由余弦定理得AC =10.11. 2+3 解析:∵ V ABCD =V PBCD +V P ACD ,正四面体ABCD 的高h =2,∴ x +y =2,∴ 3x+1y =⎝⎛⎭⎫3x +1y ⎝⎛⎭⎫x +y 2=12⎝⎛⎭⎫4+3y x +x y ≥2+3,当且仅当3y x =x y 时等号成立. 12. n -12n 解析:当n =1时,得S 1=-a 1-⎝⎛⎭⎫120+1,即a 1=0;当n ≥2时,∵ S n =-a n-⎝⎛⎭⎫12n -1+1,∴ S n -1=-a n -1-⎝⎛⎭⎫12n -2+1,∴ a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1,∴ 2a n =a n -1+⎝⎛⎭⎫12n -1,即2n a n =2n -1a n -1+1.令b n =2n a n ,则当n ≥2时,b n =b n -1+1,即b n -b n -1=1.又b 1=2a 1=0,故数列{b n }是首项为0,公差为1的等差数列,于是b n =b 1+(n -1)·1=n -1.∵ b n=2n a n ,∴ a n =2-n b n =n -12n .13. 4 解析:y =2x x -1-f (x )的零点即为2x x -1=f (x )的解,∴ y =2xx -1与y =f (x )有四个交点.∵y =2x x -1=2+2x -1,∴ y =2x x -1的图象关于点(1,2)对称.又f (x )(x ∈R )的图象关于点(1,2)对称,∴ y =2xx -1与y =f (x )的四个交点关于(1,2)对称,∴ x 1+x 2+x 3+x 4=2+2=4.14. (0,1) 解析:由f (x )≥0及x >0,得a ≤ex e x 的解集恰为[m ,n ],设 g (x )=exe x ,则g ′(x )=e (1-x )e x,由g ′(x )=0,得x =1,当0<x <1时,g ′(x )>0,g (x )单调递增; 当x >1时,g ′(x )<0,g (x )单调递减,且g (1)=1,g (0)=0,当x >0时,g (x )>0,大体图象如图所示.由题意得方程a =exex 有两不等的非零根,∴ a ∈(0,1).15. 证明:(1) ∵ MA 1=MC ,且N 是A 1C 的中点, ∴ MN ⊥A 1C .又MN ⊥AA 1,AA 1∩A 1C =A 1,A 1C ,AA 1⊂平面A 1ACC 1, 故MN ⊥平面A 1ACC 1. ∵ MN ⊂平面A 1MC ,∴ 平面A 1MC ⊥平面A 1ACC 1. (6分) (2) 如图,取AC 中点P ,连结NP ,BP . ∵ N 为A 1C 中点,P 为AC 中点,∴ PN ∥AA 1,且PN =12AA 1.在三棱柱ABCA 1B 1C 1中,BB 1∥AA 1,且BB 1=AA 1.又M 为BB 1中点,故BM ∥AA 1,且BM =12AA 1,∴ PN ∥BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN ∥BP .又MN ⊄平面ABC ,BP ⊂平面ABC , ∴ 故MN ∥平面ABC .(14分)16. 解:(1) 由题意,得1+cos B =3sin B ,∴ 2sin ⎝⎛⎭⎫B -π6=1,∴ B -π6=π6或5π6(舍去),∴ B =π3.∵ A =5π12,则C =π4,由正弦定理c sin C =b sin B ,得c =63.(5分)(2) ∵ sin A =2sin C ,由正弦定理,得a =2c .由余弦定理,得b 2=a 2+c 2-2ac cos B , 将b =1,a =2c ,B =π3代入解得c =33,从而a =233,∴ S △ABC =12ac sin B =12×233×33sin π3=36.(14分)17. 解:(1) 第一天选A 餐厅的学生在第二天仍选A 餐厅的学生有200(1-20%)=160(人), 第一天选B 餐厅的学生在第二天改选A 餐厅的学生有(1000-200)×30%=240(人), 故开学第二天选择A 餐厅的人数为160+240=400.(4分) (2) 由题知b n +1=20%a n +b n (1-30%),而a n +b n =1 000,∴ b n +1=12b n +200,∴ b n +1-400=12(b n -400).又b 1=1 000-200=800,∴ 数列{b n -400}是首项为400,公比为12的等比数列,∴ b n -400=400×⎝⎛⎭⎫12n -1,∴ b n =400+400×⎝⎛⎭⎫12n -1.当选B 餐厅用餐总人数低于学校用餐总数的920时, 有400+400×⎝⎛⎭⎫12n -1<920×1 000, 即⎝⎛⎭⎫12n -1<18,∴ n >4,∴ B 餐厅有整改的可能,且在开学第5天开始整改.(14分) 18. (1) 解:∵ 等轴双曲线的离心率为2,∴ 椭圆的离心率为e =22,∴ e 2=c 2a 2=a 2-b 2a 2=12,∴ a 2=2b 2.∵ 直线l :x -y +2=0与圆x 2+y 2=b 2相切, ∴ b =1,∴ 椭圆C 的方程为x 22+y 2=1.(4分)(2) 证明:由(1)知M (0,1),∵ m =(k 1-2,1),n =(1,k 2-2),m ⊥n ,∴ k 1+k 2=4. ① 若直线AB 的斜率存在,设AB 方程为y =kx +m ,依题意m ≠±1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得 (1+2k 2)x 2+4kmx +2m 2-2=0,则有x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,可得y 1-1x 1+y 2-1x 2=4,∴ kx 1+m -1x 1+kx 2+m -1x 2=4,即2k +(m -1)·x 1+x 2x 1x 2=4,将x 1+x 2,x 1x 2代入得k -km m +1=2,∴ m =k2-1,故直线AB 的方程为y =kx +k2-1,即y =k ⎝⎛⎫x +12-1,∴ 直线AB 过定点⎝⎛⎭⎫-12,-1;(10分) ② 若直线AB 的斜率不存在,设方程为x =x 0, 则点A (x 0,y 0),B (x 0,-y 0).由已知y 0-1x 0+-y 0-1x 0=4,得x 0=-12,此时AB 方程为x =x 0,显然过点⎝⎛⎭⎫-12,-1. 综上所述,直线AB 过定点⎝⎛⎭⎫-12,-1.(16分) 19. 解:(1) 设{a n }的公比为q ,由a 3a 6=a 22·q 5=116q 5=1512,得q =12,∴ a n =a 2·q n -2=⎝⎛⎭⎫12n .(2分)b n =log2a 2n 2·log2a 2n +12=log ⎝⎛⎭⎫122n -12·log ⎝⎛⎭⎫122n +12=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴ T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1. (5分)(2) ① 当n 为偶数时,由λT n <n -2恒成立,得λ<(n -2)(2n +1)n =2n -2n -3恒成立,即λ<⎝⎛⎭⎫2n -2n -3min ,(6分) 而2n -2n-3随n 的增大而增大,∴ n =2时⎝⎛⎭⎫2n -2n -3min =0,∴ λ<0;(8分) ② 当n 为奇数时,由λT n <n +2恒成立得,λ<(n +2)(2n +1)n =2n +2n +5恒成立,即λ<⎝⎛⎭⎫2n +2n +5min .(12分) 而2n +2n +5≥22n ·2n+5=9,当且仅当2n =2n,即n =1时等号成立,∴ λ<9.综上,实数λ的取值范围是(-∞,0).(16分)20. (1) 解:由f (x )=ln x +2e x,得f ′(x )=1-2x -xln xxe x,x ∈(0,+∞),(1分)∴ 曲线y =f (x )在点(1,f (1))处的切线斜率为f ′(1)=-1e .∵ f (1)=2e ,∴ 曲线y =f (x )切线方程为y -2e =-1e (x -1),即y =-1e x +3e.(4分) (2) 解:由xe x f (x )>m ,得k >mx-ln x ,令F (x )=mx-ln x ,则k >F (x )max ,又F ′(x )=-m x 2-1x =-1x2(x +m ),x ∈[1,e ].当m ≥0时,F ′(x )<0,F (x )在[1,e ]上单调递减, ∴ F (x )max =F (1)=m ,∴ k >m ;当m <0时,由F ′(x )=0,得x =-m ,在(0,-m )上F ′(x )>0,F (x )单调递增,在(-m ,+∞)上F ′(x )<0,F (x )单调递减.① 若-m ≤1即-1≤m <0,则F (x )在[1,e ]上单调递减,k >F (x )max =F (1)=m ;② 若1<-m <e 即-e <m <-1,则F (x )在[1,-m ]上单调递增,在[-m ,e ]上单调递减, k >F (x )max =F (-m )=-1-ln (-m );③ 若-m ≥e 即m ≤-e ,则F (x )在[1,e ]上单调递增,k >F (x )max =F (e )=me-1,综上,当m ≥-1时,k ∈(m ,+∞);当-e <m <-1时,k ∈(-1-ln (-m ),+∞);当m ≤-e 时,k ∈⎝⎛⎭⎫me -1,+∞.(8分) (3) 证明:由f ′(1)=0,得k =1. 令g (x )=(x 2+x )f ′(x ),∴ g (x )=x +1ex (1-x -xln x ),x ∈(0,+∞),因此,对任意x >0,g (x )<e -2+1等价于1-x -xln x <e xx +1(e -2+1). 由h (x )=1-x -xln x ,x ∈(0,+∞),得h ′(x )=-ln x -2,x ∈(0,+∞),因此,当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减,∴ h (x )的最大值为h (e -2)=e -2+1,故1-x -xln x ≤e -2+1.设φ(x )=e x -(x +1),∵ φ′(x )=e x -1,所以x ∈(0,+∞)时φ′(x )>0,∴ φ(x )单调递增,φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e x x +1>1, ∴ 1-x -xln x ≤e -2+1<e xx +1(e -2+1), 故对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)21. A . 解:由题意知⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤42c +d =2⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤3c +d =3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4,(4分) 所以A =⎣⎢⎡⎦⎥⎤ 12-14,所以A -1=⎣⎢⎡⎦⎥⎤23-1316 16.(10分) B. 解:因为直线l 的极坐标方程为θ=π3(ρ∈R ), 所以直线l 的普通方程为y =3x .(2分)因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数), 所以曲线C 的直角坐标方程为y =12x 2(x ∈[-2,2]). (4分) 联立解方程组⎩⎪⎨⎪⎧y =3x ,y =12x 2,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =23,y =6, 由x ∈[-2,2],则x =23,y =6(舍去),故P 点的直角坐标为(0,0).(10分)C. 证明:因为[(x -1)2+(y +2)2+(z -3)2](12+22+32) ≥[(x -1)+2(y +2)+3(z -3)]2=(x+2y +3z -6)2=142,当且仅当x -11=y +22=z -33, 即x =z =0,y =-4时,取等号,所以(x -1)2+(y +2)2+(z -3)2≥14.(10分)22. 解:如图,以{CA →,CB →,CC 1→}为正交基底,建立空间直角坐标系Cxyz ,则A(1,0,0),B(0,1,0),A 1(1,0,2),B 1(0,1,2),所以CB 1→=(0,1,2),AB →=(-1,1,0),AB 1→=(-1,1,2),BA 1→=(1,-1,2).(1) 因为cos 〈CB 1→,BA 1→〉=CB 1→·BA 1→|CB 1→||BA 1→|=35×6=3010, 所以异面直线BA 1与CB 1夹角的余弦值为3010.(4分)(2) 设平面CAB 1的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AB 1→=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧-x +y +2z =0,y +2z =0, 取平面CAB 1的一个法向量为m =(0,2,-1).设平面BAB 1的法向量为n =(r ,s ,t ),则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AB →=0,即⎩⎪⎨⎪⎧-r +s +2t =0,-r +s =0, 取平面BAB 1的一个法向量为n =(1,1,0),则cos 〈m ,n 〉=m ·n |m||n|=25×2=105. 易知二面角BAB 1C 为锐角, 所以二面角BAB 1C 平面角的余弦值为105.(10分) 23. 解:(1) 由已知得a 3=70,a 4=180,所以当n =2时,a 2n -a n -1a n +1=-500;当n =3时,a 2n -a n -1a n +1=-500.(2分)猜想:a 2n -a n -1a n +1=-500(n ≥2).下面用数学归纳法证明:① 当n =2时,结论成立.② 假设当n =k(k ≥2,k ∈N *)时,结论成立,即a 2k -a k -1a k +1=-500.将a k +1=3a k -a k -1代入上式,可得a 2k -3a k a k -1+a 2k -1=-500,则当n =k +1时,a 2k +1-a k a k +2=a 2k +1-a k (3a k +1-a k )=a 2k +1-3a k a k +1+a 2k =-500,故当n =k +1时结论成立, 根据①②可得a 2n -a n -1a n +1=-500(n ≥2)成立.(4分)(2) 将a n -1=3a n -a n +1代入a 2n -a n -1a n +1=-500,得a 2n +1-3a n a n +1+a 2n =-500,则5a n +1a n =(a n +1+a n )2+500,5a n a n +1+1=(a n +1+a n )2+501.设5a n +1a n +1=t 2(t ∈N *),则t 2-(a n +1+a n )2=501,即[t -(a n +1+a n )](t +a n +1+a n )=501.又a n +1+a n ∈N *,且501=1×501=3×167,故⎩⎪⎨⎪⎧a n +1+a n -t =-1,a n +1+a n +t =501或⎩⎪⎨⎪⎧a n +1+a n -t =-3,a n +1+a n +t =167,所以⎩⎪⎨⎪⎧t =251,a n +1+a n =250或⎩⎪⎨⎪⎧t =85,a n +1+a n =82. 由a n +1+a n =250,解得n =3; 由a n +1+a n =82,得n 无整数解, 所以当n =3时,满足条件.(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则A ∩B =________.2. 若复数z 1=4-3i ,z 2=1+i ,则复数(z 1-z 2)i 的模为________.3. 如图所示的程序框图,运行相应的程序,则输出S 的值为________.4. 学校从参加安全知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数,成绩≥80分记为优秀)分成6组后,得到部分频率分布直方图(如图),则分数在[70,80)内的人数为________.5. 如图,在▱ABCD 中,AB =4,AD =3,∠DAB =π3,点E ,F 分别在BC ,DC 边上,且BE →=12EC →,DF →=FC →,则AE →·EF →=________.6. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数的乘积小于8的概率是________.7. 已知函数f (x )=12x +1,则f (log 23)+f (log 213)=________. 8. 已知锐角θ满足sin(θ2+π6)=45,则cos(π6-θ)的值为________. 9. 若直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的________条件.10. 已知定义在R 上的函数f (x )的周期为4,当x ∈[0,2]时,f (x )=x 3,且函数y =f (x +2)的图象关于y 轴对称,则f (2 019)=________.11. 设点O ,P ,Q 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y 2=4x 的交点,O 为坐标原点,若△OPQ 的面积为2,则双曲线的离心率为________.12. 若a ≥c >0,且3a -b +c =0,则ac b的最大值为__________. 13. 已知S n 是等差数列{a n }的前n 项和,若S 2≥4,S 4≤16,则S 9的最大值是________.14. 已知函数f (x )=x 3-3x 在区间[a -1,a +1](a ≥0)上的最大值与最小值之差为4,则实数a 的值为________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,三角形PCD 所在的平面与等腰梯形ABCD 所在的平面垂直,AB =AD =12CD ,AB ∥CD ,CP ⊥CD ,M 为PD 的中点.求证:(1)AM ∥平面PBC ;(2)平面BDP ⊥平面PBC .16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos 2A =-13,c =3,sin A =6sin C . (1)求a 的值;(2) 若角A 为锐角,求b 的值及△ABC 的面积.17. (本小题满分14分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0),圆O :x 2+y 2=b 2,过椭圆C 的上顶点A 的直线l :y =kx +b 分别交圆O 、椭圆C 于不同的两点P ,Q .(1)若点P (-3,0),点Q (-4,-1),求椭圆C 的方程;(2)若AP →=3PQ →,求椭圆C 的离心率e 的取值范围.18. (本小题满分16分)某公司一种产品每日的网络销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =m x -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/件时,每日可售出产品21千件.(1)求m 的值;(2)假设网络销售员工的工资、办公等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x 的值,使公司每日销售产品所获得的利润最大.(结果保留一位小数)19. (本小题满分16分)已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n ,n 为奇数,a n -3n ,n 为偶数.(1)求证:数列⎩⎨⎧⎭⎬⎫a 2n -32是等比数列; (2)若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .20. (本小题满分16分)已知函数f (x )=12x 2+kx +1,g (x )=(x +1)ln(x +1),h (x )=f (x )+g ′(x ). (1)若函数g (x )的图象在原点处的切线l 与函数f (x )的图象相切,求实数k 的值;(2)若h (x )在[0,2]上单调递减,求实数k 的取值范围;(3)若对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4),且x 1≠x 2满足f (x i )=g (t )(i =1,2),其中e 为自然对数的底数,求实数k 的取值范围.已知[ln(x +1)]′=1x +1.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)设二阶矩阵A ,B 满足A -1=⎣⎢⎡⎦⎥⎤1234,(BA )-1=⎣⎢⎡⎦⎥⎤1001,求B -1.B. (选修44:坐标系与参数方程)已知直线l 的极坐标方程为ρsin(θ-π3)=3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.C. (选修45:不等式选讲)已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E(ξ).23. 设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)1. {x |-1<x ≤0} 解析:由题意可得,A ={x |-1<x <1},B ={y ∈R |y ≤0}={x |x ≤0}.故A ∩B ={x |-1<x ≤0}.2. 5 解析:∵ (z 1-z 2)i =(3-4i )i =4+3i , ∴ |(z 1-z 2)i |=5.3. 154. 18 解析:分数在[70,80)内的人数为[1-(0.005+0.010+0.015×2+0.025)×10]×60=18.5. -3 解析:AE →=AB →+BE →=AB →+13AD →,EF →=EC →+CF →=-12AB →+23AD →,又AB =4,AD =3,∠DAB =π3,∴ AE →·EF →=⎝⎛⎭⎫AB →+13AD →⎝⎛⎭⎫-12AB →+23AD →=-12AB →2+12AB →·AD →+29AD →2=-12×42+12×4×3×cos π3+29×32=-3. 6. 13解析:从1,2,4,8这四个数中一次随机地取2个数相乘,共有6个结果,其中乘积小于8的有2个,故所求概率为26=13.7. 1 解析:∵ f (x )+f (-x )=12x +1+12-x +1=1,∴ f (log 23)+f ⎝⎛⎭⎫log 213=f (log 23)+f (-log 23)=1.8. 2425 解析:∵ 0<θ<π2,∴ π6<θ2+π6<5π12,∴ cos ⎝⎛⎭⎫θ2+π6=35,∴ sin ⎝⎛⎭⎫θ+π3=2425,∴ cos ⎝⎛⎭⎫π6-θ=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π3=sin ⎝⎛⎭⎫θ+π3=2425.9. 充分不必要 解析:l 1⊥l 2 的充要条件是m (m -3)+1×2=0,即m =1或m =2,∴ “m =1”是“l 1⊥l 2”的充分不必要条件.10. 1 解析:∵ 函数y =f (x +2)的图象关于y 轴对称,∴ 函数y =f (x )的图象关于直线x =2对称.又函数f (x )的周期为4,∴ f (2 019)=f (3)=f (1)=1.11. 5 解析:不妨设P (x 0,y 0)(x 0>0,y 0>0),则y 20=4x 0,12x 0(2y 0)=2,∴ x 0=1,y 0=2.又y 0=b a x 0,∴ b a =2,∴ b 2a 2=4,∴ c 2-a 2a 2=4,∴ e = 5.12. 36 解析:∵ 3a -b +c =0,则b =3a +c ,设t =c a ,则t ∈(0,1],∴ ac b =ac 3a +c =c a 3+c a =t 3+t 2=13t+t .∵ 3t +t ≥23,∴ ac b ≤123=36,∴ ac b 的最大值为36. 13. 81 解析:设等差数列{a n }的公差为d ,∵ S 2≥4,S 4≤16,∴ 2a 1+d ≥4,4a 1+6d ≤16,即2a 1+d ≥4且2a 1+3d ≤8.又S 9=9a 1+9×82d =9(a 1+4d ),由线性规划可知,当a 1=1,d =2时,S 9取得最大值81. 14. 1或0 解析:f ′(x )=3(x +1)(x -1),令f ′(x )=0,则x =-1或x =1,则f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.∵ a ≥0,x ∈[a -1,a +1],∴ a -1≥-1,a +1≥1.① 当a -1<1即a <2时,f (x )min =f (1)=-2,f (x )max =max {f (a -1),f (a +1)},又f (x )max -f (x )min=4,f (x )max =2,∴ ⎩⎪⎨⎪⎧f (a -1)=2f (a +1)≤f (a -1)或⎩⎪⎨⎪⎧f (a +1)=2,f (a -1)≤f (a +1),∴ a 的值为1或0;② 当a -1≥1即a ≥2时,f (x )min =f (a -1),f (x )max =f (a +1), ∴ f (a +1)-f (a -1)=4,无解. 综上,a 的值为1或0.15. 证明:(1) 如图,取为PC 中点N ,连结MN ,BN , ∵ M 为PD 的中点,N 为PC 中点,∴ MN ∥CD ,MN =12CD .又AB ∥CD ,AB =12CD ,∴ MN ∥AB ,MN =AB ,∴ 四边形ABNM 为平行四边形, ∴ AM ∥BN .又AM ⊄平面PBC ,BN ⊂平面PBC , ∴ AM ∥平面PBC .(7分)(2) 如图,在等腰中梯形ABCD 中,取CD 中点T ,连结AT ,BT .∵ AB =12CD ,AB ∥CD ,∴ AB =DT ,AB ∥DT ,∴ 四边形ABTD 为平行四边形.又AB =AD ,∴ 四边形ABTD 为菱形, ∴ AT ⊥BD .同理,四边形ABCT 为菱形,∴ AT ∥BC . ∵ AT ⊥BD ,∴ BC ⊥BD .∵ 平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,CP ⊥CD ,CP ⊂平面PCD , ∴ CP ⊥平面ABCD ,又BD ⊂平面ABCD , ∴ CP ⊥BD .∵ BC ⊥BD ,BC ∩CP =C ,∴ BD ⊥平面PBC . 又BD ⊂平面BDP ,∴平面BDP ⊥平面PBC .(14分) 16. 解:(1) 由题知,c =3,sin A =6sin C .由正弦定理a sin A =c sin C ,得a =csin C·sin A =3 2.(6分)(2) ∵ cos 2A =1-2sin 2A =-13,且0<A <π,∴ sin A =63.由于角A 为锐角,得cos A =33.由余弦定理,a 2=b 2+c 2-2bc cos A ,∴ b 2-2b -15=0, 解得b =5或b =-3(舍去),所以S △ABC =12bc sin A =522.(14分)17. 解:(1) 由P 在圆O :x 2+y 2=b 2上得b =3,又点Q 在椭圆C 上,得(-4)2a 2+(-1)232=1,解得a 2=18,∴ 椭圆C 的方程是x 218+y 29=1.(6分)(2) 由⎩⎪⎨⎪⎧y =kx +b ,x 2+y 2=b 2,得x =0或x P =-2kb 1+k 2; 由⎩⎪⎨⎪⎧y =kx +b ,x 2a 2+y 2b 2=1,得x =0或x Q =-2kba 2a 2k 2+b 2.∵ AP →=3PQ → ,∴ AP →=34AQ →,∴ 2kba 2k 2a 2+b 2·34=2kb 1+k 2,即a 2a 2k 2+b 2·34=11+k2,∴ k 2=3a 2-4b 2a 2=4e 2-1. ∵ k 2>0,∴ 4e 2>1,即e >12.又0<e <1,∴ 12<e <1,即离心率e 的取值范围是(12,1).(14分)18. 解:(1) 因为当x =4时,y =21,代入关系式y =m x -2+4(x -6)2,得m2+16=21,解得m =10. (6分)(2) 由(1)可知,产品每日的销售量为y =10x -2+4(x -6)2, 所以每日销售产品所获得的利润为f (x )=(x -2)·⎣⎡⎦⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在⎝⎛⎭⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝⎛⎭⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以当x =103≈3.3时,函数f (x )取得最大值,故当销售价格约为3.3元/件时,该公司每日销售产品所获得的利润最大.(16分)19. (1) 证明:设b n =a 2n -32,因为b n +1b n =a 2n +2-32a 2n -32=13a 2n +1+(2n +1)-32a 2n -32=13(a 2n -6n )+(2n +1)-32a 2n -32=13a 2n -12a 2n -32=13,所以数列{a 2n -32}是以a 2-32即-16为首项,以13为公比的等比数列.(6分)(2) 解:由(1)得b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32,由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,所以 a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2⎣⎡⎦⎤13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -6(1+2+…+n )+9n =-2·13⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13-6·n (n +1)2+9n=⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n -3(n -1)2+2, 显然当n ∈N *时,{S 2n }单调递减,又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n ,同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 20. 解:(1) 函数g (x )的定义域为(-1,+∞), g ′(x )=ln (x +1)+1,则g (0)=0,g ′(0)=1,∴ 直线l :y =x .联立⎩⎪⎨⎪⎧y =12x 2+kx +1,y =x ,消去y ,得x 2+2(k -1)x +2=0.∵ l 与函数f (x )的图象相切,∴ Δ=4(k -1)2-8=0⇒k =1±2.(4分)(2) 由题意知,h (x )=12x 2+kx +1+ln (x +1)+1,h ′(x )=x +k +1x +1.令φ(x )=x +k +1x +1,∵ φ′(x )=1-1(x +1)2=x (x +2)(x +1)2>0对x ∈[0,2]恒成立, ∴ φ(x )=x +k +1x +1,即h ′(x )在[0,2]上为增函数,∴ h ′(x )max =h ′(2)=k +73.∵ h (x )在[0,2]上单调递减,∴ h ′(x )≤0对x ∈[0,2]恒成立,即h ′(x )max =k +73≤0,∴ k ≤-73,即k 的取值范围是(-∞,-73].(8分)(3) 当x ∈[0,e -1]时,g ′(x )=ln (x +1)+1>0,∴ g (x )=(x +1)ln (x +1)在区间[0,e -1]上为增函数,∴ x ∈[0,e -1]时,0≤g (x )≤e2.∵ f (x )=12x 2+kx +1的对称轴为直线x =-k ,∴ 为满足题意,必须-1<-k <4,此时f (x )min =f (-k )=1-12k 2,f (x )的值恒小于f (-1)和f (4)中最大的一个.∵ 对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4), 且x 1≠x 2满足f (x i )=g (t )(i =1,2),∴ ⎣⎡⎦⎤0,e2⊆(f (x )min ,min {f (-1),f (4)}),∴ ⎩⎪⎨⎪⎧-1<-k <4,f (x )min<0,e2<f (4),e 2<f (-1)⇒⎩⎪⎨⎪⎧-4<k <1,1-12k 2<0,e 2<4k +9,e 2<32-k ,∴e 8-94<k <-2, 即k 的取值范围是(e 8-94,-2).(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)21. A . 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1,所以⎣⎢⎡⎦⎥⎤1001=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤a b c d , 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 32-12.(10分) B. 解:由ρsin ⎝⎛⎭⎫θ-π3=3,可得ρ⎝⎛⎭⎫12sin θ-32cos θ=3,所以y -3x =6,即3x -y +6=0.(4分)由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2, 所以圆心到直线l 的距离d =62=3,所以P 到直线l 的距离的最大值为d +r =5.(10分) C .证明:由题得a 6+b 6-ab (a 4+b 4) =a 5(a -b )-(a -b )b 5 =(a -b )(a 5-b 5)=(a -b )2(a 4+a 3b +a 2b 2+ab 3+b 4).(4分) 又a ≥0,b ≥0,∴ a 6+b 6-ab (a 4+b 4)≥0, 即a 6+b 6≥ab (a 4+b 4).(10分)22. 解:(1) 比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率为P =C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 33×⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1136.(3分) (2) ξ的取值为0,1,2,3,则P (ξ=0)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 23×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=724, P (ξ=1)=⎝⎛⎭⎫133×C 13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1124,P (ξ=2)=⎝⎛⎭⎫133×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫23×13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 13×⎝⎛⎭⎫123=524, P (ξ=3)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=124, 所以ξ(8分)所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.(10分)23. 解:(1) 110(2分)(2) 集合M 有2n 个子集,不同的有序集合对(A ,B)有2n (2n -1)个. 当A B ,并设B 中含有k(1≤k ≤n ,k ∈N *)个元素,则满足A B 的有序集合对(A ,B )有错误!C 错误!=(3n -2n )个.同理,满足B A 的有序集合对(A ,B)有(3n -2n )个.故满足条件的有序集合对(A ,B)的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n .(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={x |x -x 2≥0},B ={x |y =lg(2x -1)},则集合A ∩B =________.2. 已知复数z =11+i+i(i 为虚数单位),则|z |=________.3. 某学校高三年级有700人,高二年级有700人,高一年级有800人,若采用分层抽样的办法,从高一年级抽取80人,则全校总共抽取________人.4. 已知a ∈R ,则“a >2”是“1a <12”的________条件.5. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数差的绝对值小于2的概率是________.6. 执行如图所示的伪代码,最后输出的S 值为________. n ←1 S ←0While S <9S ←S +(-1)n +n n ←n +1 End While Print S7. 曲线f (x )=x -cos x 在点(π2,f (π2))处的切线方程为________.8. 若函数f (x )=⎩⎪⎨⎪⎧kx -1(x ≥1),2x -x 2(x <1)是R 上的增函数,则实数k 的取值范围是________. 9. 若sin α=35且α是第二象限角,则tan(α-π4)=________.10. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右端点分别为A ,B ,点C (0,b2),若线段AC 的垂直平分线过左焦点F ,则椭圆的离心率为________.11. 已知数列{a n }是首项为a ,公差为1的等差数列,b n =a n +2a n,若对任意的n ∈N *,都有b n ≥b 6成立,则实数a 的取值范围是________.12. 已知x ,y 为正实数,满足2x +y +6=xy ,则xy 的最小值为________.13. 已知向量a ,b 是单位向量,若a·b =0,且|c -a|+|c -2b |=5,则|c -b |的最小值是________.14. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≤0,x ln x ,x >0,g (x )=kx -1,若方程f (x )-g (x )=0在x ∈(-2,2)上有三个实数根,则实数k 的取值范围是______________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在四棱锥P ABCD 中,平面P AB ⊥平面ABCD ,∠PBC =∠BAD =90°.求证: (1)BC ⊥平面P AB ;(2)AD ∥平面PBC .16. (本小题满分14分)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3.(1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.17. (本小题满分14分)如图,某地要在矩形区域OABC 内建造三角形池塘OEF ,E ,F 分别在AB ,BC 边上,OA =5 m ,OC =4 m ,∠EOF =π4,设CF =x ,AE =y .(1)试用解析式将y 表示成x 的函数;(2)求三角形池塘OEF 的面积S 的最小值及此时x 的值.18. (本小题满分16分)在直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过点(1,32).(1)求椭圆C 的方程;(2)已知点P (2,1),直线l 与椭圆C 相交于A ,B 两点,且线段AB 被直线OP 平分. ① 求直线l 的斜率;② 若P A →·PB →=0,求直线l 的方程.19. (本小题满分16分)已知数列{a n}是首项为a,公比为q的等比数列,且a n>0.(1)若a=1,a1,a3+2,a5-5成等差数列,求a n;(2)如果a2a4n-2=a4n,①当a=2时,求证:数列{a n}中任意三项都不能构成等差数列;②若b n=a n lg a n,数列{b n}的每一项都小于它后面的项,求实数a的取值范围.20. (本小题满分16分)设函数f(x)的导函数为f′(x).若不等式f(x)≥f′(x)对任意实数x恒成立,则称函数f(x)是“超导函数”.(1)请举一个“超导函数” 的例子,并加以证明;(2)若函数g(x)与h(x)都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数F(x)=g(x)h(x)是“超导函数”;(3)若函数y=φ(x)是“超导函数”且方程φ(x)=φ′(x)无实根,φ(1)=e(e为自然对数的底数),判断方程φ(-x-ln x)=e-x-ln x的实数根的个数并说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤m 00n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎢⎡⎦⎥⎤10,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤01,求矩阵A .B. (选修44:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.C. (选修45:不等式选讲) 解不等式:|x -2|+x |x +2|>2.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.23. 已知抛物线C:x2=2py(p>0)过点(2,1),直线l过点P(0,-1)与抛物线C交于A,B两点.点A关于y轴的对称点为A′,连结A′B.(1)求抛物线C的标准方程;(2)问直线A′B是否过定点?若是,求出定点坐标;若不是,请说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)1. ⎝⎛⎦⎤12,1 解析:A ={x |0≤x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >12,A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1. 2. 22 解析:z =1-i 2+i =12+12i ,∴ |z |=22.3. 220 解析:设全校总共抽取x 人,则x 700+700+800=80800,∴ x =220.4. 充分不必要 解析:由1a <12,得a <0或a >2,∴ “a >2”是“1a <12”的充分不必要条件.5. 16解析:从1,2,4,8这四个数中一次随机地取2个数,有6个结果,绝对值小于2的只有一个,即取2个数差的绝对值小于2的概率是16.6. 10 解析:当n =1时,S =0;当n =2时,S =3;当n =3时,S =5;当n =4时,S =10.7. 2x -y -π2=0 解析:f ⎝⎛⎭⎫π2=π2,f ′⎝⎛⎭⎫π2=1+sin π2=2,切线方程为y -π2=2⎝⎛⎭⎫x -π2,即2x -y -π2=0.8. [2,+∞) 解析:由题知,k >0且k ×1-1≥2×1-12, ∴ k ≥2.9. -7 解析:∵ sin α=35且α是第二象限角,∴ cos α=-45,∴ tan α=-34,∴ tan⎝⎛⎭⎫α-π4=-7.10. 4-13 解析:k AC =b2a ,AC 中点为P ⎝⎛⎭⎫-a 2,b 4,k FP =b 4c -a2,由题知,k AC ·k FP =-1,∴ 3a 2-8ac +c 2=0,∴ e 2-8e +3=0,∴ e =4±13,又0<e <1, ∴ e =4-13.11. (-6,-5) 解析:a n =a +n -1,b n =1+2a +n -1=1+2n +a -1,由y =1x 的图象可得6<1-a <7,∴ -6<a <-5.12. 18 解析:∵ 2x +y +6=xy ,∴ xy -6=2x +y ≥22xy ,令t =2xy ,则12t 2-6≥2t 即t 2-4t -12≥0,∴ t ≥6,∴ xy ≥18,当且仅当2x =y =6时“=”成立,∴ xy 的最小值为18.13. 55解析:设a =(1,0),b =(0,1),将c 的起点放在原点,则|c -a |+|c -2b |的几何意义是c 的终点到向量a ,2b 的终点M (1,0),N (0,2)的距离之和,由于点(1,0),(0,2)的距离为5,故c 的终点在线段MN 上,∴ |c -b |的最小值即为点(0,1)到直线MN 的距离,即55.14. (1,ln 2e )∪⎝⎛⎭⎫32,2 解析:显然x =0不是方程f (x )-g (x )=0的解,由f (x )-g (x )=0,得k =h (x )=⎩⎨⎧x +1x +4,x <0,ln x +1x,x >0,由图象可得实数k 的取值范围是(1,ln 2e )∪⎝⎛⎭⎫32,2. 15. 证明:(1) 如图,在平面P AB 内过点P 作PH ⊥AB 于H , 因为平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PH ⊂平面P AB , 所以PH ⊥平面ABCD .(4分)。
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)
A NB(第7题)2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合{}11A x x =-<<,{}102B =-,,,则A B = ▲ .2. 复数2i1iz =-(i 为虚数单位)的实部是 ▲ . 3. 甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为 ▲ .4. 某地区连续5天的最低气温(单位:°C )依次为8,-4,-1,0,2,则该组数据的方差为 ▲ .5. 根据如图所示的伪代码,当输出y 的值为12时,则输入的x 的值为 ▲ .6. 在平面直角坐标系xOy 中,圆224440x y x y +-++=被直线50x y --=所截得的弦长为 ▲ .7. 如图,三个相同的正方形相接,则tan ABC ∠的值为 ▲ .8. 如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥底面ABCD ,E 为PD 上一点,且2PE ED =.设三棱锥P ACE -的体积为1V ,三棱锥P ABC -的体积为2V ,则12:V V = ▲ .9. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 是FN 的中点,则FN 的长度为 ▲ .10.若函数()f x 为定义在R 上的奇函数,当0x >时,()ln f x x x =,则不等式()e f x <-的解集为 ▲ .11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图).现将99根相同的圆钢 捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为 ▲ .Read xIf x ≤0 Then y ←x 2+1 Elsey ←ln x End If Print y(第5题)( 第8题 )ACPEABCB 1C 1A 1MN (第16题)12.如图,在△ABC 中,点M 为边BC 的中点,且2AM =,点N 为线段AM 的中点,若74AB AC ⋅=,则NB NC ⋅的值为 ▲ . 13.已知正数x y ,满足11910x y x y +++=,则1x y+的最小值是 ▲ . 14.设等比数列{a n }满足:1cos n n n a a θθ=,其中π02n θ⎛⎫∈ ⎪⎝⎭,,*n ∈N .则 数列{}n θ的前2 018项之和是▲ . 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)已知sin cos θθ+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,已知M ,N 分别为线段1BB ,1A C 的中点,MN 与1AA 所成角的大小为90°,且1MA MC =.求证:(1)平面1A MC ⊥平面11A ACC ; (2)//MN 平面ABC .(第18题)17.(本小题满分14分某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产x (百套)的销售额(单位:万元)20.4 4.20.805()914.7 5.3x x x P x x x ⎧-+-<⎪=⎨->⎪-⎩≤,,, (1)该厂至少生产多少套此款式服装才可以不亏本?(2)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :222210x y a b ab+=>>()的离心率为2,且过点1⎛⎝⎭.设P 为椭圆C 在第一象限上的点,A ,B 分别为椭圆C 的左顶点和 下顶点,且PA 交y 轴于点E ,PB 交x 轴于点(1)求a b ,的值;(2)若F 为椭圆C 的右焦点,求点E 的坐标; (3)求证:四边形ABFE 的面积为定值.19.(本小题满分16分)设数列{a n }的前n 项和为n S ,且满足:()()2*0n n n a S a p n p >=+∈∈N R ,,.(1)若29p =,求a 1的值;(2)若123a a a ,,成等差数列,求数列{a n }的通项公式.20.(本小题满分16分)已知函数()e (1)xf x a x =-+,其中e 为自然对数的底数,a ∈R . (1)讨论函数()f x 的单调性,并写出相应的单调区间;(2)已知0a >,b ∈R ,若()f x b ≥对任意x ∈R 都成立,求ab 的最大值; (3)设()(e)g x a x =+,若存在0x ∈R ,使得00()()f x g x =成立,求a 的取值范围.2019年高考模拟试卷(1)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定..两题,并在相应的答题区域内作答................ A . [选修4—1:几何证明选讲](本小题满分10分)如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E , 交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .B . [选修4-2:矩阵与变换](本小题满分10分)已知2143-⎡⎤=⎢⎥-⎣⎦M ,4131-⎡⎤=⎢⎥-⎣⎦N .求满足方程=MX N 的二阶矩阵X .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为12x t y ⎧=⎪⎪⎨⎪=⎪⎩, (t 为参数),圆C的参数方程(第21—A 题)ABCDP(第22题)为2cos 22sin x a y θθ=+⎧⎨=+⎩,(θ为参数).设直线l 与圆C 相切,求正实数a 的值.D .[选修4-5:不等式选讲](本小题满分10分)设0x y z >,,,证明:222111x y z y z x x y z++++≥. 【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.(本小题满分10分)如图,在四棱锥P ABCD -中,棱AB ,AD ,AP 两两垂直,且长度均为1,BC AD λ=(01λ<≤). (1)若1λ=,求直线PC 与平面PBD 所成角的正弦值; (2)若二面角B PC D --的大小为120°,求实数λ的值.23.(本小题满分10分)甲,乙两人进行抛硬币游戏,规定:每次抛币后,正面向上甲赢,否则乙赢.此时, 两人正在游戏,且知甲再赢m (常数m >1)次就获胜,而乙要再赢n (常数n >m ) 次才获胜,其中一人获胜游戏就结束.设再进行ξ次抛币,游戏结束. (1)若m 2=,n 3=,求概率()4P ξ=;(2)若2n m =+,求概率()P m k ξ=+(23k =,,…1m +,)的最大值(用m 表示).2019年高考模拟试卷(1)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.1.{}0 2. -1 3.0.5 4. 16 5.6.7. 17【解析】设最右边的正方形的右下角顶点为D ,则()11tan tan 123tan tan 1tan tan 117123BCD BAD ABC BCD BAD BCD BAD -∠-∠∠=∠-∠===+∠∠+⨯.8. 23【解析】因为2PE ED =,所以三棱锥E ACD -的体积是三棱锥P ACD -体积的13,所以三棱锥P ACE -的体积是P ACD -体积的23.因为三棱锥P ABC -与三棱锥P ACD -体积相等,所以12:V V =23.9. 6【解析】如图,过点M 作准线的垂线,垂足为T ,交y 轴于点P ,所以112MP OF ==,3MF MT ==,所以26FN MF ==.10. (,e)-∞-【解析】11()ln 1,(0,),(,),(e)e e ef x x f '=++∞=为减区间为增区间.由于()f x 是奇函数,结合函数图像得,不等式的解集是(,e)-∞-.11. 8【解析】设99根相同的圆钢捆扎成的尽可能大的1个正六边形垛的边长为n 根,则这个正六边形垛的层数是21n -,每一层的根数从上往下依次为: 12(2)(1)(2)21n n n n n n n n n n n n ++⋅⋅⋅+-+-+-⋅⋅⋅++,,,,,,,,,,,则圆钢的总根数为:()222(1)2(21)33 1.2n n n n n n +--⨯+-=-+由题意2331n n -+≤99即2993n n --≤0, 设函数299()3f x x x =--,则299()3f x x x =--在[)1+∞,上单调递增. 因为(6)0(7)0f f <>,,所以6n =.此时剩余的圆钢根数为299(36361)8-⨯-⨯+=.12. 54-【解析】由极化恒等式知,22AB AC AM BM ⋅=-,则2342BM AB AC =-⋅==,所以()222235124NB NC MN BM ⋅=-=-=-. 13. 2【解析】设1a x y =+,19b y x=+,则10a b +=.ABCB 1C 1A 1MN 因为ab =()1x y+⋅()1191091016y xy x xy +=+++≥(当且仅当19xy xy =时取“=”),所以()1016a a -≥,解得28a ≤≤,所以1x y +的最小值是2.14. 1009π6【解析】因为()π02n θ∈,,所以()(]πcos 2sin 126n n n n a θθθ=+=+∈,,所以等比数列{a n }的公比0q >.若1q >,由1a n 充分大,则2n a >,矛盾; 若01q <<,由1a n 充分大,则1n a <,矛盾, 所以1q =,从而1n a a =π12n θ=.则数列{}n θ的前2 018项之和是1009π6.二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)解:(1)由sin cos θθ+=2(sin cos )1θθ+=-,即22sin 2sin cos cos 1θθθθ++=-sin 2θ=.因为()ππ44θ∈-,,所以()ππ222θ∈-,,所以π23θ=-,即π6θ=-. (2)由(1)知,()22π()sin sin 6f x x x =--,所以()()11π()1cos21cos 2223f x x x ⎡⎤=----⎢⎥⎣⎦()1πcos 2cos223x x ⎡⎤=--⎢⎥⎣⎦112cos222x x ⎫=-⎪⎭()1πsin 226x =-. 令πππ2π22π+262k x k --≤≤, 得ππππ+63k x k -≤≤,所以函数()f x 的单调增区间是ππππ+63k k ⎡⎤-⎢⎥⎣⎦,,Z k ∈. 16.(本小题满分14分证明:(1)因为MN 与1AA 所成角的大小为90°,所以MN ⊥1AA , 因为1MA MC =,且N 是A 1C 的中点,所以MN ⊥1A C . 又111AA AC A =,1AC ,1AA ⊂平面11A ACC ,故MN ⊥平面11A ACC ,因为MN ⊂平面1A MC ,所以平面1A MC ⊥平面11A ACC .(2)取AC 中点P ,连结NP ,BP .因为N 为A 1C 中点,P 为AC 中点,所以PN //AA 1,且PN 12=AA 1.在三棱柱111ABC A BC -中,BB 1 // AA 1,且BB 1=AA 1. 又M 为BB 1中点,故BM // AA 1,且BM 12=AA 1.所以PN // BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN // BP .又MN ⊄平面ABC ,BP ⊂平面ABC ,故//MN 平面ABC . 17.(本小题满分14分解:(1)考虑05x <≤时,利润()()22()20.4 4.20.820.4 3.2 2.8y P x x x x x x x =-+=-+--+=-+-. 令20.4 3.2 2.80y x x =-+-≥得,17x ≤≤,从而15x ≤≤,即min 1x =. (2)当05x <≤时,由(1)知()220.4 3.2 2.80.44 3.6y x x x =-+-=--+, 所以当4x =时,max 3.6y =(万元).当5x >时,利润()()()99()214.729.7333y P x x x x x x =-+=--+=--+--.因为9363x x -+-≥(当且仅当933x x -=-即6x =时,取“=”), 所以max 3.7y =(万元). 综上,当6x =时,max 3.7y =(万元).答:(1)该厂至少生产1百套此款式服装才可以不亏本;(2)该厂生产6百套此款式服装时,利润最大,且最大利润为3.7万元. 18.(本小题满分16分)解:(1)依题意,221314a b +=,c a =222(0)c a b c =->, 解得2241a b ==,. 因为0a b >>,所以21a b ==,.(2)由(1)知,椭圆C 的右焦点为)0F,椭圆C 的方程为2214x y +=,① 所以()()2001A B --,,,.从而直线BF 1y =. ②由①②得,)17P ,.从而直线AP 的方程为:2)y x =+.令0x =,得7y =-E 的坐标为(07-,.(3)设()00P x y ,(0000x y >>,),且220014x y +=,即220044x y +=.则直线AP 的方程为:00(2)2y y x x =++,令0x =,得0022y y x =+. 直线BP 的方程为:0011y y x x ++=,令0y =,得001xx y =+. 所以四边形ABFE 的面积S =()()00002121212x y y x ++++00000022221212x y x y y x ++++=⋅⋅++ ()2200000000004222441222x y x y x y x y x y +++++=⋅+++00000000224422x y x y x y x y +++=+++ 2=. 19.(本小题满分16分)解:(1)因为29p =,所以()211129a S a ==+,即211540981a a -+=,解得119a =或49.(2)设等差数列123a a a ,,的公差为d . 因为()()2*n n S a p n p =+∈∈N R ,,所以()211a a p =+, ①()2122a a a p +=+, ②()21233a a a a p ++=+. ③ ②-①,得()()22221a a p a p =+-+,即()2122a d a a p =++, ④③-②,得()()22332a a p a p =+-+,即()3232a d a a p =++, ⑤ ⑤-④,得()()32231222a a d a a p a a p ⎡⎤-=++-++⎣⎦,即22d d =. 若0d =,则230a a ==,与0n a >矛盾,故12d =.代入④得()1111112222a a a p +=+++,于是14p =.因为()()2*14n n S a n =+∈N ,所以()21114n n S a ++=+, 所以()()221111144n n nn na S S a a +++=-=+-+,即()()221111044n n n a a a +++--+=,整理得()()22111044n na a +--+=,于是()()11102n n n na a a a +++--=.因为0n a >,所以1102n n a a +--=,即112n n a a +-=.因为()21114a a =+,所以114a =.所以数列{a n }是首项为14,公差为12的等差数列.因此,*1121(1)()424n n a n n -=+-=∈N .20.(本小题满分16分)解:(1)由()e (1)x f x a x =-+,知()e x f x a '=-.若0a ≤,则()0f x '>恒成立,所以()f x 在()-∞+∞,上单调递增; 若0a >,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以()f x 在(ln )a -∞,上单调递减;在(ln )a +∞,上单调递增. (2)由(1)知,当0a >时,min ()(ln )ln f x f a a a ==-.因为()f x b ≥对任意x ∈R 都成立,所以ln b a a -≤, 所以2ln ab a a -≤. 设2()ln t a a a =-,(0a >),由21()(2ln )(2ln 1)t a a a a a a a '=-+⋅=-+,令()0t a '=,得12e a -=,当120e a -<<时,()0t a '>,所以()t a 在()120e-,上单调递增;当12e a ->时,()0t a '<,所以()t a 在()12e -∞,+上单调递减,所以()t a 在12e a -=处取最大值,且最大值为12e.所以21ln 2e ab a a -≤≤,当且仅当12e a -=,121e 2b -=时,ab 取得最大值为12e. (3)设()()()F x f x g x =-,即()e e 2x F x x ax a =--- 题设等价于函数()F x 有零点时的a 的取值范围.① 当0a ≥时,由(1)30F a =-≤,1(1)e e 0F a --=++>,所以()F x 有零点. ② 当e 02a -<≤时,若0x ≤,由e 20a +≥,得()e (e 2)0x F x a x a =-+->;若0x >,由(1)知,()(21)0F x a x =-+>,所以()F x 无零点. ③ 当e 2a <-时,(0)10F a =->,又存在010e 2a x a -=<+,00()1(e 2)0F x a x a <-+-=,所以()F x 有零点.综上,a 的取值范围是e 2a <-或0a ≥.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作..................答..若多做,则按作答的前两题评分. C . [选修4—1:几何证明选讲](本小题满分10分)证明:因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE . 又∠PEA =∠BED ,故△P AE ∽△BDE . D . [选修4-2:矩阵与变换](本小题满分10分)21B.【解】设1 -⎡⎤=⎢⎥⎣⎦a c b d A ,因为12 -1 1 02 1 0 1-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a cb d AA , 所以2a b 1,2c d 0,2a b 0,2c d 1,-=⎧⎪-=⎪⎨+=⎪⎪+=⎩解之得1a 41b 21c 41d 2⎧=⎪⎪=-⎪⎪⎨⎪=⎪⎪=⎪⎩ ,所以A -1=11 4411- 22⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.所以12131111 16164444()111131- - 222288-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A .C .[选修4-4:坐标系与参数方程](本小题满分10分)解:直线l的普通方程为3y =+,圆C 的参数方程化为普通方程为22()(2)4x a y -+-=.因为直线l 与圆C2=.解得a =a =0a >,所以a = D .[选修4-5:不等式选讲](本小题满分10分)证明:由柯西不等式,得()()2222111y x z x y z y z x ++++≥,即()()()2222111111y x z x y zx y z y z x ++++++≥,所以222111yx z x y z y z x++++≥.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)解:(1)以{}AB AD AP ,,为一组基底建立如图所示的空间直角坐标系A —xyz .因为1λ=,所以BC AD =. 依题意,()110C ,,,()001P ,,,()100B ,,,()010D ,,, 所以()111PC =-,,, ()101PB =-,,,()11PD =-0,,. 设平面PBD 的一个法向量为n ()x y z =,,,则00PB PD ⎧⋅=⎪⎨⋅=⎪⎩,,n n 所以00x z y z -=⎧⎨-=⎩,. 取1z =得,n ()111=,,.所以1 cos3PC PC PC ⋅〈〉===⋅,n n n .所以直线PC 与平面PBD 所成角的正弦值为13.(2)依题意,()10C λ,,,101PB ,,,11PCλ,,,011PD,,.设平面PBC 的一个法向量为1n ()111x y z ,,=,则1100PB PC ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即1111100x z x y z λ-=⎧⎨+-=⎩,,取11z =得,()1101=,,n . 设平面PCD 的一个法向量为2n ()222x y z ,,=,则2200PC PD ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即2222200x y z y z λ+-=⎧⎨-=⎩,,取21z =得,2n ()111λ=-,,.所以121212 cos⋅〈〉=⨯,n n n n n n 1 cos120 2==, 解得1λ=或5λ=,因为01λ<≤,所以1λ=. 23.(本小题满分10分)解:(1)依题意, ()()31343128P ξ==⨯⨯=.(2)依题意,()()()11111C C2m km m m k m k P m k ξ+-++-+-=+=+⋅(23k =,,…1m +,). 设()()()11111CC2m km m m k m k f k +-++-+-=+⋅()()()()()()1!1!121!!1!2!m km k m k m k m k ++-+-⎡⎤=+⋅⎢⎥-+-⎣⎦()()()()()1111!21!!m km m k k m k m k +++-=⋅⋅+-+则()()1f k f k +()()()()()()()()()()()1111!21!1!1111!21!!m k m k m m k k m k m k m m k k m k m k ++++++⋅⋅+++=++-⋅⋅+-+()()()()()()112111m k m m k k k m m k k ++++⎡⎤⎣⎦=+++-⎡⎤⎣⎦. 而()()()()()()1112111m k m m k k k m m k k ++++⎡⎤⎣⎦+++-⎡⎤⎣⎦≥ (*) ()()()32221220k m k m k m m m ⇔-++----≤ ()()2220k m k k m m ⇔--+--≤.(#) 因为2220k k m m -+--=的判别式()21420m m ∆=---<2704m m ⇔--<(显然在*1m m >∈N ,时恒成立),所以2220k k m m -+-->.又因为k m ≤,所以(#)恒成立,从而(*)成立. 所以()()11f k f k +≥,即()()1f k f k +≥(当且仅当k m =时,取“=”), 所以()f k 的最大值为()()()()21112211C C2m m m mmf m f m +-+=+=+⋅,即()P m k ξ=+的最大值为()()2111221C C2m m m mm+-++⋅.。
【真题】2019年江苏省高考数学试题(含附加题+答案)
15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b=
2
,cosB=
2
,求
c
的值;(2)若
sin
A
cos
B
,求
sin(B
)
的值.
3
a 2b
2
第 3 页 共 18 页
16.(本小题满分 14 分) 如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
sin A sin B
2b b
从而 cos2 B (2sin B)2 ,即 cos2 B 4 1 cos2 B ,故 cos2 B 4 . 5
因为 sin B 0 ,所以 cos B 2sin B 0 ,从而 cos B 2 5 . 5
因此 sin
B
π 2
cos
B
25 5
.
16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间 想象能力和推理论证能力.满分 14 分.
10.在平面直角坐标系 xOy 中,P 是曲线 y x 4 (x 0) 上的一个动点,则点 P 到直线 x+y=0 的距离的 x
最小值是 ▲ .
11.在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自
然对数的底数),则点 A 的坐标是 ▲ .
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
(完整word)2019年江苏高三数学模拟试题含答案,推荐文档
2019年高三数学模拟试题1. 已知集合{2,0,1,7}A =,{|7,}B y y x x A ==∈,则A B =I . 【答案】{0,7}2.已知复数z =(i 为虚数单位),则z z ⋅= .【答案】3. 一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为 . 【答案】84. 阅读下列程序,输出的结果为 . 【答案】225.将甲、乙两个不同的球随机放入编号为1,2,3的 3个盒子中,每个盒子的放球数量不限,则1,2号 盒子中各有1个球的概率为 . 【答案】296.已知实数x ,y 满足132y x x x y ≤-⎧⎪≤⎨⎪+≥⎩,则y x 的取值范围是 .【答案】]32,31[-7.如图所示的四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是矩形,2AB =,3AD =,点E 为棱CD 上一点,若三棱锥E PAB -的体积为4,则PA 的长为 .【答案】48.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是________14B答案:32 9.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,且2a =,22cos cos cos A b C c B -=,则3122b c +-的最大值是 答案:2210.已知圆C 的方程为22(1)1x y ++=,过y 轴正半轴上一点(0,2)P 且斜率为k 的直线l 交圆C 于A B 、两点,当ABC △的面积最大时,直线l 的斜率k =________ 答案:1或711.在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是11,AA CC 的中点,给出下列命题:①BN P 平面1MND ;②平面MNA ⊥平面ABN ;③平面1MND 截该正方体所得截面的面积为6;④三棱锥ABC N -的体积为32=-ABC N V 。
江苏省2019年高考数学模拟试题及答案
江苏省2019年高考数学模拟试题及答案一、填空题:本大题共14小题,每小题5分,共70分.1.若全集}3,2,1{=U ,}2,1{=A ,则=A C U . 【答案】}3{2.函数x y ln =的定义域为 . 【答案】),1[+∞3.若钝角α的始边与x 轴的正半轴重合,终边与单位圆交于点)23,(m P ,则αtan . 【答案】3-4.在ABC ∆中,角C B A ,,的对边为c b a ,,,若7,5,3===c b a ,则角=C . 【答案】32π 5.已知向量)1,1(-=m ,)sin ,(cos αα=n ,其中],0[πα∈,若n m //,则=α . 【答案】43π 6.设等差数列}{n a 的前n 项和为n S ,若63=a ,497=S ,则公差=d . 【答案】17.在平面直角坐标系中,曲线12++=x e y x在0=x 处的切线方程为 . 【答案】23+=x y8.实数1-=k 是函数xxk k x f 212)(⋅+-=为奇函数的 条件(选填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”之一) 【答案】充分不必要9.在ABC ∆中,060,1,2===A AC AB ,点D 为BC 上一点,若⋅=⋅2,则AD .【答案】332 10.若函数)10(|3sin |)(<<-=m m x x f 的所有正零点构成公差为)0(>d d 的等差数列,则=d .【答案】6π 11.如图,在四边形ABCD 中,060,3,2===A AD AB ,分别CD CB ,延长至点F E ,使得CB CE λ=,λ=其中0>λ,若15=⋅,则λ的值为 .【答案】2512.已知函数x m x e m x x f x)1(21)()(2+--+=在R 上单调递增,则实数m 的取值集合为 .【答案】}1{-13.已知数列}{n a 满足023211=+++++n n n n a a a a ,其中211-=a ,设1+-=n n a n b λ,若3b 为数列}{n b 中的唯一最小项,则实数λ的取值范围是 . 【答案】)7,5(14.在ABC ∆中,3tan -=A ,ABC ∆的面积为1,0P 为线段BC 上的一个定点,P 为线段BC 上的任意一点,满足BC CP =03,且恒有C P A P PC PA 00⋅≥⋅,则线段BC 的长为 . 【答案】6二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分14分) 若函数)0,0()3sin()(>>++=b a b ax x f π的图像与x 轴相切,且图像上相邻两个最高点之间的距离为π.(1)求b a ,的值;(2)求函数)(x f 在⎥⎦⎤⎢⎣⎡4,0π上的最大值和最小值.16.(本小题满分14分)已知命题p :函数m mx x x f +-=2)(2的图像与x 轴至多有一个交点,命题q :1|1log |2≤-m ; (1)若q ⌝为真命题,求实数m 的取值范围; (2)若q p ∨为真命题,求实数m 的取值范围;17.(本小题满分14分)在ABC ∆中,角C B A ,,的对边为c b a ,,,已知abC C 3sin cos 3=-; (1)求角A 的大小;(2)若6=+c b ,D 为BC 中点,且22=AD ,求ABC ∆的面积.18.(本小题满分16分)如图,PQ 为某公园的一条道路,一半径为20米的圆形观赏鱼塘与PQ 相切,记其圆心为O ,切点为G ,为参观方便,现在新建两条道路CB CA ,,分别与圆O 相切于E D ,两点,同时与PQ 分别交与B A ,两点,其中G O C ,,三点共线且满足CB CA =,记道路CB CA ,长之和为l ; (1)①设θ=∠ACO ,求出l 关于θ的函数关系式)(θl ; ②设x AB 2=米,求出l 关于x 的函数关系式)(x l ;(2)若新建道路每米造价一定,请选择(1)中的一个函数关系式,研究并确定如何设计使得新建道路造价最少.19.(本小题满分16分)已知正项数列}{n a 的首项,前n 项和n S 满足n n n S a a 22=+(1)求数列}{n a 的通项公式;(2)若数列}{n b 是公比4为的等比数列,且332211,,a b a b a b ---也是等比数列,若数列⎭⎬⎫⎩⎨⎧+n n b a λ单调递增,求实数λ的取值范围;(3)若数列}{n b ,}{n c 都是等比数列;且满足n n n a b c -=,试证明数列}{n c 中只存在三项.20.(本小题满分16分)若函数)(x f y =在0x x =处取得最大值或最小值,则称0x 为函数)(0x f y =的极值点.设函数b a bx ax x x f ---++=1)(23,)1()(-=x k x g ,R k b a ∈,,(1)若函数)(x g 为)(x f 在1=x 处的切线,①当)(x f 有两个极值点1x 、2x ,且满足121=x x 时,求b 的值及a 的取值范围; ②当)(x g 与)(x f 的图像只有一个交点,求a 的值;(2)若对满足“函数)(x g 与)(x f 的图像总有三个交点R Q P ,,”的任意实数k ,都有QR PQ =成立,求k b a ,,满足的条件.。
2019年江苏省高考数学模拟试卷含答案解析
2019年江苏省高考数学模拟试卷
一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡
相应的位置上.
1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(?U B)=.
2.已知复数,则z的共轭复数的模为.
3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶
数的概率是.
4.运行如图所示的伪代码,其结果为.
5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.
6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值
为.
7.若函数是偶函数,则实数a的值为.
8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.
9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集
是.
10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.
11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象
上存在区域D上的点,则a的取值范围是.
12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:
第1页(共25页)。
江苏省苏北三市2019届高三模拟考试数学试卷(有答案)AUAlHn
2019届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2019.1参考公式:样本数据x 1,x 2,…,x n 的方差 一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={0,1,2,3},B ={x |0<x ≤2},则A ∩B = W.2. 已知复数z =(2-i)2(i 是虚数单位),则z 的模为 W.3. 已知一组样本数据5,4,x ,3,6的平均数为5,则该组数据的方差为 W.4. 运行如图所示的伪代码,则输出的结果S 为 W. I ←1While I <8 I ←I +2 S ←2I +3 End While Print S(第4题)5. 若从2,3,6三个数中任取一个数记为a ,再从剩余的两个数中任取一个数记为b ,则“ab是整数”的概率为 W.6. 若抛物线y 2=2px (p >0)的焦点与双曲线x 2-y 23=1的右焦点重合,则实数p 的值为W.7. 在等差数列{a n }中,若a 5=12,8a 6+2a 4=a 2,则{a n }的前6项和S 6的值为 W.8. 已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为 W.9. 已知a ,b ∈R ,函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上是减函数,则关于x 的不等式f (2-x )>0的解集为 W.10. 已知a >0,b >0,且a +3b =1b -1a,则b 的最大值为 W.11. 将函数f (x )=sin 2x 的图象向右平移π6个单位长度得到函数g (x )的图象,则以函数f (x )与g (x )的图象的相邻三个交点为顶点的三角形的面积为 W.12. 在△ABC 中,AB =2,AC =3,∠BAC =60°,P 为△ABC 所在平面内一点,满足CP →=32PB→+2P A →,则CP →·AB →的值为 W.13. 在平面直角坐标系xOy 中,已知圆C 1:x 2+y 2+2mx -(4m +6)y -4=0(m ∈R )与以C 2(-2,3)为圆心的圆相交于A (x 1,y 1),B (x 2,y 2)两点,且满足x 21-x 22=y 22-y 21,则实数m 的值为 W.14. 已知x >0,y >0,z >0,且x +3y +z =6,则x 3+y 2+3z 的最小值为 W.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,sin A =23,A ∈(π2,π).(1) 求sin 2A 的值;(2) 若sin B =13,求cos C 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,D ,E ,F 分别是B 1C 1,AB ,AA 1的中点. (1) 求证:EF ∥平面A 1BD ;(2) 若A 1B 1=A 1C 1,求证:平面A 1BD ⊥平面BB 1C 1C .如图,某公园内有两条道路AB ,AP ,现计划在AP 上选择一点C ,新建道路BC ,并把△ABC所在的区域改造成绿化区域.已知∠BAC =π6,AB =2 km.(1) 若绿化区域△ABC 的面积为1 km 2,求道路BC 的长度;(2) 若绿化区域△ABC 改造成本为10万元/km 2,新建道路BC 成本为10万元/km.设∠ABC =θ(0<θ≤2π3),当θ为何值时,该计划所需总费用最小?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点到右准线l 的距离为1.过x 轴上一点M (m ,0)(m 为常数,且m ∈(0,2))的直线与椭圆C 交于A ,B 两点,与l 交于点P ,D 是弦AB 的中点,直线OD 与l 交于点Q .(1) 求椭圆C 的标准方程;(2) 试判断以PQ 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.19. (本小题满分16分)已知函数f (x )=(x -a )ln x (a ∈R ).(1) 若a =1,求曲线y =f (x )在点(1,f (1))处的切线的方程; (2) 若对于任意的正数x ,f (x )≥0恒成立,求实数a 的值; (3) 若函数f (x )存在两个极值点,求实数a 的取值范围.已知数列{a n }满足对任意的n ∈N *,都有a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1),且a n +1+a n≠0,其中a 1=2,q ≠0.记T n =a 1+qa 2+q 2a 3+…+q n -1a n .(1) 若q =1,求T 2 019的值;(2) 设数列{b n }满足b n =(1+q )T n -q n a n . ①求数列{b n }的通项公式;②若数列{c n }满足c 1=1,且当n ≥2时,c n =2b n -1-1,是否存在正整数k ,t ,使c 1,c k -c 1,c t -c k 成等比数列?若存在,求出所有k ,t 的值;若不存在,请说明理由.2019届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A ,B ,C 三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤0123,B =⎣⎢⎡⎦⎥⎤2018,求A -1B .B. (选修44:坐标系与参数方程)在极坐标系中,曲线C :ρ=2cos θ.以极点为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系xOy ,设过点A (3,0)的直线l 与曲线C 有且只有一个公共点,求直线l 的斜率.C. (选修45:不等式选讲) 已知函数f (x )=|x -1|.(1) 解不等式f (x -1)+f (x +3)≥6;(2) 若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f (ba).【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥DABC 中,DA ⊥平面ABC ,∠CAB =90°,且AC =AD =1,AB =2,E 为BD 的中点.(1) 求异面直线AE 与BC 所成角的余弦值; (2) 求二面角ACEB 的余弦值.23. 已知数列{a n }满足a 1=13,a n +1=-2a 2n +2a n ,n ∈N *. (1) 用数学归纳法证明:a n ∈(0,12);(2) 令b n =12-a n ,求证:2019届高三模拟考试试卷(五)(苏北三市)数学参考答案及评分标准1. {1,2}2. 53. 24. 215. 136. 47. 1528. 839. (0,4) 10. 13 11. 3π212. -1 13. -6 14. 37415. 解:(1) 由sin A =23,A ∈(π2,π),则cos A =-1-sin 2A =-1-(23)2=-53,(2分)所以sin 2A =2sin A cos A =2×23×(-53)=-459.(6分)(2) 由A ∈(π2,π),则B 为锐角.又sin B =13,所以cos B =1-sin 2B =1-(13)2=223,(8分)所以cos C =-cos (A +B )=-(cos A cos B -sin A sin B )(12分)=-(-53×223-23×13)=210+29.(14分)16. 证明:(1) 因为E ,F 分别是AB ,AA 1的中点,所以EF ∥A 1B .(3分) 因为EF ⊄平面A 1BD ,A 1B ⊂平面A 1BD , 所以EF ∥平面A 1BD .(6分)(2) 在直三棱柱ABCA 1B 1C 1中,BB 1⊥平面A 1B 1C 1. 因为A 1D ⊂平面A 1B 1C 1,所以BB 1⊥A 1D . (8分) 因为A 1B 1=A 1C 1,且D 是B 1C 1的中点, 所以A 1D ⊥B 1C 1.(10分)因为BB 1∩B 1C 1=B 1,B 1C 1,BB 1⊂平面BB 1C 1C , 所以A 1D ⊥平面BB 1C 1C .(12分) 因为A 1D ⊂平面A 1BD ,所以平面A 1BD ⊥平面BB 1C 1C . (14分)17. 解:(1) 在△ABC 中,已知∠BAC =π6,AB =2 km ,所以△ABC 的面积S =12×AB ×AC ×sin π6=1,解得AC =2.(2分)在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2×AB ×AC ×cos π6=22+22-2×2×2×cos π6=8-43,(4分)所以BC =8-43=6-2(km).(5分)(2) 由∠ABC =θ,则∠ACB =π-(θ+π6), 0<θ≤2π3.在△ABC 中,∠BAC =π6,AB =2 km ,由正弦定理得AC sin B =BC sin A =ABsin C,所以BC =1sin (θ+π6),AC =2sin θsin (θ+π6).(7分)记该计划所需费用为F (θ),则F (θ)=12×2sin θsin (θ+π6)×2×12×10+1sin (θ+π6)×10=10(sin θ+1)sin (θ+π6)(0<θ≤2π3).(10分)令f (θ)=sin θ+132sin θ+12cos θ,则f ′(θ)=sin (θ-π3)+12(32sin θ+12cos θ)2.(11分)由f ′(θ)=0,得θ=π6.所以当θ∈(0,π6)时,f ′(θ)<0,f (θ)单调递减;当θ∈(π6,2π3)时,f ′(θ)>0,f (θ)单调递增.(12分)所以当θ=π6时,该计划所需费用最小.答:当θ=π6时,该计划所需总费用最小.(14分)18. 解:(1) 设椭圆的右焦点为(c ,0),由题意,得⎩⎨⎧c a =22,a 2c -c =1,解得⎩⎨⎧a =2,c =1,所以a 2=2,b 2=1,所以椭圆C 的标准方程为x22+y 2=1.(4分)(2) 由题意,当直线AB 的斜率不存在或为零时显然不符合题意. 设AB 的斜率为k ,则直线AB 的方程为y =k (x -m ). 又准线方程为x =2,所以点P 的坐标为P (2,k (2-m )).(6分) 由⎩⎨⎧y =k (x -m ),x 2+2y 2=2,得x 2+2k 2(x -m )2=2, 即(1+2k 2)x 2-4k 2mx +2k 2m 2-2=0,所以x D =12·4k 2m 2k 2+1=2k 2m 2k 2+1,y D =k (2k 2m 2k 2+1-m )=-km2k 2+1,(8分)所以k OD =-12k ,从而直线OD 的方程为y =-12kx ,所以点Q 的坐标为Q (2,-1k),(10分)所以以PQ 为直径的圆的方程为(x -2)2+[y -k (2-m )](y +1k)=0,即x 2-4x +2+m +y 2-[k (2-m )-1k]y =0.(14分)因为该式对∀k ≠0恒成立,所以⎩⎨⎧y =0,x 2-4x +2+m +y 2=0,解得⎩⎨⎧x =2±2-m ,y =0. 所以以PQ 为直径的圆经过定点(2±2-m ,0).(16分)19. 解:(1) 因为f (x )=(x -a )ln x (a ∈R ),所以当a =1时,f (x )=(x -1)ln x ,则f ′(x )=ln x +1-1x.(1分)当x =1时,f (1)=0,f ′(1)=0,所以曲线f (x )在点(1,f (1))处的切线的方程为y =0.(3分) (2) 因为对于任意的正数x ,f (x )≥0恒成立,所以当ln x =0,即x =1时,f (x )=0,a ∈R ;(5分)当ln x >0,即x >1时,x ≥a 恒成立,所以a ≤1; (6分) 当ln x <0,即x <1时,x ≤a 恒成立,所以a ≥1.综上可知,对于任意的正数x ,f (x )≥0恒成立,a =1. (7分) (3) 因为函数f (x )存在两个极值点,所以f ′(x )=ln x -ax +1存在两个不相等的零点.设g (x )=ln x -a x +1,则g ′(x )=1x +a x 2=x +ax2.(8分)当a ≥0时,g ′(x )>0,所以g (x )单调递增,至多一个零点.(9分) 当a <0时,x ∈(0,-a )时,g ′(x )<0,g (x )单调递减, x ∈(-a ,+∞)时,g ′(x )>0,g (x )单调递增,所以x =-a 时,g (x )min =g (-a )=ln(-a )+2. (11分)因为g (x )存在两个不相等的零点,所以ln(-a )+2<0,解得-e -2<a <0.因为-e -2<a <0,所以-1a>e 2>-a .因为g (-1a )=ln(-1a)+a 2+1>0,所以g (x )在(-a ,+∞)上存在一个零点.(13分)因为-e -2<a <0,所以a 2<-a .又g (a 2)=ln a 2-1a +1=2ln(-a )+1-a+1,设t =-a ,则y =2ln t +1t +1(0<t <1e2).因为y ′=2t -1t 2<0,所以y =2ln t +1t +1(0<t <1e2)单调递减.又函数图象是连续的,所以y >2ln 1e2+e 2+1=e 2-3>0,所以g (a 2)=ln a 2-1a +1>0,所以在(0,-a )上存在一个零点.综上可知,-e -2<a <0.(16分)20. 解:(1) 当q =1时,由a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1), 得(a n +1+a n )2=a n +1+a n .又a n +1+a n ≠0,所以a n +1+a n =1.(2分) 又a 1=2,所以T 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=1 011.(4分)(2) ①由a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1),得q n (a n +1+a n )2=a n +1+a n .又a n +1+a n ≠0,所以a n +1+a n =1q n .(6分)因为T n =a 1+qa 2+q 2a 3+…+q n-1a n , 所以qT n =qa 1+q 2a 2+q 3a 3+…+q n a n ,所以(1+q )T n =a 1+q (a 1+a 2)+q 2(a 2+a 3)+q 3(a 3+a 4)+…+q n -1(a n -1+a n )+q n a n , b n =(1+q )T n -q n a n =a 1+1+1+…+1+q n a n -q n a n =a 1+n -1=n +1, 所以b n =n +1.(10分)②由题意,得c n =2b n -1-1=2n -1,n ≥2. 因为c 1,c k -c 1,c t -c k 成等比数列,所以(c k -c 1)2=c 1(c t -c k ),即(2k -2)2=2t -2k , (12分)所以2t =(2k )2-3·2k +4,即2t -2=(2k -1)2-3·2k -2+1 (*).由于c k-c1≠0,所以k≠1,即k≥2.当k=2时,2t=8,得t=3.(14分)当k≥3时,由(*)得(2k-1)2-3·2k-2+1为奇数,所以t-2=0,即t=2,代入(*)得22k-2-3·2k-2=0,即2k=3,此时k无正整数解. 综上,k=2,t=3.(16分)2019届高三模拟考试试卷(五)(苏北三市)数学附加题参考答案及评分标准21. A. 解:由题意得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-3212 10,(5分) 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-3212 10⎣⎢⎡⎦⎥⎤2018=⎣⎢⎢⎡⎦⎥⎥⎤-524 20.(10分) B. 解:曲线C :ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1.(4分)设过点A (3, 0)的直线l 的直角坐标方程为x =my +3,因为直线l 与曲线C 有且只有一个公共点,所以|1-3|1+m 2=1,解得m =±3.(8分) 从而直线l 的斜率为±33.(10分) C. (1) 解:不等式的解集是(-∞,-3]∪[3,+∞).(4分)(2) 证明:要证f (ab )>|a |f (b a),只要证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2. 而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. (10分)22. 解:因为DA ⊥平面ABC ,∠CAB =90°,所以以A 为坐标原点,建立如图所示的空间直角坐标系Axyz .因为AC =AD =1,AB =2,所以A (0,0,0),C (1,0,0),B (0,2,0),D (0,0,1).因为点E 为线段BD 的中点,所以E (0,1,12). (1) AE →=(0,1,12),BC →=(1,-2,0), 所以cos 〈AE →,BC →〉=AE →·BC →|AE →||BC →|=-254×5=-45, 所以异面直线AE 与BC 所成角的余弦值为45.(5分) (2) 设平面ACE 的法向量为n 1=(x ,y ,z ),因为AC →=(1,0,0),AE →=(0,1,12), 所以n 1·AC →=0,n 1·AE →=0,即x =0且y +12z =0,取y =1,得x =0,z =-2, 所以n 1=(0,1,-2)是平面ACE 的一个法向量.设平面BCE 的法向量为n 2=(x ,y ,z ),因为BC →=(1,-2,0),BE →=(0,-1,12), 所以n 2·BC →=0,n 2·BE →=0,即x -2y =0且-y +12z =0,取y =1,得x =2,z =2, 所以n 2=(2,1,2)是平面BCE 的一个法向量.所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-35×9=-55. (8分) 所以二面角ACEB 的余弦值为-55. (10分)23. 证明:(1) 当n =1时,a 1=13∈(0,12),结论显然成立; 假设当n =k (k ≥1,k ∈N *)时,a k ∈(0,12), 则当n =k +1时,a k +1=-2a 2k +2a k =-2(a k -12)2+12∈(0,12). 综上,a n ∈(0,12).(4分) (2) 由(1)知,a n ∈(0,12),所以b n =12-a n ∈(0,12). 因为a n +1=-2a 2n +2a n ,所以12-a n +1=12-(-2a 2n +2a n )=2a 2n -2a n +12=2(a n -12)2,即b n +1=2b 2n . 于是log 2b n +1=2log 2b n +1,所以(log 2b n +1+1)=2(log 2b n +1),故{log 2b n +1}构成以2为公比的等比数列,其首项为log 2b 1+1=log 216+1=log 213. 于是log 2b n +1=(log 213)·2n -1,从而log 2(2b n )=(log 213)·2n -1=log 2(13)2n -1, 所以2b n =(13)2n -1,即b n =(13)2n -12,于是1b n=2·32n -1.(8分) 因为当i =1,2时,2i -1=i ,当i ≥3时,2i -1=(1+1)i -1=C 0i -1+C 1i -1+…+C i -1i -1>C 0i -1+C 1i -1=i ,所以对∀i ∈N *,有2i -1≥i ,所以32i -1≥3i ,所以1b i=2·32i -1≥2·3i , 从而=1b 1+1b 2+…+1b n ≥2(31+32+…+3n )=2×3(1-3n )1-3=3n +1-3.(10分)。
2019年江苏省高考数学一模试卷(解析版)
2019年江苏省淮安市高考数学一模试卷一、填空题(本大题共14小题,每小题5分,共70分.把每小题的答案填在答题纸相应的位置上)1.若集合A={0,1},集合B={0,﹣1},则A∪B=.2.命题:“∃x∈R,x2+2x+m≤0”的否定是.3.复数Z满足(1+i)Z=|1﹣i|,是Z的虚部为.4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在[2500,3000)(元)内应抽出人.5.如图是一个算法的流程图,若输入n的值是10,则输出S的值是.6.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则摸到同色球的概率为.7.已知抛物线y2=8x的焦点是双曲线﹣=1(a>0)的右焦点,则双曲线的右准线方程.8.已知函数的定义域是,则实数a的值为.9.若函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<)的部分图象如图所示,则函数的单调增区间为.10.已知等差数列{a n}的首项为1,公差为2,若a1a2﹣a2a3+a3a4﹣a4a5+…对n∈N*恒成立,则实数t的取值范围是.11.在等腰△ABC中,CA=CB=6,∠ACB=120°,点M满足=2,则•等于.12.若对满足条件x+y+3=xy(x>0,y>0)的任意x,y,(x+y)2﹣a(x+y)+1≥0恒成立,则实数a的取值范围是.13.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆上存在点P,使得∠APB=90°,则m的取值范围是.14.已知A(x1,y1),B(x2,y2)(x1>x2)是函数f(x)=x3﹣|x|图象上的两个不同点,且在A,B两点处的切线互相平行,则的取值范围为.二、解答题:(本大题共6道题,计90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.已知△ABC的内角A,B,C的对边分别为a,b,c,∠B=(1)若a=2,b=2,求c的值;(2)若tanA=2,求tanC的值.16.如图,在直三棱柱ABC﹣A1B1C1中,已知∠ACB=90°,BC=CC1,E、F分别为AB、AA1的中点.(1)求证:直线EF∥平面BC1A1;(2)求证:EF⊥B1C.17.如图,有一块扇形草地OMN,已知半径为R,∠MON=,现要在其中圈出一块矩形场地ABCD作为儿童乐园使用,其中点A、B 在弧MN上,且线段AB平行于线段MN(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?18.已知直线x﹣2y+2=0经过椭圆的左顶点A 和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.19.已知数列{a n}的首项为a(a≠0),前n项和为S n,且有S n+1=tS n+a (t≠0),b n=S n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)当t=1,a=2时,若对任意n∈N*,都有k(++…+)≤b n,求k的取值范围;(Ⅲ)当t≠1时,若c n=2+b1+b2+…+b n,求能够使数列{c n}为等比数列的所有数对(a,t).20.已知函数f(x)=e x﹣a(x﹣1),其中,a∈R,e是自然对数的底数.(1)当a=﹣1时,求函数f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性,并写出相应的单调区间;(3)已知b∈R,若函数f(x)≥b对任意x∈R都成立,求ab的最大值.数学Ⅱ(附加题)A.(几何证明选讲)21.如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.B.(矩阵与变换)22.已知矩阵的属于特征值b的一个特征向量为,求实数a、b的值.C.(极坐标与参数方程)23.将参数方程(θ为参数,t为常数)化为普通方程(结果可保留e).D.(不等式选讲)24.设a1,a2,a3均为正数,且a1+a2+a3=1,求证: ++≥9.三.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.已知一口袋中共有4只白球和2只红球(1)从口袋中一次任取4只球,取到一只白球得1分,取到一只红球得2分,设得分为随机变量X,求X的分布列与数学期望;(2)从口袋中每次取一球,取后放回,直到连续出现两次白球就停止取球,求6次取球后恰好被停止的概率.26.在平面直角坐标系xoy中,已知焦点为F的抛物线x2=4y上有两个动点A、B,且满足,过A、B两点分别作抛物线的切线,设两切线的交点为M.(1)求:•的值;(2)证明:为定值.参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分.把每小题的答案填在答题纸相应的位置上)1.若集合A={0,1},集合B={0,﹣1},则A∪B={﹣1,0,1} .【考点】并集及其运算.【分析】A∪B={x|x∈A或x∈B}.【解答】解:A∪B={﹣1,0,1}.故答案为:{﹣1,0,1}.2.命题:“∃x∈R,x2+2x+m≤0”的否定是∀x∈R,x2+2x+m>0.【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行求解即可.【解答】解:命题是特称命题,则命题的否定是“∀x∈R,x2+2x+m >0”,故答案为“∀x∈R,x2+2x+m>0”3.复数Z满足(1+i)Z=|1﹣i|,是Z的虚部为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式、虚部的定义即可得出.【解答】解:∵复数Z满足(1+i)Z=|1﹣i|,∴Z===i,∴Z的虚部为﹣.故答案为:﹣.4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在[2500,3000)(元)内应抽出25人.【考点】用样本的频率分布估计总体分布;频率分布直方图.【分析】直方图中小矩形的面积表示频率,先计算出[2500,3000)内的频率,再计算所需抽取人数即可.【解答】解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出2500×=25人.故答案为:25.5.如图是一个算法的流程图,若输入n的值是10,则输出S的值是54.【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件n<2时,S=10+9+8+…+2的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件n<2时,S=10+9+8+…+2的值.∵S=10+9+8+…+2=54的值,故输出54.故答案为:54.6.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则摸到同色球的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n==10,再求出摸到同色球包含的基本事件个数m=,由此能求出摸到同色球的概率.【解答】解:一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,基本事件总数n==10,摸到同色球包含的基本事件个数m=,∴摸到同色球的概率p==.故答案为:.7.已知抛物线y2=8x的焦点是双曲线﹣=1(a>0)的右焦点,则双曲线的右准线方程x=.【考点】抛物线的简单性质.【分析】根据抛物线的方程,算出它的焦点为F(2,0),即为双曲线的右焦点,由此建立关于a的等式并解出a值,进而可得此双曲线的右准线方程.【解答】解:∵抛物线方程为y2=8x,∴2p=8,可得抛物线的焦点为F(2,0).∵抛物线y2=8x的焦点是双曲线﹣=1(a>0)的右焦点,∴双曲线的右焦点为(2,0),可得c==2,解得a2=1,因此双曲线的右准线方程为x=.故答案为:x=.8.已知函数的定义域是,则实数a的值为.【考点】对数函数的定义域.【分析】根据函数的定义域,得出x>时,1﹣>0;由此求出函数的自变量x>log2a;令log2a=,即可求出a的值.【解答】解:∵函数的定义域是,∴当x>时,1﹣>0;即<1,∴a<2x,∴x>log2a;令log2a=,得a==;∴实数a的值为.故答案为:.9.若函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<)的部分图象如图所示,则函数的单调增区间为[16k﹣6,16k+2],k∈Z.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的单调性,求得函数的单调增区间.【解答】解:由函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<)的部分图象,可得A=,==2+2,求得ω=,再根据五点法作图可得•2+φ=,∴φ=,∴f(x)=sin(x+).令2kπ﹣≤x+≤2kπ+,求得16k﹣6≤x≤16k+2,可得函数的增区间为[16k﹣6,16k+2],k∈Z,故答案为:[16k﹣6,16k+2],k∈Z.10.已知等差数列{a n}的首项为1,公差为2,若a1a2﹣a2a3+a3a4﹣a4a5+…对n∈N*恒成立,则实数t的取值范围是(﹣∞,﹣12] .【考点】数列的求和.【分析】由a1a2﹣a2a3+a3a4﹣a4a5+…﹣a2n a2n+1=a2(a1﹣a3)+a4(a3﹣a5)+…+a2n(a2n﹣1﹣a2n+1)=4(a2+a4+…+a2n),结合等差数列的性质及求和公式可得关于n的不等式,解不等式可求对n∈N*恒成立,转化为求解函数的最值即可【解答】解:a1a2﹣a2a3+a3a4﹣a4a5+…﹣a2n a2n+1=a2(a1﹣a3)+a4(a3﹣a5)+…+a2n(a2n﹣1﹣a2n+1)=﹣4(a2+a4+…+a2n)=,所以﹣8n2﹣4n≥tn2,所以t≤﹣8﹣对n∈N*恒成立,t≤﹣12,故答案为(﹣∞,﹣12]11.在等腰△ABC中,CA=CB=6,∠ACB=120°,点M满足=2,则•等于0.【考点】平面向量数量积的运算.【分析】由向量加法的三角形法则得出=+,再利用向量数量积的运算性质求出结果.【解答】解:等腰△ABC中,CA=CB=6,∠ACB=120°,且=2,∴=+=+(﹣)=+,∴•=(+)•=•+=×6×6×cos120°+×62=0.故答案为:0.12.若对满足条件x+y+3=xy(x>0,y>0)的任意x,y,(x+y)2﹣a(x+y)+1≥0恒成立,则实数a的取值范围是a.【考点】函数恒成立问题;基本不等式.【分析】由基本不等式可得,x+y+3=xy≤,从而可求x+y的范围,然后由(x+y)2﹣a(x+y)+1≥0得a恒成立,则只要a≤即可【解答】解:∵x>0,y>0∴x+y+3=xy≤∴x+y≥6由(x+y)2﹣a(x+y)+1≥0可得a恒成立令x+y=t,f(t)=t+在[6,+∞)上单调递增,则当t=6时f(t)min=f (6)=∴a≤故答案为:a≤13.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆上存在点P,使得∠APB=90°,则m的取值范围是[4,6] .【考点】直线与圆的位置关系.【分析】根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6,最小值为4,再由∠APB=90°,可得PO= AB=m,从而得到答案.【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6,最小值为4,再由∠APB=90°,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有4≤m≤6,故答案为:[4,6].14.已知A(x1,y1),B(x2,y2)(x1>x2)是函数f(x)=x3﹣|x|图象上的两个不同点,且在A,B两点处的切线互相平行,则的取值范围为(﹣1,0).【考点】利用导数研究曲线上某点切线方程.【分析】首先把含有绝对值的函数写成分段函数的形式,然后求导,通过在A,B两点处的切线互相平行,即在A,B两点处的导数值相等,分析出A点在y轴的右侧,B点在y轴的左侧.根据A,B两点处的导数相等,得到x1与x2的关系式,根据关系式得出它表示的曲线,然后利用式子的几何意义求解.【解答】解:由题意,f(x)=x3﹣|x|=,当x≥0时,f′(x)=3x2﹣1,当x<0时,f′(x)=3x2+1,因为在A,B两点处的切线互相平行,且x1>x2,所以x1>0,x2<0 (否则根据导数相等得出A、B两点重合),所以在点A(x1,y1)处切线的斜率为f′(x1)=3﹣1,在点B(x2,y2)处切线的斜率为f′(x2)=3+1所以3﹣1=3+1,即,(x1>x2,x2<0)表示的曲线为双曲线在第四象限的部分,如图:表示这个曲线上的点与原点连线的斜率,由图可知取值范围是(﹣1,0),故答案为:(﹣1,0).二、解答题:(本大题共6道题,计90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.已知△ABC的内角A,B,C的对边分别为a,b,c,∠B=(1)若a=2,b=2,求c的值;(2)若tanA=2,求tanC的值.【考点】余弦定理;正弦定理.【分析】(1)△ABC中,由条件利用余弦定理可得b2=12=4+c2﹣4c•cos,由此求得c的值.(2)由tanA=2,tanB=tan=,再根据tanC=﹣tan(A+B)=,计算求得结果.【解答】解:(1)△ABC中,∵a=2,b=2,∠B=,由余弦定理可得b2=12=4+c2﹣4c•cos=4+c2﹣2c,求得c=4,或c=﹣2(舍去),即c=4.(2)若tanA=2,∵tanB=tan=,∴tanC=﹣tan(A+B)===.16.如图,在直三棱柱ABC﹣A1B1C1中,已知∠ACB=90°,BC=CC1,E、F分别为AB、AA1的中点.(1)求证:直线EF∥平面BC1A1;(2)求证:EF⊥B1C.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)欲证直线EF∥平面BC1A1,只需证明EF平行平面BC1A1中的一条直线即可,由E、F分别为AB、AA1的中点,可知EF∥A1B,EF∥A1B⊂平面BC1A1,问题得证.(2)欲证EF⊥B1C,只需证明EF的平行线A1B垂直于B1C即可,也即证明B1C垂直于A1B所在的平面BA1C1,又须证明B1C垂直于平面BA1C1中的两条相交直线,由三棱柱ABC﹣A1B1C1为直三棱柱,以及∠ACB=90°,BC=CC1,极易证明BC1⊥B1C,A1C1⊥B1C,而BC1,A1C1为平面BA1C1中的两条相交直线,问题得证.【解答】解:(1)∵E、F分别为AB、AA1的中点,∴EF∥A1B∵EF⊈平面BC1A1,A1B⊆平面BC1A1∴EF∥平面BC1A1.(2)∵∠ACB=90°,∴AC⊥BC,∵三棱柱ABC﹣A1B1C1为直三棱柱,∴AC⊥CC1,∴AC⊥平面BB1C1C,∴AC⊥B1C,又∵A1C1∥AC,∴A1C1⊥B1C,∵BC=CC1,BC⊥CC1,∴BC1⊥B1C∴B1C⊥平面BA1C1,∴B1C⊥A1B由(1)知,EF∥A1B∴EF⊥B1C.17.如图,有一块扇形草地OMN,已知半径为R,∠MON=,现要在其中圈出一块矩形场地ABCD作为儿童乐园使用,其中点A、B 在弧MN上,且线段AB平行于线段MN(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?【考点】扇形面积公式.【分析】(1)作OH⊥AB于点H,交线段CD于点E,连接OA、OB,求出AB,EH,可得矩形ABCD的面积S;(2)设∠AOB=θ(0<θ<),求出AB,EH,可得矩形ABCD的面积S,再求最大值.【解答】解:(1)如图,作OH⊥AB于点H,交线段CD于点E,连接OA、OB,∴∠AOB=,…∴AB=24sin,OH=12cos,OE=DE=AB=12sin,∴EH=OH﹣OE=12(cos﹣sin),S=AB•EH=144(2sin cos﹣2sin2)=72(﹣1)…(2)设∠AOB=θ(0<θ<),则AB=24sin,OH=12cos,OE=AB=12cos,∴EH=OH﹣OE=12(cos﹣sin),S=AB•EH=144(2sin cos﹣2sin2)=144[sin(θ+)﹣1],…∵0<θ<,∴θ+=即θ=时,S max=144(﹣1),此时A在弧MN的四等分点处.…18.已知直线x﹣2y+2=0经过椭圆的左顶点A 和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.【考点】椭圆的标准方程;直线与圆锥曲线的综合问题.【分析】(1)因为直线过椭圆的左顶点与上顶点,故可解出直线与坐标轴的交点,即知椭圆的长半轴长与短半轴长,依定义写出椭圆的方程即可.(2)法一、引入直线AS的斜率k,用点斜式写出直线AS的方程,与l的方程联立求出点M的坐标,以及点S的坐标,又点B的坐标已知,故可解出直线SB的方程,亦用参数k表示的方程,使其与直线l联立,求出点N的坐标,故线段MN的长度可以表示成直线AS的斜率k的函数,根据其形式选择单调性法或者基本不等式法求最值,本题适合用基本不等式求最值.法二、根据图形构造出了可用基本不等式的形式来求最值.(3)在上一问的基础上求出参数k,则直线SB的方程已知,可求出线段AB的长度,若使面积为,只须点T到直线BS的距离为即可,由此问题转化为研究与直线SB平行且距离为的直线与椭圆的交点个数问题,下易证【解答】解:(1)由已知得,椭圆C的左顶点为A(﹣2,0),上顶点为D(0,1),∴a=2,b=1故椭圆C的方程为(2)依题意,直线AS的斜率k存在,且k>0,故可设直线AS的方程为y=k(x+2),从而,由得(1+4k2)x2+16k2x+16k2﹣4=0设S(x1,y1),则得,从而即,又B(2,0)由得,∴,故又k>0,∴当且仅当,即时等号成立.∴时,线段MN的长度取最小值(2)另解:设S(x s,y S),依题意,A,S,M三点共线,且所在直线斜率存在,由k AM=k AS,可得同理可得:又所以,=不仿设y M>0,y N<0当且仅当y M=﹣y N时取等号,即时,线段MN的长度取最小值.(3)由(2)可知,当MN取最小值时,此时BS的方程为,∴要使椭圆C上存在点T,使得△TSB的面积等于,只须T到直线BS的距离等于,所以T在平行于BS且与BS距离等于的直线l'上.设直线l':x+y+t=0,则由,解得或.又因为T为直线l'与椭圆C的交点,所以经检验得,此时点T有两个满足条件.19.已知数列{a n}的首项为a(a≠0),前n项和为S n,且有S n+1=tS n+a (t≠0),b n=S n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)当t=1,a=2时,若对任意n∈N*,都有k(++…+)≤b n,求k的取值范围;(Ⅲ)当t≠1时,若c n=2+b1+b2+…+b n,求能够使数列{c n}为等比数列的所有数对(a,t).【考点】等比数列的性质.【分析】(Ⅰ)根据条件和“n=1时a1=S1、当n≥2时a n=S n﹣S n﹣1”,化简S n+1=tS n+a(t≠0),再由等比数列的定义判断出数列{a n}是等比数列,利用等比数列的通项公式求出a n;(Ⅱ)由条件和(I)求出b n,代入化简利用裂项相消法求出,代入已知的不等式化简后,利用函数的单调性求出对应函数的最小值,从而求出k的取值范围;(Ⅲ)利用条件和等比数列的前n项和公式求出S n,代入b n化简后,利用分组求和法和等比数列的前n项和公式求出c n,化简后利用等比数列的通项公式特点列出方程组,求出方程组的解即可求出结论.【解答】解:(Ⅰ)解:(Ⅰ)由题意知,首项为a,且S n+1=tS n+a(t ≠0),当n=1时,则S2=tS1+a,解得a2=at,当n≥2时,S n=tS n﹣1+a,∴(S n+1﹣S n)=t(S n﹣S n﹣1),则a n+1=ta n,又a1=a≠0,综上有,即{a n}是首项为a,公比为t的等比数列,∴;(Ⅱ)由(Ⅰ)得,=2,则S n=2n,∴b n=S n+1=2n+1,则==,∴= [()+()+] =()=,代入不等式k(++…+)≤b n,化简得,k≤=3(4n+),∵函数y=在(,+∞)上单调递增,且n取正整数,∴当n=1时,函数y=取到最小值是15,∴k≤45;(Ⅲ)∵t≠1,∴S n=,则b n=S n+1=1+=1+﹣,∴c n=2+b1+b2+…+b n=2+(1+)n﹣(t+t2+…+t n)=2+(1+)n﹣×=++,由题设知{c n}为等比数列,所以有,解得,即满足条件的数对是(1,2).20.已知函数f(x)=e x﹣a(x﹣1),其中,a∈R,e是自然对数的底数.(1)当a=﹣1时,求函数f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性,并写出相应的单调区间;(3)已知b∈R,若函数f(x)≥b对任意x∈R都成立,求ab的最大值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出a=﹣1的函数的导数,求出切线的斜率和切点,由点斜式方程即可得到;(2)求出导数,讨论当a≤0时,当a>0时,令导数大于0,得增区间,令导数小于0,得减区间;(3)由(2)可得,a>0时f(x)取得极小值也为最小值,由恒成立思想可得a(2﹣lna)≥b,则ab≤a2(2﹣lna),令t=a2(2﹣lna),求得导数,求出极大值也为最大值,即可得到.【解答】解:(1)当a=﹣1时,f(x)=e x+x﹣1的导数为f′(x)=e x+1,函数f(x)在点(1,f(1))处的切线斜率为e+1,又切点为(1,e),则切线方程为y﹣e=(e+1)(x﹣1),即为(e+1)x﹣y﹣1=0;(2)函数f(x)=e x﹣a(x﹣1)的导数f′(x)=e x﹣a,当a≤0时,f′(x)>0,f(x)递增,则f(x)的增区间为(﹣∞,+∞);当a>0时,f′(x)>0,解得,x>lna,f′(x)<0,解得,x<lna.即有f(x)的增区间为(lna,+∞),减区间为(﹣∞,lna);(3)由(2)可得,a≤0时,f(x)递增,无最值;当a>0时,f(x)在(﹣∞,lna)上递减,在(lna,+∞)上递增,则f(x)在x=lna处取得极小值也为最小值,且为a﹣a(lna﹣1)=a (2﹣lna).函数f(x)≥b对任意x∈R都成立,则有a(2﹣lna)≥b,则ab≤a2(2﹣lna),令t=a2(2﹣lna),则t′=2a(2﹣lna)﹣a=a(3﹣2lna),当0<a<时,t′>0,t递增;当a>时,t′<0,t递减.则t在a=时取得极大,也为最大,且为e3(2﹣)=e3.则ab的最大值为e3.数学Ⅱ(附加题)A.(几何证明选讲)21.如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.【考点】弦切角.【分析】连接OD,则OD⊥DC,在Rt△OED中,,所以∠ODE=30°.在Rt△0DC中,∠DCO=30°,由DC=2,能求出BC的长.【解答】解:连接OD,则OD⊥DC在Rt△OED中,∵E是OB的中点,∴所以∠ODE=30°…在Rt△ODC中,∠DCO=30°…∵DC=2,∴,∴OC==所以BC=OC﹣OB=OC﹣OD==.…B.(矩阵与变换)22.已知矩阵的属于特征值b的一个特征向量为,求实数a、b的值.【考点】特征值与特征向量的计算.【分析】由二阶矩阵的特征值与特征向量的概念知=b,即可求实数a、b的值.【解答】解:由二阶矩阵的特征值与特征向量的概念知=b,所以,解得a=1,b=3.C.(极坐标与参数方程)23.将参数方程(θ为参数,t为常数)化为普通方程(结果可保留e).【考点】参数方程化成普通方程.【分析】当t=0时,y=0,x=cosθ,即y=0,且﹣1≤x≤1;当t≠0时,sinθ=,cosθ=【解答】解:当t=0时,y=0,x=cosθ,即y=0,且﹣1≤x≤1;当t≠0时,sinθ=,cosθ=所以.D.(不等式选讲)24.设a1,a2,a3均为正数,且a1+a2+a3=1,求证: ++≥9.【考点】不等式的证明.【分析】由a1,a2,a3均为正数,且a1+a2+a3=1,运用乘1法和三元均值不等式,以及不等式的性质,即可得证.【解答】证明:因为a1,a2,a3均为正数,且a1+a2+a3=1,所以=,(当且仅当时等号成立)所以.三.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.已知一口袋中共有4只白球和2只红球(1)从口袋中一次任取4只球,取到一只白球得1分,取到一只红球得2分,设得分为随机变量X,求X的分布列与数学期望;(2)从口袋中每次取一球,取后放回,直到连续出现两次白球就停止取球,求6次取球后恰好被停止的概率.【考点】离散型随机变量的期望与方差;等可能事件的概率.【分析】(1)根据题意可得:X的可能取值为4、5、6,再分别求出其复数的概率,即可得到X的分布列,进而得到其数学期望.(2)设“6次取球后恰好被停止”为事件A,后面两次一定是白球,前面4次可以出现白球,只要保证出现的白球不连续出现2次并且与后面的白球也不连续即可.【解答】解:(1)根据题意可得:X的可能取值为4、5、6.所以P(X=4)=P(X=5)=P(X=6)=属于X的分布列为:P 4 5 6X属于X的数学期望为:5分(2)设“6次取球后恰好被停止”为事件A则∴6次取球后恰好被停止的概率为.26.在平面直角坐标系xoy中,已知焦点为F的抛物线x2=4y上有两个动点A、B,且满足,过A、B两点分别作抛物线的切线,设两切线的交点为M.(1)求:•的值;(2)证明:为定值.【考点】平面向量数量积的运算;抛物线的简单性质.【分析】(1)先设出动点A、B的坐标,结合,消去λ求出A、B的坐标之间的关系,即可得到•的值;(2)先求出过A、B两点的切线方程,联立求出M的坐标,再代入整理即可得到答案.【解答】解:(1)设2019年江苏省高考数学一模试卷(解析版)∵焦点F(0,1)∴∵∴,∴x1x2=﹣4∴y1y2==1∴=﹣3(定值)(2)抛物线方程为y=x∴过抛物线A、B两点的切线方程分别为y=即y=∴=0 (定值)第31页(共31页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省高考数学模拟试卷(15)第Ⅰ卷(必做题,共160分)一、 填空题:本大题共14小题,每小题5分,共70分 . 1.设集合{}2,5A =,{}13B x x =≤≤,则A B = ▲ .2.设a R ∈,复数212a ii++(i 是虚数单位)是纯虚数,则a 的值为 ▲ . 3.如图是某班8位学生诗朗诵比赛得分的茎叶图,那么这8位学生得分的平均分 为 ▲ .4.执行如图所示的伪代码,则输出的结果的集合为 ▲ .5.甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8, 乙不输的概率为0.7,则两人下成和棋的概率为 ▲ .6.设函数24 6 ,0,()6, 0,x x x f x x x ⎧-+=⎨+<⎩≥则不等式)1()(f x f >的解集是 ▲ .7.已知圆柱的底面半径为r ,高为h ,体积为2,表面积为12,则11r h+= ▲ .8.在平面直角坐标系xOy 中,已知点A 为双曲线224x y -=的左顶点,点B 和 点C 在双曲线的右支上,ABC ∆是等边三角形,则ABC ∆的面积为 ▲ .9.若tan()24πα+=,则sin 2α的值为 ▲ .10.已知定义在集合A 上的函数22()log (1)log (21)f x x x =-++,其值域为(],1-∞,则A = ▲ . 11.数列{}n a 中10a =,47a =-,对n N *∀∈,当2n ≥时,211(1)(1)(1)n n n a a a +--=--,则数列{}n a 的前n项的和为 ▲ .12.设实数1,1a b >>,则“a b <”是“ln ln a b a b ->-”成立的 ▲ 条件. (请用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中之一填空)13.在ABC ∆中,45B =,,M N 分别为边,AC AB 的中点,且2BM AC CN AB ⋅=⋅,则BA BCBC BA+的值为 ▲ .14.在平面直角坐标xoy 中,设圆M 的半径为1,圆心在直线240x y --=上,若圆M 上不存在点N ,使12NO NA =,其中A (0,3),则圆心M 横坐标的取值范围 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时写出文字说明、证明过程或演算步骤.15.(本小题满分14分)ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,面积为S .(1)若23AB AC ⋅=,求A 的值;(2)若tan A ∶tan B ∶tan C =1∶2∶3,且1c =,求b . 16.(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,PA ⊥平面ABCD ,M 是AD 中点,N 是PC 中点.(1)求证://MN 面PAB ;(2)若平面PMC ⊥平面PAD ,求证:CM AD ⊥.17.(本小题满分14分)为响应新农村建设,某村计划对现有旧水渠进行改造,已知旧水渠的横断面是一段抛物线弧,顶点为水渠最底端(如图),渠宽为4m ,渠深为2m . (1)考虑到农村耕地面积的减少,为节约水资源,要减少水渠的过水量,在原水渠内填土,使其成为横断面为等腰梯形的新水渠,新水渠底面与地面平行(不改变渠宽),问新水渠底宽为多少时,所填土的土方量最少?(2)考虑到新建果园的灌溉需求,要增大水渠的过水量,现把旧水渠改挖(不能填土)成横断面为等腰梯形的新水渠,使水渠的底面与地面平行(不改变渠深),要使所挖土的土方量最少,请你设计水渠改挖后的底宽,并求出这个底宽.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221(0)x y a ba b +=>>的右顶点与上顶点分别为,A B ,且过点. (1)求椭圆的标准方程;(2)如图,若直线l 与该椭圆交于,P Q 两点,直线,BQ AP 的斜率互为相反数.①求证:直线l 的斜率为定值;②若点P 在第一象限,设ABP ∆与ABQ ∆的面积分别为12,S S ,求1S的最大值.(第17题图)19.(本小题满分16分)已知函数2()(2)ln f x mx m x x=-+-,2()1g x x mx =++,m R ∈. (1)当0m <时,①求()f x 的单调区间;②若存在12,[1,2]x x ∈,使得12()()1f x g x -≥成立,求m 的取值范围;(2)设ln 1()xx h x e+=的导函数()h x ',当1m =时,求证:2[()1]()1g x h x e -'-<+(其中e 是自然对数的底数).20.(本小题满分16分)若数列{}n a 满足条件:存在正整数k ,使得2n k n k n a a a +-+=对一切,n n k ∈>*N 都成立,则称数列{}n a 为k 级等差数列.(1)已知数列{}n a 为2级等差数列,且前四项分别为2,0,4,3,求89a a +的值;(2)若2sin (n a n n ωω=+为常数),且{}n a 是3级等差数列,求ω所有可能值的集合,并求ω取最小正值时数列{}n a 的前3n 项和3n S ;(3)若{}n a 既是2级等差数列,{}n a 也是3级等差数列,证明:{}n a 是等差数列.第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A、B、C、D共4小题,请选定其中两小题........,并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.(选修4-1:几何证明选讲)如图,∠PAQ是直角,圆O与射线AP相切于点T,与射线AQ相交于两点B C、.求证:BT平分OBA∠.B.(选修4-2:矩阵与变换)设二阶矩阵A,B满足11234-⎡⎤=⎢⎥⎣⎦A,1001⎡⎤=⎢⎥⎣⎦BA,求1-B.C.(选修4-4:坐标系与参数方程)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线错误!未找到引用源。
错误!未找到引用源。
,过点错误!未找到引用源。
的直线错误!未找到引用源。
的参数方程为错误!未找到引用源。
(错误!未找到引用源。
为参数),错误!未找到引用源。
与错误!未找到引用源。
分别交于错误!未找到引用源。
.(Ⅰ)写出错误!未找到引用源。
的平面直角坐标系方程和错误!未找到引用源。
的普通方程;(Ⅱ)若错误!未找到引用源。
成等比数列,求错误!未找到引用源。
的值.D.(选修4-5:不等式选讲)设x,y均为正数,且x>y,求证:2212232x yx xy y++-+≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,已知三棱柱ABC—A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1、BC的中点,点P在直线A1B1上,且满足111BAPAλ=(∈λR).(1)求异面直线PN,AM所成的角;(2)若平面PMN与平面ABC所成的角为45°,试确定点P的位置.23.(本小题满分10分)设集合{1,0,1}M=-,集合123{(,,)|,1,2,,}n n iA x x x x x M i n=∈=,,,集合nA中满足条件“121||||||nx x x m≤+++≤”的元素个数记为nmS.(1)求22S和42S的值;(第21题A)(第22题)(2)当m n <时,求证:nm S 111322n m n +++<+-.2018届江苏省高考数学模拟试卷(15)第Ⅰ卷(必做题,共160分)一、填空题1.{}2.2.4-.3.91.4.{}2,5,10.5.12.6.(3,1)(3,)-+∞.7.3.8..9.35.10.3(1,]2.11.21n n -+.12.充要.13.14.12(,0)(,)5-∞+∞.【解析】.设N (x,y),由12NO NA =得:22224()(3),x y x y +=+-化简得:22(1)4x y ++=,表示为以(0,1)B -为圆心,2为半径的圆,由题意得圆B 与圆(,24)M a a -无交点,即222(241)(21)a a +-+>+或222(241)(21)a a +-+<-,解得圆心M 横坐标的取值范围为:12(,0)(,)5-∞+∞.二、解答题15.(1)由题意知,cos AB AC bc A ⋅=,1sin 2S bc A =,所以cos sin bc A A =, ……………………………………2分即cos A A =,tan A ∴=,因为A 为三角形内角,所以6A π=;……………………6分(2)设tan A m =,tan 2B m =,tan 3C m =,由题意知,0m >. 因为tan tan tan tan() 1tan tan A BC A B A B+=-+=--⋅,………………………8分则23312mm m =--,解得1m =,则tan 2B =,tan 3C =,从而sin B =,sin C =12分所以sin sin AC B AB C =AC =……………………14分16.(1)取PB 中点E ,连EA ,EN ,在PBC ∆中,//EN BC 且12EN BC =, 又12AM AD =,//AD BC ,AD BC =得//EN =AM ,……………………………………2分 四边形ENMA 是平行四边形,得//MN AE ,MN ⊄面PAB ,AE ⊂面PAB ,//MN ∴面PAB ……………………6分(2)过点A 作PM 的垂线,垂足为H ,面PMC ⊥面PAD ,面PMC面PAD PM =,AH PM ⊥,AH ⊂面PADAH ∴⊥面PMC ,……………………8分 CM ⊂面PMC ,AH ∴⊥CM ,PA ⊥平面ABCD ,……………………………10分CM ⊂平面ABCD ,∴PA ⊥CM,PA AH A =,PA 、AH ⊂面PAD ,CM ⊥面PAD ,……………………12分 AD ⊂面PAD ,CM AD ∴⊥.……………………14分17. 建立如图所示的直角坐标系,设抛物线的方程为()220x py p =>,由已知点()22P ,在抛物线上,得1p =,所以抛物线的方程为212y x = (2)(1)为了使填入的土最少,内接等腰梯形的面积要最大,如图1,设点()21, 022A t t t ⎫⎛<< ⎪⎝⎭,则此时梯形APQB 的面积()()23211124224222S t t t t t t ⎛⎫=+⋅-=--++ ⎪⎝⎭,………………6∴()23'222S t t t =--+,令()23'22=02S t t t =--+,得23t =,当20, 3t ⎫⎛∈ ⎪⎝⎭时,()'0S t >,()S t 单调递增,当2, 23t ⎫⎛∈ ⎪⎝⎭时,()'0S t <, ()S t 单调递减,所以当23t =时,()S t 有最大值12827,改挖后的水渠的底宽为43可使填土的土方量最少. ……………………8分(2设切点()21, 02M t t t ⎫⎛> ⎪⎝⎭,则函数在点M 处的切线方程为()212y t t x t -=-,分别令0,2y y ==得2, 0,, 222tt A B t ⎫⎫⎛⎛+ ⎪ ⎪⎝⎝⎭⎭,所以梯形OABC 的面积()12222S t t t t t ⎛⎫=+⋅=+ ⎪⎝⎭≥,………12当且仅当t 此时OA =m 时,可使挖土的土方量最少. …………14分 18.(1)由题意,离心率c e a ==2c =,所以224a b =,故椭圆的方程为22244x y b +=,将点代入,求得21b =,所以椭圆的标准方程为2214x y +=; ……………4分(2)①设直线BQ 的方程为1y kx =+,则由题意直线AP 的方程为(2)y k x =--,由22114y kx x y =+⎧⎪⎨+=⎪⎩ ,得22(14)80k x kx ++=, 所以点Q 的坐标为222814(,)1414k k k k--++,……………………6分 同理可求得点P 的坐标为222824(,)1414k kk k-++. ……………………8分所以直线l 的斜率为222222221441441141488288221414k kk k k k k k k k k k ----++==---+--++. ……………………………10分 ②设P ,Q 两点到直线AB 的距离分别为12,d d , 因为点P 在第一象限,则点Q 必在第三象限,所以12k >,且点P 、Q 分别在直线:220AB x y +-=的上、下两侧,所以220P P x y +->,220Q Q x y +-<,从而22218282k kd -+-==2222828222k k x y d --++-==所以22222112222222282828282(14)2114148288(28)2(14)4221414k kS d k k k k k k k k S d k k k k kk k -+--+-+-++====---+++-+++,……………14分 令21(0)k t t -=>,则122222113242(1)1323S k t t S k k t t t t t t -====≤=-++++++++ 当且仅当2t t=,即t12k =时,12S S有最大值为3-16分19.(1)函数2()(2)ln f x mx m x x=-+-的定义域为(0,)+∞.2222(2)(1)()m mx x f x m x x x +--'=-+=,① 为0m <,则当01x <<时,()0f x '>;当1x >时,()0f x '<;所以()f x 的单调增区间为(0,1),单调减区间为[1,)+∞.……………2分②若存在12,[1,2]x x ∈,使得12()()1f x g x -≥,等价于[1,2]x ∈时,max min ()()1f x g x ≥+成立. 由①得,当0m <时,()f x 在[1,)+∞上单调递减,所以当[1,2]x ∈时,max ()(1)2f x f m ==-.……………………4分而222()1()124m m g x x mx x =++=++-.(ⅰ)当012m<-<,即20m -<<时,min ()(1)2g x g m ==+,于是23m m -≥+,矛盾! ……………………6分(ⅱ) 122m≤-≤,即42m -≤≤-时,2min ()14m g x =-,于是2224m m -≥-,矛盾! ……………………………8分(ⅲ)当22m->,即4m <-时,min ()(2)52g x g m ==+,于是262m m -≥+,所以8m ≤-.综上,m 的取值范围是8m ≤-.……………………10分(2)因为ln 1()xx h x e+=,所以1ln 1()x x x h x e --'=, 所以21()(ln 1)(1)(1ln )[()1]()x xx x x x x x x x g x h x e e +--+--'-==, 要证2[()1]()1g x h x e -'-<+,由0x >,即证2(1)1ln 1x e e x x x x -+>--+.设()1ln x x x x ϕ=--,()1xe m x x =+,所以()ln 2x x ϕ'=--,当20x e -<<时,()0x ϕ'>;当2x e ->时,()0x ϕ'<. 所以当2x e -=时,()1ln x x x x ϕ=--取得最大值为21e -+. 由2()0(1)xxe m x x '=>+,所以()m x 在(0,)+∞单调增,所以()(0)1m x m >=,所以2[()1]()1g x h x e -'-<+. ……………………16分20. (1)82423()03(30)9a a a a =+-=+⨯-=91314()24210a a a a =+⨯-=+⨯=,8919a a ∴+= …………………………2分(2){}n a 是3级等差数列,332n n n a a a +-+=,2(2sin )2(3)sin(3)2(3)sin(3)n n n n n n ωωωωω+=++++-+-(n ∈*N ) 2sin sin(3)sin(3)2sin cos3n n n n ωωωωωωω∴=++-=(n ∈*N )所以sin 0n ω=,或cos31ω=,sin 0n ω=对n ∈*N 恒成立时, π()k k ω=∈Zcos31ω=时,2π32π(),(),3k k k k ωω=∈∴=∈Z Z2π{|()}{|π()}3k k k k ωωωωω∴∈=∈=∈Z Zω最小正值等于2π3,此时2π2sin 3n n a n =+.……………………6分由于2(32)π2(31)π2(3)πsin sin sin 0333n n n --++=(n ∈*N )323136(31)n n n a a a n --∴++=-(n ∈*N )312345632313[126(31)]()()()2n n n n n n S a a a a a a a a a --+-=+++++++++=293n n =+(n ∈*N )…10分 (3)若{}n a 为2级等差数列,222n n n a a a +-+=,则212{},{}n n a a -均成等差数列,设等差数列212{},{}n n a a -的公差分别为12,d d ,{}n a 为3级等差数列,332n n n a a a +-+=,则32{}n a -成等差数列,设公差为D 17,a a 既是中21{}n a -的项,也是32{}n a -中的项,71132a a d D -== 410,a a 既是中2{}n a 的项,也是32{}n a -中的项,104232a a d D -==12332d d D ∴==设122d d d ==,则3D d =所以21111(1)(22)n a a n d a n d -=+-=+-(n ∈*N ), 2222(1)(22)n a a n d a n d =+-=+-,(n ∈*N )又4113a a D a d =+=+,42222a a d a d =+=+,所以21a a d =+, 21(21)n a a n d ∴=+-(n ∈*N )综合得 1(1)n a a n d ∴=+-,显然{}n a 为等差数列.……………………………………16分第Ⅱ卷(附加题,共40分)21A .连结OT .因为AT 是切线,所以OT AP ⊥. ……………………………………2分又因为PAQ ∠是直角,即AQ AP ⊥,……………4分 所以//AB OT ,所以TBA BTO ∠=∠. ……………………6分 又OT OB =,所以OTB OBT ∠=∠,…………8分 所以OBT TBA ∠=∠,即BT 平分OBA ∠. ……………………………10分B .1101212013434-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦B =BAA ……………………5分 1213122B --⎡⎤⎢⎥∴=⎢⎥-⎣⎦ ……………………………10分C .(Ⅰ)曲线C 的直角坐标方程为22y ax =(0)a >;直线l 的普通方程为20x y --=.(Ⅱ)将直线l 的参数方程与C 的直角坐标方程联立,得22(4)28(4)0t a t a -+++= (*) 8(4)0a a ∆=+>.设点,M N 分别对应参数12,t t 恰为上述方程的根.则12,PM t PN t ==,12MN t t =-.由题设得()21212t t t t -=,即()21212124t t t t t t +-=.由(*)得121222(4),8(4)0t t a t t a +=+=+>,则有2(4)4(4)0a a +-+=,得1a =,或4a =-.因为0a >,所以1a =.D .因为000x y x y >>->,,,22211222()2()x y x y x xy y x y +-=-+-+-…………4分 232211()()3()3()()x y x y x y x y x y =-+-+≥-=--,…………8分所以2212232x y x xy y+≥+-+.…………………10分 22. (1)如图,以1AB AC AA ,,分别为x y z ,,轴,建立空间直角坐标系A xyz -.则(,0,1)P λ,11(,,0)22N ,1(0,1,)2M ,从而11(,,1)22PN λ=--,1(0,1,)2AM =,111()0110222PN AM λ⋅=-⨯+⨯-⨯=,所以异面直线PN ,AM 所成的角为90.……………5分(2)平面ABC 的一个法向量为1(0,0,1)n AA ==.设平面PMN 的一个法向量为(,,)m x y z =,由(1)得1(,1,)2MP λ=-.2019届江苏省高考数学模拟试卷(15)(含附加及详解) 由0,0,m NP m MP ⋅=⋅=⎧⎪⎨⎪⎩ 得11()0,2210.2x y z x y z λλ⎧--+=⎪⎪⎨⎪-+=⎪⎩ 解得21,32(1).3y x z x λλ+⎧=⎪⎪⎨-⎪=⎪⎩令3x =,得(3,21,2(1))m λλ=+-. 平面PMN 与平面ABC 所成的二面角为45,|cos ,|||||||9m n m n m n ⋅∴<>===⋅+, 解得12λ=-. 故点P 在11B A 的延长线上,且112A P =.…………………10分 23.(1)228S =,4232S =…………2分; (2)设集合{0}P =,{1,1}Q =-. 若12||||||1n x x x +++=,即123,,n x x x x ,,中有1n -个取自集合P ,1个取自集合Q ,故共有112n nC -种可能,即为112n C ,…………4分 同理,12||||||2n x x x +++=,即123,,,n x x x x ,中有2n -个取自集合P ,2个取自集合Q , 故共有222n nC -种可能,即为222n C , ……若12||||||n x x x m +++=,即123,,,n x x x x ,中有n m -个取自集合P ,m 个取自集合Q ,故共有2n m m nC -种可能,即为2m m n C , 所以1122222n m m mn n n S C C C =++⋅⋅⋅+,…………………6分 因为当0k n ≤≤时,1k nC ≥,故10k n C -≥, 所以1122222n m m m n n n S C C C =+++001122112(222)(1)2(1)2m m m m n n n n n n n n C C C C C C ++<+++++-++- 0011221112(222222)(222)m m m m n n m m n n n n n n n C C C C C C ++++=+++++++-++11(12)(22)n n m ++=+--11322n n m ++=-+. …………………10分。