反比例函数知识点归纳(重点)
反比例函数知识点归纳
反比例函数知识点归纳
反比例函数是指一个函数,其中一个变量的值与另一个变量的值成反比。在数学中,反比例函数通常表示为y=k/x,其中x和y是函数的自变
量和因变量,k是常数。反比例函数也可以写为y=k/(x+a),其中a是常数。在本文中,我们将归纳一些关于反比例函数的重要知识点。
1.定义:
反比例函数是一个特殊的函数类型,它的特点是当x增加时,y值减小,反之亦然。在反比例函数中,变量x和y成反比关系,即x和y的乘
积等于常数k。反比例函数可以表示为y=k/x,其中k是常数。当k大于
0时,函数图像在y轴上方,当k小于0时,函数图像在y轴下方。
2.定义域和值域:
在反比例函数中,除了x不能等于0之外,x可以取任何非零实数值。这是因为当x等于0时,函数的定义不再成立,因为不能除以0。而y的
取值范围可以包括0,在y=k/x的函数中,y可以取任意非零实数值。当
k大于0时,y的范围为(0,+∞),当k小于0时,y的范围为(-∞,0),
当k等于0时,y只能取0。
3.图像和性质:
反比例函数的图像是一个超越坐标轴的曲线,它的形状为一条倒置的
双曲线。当k大于0时,曲线的开口朝下;当k小于0时,曲线的开口朝上。反比例函数是一个奇函数,它具有对称性,即f(x)=-f(-x)。此外,
反比例函数的图像永远不会与x轴或y轴相交,因为x等于0时,函数的
定义不成立。
4.等比例变换:
反比例函数的图像可以通过等比例变换来得到其他的反比例函数图像。当我们在函数中加入一个常数a,变成y = k/(x+a),这会导致图像在x
轴上方或下方平移a个单位。当a大于0时,图像向左移动;当a小于0时,图像向右移动。同样地,当我们在函数中加入一个倍数c,变成y =
反比例函数知识点归纳(重点)
.人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构
(二)学习目标
1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式
(k为常数,),能判断一个给定函数是否为反比例函数.
2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.
3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.
4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.
(三)重点难点
1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.
2.难点是反比例函数及其图象的性质的理解和掌握.
二、基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).
(三)反比例函数及其图象的性质
1.函数解析式:()
反比例函数知识点整理
反比例函数知识点整理
反比例函数是数学中的一种特殊函数形式,它的表达式为y=k/x,
其中k是常数,x和y分别表示自变量和因变量。在学习反比例函数时,我们需要了解它的定义、图像特征、性质以及应用等方面的知识点。
一、反比例函数的定义
反比例函数是一种具有特殊形式的函数,其定义如下:
当x≠0时,y=k/x,其中k是常数,称为比例系数;
当x=0时,函数无定义。
二、反比例函数的图像特征
1. 反比例函数的图像呈现出一条直线和坐标轴的分离特点。
2. 当x趋近于正无穷大时,y趋近于0;
当x趋近于负无穷大时,y也趋近于0;
当x趋近于0时,y的绝对值趋近于正无穷大。
3. 反比例函数的图像关于y轴对称。
三、反比例函数的性质
1. 定义域:反比例函数的定义域为除去x=0之外的所有实数。
2. 值域:反比例函数的值域为除去y=0之外的所有实数。
3. 单调性:当k>0时,反比例函数在定义域上单调递减;当k<0时,反比例函数在定义域上单调递增。
4. 零点:当x≠0时,反比例函数的零点为x=k。
5. 解方程:对于反比例函数的解方程问题,可以采用代数运算的方
式解决。例如,对于函数y=k/x,若求解y=0的解,则解为x=0;若求
解k=0的解,则解为x的全体实数。
四、反比例函数的应用
反比例函数在实际问题中有着广泛的应用,以下为一些常见的应用
场景:
1. 比例关系:反比例函数常用于描述两个变量之间的反比关系,例
如电阻与电流的关系、速度与时间的关系等。
2. 等时工作问题:在某些需要保持总工作量不变的情况下,反比例
函数可用于描述工作人员数量与工作时间的关系。
反比例函数知识点梳理
反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。通常我们把它写成y = k/x+b,其中 b 为常数。
2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。反比例函数也不具有最大值或最小值。
4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。
5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。这可以通过已知的点对、图像或其他信息来确定。
以上是反比例函数的知识点梳理,希望对您有所帮助。
反比例函数知识点汇总
反比例函数知识点汇总
1.定义与图像特征:
反比例函数的定义为y=k/x,在此函数中,x不等于0,k为常数。反
比例函数的图像特点是:经过第一、二象限两点,以y轴和x轴为渐进线,图像在x轴的正半轴和y轴的正半轴上都不会出现,图像呈现出一种双曲
线的形状。
2.反比例函数的基本性质:
(a)定义域:x≠0,即x不能为0。
(b)值域:排除0,即y不能为0。当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。
(c)对称中心:该函数关于原点(0,0)对称。
(d)渐进线:图像与x轴和y轴都有渐进线,即当x趋近于无穷大时,y趋近于0;当y趋近于无穷大时,x趋近于0。
(e)单调性:反比例函数在定义域内是单调递减的。
(f)异号性:当x与y异号时,k为负数;当x与y同号时,k为正数。
(g)零点:当x与y相等时,即x=y≠0。
3.确定反比例函数的常数k:
y1=k/x1和y2=k/x2
通过消去k,可以得到:
y1*y2=k
因此,可以通过已知点的y值的乘积来确定k的值。
4.反比例函数的应用:
(a)正比例与反比例的混合问题:当一个问题与正比例和反比例函数
有关时,可以通过组合两种函数来解决问题。例如,当一个物体的质量与
加速度成反比例关系,而力与加速度成正比例关系时,可以通过设置两个
函数来解决问题。
(b)流速与管道宽度:根据波的传播速度,流速与管道宽度成反比例
关系。当管道宽度较小时,流速较大;当管道宽度较大时,流速较小。
(c)投资与收益率:投资的利润与投资金额成反比例关系。当投资金
额较小时,相对的利润率较大;当投资金额较大时,相对的利润率较小。
反比例函数知识点归纳(重点)
反比例函数知识点归纳(重点)
一、知识结构
反比例函数的概念、图象及性质,函数的三种表示方法,函数模型的建立与实际问题的解决。
二、研究目标
1.理解反比例函数的概念,能确定反比例函数的解析式,
判断函数是否为反比例函数。
2.能描点画出反比例函数的图象,用代定系数法求反比例
函数的解析式,进一步理解函数的三种表示方法。
3.能分析反比例函数的数学性质,解决一些简单实际问题。
4.能建立函数模型,解决实际问题,认识函数作为数学模
型的重要性。
5.进一步理解常量与变量的关系,认识数形结合的思想方法。
三、重点难点
重点是反比例函数的概念及图象的性质的理解和掌握,难点是反比例函数及其图象的性质的理解和掌握。
基础知识
一、反比例函数的概念
1.反比例函数可以写成 $y=k/x$ 的形式,其中 $k$ 为常数,$x\neq 0$。
2.反比例函数也可以写成 $xy=k$ 的形式,用它可以求出
反比例函数解析式中的 $k$,从而得到反比例函数的解析式。
3.反比例函数的自变量不能为 $0$,函数图象与 $x$ 轴、$y$ 轴无交点。
二、反比例函数的图象
1.函数解析式:$y=k/x$。
2.自变量的取值范围:$x\neq 0$。
3.图象:
1) 图象的形状:双曲线。$k$ 越大,图象的弯曲度越小,
曲线越平直;$k$ 越小,图象的弯曲度越大。
2) 图象的位置和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
当 $k>0$ 时,图象的两支分别位于一、三象限;在每个
象限内,$y$ 随 $x$ 的增大而减小。
当 $k<0$ 时,图象的两支分别位于二、四象限;在每个
反比例函数知识点归纳(重点)
反比例函数知识点归纳和典型例题
(一)知识结构
(二)学习目标
1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析
式(k为常数,),能判断一个给定函数是否为反比例函数.
2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.
3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.
4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.
(三)重点难点
1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.
2.难点是反比例函数及其图象的性质的理解和掌握.
二、基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).
(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
反比例函数知识点归纳(重点)
反比例函数知识点归纳和典型例题
(一)知识结构
(二)学习目标
1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.
2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.
3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.
4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.
5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点
1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.
2.难点是反比例函数及其图象的性质的理解和掌握.
二、基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函
数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
反比例函数知识点归纳(重点)
反比例函数知识点归纳和典型例题
(一)知识结构
(二)学习目标
1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.
2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.
3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.
4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.
5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点
1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.
2.难点是反比例函数及其图象的性质的理解和掌握.
二、基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函
数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
反比例函数知识点总结
反比例函数知识点总结
一、反比例函数的定义
一般地,如果两个变量 x、y 之间的关系可以表示成\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\))的形式,那么称 y 是 x 的反比例
函数。
其中,x 是自变量,y 是函数,k 称为比例系数。
例如,当速度 v 一定时,路程 s 与时间 t 的关系可以表示为\(s =
vt\),如果时间 t 与路程 s 成反比例关系,那么可以表示为\(t =\frac{s}{v}\)(其中 v 是常数),此时 t 就是 s 的反比例函数。
需要注意的是,反比例函数中自变量 x 的取值范围是\(x ≠ 0\),
因为在分式中分母不能为 0。
二、反比例函数的表达式
反比例函数常见的表达式有以下三种形式:
1、\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\)),这是反比例函数的基本形式。
2、\(y = kx^{-1}\)(k 为常数,\(k ≠ 0\)),将\(\frac{k}{x}\)变形可得。
3、\(xy = k\)(k 为常数,\(k ≠ 0\)),通过\(y =\frac{k}{x}\)两边同时乘以 x 得到。
三、反比例函数的图像
反比例函数的图像是双曲线。
当\(k > 0\)时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小;
当\(k < 0\)时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
例如,函数\(y =\frac{2}{x}\),因为\(k = 2 > 0\),所以图像在第一、三象限,且在每个象限内,y 随 x 的增大而减小。
反比例函数知识点归纳(重点)
反比例函数知识点归纳和典型例题
(一)知识结构
(二)学习目标
1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k 为常数,),能判断一个给定函数是否为反比例函数.
2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即
列表法、解析式法和图象法的各自特点.
3.能根据图象数形结合地分析并掌握反比例函数(k 为常数,)的函数关系和性质,能利用这些函
数性质分析和解决一些简单的实际问题.
4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数
是刻画现实世界中变化规律的重要数学模型.
5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.
(三)重点难点
1. 重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.
2. 难点是反比例函数及其图象的性质的理解和掌
握.二、基础知识
(一)反比例函数的概念
1. ()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问
题时应特别注意系数这一限制条件;
2. ()也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3. 反比例函数的自变量,故函数图象与x 轴、y 轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x 的取值不能为0,且x 应对称取点(关于原点对称).(三)反比例函数及其图象的性质
1. 函数解析式:()
反比例函数知识点归纳(重点)
中考复习反比例函数
基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对
称取点(关于原点对称).
(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
3.图象:
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴
(2)图象的位置和性质:
与坐标轴没有交点,
当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.
图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.
4.k的几何意义
如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于
B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.
图1 图2
5.说明:
(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.
反比例函数知识点总结
反比例函数知识点总结
一、反比例函数定义
反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、图象特征
1. 反比例函数的图象是一组双曲线。
2. 当 k > 0 时,双曲线的两支分别位于第一象限和第三象限。
3. 当 k < 0 时,双曲线的两支分别位于第二象限和第四象限。
4. 双曲线的对称轴是 y 轴。
三、性质
1. 反比例函数不是定义在全体实数上的函数,其定义域为 (-∞, 0) ∪ (0, +∞)。
2. 反比例函数的值域为全体实数 R。
3. 反比例函数是奇函数,具有对称性,其对称中心为原点 (0, 0)。
4. 当 x 的值增大时,y 的值减小;当 x 的值减小时,y 的值增大。
5. 反比例函数没有渐近线,但当 x 趋向于 0 时,y 趋向于无穷大或负无穷大。
四、运算法则
1. 反比例函数的加法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 + y2 = (k1x2 + k2x1) / (x1x2)。
2. 反比例函数的减法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 - y2 = (k1x2 - k2x1) / (x1x2)。
3. 反比例函数的乘法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 * y2 = (k1 * k2) / (x1 * x2)。
4. 反比例函数的除法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 /
y2 = (k1 / k2) * (x2 / x1)。
反比例函数知识点总结
反比例函数知识点总结
反比例函数知识点归纳
知识点1 反比例函数的定义
反比例函数是指形如 y = k/x(k为常数,k≠0)的函数。
其中,自变量x的取值范围为x≠的一切实数,而函数值y的
取值范围为y≠0.
知识点2 用待定系数法求反比例函数的解析式
由于反比例函数只有一个待定系数k,因此只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
知识点3 反比例函数的图像及画法
反比例函数的图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限,与原点对称。由于自变量x≠,
函数值y≠,所以它的图像与x轴、y轴都没有交点。画反比例函数的图像应该先列表,再描点,最后用光滑的曲线连接。
知识点4 反比例函数的性质
反比例函数的图像位置与函数值的增减情况与k的符号有关。当k>0时,函数图像的两个分支分别在一、三象限,在
每个象限内,y随着x的增大而减小;当k<0时,函数图像的
两个分支分别在二、四象限,在每个象限内,y随着x的增大
而增大。
反比例函数的图像位置和函数的增减性由反比例函数系数
k的符号决定。在每个象限内,当k>0时,y随x的增大而减小;当k0.
反比例函数y=k/x中,k的几何意义可以通过双曲线上任
一点P(x,y)分别作x轴、y轴的垂线,得到矩形OEPF的面积
S=k=xy=x*y=PF*PE。
在反比例函数y=k/x中,k越大,双曲线y=k/x越小,离
坐标原点越远;k越小,双曲线y=k/x越大,离坐标原点越近。
双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。
反比例函数知识点归纳(重点)
反比例函数知识点归纳(重点)
可以写成形式,其中指数为-1.在解决指数问题时,要特
别注意系数。
2)反比例函数也可以写成xy=k的形式,通过这个式子
可以快速求出函数解析式中的k,从而得到反比例函数的解析式。
3)反比例函数的自变量x不能为0,因此函数图像与x 轴、y轴没有交点。在用描点法画反比例函数图像时,可以取
点关于原点对称。
4)反比例函数的图像是双曲线,随着k的增大,图像的
弯曲度越小,曲线越平直;图像越远离坐标轴,越小,图像的弯曲度越大;图像越靠近坐标轴,越大,图像的弯曲度越小。图像关于原点对称,且在每个象限内,y随x的增大而减小或
增大。
5)k的几何意义是矩形PBOA的面积,也等于三角形PQC的面积。
6)需要注意的是,双曲线的两个分支是断开的,研究反
比例函数的增减性时,要将两个分支分别讨论,不能一概而论。直线y=k与双曲线的关系取决于k与反比例函数的解析式中的
k的大小关系,两图像有两个交点或没有交点,且这两个交点
关于原点成中心对称。
3.实际问题与反比例函数
1)求反比例函数的解析式可以使用待定系数法或根据实
际意义列函数解析式。
2)需要综合其他学科的知识,但重点放在数学知识的研
究上。
4.充分利用数形结合的思想解决问题。
5.例题分析
1)y=3/x为x的反比例函数;答案为A。
2)xy=4为x的反比例函数;答案为C。
1.若它的图象在第二、四象限内,那么k的值为负数。
2.XXX随x的增大而减小,那么k的值为负数。
3.已知一次函数y=ax+b的图象经过第一、二、四象限,
则函数的图象位于第三象限。
4.已知a×b<0,点P(a,b)在反比例函数的图象上,则
(完整版)反比例函数知识点归纳(重点)6367
反比例函数知识点归纳和典型例题
、基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
3.图象:
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.
(2)图象的位置和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.
当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.
(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.
4.k的几何意义
如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的
面积是(三角形PAO和三角形PBO的面积都是).
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.
图1 图2
5.说明:
(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点归纳和典型例题
(一)知识结构
(二)学习目标
1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.
2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.
3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.
4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.
5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点
1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.
2.难点是反比例函数及其图象的性质的理解和掌握.
二、基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
3.图象:
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.
(2)图象的位置和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.
当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.
(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义
如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴
PBO的面积都是).
于B点,则矩形PBOA的面积是(三角形PAO和三角形
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA 的延长线于C,则有三角形PQC的面积为.
图1 图2
5.说明:
(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个
分支分别讨论,不能一概而论.
(2)直线与双曲线的关系:
当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.
(四)实际问题与反比例函数
1.求函数解析式的方法:
(1)待定系数法;(2)根据实际意义列函数解析式.
2.注意学科间知识的综合,但重点放在对数学知识的研究上.
(五)充分利用数形结合的思想解决问题.
三、例题分析
1.反比例函数的概念
(1)下列函数中,y是x的反比例函数的是().
A.y=3x B.C.3xy=1 D.
(2)下列函数中,y是x的反比例函数的是().
A.B.C.D.
答案:(1)C;(2)A.
2.图象和性质
(1)已知函数是反比例函数,
①若它的图象在第二、四象限内,那么k=___________.
②若y随x的增大而减小,那么k=___________.
(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.
(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.
(4)已知a·b<0,点P(a,b)在反比例函数的图象上,
则直线不经过的象限是().
A.第一象限B.第二象限C.第三象限D.第四象限
(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,
则一次函数y=kx+m的图象经过().
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().
A.B.C.D.
答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.
3.函数的增减性
(1)在反比例函数的图象上有两点,,且,则的值为().
A.正数B.负数C.非正数D.非负数
(2)在函数(a为常数)的图象上有三个点,,,则函数值、、
的大小关系是().
A.<<B.<<C.<<D.<<
(3)下列四个函数中:①;②;③;④.
y随x的增大而减小的函数有().
A.0个B.1个C.2个D.3个
(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).
答案:(1)A;(2)D;(3)B.
注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.
4.解析式的确定
(1)若与成反比例,与成正比例,则y是z的().
A.正比例函数B.反比例函数C.一次函数D.不能确定
(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.
(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.
(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).
①求x 0的值;②求一次函数和反比例函数的解析式.